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Abstract13

Large-scale software repositories are a source of insights for software engineering. They offer an14

unmatched window into the software development process at scale. Their sheer number and size15

holds the promise of broadly applicable results. At the same time, that very size presents practical16

challenges for scaling tools and algorithms to millions of projects. A reasonable approach is to17

limit studies to representative samples of the population of interest. Broadly applicable conclusions18

can then be obtained by generalizing to the entire population. The contribution of this paper is19

a standardized experimental design methodology for choosing the inputs of studies working with20

large-scale repositories. We advocate for a methodology that clearly lays out what the population21

of interest is, how to sample it, and that fosters reproducibility. Along the way, we discourage22

researchers from using extrinsic attributes of projects such as stars, that measure some unclear23

notion of popularity.24

2012 ACM Subject Classification Software and its engineering → Ultra-large-scale systems;25

Keywords and phrases software, mining code repositories, source code analysis26

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2023.2327

1 Introduction28

And so it begins...29

count the number of stars associated with each repository. The number of stars relate30

to how many people are interested in that project. Thus, we assume that stars indicate31

the popularity of a project. We select the top 50 projects in each language32

Sentences like these appear in the methodology sections of software engineering papers, with33

sometimes, little more in terms of experimental design. This paper aims to convince readers34

that using extrinsic features of projects, such as popularity, may limit applicability of results35

of the studies relying on them. Instead one should select projects based on their intrinsic36

features and spell out expectations as well as threats to validity.37

Empirical software engineering studies are experiments performed on a corpus of software38

to validate some hypotheses. For instance, one could take projects written in various languages39

and attempt to show that some language feature has an impact on the quality of the code40

written using it. The value of large-scale corpus study often does not lie in what we learn41

about the projects that were analyzed, but rather in what these can teach us about the larger42
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population. There is limited value in, say, finding out that a new Java language feature is43

beneficial in a handful cases if we cannot generalize that result to a broader portion of the44

Java ecosystem.45

Yet, many papers in the field do not articulate how broadly applicable their results are46

expected to be. Even the simple question of how the projects that were analyzed were47

selected is not clear. While large-scale code repositories, such as GitHub, are a boon to48

the software engineering community, their sheer size requires care. We argue that better49

experimental design will strengthen research done in the field.50

Consider Table 1 which has a meta-study of three years of the Mining Software Repositories51

conference. Forty-one papers relied on subsets of GitHub. Out of those, five papers lacked52

sufficient information about their dataset to determine how they selected their inputs, twenty-53

one used GitHub stars to obtain a subset of projects, ten used simple combinations of54

attribute thresholds and only five relied on random sampling over the entire population.55

papers class description # of projects

5 Unknown Unknown or proprietary 1–35K
21 Stars Filter projects using stars 5–2M
10 Other Other filter for projects 7–290K
5 Random Filter and sample randomly 6–51K

Table 1 Experimental design in MSR 2019, 2020 and 2021

What is the right choice here? None of the papers analyzed the entire ecosystem as that56

would mean tens to hundreds of millions of projects. The question thus becomes how to57

sample the population of projects hosted on GitHub. In this paper, we criticize the use of58

GitHub stars as they are appealing and popular, yet also dangerous. But, really, our point59

generalizes to any extrinsic attributes of a project. So, again, what is the right choice? The60

answer is, of course, that it depends. The rest of this paper attempts to shed some light on61

how to make a reasoned choice of inputs.62

First, let us return to stars and ponder why they play such an important role in our63

experimental methodology? We believe expