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Julia is a modern scienti�c-computing language that relies on multiple dispatch to implement generic libraries.

While the language does not have a static type system, method declarations are decorated with expressive

type annotations to determine when they are applicable. To �nd applicable methods, the implementation

uses subtyping at run-time. We show that Julia’s subtyping is undecidable, and we propose a restriction on

types to recover decidability by stratifying types into method signatures over value types—where the former

can freely use bounded existential types but the latter are restricted to use-site variance. A corpus analysis

suggests that nearly all Julia programs written in practice already conform to this restriction.
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1 INTRODUCTION

Julia is a scienti�c-computing language carefully designed so that an implementation can generate
e�cient code for performance-critical abstractions. The central abstraction mechanism o�ered
by the language is multiple dispatch with an expressive type-annotation language and a complex
subtype relation. Multiple dispatch is a mechanism dating back to Lisp [Bobrow et al. 1986], which
allows generic functions to have multiple implementations, calledmethods, tailored to di�erent argu-
ment types. The following code snippet illustrates the expressive power of Julia’s type-annotation
language, in this case de�ning the binary “-” operator for various types:

✞ ☎

- (x::BigInt, y::BigInt) = ...

- (x::T, y::T) where T <: Union{Int16, Int32} = ...

- (m::Missing, n::Number) = ...

- (A::AbstractArray{T,N}) where {T,N} = ...
✝ ✆

Julia has both nominal type constructors, such as Number and AbstractArray{T,N}, and a variety
of structural types. Any is a supertype of all types. Finite unions of types are written Union{Int16,

Int32}. Tuple types such as Tuple{String, Number} are covariant in their element types. Finally,
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bounded existential types, called union-all in Julia, are written t wherel<:T<:u, and represent the
union of types t[t'/T] for all valid instantiations l<:t'<:u of the type variable T.

While it has a type-annotation language, Julia does not have a static type system. Thus, subtyping
is only used at run-time, in particular, to �nd an applicable method for each function call. The
reference de�nition of subtyping lies in a highly optimized, and evolving, C implementation. Zappa
Nardelli et al. [2018] give a faithful account; the departures from the implementation are believed to
be bugs in the C code. Chung et al. [2019] argue that the complexity of the implementation comes
in equal parts from the type language’s expressive power and from e�ciency concerns.
As we will demonstrate, Julia subtyping is undecidable. When a language has an undecidable

static type system, compile-time errors can typically be �xed by adding annotations to the program
as needed. For Julia, incomplete subtyping can incorrectly change the execution of a program, either
during dynamic dispatch, or when adding new method de�nitions, or when generating code. When
subtyping fails to terminate, the implementation raises an exception with little insight as to how to
�x the o�ending source code. The subtyping algorithm is still under development, as these issues
suggest: #41948 (a StackOverflowError caused by a function de�nition), #33137 (a problem with
Julia’s “diagonal rule”); #24166 (a problem with re�exivity and transitivity); #39099 (a problem
with transitivity of variadic tuple arguments).

Our goal is to develop a clear formalization of the intended subtype relation—one that can be
understood and adopted by programmers, and one for which an algorithm can be proved sound
and complete. The breadth of Julia’s type features makes this di�cult to do all at once, so in this
paper we focus on bounded existential types.

Fig. 1. Overview

Fig. 1 is a roadmap for this paper. We start with the implementation of subtyping, <∶Julia, used in
practice. The 2018 paper gave a formal de�nition of that relation, <∶‘18, with some small di�erences
(e.g. it ignored variadic tuples and singleton types). To validate <∶‘18, the authors performed
extensive testing of both de�nitions. The handful of di�erences between them were either ascribed
to bugs—some of which were �xed by the Julia team—or to unde�ned behavior. Much of the e�ort
was in establishing a better understanding of Julia’s diagonal rule, which restricts how existential
types can be instantiated in certain situations that were only informally described.While interesting,
the feature is a layer on top of existential types, which we show here are challenging enough on their
own. One of our contributions is that, by ignoring the diagonal rule in particular, we demonstrate
that one can recover a much simpler and more familiar declarative formalization of Julia’s subtyping.
The language intends its types to approximate sets and its subtyping to approximate set inclusion,
a transitive relation. Therefore, the declarative formalization, <∶

c
jd, simply declares, with an explicit
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rule, that subtyping is transitive. While this trivially captures the intended behavior, it also makes

reasoning about subtyping di�cult.
1
Thus, our second contribution is to establish an invertible

formalization of subtyping, <∶ji, where only one rule can act on a given side at a given time.
Invertible subtyping is proved equivalent to the declarative formalization of subtyping when
restricted to conservative types, meaning types whose quanti�ed type variables’ lower bounds
are subtypes of their corresponding upper bounds. At this point, it is rather easy to show that
subtyping is undecidable. More speci�cally, we prove the undecidability of invertible subtyping
between conservative types. Our proof proceeds by reduction of subtyping of one of Pierce [1992]’s

deterministic fragments of System �≤ to invertible subtyping. We do this by translating �
%

≤ types

to conservative types, and by showing �
%

≤ subtyping holds if and only if their translations are
invertible supertypes (where the only-if direction relies critically on invertibility of the rules). The
key insight is this �ipping of subtyping into supertyping and, likewise, �ipping upper-bounded

universal quanti�cation in �
%

≤ to lower-bounded existential quanti�cation in Julia.
To �nd a decidable yet practical fragment of Julia types, we conduct an empirical study, demon-

strating that the types actually written by users are strati�ed. In particular, method type annotations

can be strati�ed as method signatures that predicatively quantify over non-quantifying value types
2

with use-site variance, which Julia already has a shorthand for (e.g. Vector{<:Number}). The key
observation is that use-site variance is the only employed application of impredicative existential
quanti�cation where an existential type variable is instantiated with an existential type. One nice
property of the strati�cation is that, aside from checking conservativity of bounds, it is syntactic.
Our corpus analysis of all the source code of 9,335 Julia packages �nds only a handful of strat-
i�cation violations in 16.5 million lines of code. We conclude with the de�nition of algorithmic

subtyping, <∶sa, which we prove speci�es a sound and complete algorithm for subtyping between
conservative strati�ed types. The key insight is that strati�cation ensures that only one of the two
types being compared contains �exible variables, i.e. existentially quanti�ed variables that need
to be instantiated, preventing major complications like recursive constraints. Combined with the
above contributions, this provides the foundation for a sound and complete algorithm, upon which
future work can expand to encompass the full feature set. Belyakova [2023] in her thesis discusses
many of the missing features in the context of a restricted subtype relation that is shown to be
decidable but not complete. The step-wise approach presented here is key to be able to prove that
important property.

2 BACKGROUND ON JULIA

Julia is a high-level, dynamically typed programming language—originally designed for scienti�c
computing—that addresses the, so-called, “two-language problem” by providing both productivity
features and performance [Bezanson et al. 2018, 2017]. For productivity, the language provides
garbage collection, dynamic typing, and multiple dispatch—resolved at run-time using subtyping.
For performance, it relies on an optimizing compiler that specializes multiple dispatches to direct
calls [Pelenitsyn et al. 2021]. Subtyping largely follows the combination of nominal subtyping for

1
For example, type Nothing is declaratively equivalent to Any where Any<:T<:Nothing; demonstrated by opening the

existential and applying transitivity to Any <∶ Nothing with T as the middle type, even though T never occurs within the

body of the existential. This existential type is odd: its bounds are nonconservative, i.e. its lower bound is not a subtype of

its upper bound.
2
Value types are not to be confused with run-time types or, for those familiar with Julia terminology, concrete types.
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user-de�ned nominal types and semantic subtyping
3
for covariant tuples, unions, and bounded

existential types. While the language has no formal de�nition of its subtyping algorithm, Zappa
Nardelli et al. [2018] attempted to reverse-engineer an algorithmic de�nition and test it empirically.
That de�nition is mostly accurate, with most observed di�erences due to bugs in Julia.

Fig. 2. Datatype declarations

Nominal types are induced by user-de�ned datatype declarations and constitute a single-parent
inheritance hierarchy. Abstract types can be inherited from, and concrete types can be instantiated.
Fig. 2 illustrates a de�nition of several datatypes. Both Real and Ref{t} are abstract; the remaining
are concrete. Parametric types can have non-recursive lower and upper bounds on type variables,
and they are invariant with respect to their type parameters. Thus, Ref{t1} is a subtype of Ref{t2}
only if the arguments are equivalent. Tuples are immutable, and their type parameters are covariant.
Type Union{t . . .} describes a union (not sum) of types. For instance, Real is a subtype of Union{
Number,String}, and Union{t1,t2} is a subtype of t if all components are subtypes: t1<:t and
t2<:t. Following the semantic-subtyping mindset, tuples distribute over unions. For example,
Tuple{String,Union{Int32,Int64}} represents binary tuples where the �rst component is a
string, and the second is either a 32- or 64-bit integer. Due to distributivity, this type is equivalent to
Union{Tuple{String,Int32},Tuple{String,Int64}}. Bounded existential types, called union-
all in Julia, have the form t where l<:T<:u, where the lower and upper bounds can be omitted and
default to the bottom type—Union{}—and top type—Any—respectively. Existentials can model Java
wildcards but are more expressive. Intuitively, they denote a union of t[t'/T] for all instantiations
of the type variable T such that l<:t'<:u. Similarly to subtyping of union types, the intent is that

• (t where l<:T<:u)<:t2 if t[t'/T]<:t2 for all valid instantiations t' of T,
• t1<:(t where l<:T<:u) if there exists a valid instantiation t' with t1<:t[t'/T].

For example, Vector{Int32} is a subtype of Vector{T} whereT<:Number because T can be instan-
tiated with Int32, and Vector{T} whereT<:Number is a subtype of Vector{S} whereS because
for all valid instantiations t' of T, type variable S can be instantiated with the type t'. Tuples
distribute over existential types; types Tuple{Vector{T} whereT} and Tuple{Vector{T}} whereT
are equivalent.
Existential types are impredicative: quanti�ers can appear anywhere in a type, and type vari-

ables can be instantiated with any type. Type Vector{Ref{T} whereT} denotes a heterogeneous
vector of references, whereas Vector{Ref{S}} whereS denotes a union of homogeneous vectors
of references. Thus, a vector containing integer references, Vector{Ref{Int32}}, is a subtype
of the latter but not the former as the type arguments Ref{Int32} and Ref{T} whereT are not
equivalent; in particular, a Ref{String} could be put into a Vector{Ref{T} whereT} but not into

3
This is a misnomer, though, because semantic subtyping is subtyping that is complete with respect to a particular

semantics [Castagna and Frisch 2005], which Julia fails to be. Rather, Julia includes expressive subtyping rules commonly

associated with semantic subtyping, such as distributivity of tuples over unions.
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a Vector{Ref{Int32}}. Top-level existential types appear in signatures of polymorphic method
de�nitions. Recall that types are only used for multiple dispatch. To call a method, one provides
arguments that inhabit the corresponding existential type. In the method body, the existential is
implicitly unpacked, with the witness type being some valid instantiation induced by subtyping.
Consider a function f(v::Vector{T}) whereT: its signature is Tuple{Vector{T}} whereT. For a
call such as f([5,7,5]), represented with the type Tuple{Vector{Int32}}, dispatch resolution
relies on tuple subtyping—which succeeds in this case—and instantiates T with Int32.

3 SPECIFICATION OF SUBTYPING

As there is no o�cial de�nition of subtyping, we face the problem of choosing a baseline in our
exploration of decidability of subtyping. One option is to use Zappa Nardelli et al. [2018], as it
matches the implementation, but the complexity of their rules is daunting. Furthermore, being
accurate to the implementation is not necessarily what one wants; the implementation has bugs,
so it can be unclear whether accepting a program is intentional or accidental. Thus, we formalize
declarative subtyping based on the intuitions provided by the Julia documentation. To keep the
paper focused, we omit features not relevant to undecidability, such as distributivity of tuples, the
diagonal rule, nominal inheritance, variadic tuples, “plain bits” values, and singleton types. Our
paper lays the foundations that such extensions can be built upon and establishes a practical means
to address the key source of undecidability.

Julia syntax

f ∶∶= ⊤ Any top
⊥ Union{} bottom
X X type variable
f × . . . × f Tuple{f . . . f} covariant tuple
C⟨f, . . . , f⟩ C{f, . . . , f} invariant nominal constructor
f ∪ f Union{f, f} union
∃fℓ<∶X<∶fD . f f where fℓ <∶ X <∶ fD bounded existential

Fig. 3. Type grammar

For the remainder of the paper, we depart from the Julia type syntax and adopt a more standard
notation. The type grammar is given by Fig. 3. The shorthand C is for nullary datatypes. Datatype
declarations are implicit and do not restrict type parameters. A kind context is denoted Σ and is a,
possibly empty, sequence of type variables with explicit bounds fℓ<∶X<∶fD . As a shorthand, we
omit⊥ lower bounds and ⊤ upper bounds.
Julia has a notion of type validity: it rejects types with unbound type variables. However, this

notion is too permissive, as it allows a type variable to have a lower bound that is not a subtype
of its upper bound; we call such bounds nonconservative. This causes algorithmic problems and is
an unnecessary degree of freedom; our corpus analysis reveals that nonconservative bounds are
not used in practice. Thus, we consider only types that are well-scoped and conservative. Fig. 4
formalizes type validity, which is parameterized by the subtype relation that enforces conservativity.

3.1 Declarative Subtyping

Our declarative formalization of subtyping is given in Fig. 5. It is parameterized by a validity predi-
cate and includes explicit rules for re�exivity and transitivity. The latter make subtyping re�exive
and transitive by de�nition. Each of the remaining rules is standard for the relevant feature. Observe
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Σ ⊢( ⊤ Σ ⊢( ⊥

fℓ<∶X<∶fD ∈ Σ

Σ ⊢( X

∀8 ∈ [1, =] Σ ⊢( f8

Σ ⊢( f1 × . . . × f=

∀8 ∈ [1, =] Σ ⊢( f8

Σ ⊢( C⟨f1 . . . f=⟩

Σ ⊢( f1 Σ ⊢( f2

Σ ⊢( f1 ∪ f2

Σ ⊢( fℓ Σ ⊢( fD Σ ⊢ fℓ <∶( fD Σ, fℓ<∶X<∶fD ⊢( f

Σ ⊢( ∃fℓ<∶X<∶fD . f

⊢( ⋅

⊢( Σ Σ ⊢( fℓ Σ ⊢( fD Σ ⊢ fℓ <∶( fD

⊢( Σ, fℓ<∶X<∶fD

Fig. 4. Type and kind-context validity: Σ ⊢( f and ⊢( Σ for a given subtype relation <∶(

that unlike in �≤ where universal quanti�cations are only subtypes of universal quanti�cations,
here existential quanti�cations are supertypes of arbitrary types provided appropriate instantiations
exist. The validity predicate speci�es the universe of types to consider when applying transitivity
or instantiating existential types.
The parameterized judgments have common instantiations. Σ ⊢

ws
f denotes validity with the

total subtype relation (i.e. not enforcing conservativity) and formalizes when a type is well-scoped.
Σ ⊢

c
jd f and Σ ⊢ f <∶

c
jd f denote the mutually-inductively de�ned conservativity predicate

and declarative subtype relation quantifying over conservative types. Unless otherwise indicated,
declarative subtyping henceforth ranges over conservative types.

Σ ⊢ f <∶
+

jd f

Σ ⊢
+
f
′

Σ ⊢ f <∶
+

jd f
′

Σ ⊢ f
′
<∶

+

jd f
′′

Σ ⊢ f <∶
+

jd f
′′

Σ ⊢ f <∶
+

jd ⊤ Σ ⊢ ⊥ <∶
+

jd f

fℓ<∶X<∶fD ∈ Σ

Σ ⊢ X <∶
+

jd fD

fℓ<∶X<∶fD ∈ Σ

Σ ⊢ fℓ <∶
+

jd X

∀8 ∈ [1, =] Σ ⊢ f8 <∶
+

jd f
′

8

Σ ⊢ f1 × . . . × f= <∶
+

jd f
′

1 × . . . × f
′

=

∀8 ∈ [1, =] Σ ⊢ f8 <∶
+

jd f
′

8 Σ ⊢ f
′

8 <∶
+

jd f8

Σ ⊢ C⟨f1 . . . f=⟩ <∶
+

jd C⟨f
′

1 . . . f
′

=⟩

Σ ⊢ f1 <∶
+

jd f
′

Σ ⊢ f2 <∶
+

jd f
′

Σ ⊢ f1 ∪ f2 <∶
+

jd f
′

Σ ⊢ f8 <∶
+

jd f1 ∪ f2

Σ, fℓ<∶X<∶fD ⊢ f <∶
+

jd f
′

Σ ⊢ ∃fℓ<∶X<∶fD . f <∶
+

jd f
′

Σ ⊢
+
fX Σ ⊢ fℓ <∶

+

jd fX Σ ⊢ fX <∶
+

jd fD

Σ ⊢ f[X ↦ fX] <∶
+

jd ∃fℓ<∶X<∶fD . f

Fig. 5. Declarative subtyping: Σ ⊢ f <∶
+

jd f for a given type-validity predicate⊢
+
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Σ ⊢ f <∶ji ⊤ Σ ⊢ ⊥ <∶ji f
′

Σ ⊢ X <∶ji X

fℓ<∶X<∶fD ∈ Σ Σ ⊢ fD <∶ji f
′

Σ ⊢ X <∶ji f
′

fℓ<∶X<∶fD ∈ Σ Σ ⊢ f <∶ji fℓ

Σ ⊢ f <∶ji X

∀8 ∈ [1, =] Σ ⊢ f8 <∶ji f
′

8

Σ ⊢ f1 × . . . × f= <∶ji f
′

1 × . . . × f
′

=

∀8 ∈ [1, =] Σ ⊢ f8 <∶ji f
′

8 Σ ⊢ f
′

8 <∶ji f8

Σ ⊢ C⟨f1, . . . , f=⟩ <∶ji C⟨f
′

1, . . . , f
′

=⟩

Σ ⊢ f1 <∶ji f
′

Σ ⊢ f2 <∶ji f
′

Σ ⊢ f1 ∪ f2 <∶ji f
′

Σ ⊢ f <∶ji f
′

8

Σ ⊢ f <∶ji f
′

1 ∪ f
′

2

Σ, fℓ<∶X<∶fD ⊢ f <∶ji f
′

Σ ⊢ ∃fℓ<∶X<∶fD . f <∶ji f
′

Σ ⊢ji fX Σ ⊢ fℓ <∶ji fX Σ ⊢ fX <∶ji fD Σ ⊢ f <∶ji f
′
[X ↦ fX]

Σ ⊢ f <∶ji ∃fℓ<∶X<∶fD . f
′

Fig. 6. Invertible subtyping: Σ ⊢ f <∶ji f

3.2 Invertible Subtyping

When one knows f1×f2 is a subtype of f
′

1×f
′

2, one would often like to deduce that f1 is a subtype

off
′

1 and thatf2 is a subtype off
′

2, conceptually inverting the rule for covariant tuples. However, this

is not necessarily true. The kind context could contain a bounded variable f1 × f2<∶X<∶f
′

1 × f
′

2, and
transitivity could use X as its intermediate type without ever connecting the respective projections.
So, without conservativity of bounds, transitivity makes such desirable subtyping inversions
impossible. To this end, we restrict the type system to conservative types. With this restriction, our

problematic bounded variable f1 × f2<∶X<∶f
′

1 × f
′

2 is only valid if f1 × f2 can be determined to be

a subtype of f
′

1 × f
′

2 without X. From this proof of conservativity, one then hopes to extract the
expected subtypings between the respective projections. Indeed, we prove that, when restricted to
conservative types and kind contexts, declarative subtyping is equivalent to the invertible subtype
relation Σ ⊢ f <∶ji f , formalized in Fig. 6, which does not contain an explicit transitivity rule.

Theorem 3.1. For any kind context Σ satisfying⊢ji Σ, and for any pair of types f and f
′
satisfy-

ing Σ ⊢ji f and Σ ⊢ji f
′
, the following equivalence holds:

Σ ⊢ f <∶
c
jd f

′
⟺ Σ ⊢ f <∶ji f

′

Proof. The leftward implication is trivially proven by induction on Σ ⊢ f <∶ji f
′
, with applica-

tions of re�exivity and transitivity rules of <∶
c
jd. The bulk of the proof by far is in the rightward

implication. First, we observe that, if its bounds are conservative, an existential type ∃fℓ<∶X<∶fD . f

is equivalent to the type ∃⊥<∶X
′
<∶fD . f[X ↦ fℓ ∪ X

′
]. Then, for the simpler type space with only

upper bounds, we de�ne transitivity-eliminating reductions and show that repeatedly applying
them necessarily terminates. In particular, we translate the system to Girard’s cut-elimination
reductions for proof nets of second-order classical linear logic (PN2) [Girard 1987], which handles
termination of cut elimination in the presence of impredicativity. □

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



191:8 Julia Belyakova, Benjamin Chung, Ross Tate, and Jan Vitek

Invertible subtyping is derived from declarative subtyping by baking transitivity into each rule

directly. It allows for an easy use of inversion: when given a subtype relation Σ ⊢ f <∶ji f
′
, by

design only one rule can “act on” a given side. For example, only the tuple rule is applicable to

the subtyping ⊢ f1 × f2 <∶ji f
′

1 × f
′

2, guaranteeing the respective projections are necessarily
subtypes, just as one would hope for. For other features formalized using left and right rules, one
can often use induction to dig up an application of the desired one-sided rule. For example, one can
easily prove that a union is a subtype of another type only if its components are. However, not
all inversions are always possible; for example, a subtype of a union is not necessarily a subtype
of either component of the union. Similarly, invertible subtyping is not quite syntax-directed; in
particular, the right rule for existentials can apply in an in�nite number of ways depending on the
instantiating types. So,⊢ Int32 <∶ji ∃X.X can be shown by instantiating X with Int32, or with
Int32 ∪ Int64, or with many other types. Nonetheless, invertible subtyping is easier to reason
about than declarative subtyping. The equivalence is valuable for both proving undecidability and
establishing completeness of our algorithm on restricted types.

4 UNDECIDABILITY OF JULIA SUBTYPING

This section provides a proof of undecidability of Julia subtyping. Consider this code:

This valid Julia program causes a StackOverflowErrorwhen executed. A method with a parameter
of type Ref{<:Theta} would similarly fail if called with a value of type Ref{Kappa(Theta)}.
Furthermore, adding a second method with Ref{Kappa(Theta)} as parameter would also over�ow,
as Julia tries to prioritize method de�nitions by subtyping. The code fragment is a contravariant
translation of Curien and Ghelli [1990]’s gadget for non-termination in �≤. This singular example
does not prove undecidability, but our translation does. Our proof proceeds by showing that

System �
%

≤ ’s subtyping is equivalent under a translation into our subtyping calculus, thereby
demonstrating undecidability by reduction.

4.1 System �
%

≤

We remove arrow types from �≤ to form the reduced �
%

≤ as described by Pierce [1992]. Pierce

shows that subtyping in �
%

≤ is equivalent to subtyping in �≤ and, therefore, that �
%

≤ is undeccidable.

Fig. 7 gives the grammar of �
%

≤ , where types are restricted depending on whether they occur in a

negative or positive position. Kind contexts Γ
−
are (possibly empty) sequences of upper-bounding

type-variable declarations U≤g
−
that restrict upper bounds to only be negative types.

g
+
∶∶= Positive types

Top top

¬g
−

negative negation

∀U≤g
−
.g
+

positive quanti�cation

g
−
∶∶= Negative types

U type variable

¬g
+

positive negation

∀U≤Top.g
−

negative quanti�cation

Fig. 7. �
%

≤ grammar
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Fig. 8 gives the subtyping rules of �
%

≤ . As in this paper, the rules treat U-equivalent types as

implicitly equivalent. As such, the rule �
%

≤ -All does not require the two types to use the same
variable name; if the variable names are di�erent, they are implicitly U-renamed.

Γ
−
⊢ g

−
≤ Top

U≤g
−
∈ Γ

−
Γ
−
⊢ g

−
≤ g

+

Γ
−
⊢ U ≤ g

+

�
%

≤ -All
Γ
−
, U≤g

−

2 ⊢ g
−

1 ≤ g
+

Γ
−
⊢ ∀U≤Top.g

−

1 ≤ ∀U≤g
−

2 .g
+

�
%

≤ -Neg
Γ
−
⊢ g

−

2 ≤ g
+

1

Γ
−
⊢ ¬g

+

1 ≤ ¬g
−

2

Fig. 8. Subtyping for �
%

≤ : Γ
−
⊢ g

−
≤ g

+

4.2 From �
%

≤ to Julia

For this reduction, we shall use the invertible subtype relation of Fig. 6 and show that there exists

a suitable contravariant translation ⟦⟧ of �
%

≤ types and environments. Our translation is de�ned
in Fig. 9. We use the nominal type constructors Neg⟨f⟩ and All⟨f, f⟩ to create invariant contexts

that force type equivalence. For simplicity, we treat �
%

≤ type variables as Julia type variables.

g
+

⟦Top⟧ = ⊥

⟦¬g
−
⟧ = Neg⟨⟦g

−
⟧⟩

⟦∀U≤g
−
.g
+
⟧ = ∃⟦g

−
⟧<∶U.∃U

′
<∶⟦g

+
⟧. All⟨U, U

′
⟩

g
−

⟦U⟧ = U

⟦¬g
+
⟧ = ∃⟦g

+
⟧<∶U. Neg⟨U⟩

⟦∀U≤Top.g
−
⟧ = ∃U.∃U

′
<∶⟦g

−
⟧. All⟨U, U

′
⟩

Γ
− ⟦⋅⟧ = ⋅

⟦Γ
−
, U≤g

−
⟧ = ⟦Γ

−
⟧, ⟦g

−
⟧<∶U

Fig. 9. Contravariant translation from �
%

≤ to Julia

The key insight of the translation is that subtyping of universally quanti�ed types is dual to

subtyping of existentially quanti�ed types. The translation �ips an �
%

≤ judgment Γ
−
⊢ g

−

1 ≤ g
+

2 into

⟦Γ
−
⟧ ⊢ ⟦g

+

2 ⟧ <∶ji ⟦g
−

1 ⟧, replacing upper-bounded universal quanti�cation with lower-bounded
existential quanti�cation. The translation targets invertible subtyping, rather than declarative
subtyping. We made this choice since, for the translation to transfer undecidability, we need both

that translation preserves subtyping (g
−

1 ≤ g
+

2 implies ⟦g
+

2 ⟧ <∶ji ⟦g
−

1 ⟧) and that translation re�ects

subtyping (⟦g
+

2 ⟧ <∶ji ⟦g
−

1 ⟧ implies g
−

1 ≤ g
+

2 ). Showing that the translation re�ects subtyping relies
heavily on invertibility. This then leads us into the proof of undecidability.

Theorem 4.1 (Undecidability of Subtyping). For any valid kind contexts Γ
−
and any pair of

negative type g
−
and positive type g

+
valid in Γ

−
, the following equivalence holds:

Γ
−
⊢ g

−

1 ≤ g
+

2 ⟺ ⟦Γ
−
⟧ ⊢ ⟦g

+

2 ⟧ <∶ji ⟦g
−

1 ⟧
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Because the former is undecidable, this implies that the latter is also undecidable.

Proof. Consider the conclusion of rule �
%

≤ -All: Γ
−
⊢ ∀U≤Top.g

−

1 ≤ ∀U≤g
−

2 .g
+
. The goal is to

prove this holds if and only if the dual judgment holds: ⟦Γ
−
⟧ ⊢ ⟦∀U≤g

−

2 .g
+
⟧ <∶ji ⟦∀U≤Top.g

−

1 ⟧.
Expanding the translation begets the following judgment:

⟦Γ
−
⟧ ⊢ ∃⟦g

−

2 ⟧<∶U.∃U
′
<∶⟦g

+
⟧. All⟨U, U

′
⟩ <∶ji ∃U.∃U

′
<∶⟦g

−

1 ⟧. All⟨U, U
′
⟩

The universal quanti�cation is translated into an existentially quanti�ed term of the same vari-
able with upper bounds �ipped into (translated) lower bounds, and with another variable with
an upper bound in order to encode covariance. Because of the unique inversion properties of

nominal constructors, having the body All⟨U, U
′
⟩ for the right existential implies U and U

′
are

necessarily instantiated with the corresponding arguments in the left type.
4
Thus the above judg-

ment holds if and only if those instantiations satisfy their bounds in the appropriate kind context.

Only U
′
has a bound, which invertibility then quickly implies is satis�ed if and only if in the

kind context ⟦Γ
−
⟧, ⟦g

−

2 ⟧<∶U (since we can drop U
′
once it no longer occurs in either type), the

following holds: ⟦Γ
−
⟧, ⟦g

−

2 ⟧<∶U ⊢ ⟦g
+
⟧ <∶ji ⟦g

−

1 ⟧. This is the translation of the premise of

�
%

≤ -All. Translation for negated types follows the same concept (dualization into existentially-
bounded variables) but is simpli�ed since there is no reference to the introduced type variable

from within the translated terms. Rule �
%

≤ -Neg concludes with Γ
−
⊢ ¬g

+

1 ≤ ¬g
−

2 , which trans-

lates to ⟦Γ
−
⟧ ⊢ Neg⟨⟦g

−

2 ⟧⟩ <∶ji ∃⟦g
+

1 ⟧<∶U. Neg⟨U⟩. By reasoning similar to �
%

≤ -All, invertibility

implies this holds if and only if U is instantiated with ⟦g
−

2 ⟧, though this time with the additional

requirement that the instantiation satis�es its lower-bound constraint.
5
Thus this holds if and only

if ⟦Γ
−
⟧ ⊢ ⟦g

+

1 ⟧ <∶ji ⟦g
−

2 ⟧ holds, which is the translation of the premise of �
%

≤ -Neg. □

Therefore, �
%

≤ subtyping holds if and only if the dualized translated version holds. By Pierce
[1992], we can conclude that our subset of Julia’s subtype relation is undecidable. Chung [2023]
generalizes undecidability onto the broader Julia subtype relation when considering the other
subtyping features as described by Zappa Nardelli et al. [2018].

5 STRATIFYING EXISTENTIAL TYPES FOR JULIA-IN-PRACTICE

We identify a subset of Julia types within which subtyping is decidable and to which existing
programs already conform. In particular, one can stratify types into method signatures over value
types, where quanti�cation in method signatures can only use value types for bounds, and quan-
ti�cation within value types is restricted to use-site variance. In the next section, we demonstrate
that this strati�cation indeed makes subtyping decidable. We start with an empirical study of Julia
programs to show they already conform to this strati�cation.

4
Technically, invertibility only directly implies the instantiations are equivalent to the corresponding arguments. However,

one can extend the intermediate type and proof system and the reduction process employed in the proof of Th. 3.1 to

furthermore eliminate such equivalences and ensure direct instantiations. This extension adds a specialized form of existential

quanti�cation for precisely the above pattern, with its right rule restricted in the desired manner. Due to invariance of

nominal constructors, transitivity-elimination reduction can be extended to accommodate this restriction while staying in

line with PN2. And because U and U
′
have no lower bounds, there is no need to replace them with a union to integrate

conservativity. Altogether, this means we can get a proof in the desired form for induction.
5
This lower bound requires extending the aforementioned intermediate specialized quanti�er to support either upper or

lower bounds. So long as only one side is present, we still avoid the complications caused by nonconservative bounds.
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k F (g, . . . , g) tuple of method parameters
∃g<∶X<∶g .k polymorphism
k ∪k multipurposing
⊥ exclusion

g F ⊤ top
⊥ bottom
X type variable
g × . . . × g covariant tuple
C⟨g≪g, . . . , g≪g⟩ nominal constructor with use-site variance
g ∪ g union

ΘF ⋅ empty kind context
Θ, g<∶X<∶g bounded variable

Fig. 10. Stratified types

5.1 Stratified Types

The strati�ed grammar is de�ned in Fig. 10. A method signature, k , is a union of existential
quanti�cations of lists of value types as its method parameters. Thus, k can represent generic
method signatures for the purpose of multiple dispatch. A value type, g , is limited to use-site
variance, rather than full existential quanti�cation, but can use all other type constructors freely. A
type argument gℓ≪gD for a nominal constructor indicates that the run-time argument must be a
supertype of gℓ and a subtype of gD . When a type argument is of the form g≪g , we abbreviate it
as g . Upper and lower bounds, for both existentially quanti�ed variables and type arguments, are
always value types.
Julia already provides syntactic support for use-site variance. For the type Vector{T} where

T, one can instead simply write Vector. Similarly, one can write types Vector{<:Number} and
Vector{>:Int32} for, respectively, Vector{T} whereT<:Number and Vector{T} whereT>:Int32.

Crucially for the decidability of subtyping, our restriction rules out types where existential types
inside invariant constructors do not match use-site variance, e.g., Ref{Pair{T, T} where T}. In

particular, the Theta
6
type from Ghelli’s looping gadget is not expressible as a strati�ed type

because, in the existential Kappa(Z)
7
, variable Y occurs twice under the invariant Pair constructor.

Thus, Kappa(Z) (and, consequently, Neg(Kappa(Z))) is not encodable as use-site variance and
does not constitute a value type, so it is not allowed as a bound in Theta.
In addition to syntactic strati�cation, we also require strati�ed types and kind contexts to be

conservative, where lower bounds must be subtypes of upper bounds (for both variables and type

arguments of datatypes). The validity judgments Θ ⊢( k , Θ ⊢( g , and ⊢( Θ are all de�ned

in the obvious manner, parameterized by a subtype relation on just value types (since method
signatures do not occur in bounds).
There is an obvious syntactic de�nition for when an existential type corresponds to a nominal

constructor with use-site variance (for example, ∃⊥<∶X<∶⊤. Ref⟨X⟩ is Ref⟨⊥≪⊤⟩). This then
extends to a syntactic correspondence between Julia types and value types, and then between Julia
types and method signatures as well. Although, technically, multiple Julia types can correspond to a
given strati�ed type, all of these types are trivially equivalent; so, as an abuse of notation, we treat

6
const Theta = Pair{Z, <:Neg(Kappa(Z))} where Z

7
Kappa(T) = Pair{Y, <:Neg(Y)} where Y>:T
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strati�ed types as a subset of Julia types. We say a type conforms to strati�cation if there exists a
strati�ed type that it corresponds to. We say a type conforms to strati�cation up to equivalence if
it is equivalent—according to Julia’s entire feature set—to some type that conforms to strati�cation.
In particular, one can use distributivity to either pull a nested existential up to the top level or to
push an existential down inside a tuple so that it exempli�es use-site variance. This is why method
signatures have unions, whereas in practice just the method parameters would have unions that
would be automatically distributed up to the signature level. We discuss such equivalences in more
detail below.

5.2 Empirical Evaluation

To estimate the potential impact of imposing this strati�cation on existing programs, we conducted
a corpus analysis over nearly all of the packages listed in the o�cial Julia registry. Out of more
than 2 million type annotations, only 4 do not conform to strati�cation up to equivalence. All type
annotations have conservative bounds.

5.2.1 Methodology. The corpus used in our analysis is the entire General Registry, which is the
default source of packages used by Julia programs. The list of packages, obtained from JuliaHub,
contained 9,383 entries as of 2023-05-20. Out of those, 9,335 packages were successfully downloaded.
Some entries were not valid registered packages, or were duplicates, or were no longer publicly
available. The resulting corpus has 172K �les with 16.5M lines of code as reported by CLOC 1.9.0.
Our analysis code is written in Julia 1.8.5. It extracts type annotations from all .jl �les in the corpus
and reports annotations that do not conform to strati�cation up to equivalence. The extraction
uses the Julia parser and the MacroTools.jl package for convenient pattern matching over abstract

syntax trees. Source code and the results of the analysis are publicly available.
8

5.2.2 Results. Some types do not directly conform to strati�cation, but they do up to equivalence.
Such types are not �agged by the analysis because their equivalent rewriting could be automated.
At the method-signature level, if a method parameter has an existential at a distributive location,
we �rst distribute the existential up to the signature level. Then, at the value-type level, we employ
equivalences from the following two categories:

• An existential variable essentially encoding use-site variance but separated from its binding
by distributive constructors. Some examples are Tuple{Vector{T}} whereT and Union{

Vector{T}, Missing} whereT. These types are equivalent to the strati�ed types Tuple{

Vector{T} whereT} and Union{Vector{T} whereT, Missing}.
• An existential variable used completely unnecessarily as a single component of a tuple. For
example, Tuple{T} whereT<:u is equivalent to Tuple{u}. This category is already automati-
cally rewritten by Julia into the equivalent existential-free form.

The analysis was run on our corpus. One package failed to process; we manually con�rmed
its types conform to strati�cation up to equivalence. There were 206 packages with at least one
�le failing to parse; such �les were ignored. In the remaining �les, the analysis identi�ed a total
of 2,283,011 type annotations. Out of these, 1,887 were not processed because a type-variable
binding contained a macro or quoted expression, and 26,385 were partially processed due to a
macro or quoted expression in a part of the type. Of the 2,281,124 fully-or-partially analyzable
type annotations, 2,281,117 were identi�ed as conforming to strati�cation up to equivalence, and
7 annotations were �agged as potentially problematic. Three of these seven annotations were false
positives related to Vararg. Variadic arguments are represented as Vararg in Tuple types. For
example, Tuple{Vararg{Int32}} stands for a tuple of arbitrarily many integers. According to

8
https://github.com/prl-julia/julia-sub
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Julia subtyping, Vararg is covariant in its type argument, whereas the analysis reported it as if it
were invariant.

Of the remaining four type annotations, two are instances of the same non-conforming type that
can be rewritten into a semantically equivalent type that conforms to strati�cation. The original
type is the following from package Muon.jl:

This type describes dictionaries of arbitrary key type whose elements are either arrays of numbers,
arrays of elements that are either of homogeneous numeric type or missing, or an arbitrary data
frame. This type has the following semantically equivalent conforming type, but the equivalence is
not derivable according to Julia subtyping:

The other two remaining types do not conform to strati�cation even up to semantic equivalence.
The �rst type is the following from package Alicorn.jl:

Here we have an existential quanti�er inside a nominal constructor, and its variable occurs more
than once so that it expresses more than just use-site variance. This type requires that the array
contains tuples where the type of the �rst projection matches the second projection’s element type.
The second type is the following from package UnitfulEquivalences.jl:

Here T and U, used by Quantity, are quanti�ed outside of the containing Level.
To check for conservative bounds, we extracted all type annotations that explicitly declare both

a lower and an upper bound on at least one variable. There were only 9 such annotations, all of
which we inspected manually and found to be conservative.

In sum, our analysis shows that the types programmers write conform to our proposed strati�ca-
tion, or do so at least up to equivalences that are easy to recognize.

5.3 Stratified Subtyping

With our strati�cation empirically justi�ed, we proceed to de�ne invertible subtyping on strati�ed
types, which we use as a bridge to invertible subtyping on arbitrary types. Fig. 11 gives the rules
for method signatures, and Fig. 12 gives the rules for value types. Subtyping itself has become
strati�ed; not only is method-signature subtyping layered over value-type subtyping, but for method
signatures, the left rules are layered over the right rules, taking advantage of the strati�cation
boundary to signal when to move from left to right. The right existential rule now only permits
instantiation with value types g , which we prove is faithful to subtyping between the corresponding
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Θ ⊢ (g1, . . . , g=) <∶
r
si k

′

Θ ⊢ (g1, . . . , g=) <∶si k
′

∀8 ∈ [1, =] Θ ⊢ g8 <∶si g
′

8

Θ ⊢ (g1, . . . , g=) <∶
r
si (g

′

1, . . . , g
′

=)

Θ ⊢ ⊥ <∶si k
′

Θ ⊢ k1 <∶si k
′

Θ ⊢ k2 <∶si k
′

Θ ⊢ k1 ∪k2 <∶si k
′

Θ ⊢ (g1, . . . , g=) <∶
r
si k

′

8

Θ ⊢ (g1, . . . , g=) <∶
r
si k

′

1 ∪k
′

2

Θ, gℓ<∶X<∶gD ⊢ k <∶si k
′

Θ ⊢ ∃gℓ<∶X<∶gD .k <∶si k
′

Θ ⊢si gX Θ ⊢ gℓ <∶si gX Θ ⊢ gX <∶si gD

Θ ⊢ (g1, . . . , g=) <∶
r
si k

′
[X ↦ gX]

Θ ⊢ (g1, . . . , g=) <∶
r
si ∃gℓ<∶X<∶gD .k

′

Fig. 11. Stratified invertible subtyping for signatures: Θ ⊢ k <∶si k (le�), Θ ⊢ (g, . . .) <∶
r

si k (right)

Θ ⊢ g <∶si ⊤ Θ ⊢ ⊥ <∶si g

Θ ⊢ X <∶si X

gℓ<∶X<∶gD ∈ Θ Θ ⊢ gD <∶si g
′

Θ ⊢ X <∶si g
′

gℓ<∶X<∶gD ∈ Θ Θ ⊢ g <∶si gℓ

Θ ⊢ g <∶si X

∀8 ∈ [1, =] Θ ⊢ g8 <∶si g
′

8

Θ ⊢ g1 × . . . × g= <∶si g
′

1 × . . . × g
′

=

∀8 ∈ [1, =] Θ ⊢ g
ℓ ′

8 <∶si g
ℓ

8 Θ ⊢ g
D

8 <∶si g
D′

8

Θ ⊢ C⟨g
ℓ

1≪g
D

1 . . . g
ℓ

=≪g
D

= ⟩ <∶si C⟨g
ℓ ′

1 ≪g
D′

1 . . . g
ℓ ′

=≪g
D′

= ⟩

Θ ⊢ g1 <∶si g
′

Θ ⊢ g2 <∶si g
′

Θ ⊢ g1 ∪ g2 <∶si g
′

Θ ⊢ g <∶si g
′

8

Θ ⊢ g <∶si g
′

1 ∪ g
′

2

Fig. 12. Stratified invertible subtyping for value types: Θ ⊢ g <∶si g

Julia types. The rule for nominal constructors now directly supports use-site variance without
existential types. In particular, it ensures that, for each type argument, the left-hand use-site range
is contained within the right-hand use-site range. For example, the subtyping⊢ C⟨⊥≪Int32⟩ <∶si
C⟨⊥≪⊤⟩ holds, whereas the subtyping /⊢ C⟨⊥≪Int32⟩ <∶si C⟨Int32≪⊤⟩ does not.

Lemma 5.1. For any kind context Θ satisfying ⊢si Θ, and for any pair of value types g and g
′

satisfying Θ ⊢si g and Θ ⊢si g
′
, the following equivalence holds:

Θ ⊢ g <∶ji g
′
⟺ Θ ⊢ g <∶si g

′

Theorem 5.2. For any kind context Θ satisfying⊢si Θ, and for any pair of method signaturesk

andk
′
satisfying Θ ⊢si k and Θ ⊢si k

′
, the following equivalence holds:

Θ ⊢ k <∶ji k
′
⟺ Θ ⊢ k <∶si k

′

In addition to bridging invertible subtyping across Julia types and strati�ed types, Th. 3.1 ex-
tends that bridge to declarative subtyping. Consequently, we know that invertible subtyping for
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conservative strati�ed types is re�exive and transitive, which will be useful for proving that our
algorithm is complete.

6 DECIDING SUBTYPING FOR STRATIFIED EXISTENTIAL TYPES

At last, we present our algorithm for deciding subtyping of strati�ed types. Invertible subtyping
brought us substantially closer than declarative subtyping by limiting the rules that can apply to
any pair of types. Strati�cation brought us closer still by making recursive search terminating, as we
illustrate next. The �nal step, addressed here, is to deal with the fact that certain rule applications
still involve signi�cant choices. In particular, the right existential rule for method signatures has
to conjure an instantiating type. It is important to understand, though, that the algoritm is not
particularly surprising; it is, for the most part, what one would expect for a constraint-collecting
algorithm. It also aligns with Julia’s implementation, aside from various heuristics, e.g. for picking
which path to explore �rst. What is new is the insight that strati�cation and conservativity o�er
guarantees that ensure decidability and completeness. That is, strati�cation and conservativity
explain why Julia’s existing algorithm works well in practice.
In the following, we di�erentiate between rigid type variables, whose bounds are given by the

kind context Θ, and �exible variables, on which constraints are collected and eventually solved
to produce a corresponding instantiating type. The terminology carries over to types: a rigid

(resp. �exible) type is a one that has only rigid (resp. �exible) type variables.

6.1 Backtracking Proof Search

Invertible subtyping for value types is decidable. The rules in Fig. 12 prescribe a backtracking proof
search algorithm which is trivially sound and complete, provided it terminates. This latter condition

is critical. While �
%

≤ satis�es the requirements for backtracking proof search, the search can fail to
terminate. In <∶ji-subtyping of value types, termination is ensured by a simple decreasing measure.

Lemma 6.1. For any kind context Θ satisfying ⊢
ws

Θ, and for any pair of value types g and g
′

satisfying Θ ⊢
ws

g and Θ ⊢
ws

g
′
, the following is decidable:

Θ ⊢ g <∶si g
′

Consequently, we can simply de�ne algorithmic subtyping on value types Θ ⊢ g <∶sa g as

invertible subtyping on value types <∶si.

6.2 Marshalling Type Variables

Because of strati�cation, complexities typically associated with rigid and �exible variables (such as
determining how to solve recursive constraints on �exible variables) are absent from our system.
Recall that strati�ed subtyping layers the left method-signature rules over the right method-

signature rules, which, in turn, are layered over value-type subtyping. Since the only algorithmic
rules that would need to introduce rigid or �exible variables for Julia are, respectively, the left and
right existential rules, this means we can introduce all rigid variables, and then all �exible variables,
and then proceed to value subtyping wherein neither get introduced. Consequently, only rigid
variables occur in the left method signature and only �exible variables occur in the right method
signature, which is a valuable property. While contravariance might cause left and right to swap,
if we track such directionality, we can know whether a variable is rigid or �exible—and what we
should do with it—simply by knowing the correct direction and which side of the subtyping the
variable is occurring on. Furthermore, when the variable is �exible and we need to collect the other
side as a constraint on that variable, the constraint is known to contain only rigid variables. In
particular, this means that the constraint cannot be recursive. Thus, we can exploit strati�cation
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Θ ⊢ (g1, . . . , g=) <∶
r
sa k

′
↝ ∅

Θ ⊢ (g1, . . . , g=) <∶sa k
′

∀8 ∈ [1, =] Θ ⊢ g8 <∶
→

sa g
′

8 ↝ K8

Θ ⊢ (g1, . . . , g=) <∶
r
sa (g

′

1, . . . , g
′

=) ↝ K1 ∪ . . . ∪ K=

Θ ⊢ ⊥ <∶sa k
′

Θ ⊢ k1 <∶sa k
′

Θ ⊢ k2 <∶sa k
′

Θ ⊢ k1 ∪k2 <∶sa k
′

Θ ⊢ (g1, . . . , g=) <∶
r
sa k

′

8 ↝ K

Θ ⊢ (g1, . . . , g=) <∶
r
sa k

′

1 ∪k
′

2 ↝ K

Θ, gℓ<∶X<∶gD ⊢ k <∶sa k
′

Θ ⊢ ∃gℓ<∶X<∶gD .k <∶sa k
′

Θ ⊢ (g1, . . . , g=) <∶
r
sa k

′
↝ KX

Θ ⊢ ∃gℓ<∶X<∶gD .KX ↝ K

Θ ⊢ (g1, . . . , g=) <∶
r
sa ∃gℓ<∶X<∶gD .k

′
↝ K

Fig. 13. Algorithmic subtyping for signatures: Θ ⊢ k <∶sa k (le�) and Θ ⊢ (g, . . . , g) <∶
r

sa k ↝ K (right)

to carefully marshal rigid and �exible variables and thereby prevent all major complexities for
constraint solving.

Fig. 13 presents the algorithmic subtyping rules for method signatures. The left rules, interpreted
using backtracking proof search, introduce rigid variables on the left until reaching method pa-
rameters. The right rules are then also interpreted using backtracking proof search, but with the
constraint set K as an output of the search. These right rules introduce �exible variables on the right
until reaching method parameters, at which point they defer to constraint-collecting value-type sub-
typing with the direction superscript (→) indicating the �exible variables are on the right. After those
constraints are collected, the respective backtracking proof search returns the resulting constraint
set. Furthermore, the right existential rules each solve the constraints for the �exible variables they
introduced—in reverse order—using the constraint-solving algorithm discussed in Section 6.4. Due
to explicit �exible-variable bounds possibly referring to previously introduced �exible variables,
constraint resolution can result in more constraints on those previously introduced variables.

Theorem 6.2. For any pair of method signatures k and k
′
satisfying ⋅ ⊢

ws
k and ⋅ ⊢

ws
k
′
, the

following is decidable:

⋅ ⊢ k <∶sa k
′

Theorem 6.3. For any pair of method signatures k and k
′
satisfying ⋅ ⊢sa k and ⋅ ⊢sa k

′
, the

following equivalence holds:

⋅ ⊢ k <∶si k
′
⟺ ⋅ ⊢ k <∶sa k

′

6.3 Directed Constraint Collection

After method-signature subtyping takes care of introducing, and later solving, all variables, only
value types are needed to determine the constraints �exible variables need to satisfy. The constraint
sets K collected during this process are �nite sets of constraints of either the form X ≥ gℓ or X ≤ gD ,
where X is a �exible variable and gℓ and gD are rigid types. In order to maintain these invariants,
constraint-collecting subtyping is directed. A direction X is either← or→, with the arrow pointing
from the side with the rigid type to the side with the �exible type. In the case of contravariance,
the direction is reversed, denoted −X , in the obvious manner. Using these new concepts, the rules
for constraint-collecting algorithmic subtyping for value types are presented in Fig. 14.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 191. Publication date: June 2024.



Decidable Subtyping of Existential Types for Julia 191:17

Θ ⊢ g <∶
X

sa ⊤ ↝ ∅ Θ ⊢ ⊥ <∶
X

sa g ↝ ∅

Θ ⊢ X <∶
←

sa g ↝ X ≤ g Θ ⊢ g <∶
→

sa X ↝ X ≥ g

gℓ<∶X<∶gD ∈ Θ Θ ⊢ gD <∶
→

sa g ↝ K

Θ ⊢ X <∶
→

sa g ↝ K

gℓ<∶X<∶gD ∈ Θ Θ ⊢ g <∶
←

sa gℓ ↝ K

Θ ⊢ g <∶
←

sa X ↝ K

∀8 ∈ [1, =] Θ ⊢ g8 <∶
X

sa g
′

8 ↝ K8

Θ ⊢ g1 × . . . × g= <∶
X

sa g
′

1 × . . . × g
′

= ↝ K1 ∪ . . . ∪ K=

∀8 ∈ [1, =] Θ ⊢ g
ℓ ′

8 <∶
−X

sa g
ℓ

8 ↝ K
ℓ

8 Θ ⊢ g
D

8 <∶
X

sa g
D′

8 ↝ K
D

8

Θ ⊢ C⟨g
ℓ

1≪g
D

1 . . . g
ℓ

=≪g
D

= ⟩ <∶
X

sa C⟨g
ℓ ′

1 ≪g
D′

1 . . . g
ℓ ′

=≪g
D′

= ⟩ ↝ K
ℓ

1 ∪ K
D

1 ∪ . . . ∪ K
ℓ

= ∪ K
D

=

Θ ⊢ g1 <∶
X

sa g ↝ K1 Θ ⊢ g2 <∶
X

sa g ↝ K2

Θ ⊢ g1 ∪ g2 <∶
X

sa g ↝ K1 ∪ K2

Θ ⊢ g <∶
X

sa g8 ↝ K

Θ ⊢ g <∶
X

sa g1 ∪ g2 ↝ K

Fig. 14. Constraint-collecting algorithmic subtyping for value types: Θ ⊢ g <∶
X

sa g ↝ K

These rules have a clear correspondence with (non-constraint-collecting) algorithmic (i.e. in-
vertible) subtyping. Most of them simply furthermore propagate the constraints collected from the
premises. The only interesting rules are those for variables. If the direction points to the variable,
then the corresponding constraint on that necessarily �exible variable is generated—this is the only
way in which constraints are introduced. Otherwise, if the direction points away from the variable,
the appropriate bound on that necessarily rigid variable is employed.

In order to discuss the properties of constraint collection formally, we need to introduce notions
of assignments, substitutions, and satisfaction. An assignment \ is a �nite partial mapping of type
variables X to value types \(X). Assignments extend to substitutions on value types g[\] in the

obvious manner. An assignment between kind contexts is one that satis�es ⊢ \ ∶ Θ� → Θ' if, for

each gℓ<∶X<∶gD ∈ Θ� , a corresponding type \(X) exists and is conservative inΘ' (i.e.Θ' ⊢sa \(X)
holds) and lies between its substituted bounds (i.e. Θ' ⊢ gℓ[\] <∶sa \(X) and Θ' ⊢ \(X) <∶sa

gD[\] hold), where Θ� and Θ' bind �exible and rigid variables, respectively.

A constraint set is valid, Θ' ⊢ K ⊣ Θ� , when the bound variable in each constraint is declared

inΘ� and the constraining type in each constraint is rigid (i.e. conservative inΘ'). An assignment \

from Θ� to Θ' satis�es a constraint set, Θ' ⊢sa \ ⊣ K , if for each constraint the value type

assigned to the variable by \ is an algorithmic supertype/subtype of the constraining type in Θ' .

Lemma 6.4. For any kind contexts Θ' and Θ� satisfying⊢sa Θ' and⊢sa Θ� , for any pair of value

types g and g
′
satisfying Θ' ⊢sa g and Θ� ⊢sa g

′
, the following hold:

Marshalling Any constraint set K satisfying Θ' ⊢ g <∶
→

sa g
′
↝ K is valid, i.e. Θ' ⊢ K ⊣ Θ�

holds.

Soundness For any constraint set K satisfying Θ' ⊢ g <∶
→

sa g
′
↝ K, any assignment \ satisfy-

ing⊢ \ ∶ Θ� → Θ' and Θ' ⊢sa \ ⊣ K also satis�es Θ' ⊢ g <∶sa g
′
[\].
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∀X ≥ g
′

ℓ ∈ K,X ≤ g
′

D ∈ K. Θ ⊢ g
′

ℓ <∶sa g
′

D

∀X ≥ g
′

ℓ ∈ K. Θ ⊢ g
′

ℓ <∶
→

sa gD ↝ K
ℓ

g
′
ℓ

∀X ≤ g
′

D ∈ K. Θ ⊢ gℓ <∶
←

sa g
′

D ↝ K
D

g
′
D

Kℓ = {X
′
≥ g

′

ℓ ∈ K ∣ X
′
≠ X} KD = {X

′
≤ g

′

D ∈ K ∣ X
′
≠ X}

Θ ⊢ ∃gℓ<∶X<∶gD .K ↝ Kℓ ⋃KD ⋃X≥g
′
ℓ
∈K

K
ℓ

g
′
ℓ

⋃
X≤g

′
D∈K

K
D

g
′
D

Fig. 15. Constraint solving: Θ ⊢ ∃g<∶X<∶g .K ↝ K

Completeness For any assignment \ satisfying ⊢ \ ∶ Θ� → Θ' , if Θ' ⊢ g <∶sa g
′
[\] holds

then there exists a constraint set K such that Θ' ⊢ g <∶
→

sa g
′
↝ K and Θ' ⊢sa \ ⊣ K hold.

Computability The set of constraint sets K satisfying Θ' ⊢ g <∶
→

sa g
′
↝ K is �nite and

computably enumerable.

Likewise for the opposite direction (←), though with g and g
′
satisfying Θ� ⊢sa g and Θ' ⊢sa g

′

instead.

6.4 Constraint Solving

If constrained subtyping succeeds and generates a constraint set K, the constraints on the most
recently introduced unsolved �exible variable X are then solved by employing backtracking proof

search on the rule for the judgment Θ ⊢ ∃gℓ<∶X<∶gD .K ↝ K
′
given in Fig. 15. To understand the

design of this rule, it is important to be mindful of where rigid and �exible variables can and cannot
occur. All types that are constraining variables in K necessarily contain only rigid variables. On
the other hand, the bounds gℓ and gD of X necessarily contain only �exible variables (and do not
contain X).
Each premise of the rule in Fig. 15 corresponds to a step of the (backtracking) algorithm:

(1) For each pair of (necessarily rigid) collected lower bound g
′

ℓ and collected upper bound g
′

D

on X in K, fail unless g
′

ℓ is a subype of g
′

D , since transitivity implies this must hold for any
instantiation of X.

(2) For each (necessarily rigid) collected lower bound g
′

ℓ on X in K, let K
ℓ

g
′
ℓ

be a constraint set

collected from checking that g
′

ℓ is a subtype of the (necessarily �exible) given upper bound gD
of X, which again transitivity implies must hold for any instantiation of X.

(3) For each (necessarily rigid) collected upper bound g
′

D on X in K, let K
D

g
′
D

be a constraint set

collected from checking that the (necessarily �exible) given lower bound gℓ of X is a subtype

of g
′

D , which again transitivity implies must hold for any instantiation of X.
(4) Let Kℓ be the set of (necessarily rigid) collected lower bounds on variables other than - ,

whose rigidity ensures they do not contain X.
(5) Let KD be the set of (necessarily rigid) collected upper bounds on variables other than - ,

whose rigidity ensures they do not contain X.

Then the algorithm returns the union of all the constructed constraint sets. One might be surprised
that the algorithm never actually constructs a satisfying instantiation of X. This is because strati�-
cation and consistency were able to ensure that none of the remaining constraints contain X, and
so instantiating it would have no e�ect on the constraint set. Nonetheless, instantiating X with the
union of its given and collected lower bounds necessarily satis�es its constraints (relying on the
fact that consistency ensures its given lower bound is a subtype of its given upper bound), and as
such the following holds.
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Lemma 6.5. For any kind contexts Θ' and Θ� satisfying⊢sa Θ' and⊢sa Θ� , for any pair of value

types gℓ and gD satisfying Θ� ⊢sa gℓ and Θ� ⊢sa gD and Θ� ⊢ gℓ <∶sa gD , for any type variable X

not declared by either Θ' or Θ� , and for any constraint set K satisfying Θ' ⊢ K ⊣ Θ� , gℓ<∶X<∶gD ,

the following hold:

Marshalling Any constraint set K
′
satisfying Θ' ⊢ ∃gℓ<∶X<∶gD .K ↝ K

′
is valid without X,

i.e. Θ' ⊢ K
′
⊣ Θ� holds.

Soundness For any constraint set K
′
satisfyingΘ' ⊢ ∃gℓ<∶X<∶gD .K ↝ K

′
and any assignment \

satisfying ⊢ \ ∶ Θ� → Θ' , if Θ' ⊢sa \ ⊣ K
′
holds then there exists a value type gX satisfying

Θ' ⊢sa gX andΘ' ⊢ gℓ[\] <∶sa gX andΘ' ⊢ gX <∶sa gD[\] such thatΘ' ⊢sa \,X ↦ gX ⊣ K

holds.

Completeness For any assignment \ satisfying⊢ \ ∶ Θ� → Θ' and any value type gX satisfy-

ing Θ' ⊢sa gX and Θ' ⊢ gℓ[\] <∶sa gX and Θ' ⊢ gX <∶sa gD[\], if Θ' ⊢sa \,X ↦ gX ⊣ K

holds then there exists a constraint set K
′
satisfying Θ' ⊢ ∃gℓ<∶X<∶gD .K ↝ K

′
and Θ' ⊢sa

\ ⊣ K
′
.

Computability The set of constraint sets K
′
satisfying Θ' ⊢ ∃gℓ<∶X<∶gD .K ↝ K

′
is �nite and

computably enumerable.

6.5 Example of Constraint Collection and Solving

To illustrate how the algorithm works more concretely, consider the subtyping between signatures
(String, Ref⟨Int⟩) and ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩). This subtyping should hold be-
cause X and Y can be instantiated with value types String∪Int and Int. The following derivation
illustrates the generation of the necessary constraints on type variables X and Y.

⊢ String <∶
→

sa X ↝ X ≥ String

⊢ Int <∶
→

sa Y ↝ Y ≤ Int ⊢ Y <∶
←

sa Int ↝ Y ≥ Int

⊢ Ref⟨Int⟩ <∶
→

sa Ref⟨Y⟩ ↝ {Y ≥ Int, Y ≤ Int}

⊢ (String, Ref⟨Int⟩) <∶
r
sa (X, Ref⟨Y⟩) ↝ {X ≥ String, Y ≥ Int, Y ≤ Int}

(b)

⊢ (String, Ref⟨Int⟩) <∶
r
sa ∃⊥<∶Y<∶X. (X, Ref⟨Y⟩) ↝ {X ≥ String,X ≥ Int}

(a)

⊢ (String, Ref⟨Int⟩) <∶
r
sa ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩) ↝ ∅

⊢ (String, Ref⟨Int⟩) <∶sa ∃⊥<∶X<∶⊤.∃⊥<∶Y<∶X. (X, Ref⟨Y⟩)

Since there is no existential quanti�cation on the left, subtyping starts by opening right existential
types (X �rst, then Y) until method parameters are reached. For value types, directed constraint-
collecting subtyping <∶

→

sa generates constraints on �exible variables X and Y. Initially, �exible
variables appear only on the right of the judgment, and thus, <∶

→

sa used for tuple components points
to the right; furthermore, constraints themselves are free from �exible variables due to constraining
types coming from the opposite side of the judgment. Whenever constraint-collecting subtyping
hits an invariant constructor, �exible variables move to the opposite side in one half of checking
the required equivalence, which is why left-facing <∶

←

sa is used for⊢ Y <∶
←

sa Int ↝ Y ≥ Int.
Once all constraints induced by subtyping of value types are collected, they are solved for the

innermost �exible variable, Y in the example, incorporating its explicitly given bounds. Here, (b)
denotes a constraint-solving step for the innermost variable Y:

⊢ Int <∶sa Int ⊢ ⊥ <∶
←

sa Int ↝ ∅ ⊢ Int <∶
→

sa X ↝ X ≥ Int

⊢ ∃⊥<∶Y<∶X. {X ≥ String, Y ≥ Int, Y ≤ Int} ↝ {X ≥ String,X ≥ Int}

It checks that the (single) collected lower bound is a subtype of the (single) collected upper bound,
the given lower bound is a subtype of the (single) collected upper bound, and the (single) collected
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lower bound is a subtype of the given upper bound. In the �rst check, both types are necessarily rigid,
so no contraint-collection is performed. The second check succeeds without additional constraints.
But the third check imposes a new constraint on X, which is added to the collection of preexisting
constraints on X. These checks con�rm that Y can be correctly instantiated as the union of its given
and (single) collected lower bound: ⊥ ∪ Int.
Next, (a) denotes a constraint-solving step for the outermost variable X:

⊢ String <∶
→

sa ⊤ ↝ ∅ ⊢ Int <∶
→

sa ⊤ ↝ ∅

⊢ ∃⊥<∶X<∶⊤. {X ≥ String,X ≥ Int} ↝ ∅

It checks that the (two) collected lower bounds are subtypes of the given upper bound, which
both succeed without additional constraints (as would always be the case when solving the �nal
�exible variable), and then it has no more checks to perform because there are no collected upper
bounds on X. These checks con�rm that X can be correctly instantiated as the union of its given
and collected lower bounds: ⊥ ∪ String ∪ Int.

After the outermost variable, the invariants granted by strati�cation and consistency ensure the
resulting constraint set is empty. So, if this point is reached by the backtracking proof search, the
subtyping between method signatures necessarily holds.

6.6 Sound and Complete Subtyping Algorithm

Putting all the pieces together, we show that algorithmic subtyping for method signatures provides
a sound and complete decision procedure for declarative subtyping on conservative strati�ed types.

Theorem 6.6 (Decidability of Conservative and Stratified Julia). For any pair of method

signaturesk andk
′
satisfying ⋅ ⊢sa k and ⋅ ⊢sa k

′
, the following is decidable:

⋅ ⊢ k <∶
c
jd k

′

Proof. By Th. 3.1, Th. 5.2, and Th. 6.3, the above subtyping holds i� ⋅ ⊢ k <∶sa k
′
. By Th. 6.2,

the latter is decidable. □

7 RELATED WORK

Designing decidable subtyping for production languages is challenging. Recent results include
proofs of undecidability for Java generics by Grigore [2017] and Scala 3 by Hu and Lhoták [2019].
Expressiveness and decidability exist in a trade-o� space. Users may prefer more expressive types
even if the compiler may fail, as long as failures are rare cases. Failures that can manifest at run-time
are more serious. Mainstream languages with subtyping usually restrict run-time subtype queries
[Kennedy and Pierce 2007]. This is not so in Julia, as its full subtype relation is exercised at run-time.

Aiming for decidability, Julia’s designers deliberately avoided features already established to be
problematic, such as F-bounded polymorphism, contravariant nominal constructors, and multiple
inheritance. Based on those restrictions, Bezanson [2015] conjectured decidability. However, he
did point out that the combination of nominal constructors and contravariance in lower bounds
of existential types is akin to the source of undecidability in �≤, which we have now formally
established.

System �≤. Introduced by Cardelli et al. [1991], System �≤ combines System F and subtyping. As
already mentioned, �≤ provides bounded universal quanti�cation, whereas Julia provides bounded
existential quanti�cation. This di�erence is dual in nature and so not particularly impactful upon
algorithmic concerns. However, there is another much more algorithmically-impactful di�erence:
subtyping in �≤ is restricted so that the only subtypes/supertypes of universally quanti�ed types
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are universally quanti�ed types—that is, quanti�cations must align. There is a good reason for
this di�erence: unlike Julia, �≤ supports explicit type application, which only makes sense if
quanti�cations stay aligned. Regardless of the reason, this di�erence means �≤ avoids a major
challenge that Julia faces: whereas Julia needs to �nd a suitable instantiating type for a quanti�ed
variable, in �≤ that instantiating type is explicitly restricted to be the quanti�ed variable of the
other type. This makes �≤’s invertible subtype truly syntax-directed, whereas Julia must resort to
collecting and solving constraints on �exible variables.
Yet, despite �≤’s restrictive subtyping, Pierce [1992] proved it can encode the halting problem

for two-counter machines [Hopcroft and Ullman 1990] and therefore is undecidable. Yet there are
variations of �≤ for which subtyping is decidable.

Restricting Subtyping. Kernel �≤ [Cardelli andWegner 1985] forces even more alignment between
subtypes: not only must quanti�cations align, they must have the identical bounds as well. This
restriction is decidable, though rather limiting. Hu and Lhoták [2019] and Mackay et al. [2019]
have shown that one can relax this by splitting the kind context into left and right parts so that,
e�ectively, each bound is only used by the type that introduced it. However, this causes subtyping
to no longer satisfy transitivity.

Restricting Types. Instead of restricting subtyping, Mackay et al. [2020] achieved decidability
while retaining transitivity by instead restricting types. In fact, their solution is to stratify types
into impredicative and predicative layers. The impredicative layer has more restrictive subtyping,
akin to Kernel �≤, whereas the predicative layer has more restrictive types. It is interesting that we
arrived at a similar strati�cation though for a very di�erent reason. In particular, we discovered
that strati�cation eliminated the complexities Julia faced in constraint solving by, in particular,
entirely avoiding the possibility of recursive constraints. On the other hand, Mackay et al. [2020]
still rely on the quanti�cation alignment inherent in �≤ and as such have no concern for constraint
solving. This di�erence in concerns explains the di�erence in where strati�cation is imposed in the
two systems.
Beyond �≤, this approach of restricting types has been applied to prior practical systems as

well. Kennedy and Pierce [2007] identi�ed three decidable fragments of undecidable subtyping
in the context of nominal inheritance and variance: the fragments can be obtained by restricting
either contravariance, expansive class tables, or multiple-instantiation inheritance. Greenman et al.
[2014] proposed a material-shape separation for Java generics that recovers decidability: it limits
F-bounded polymorphism to the subset of types, called shapes, used exclusively as constraints. As
we have, they conducted a corpus analysis to demonstrate that this restriction would be compatible
with how programmers were using types in practice. Mackay et al. [2019] extend the material-shape
separation to path-dependent and recursive types.

Bounded Existentials. In Java, a variable of type List<? extends Number> can be assigned any list
whose elements are a subtype of Number. The “?” is known as a wildcard, and this wildcard-typed list
e�ectively represents ∃X<:Number.List<X>. The wildcard mechanism of Java generics [Torgersen
et al. 2004] is an encoding of use-site variance [Igarashi and Viroli 2002; Krab Thorup and Torgersen
1999], which is another widely used restricted form of bounded existential types. There have been
multiple formalizations of Java wildcards [Cameron et al. 2008; Torgersen et al. 2005], though
they focused on type soundness rather than decidability. Smith and Cartwright [2008] found
inconsistencies in Java’s type inference and subtyping algorithms and proposed a solution using a
limited form of union types, with a conjecture on the decidability of subtyping. Wehr and Thiemann
[2009] identi�ed multiple undecidable subtype relations for bounded existential types in formal
models inspired by Java. Tate et al. [2011] highlighted multiple sources of non-termination in Java
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subtyping, e.g. recursive constraints on type variables and wildcards in the inheritance hierarchy.
With some practical restrictions, they provide a terminating subtyping algorithm, though this has
been mostly superseded by the aforementioned material-shape separation [Greenman et al. 2014].
Rather than encode use-site variance, Morrisett et al. [1998]’s typed assembly language (TAL)

uses constrained existential types to track that the unknown exact type of a closure can be passed
to the code pointer extracted from that closure. Early works required manually coercing between
existential types, but Tate et al. [2010] developed a system with decidable subtyping for and even
inferability of its existential types. However, the algorithmic framework they developed [Tate et al.
2008] relies heavily on rigidly structured types, and they illustrate how even ⊥-like types (such as
the type of a null pointer) cause fundamental problems due to violating this structure.

Subtype Constraints. Constraint generation and solving techniques are used in type inference.
Most famously, equality constraints and uni�cation were employed by Hindley [1969] and Damas
and Milner [1982] in the context of a functional language with parametric polymorphism. With
subtyping, equality constraints become subtype constraints. For example, Aiken and Wimmers
[1993] extended Damas–Hindley–Milner inference with subtyping for recursive, union, and in-
tersection types, and gave an algorithm for solving a system of constraints with restricted union
and intersection types. Trifonov and Smith [1996] considered polymorphic types with explicit
recursive constraints on type variables: they studied a corresponding subtype relation and provided
its decidable approximation. Later, Pottier [1998] demonstrated how to improve the performance
of inference with subtype constraints. Bourdoncle and Merz [1997] used a restricted form of con-
strained polymorphic types in a language with multi-methods and decidable subtyping. Castagna
et al. [2015] dealt with subtype constraints for set-theoretic types with negation types. Chandra et al.
[2016] and Chaudhuri et al. [2017] tackled �ow-sensitive type inference with unusual constraint
languages going beyond typical subtype constraints.

8 CONCLUSION

Decidability of Julia subtyping can be recovered by restricting types to a strati�ed grammar for
the core of Julia’s type-annotation language, most importantly, bounded existential types. This
restriction is practical, as the vast majority of Julia programs already conform to it. However, the
formalism presented here is still incomplete; it is missing types such as variadic arguments, and it is
missing rules such as distributivity. More work needs to be done to develop a sound and complete
algorithm for Julia’s entire feature set.
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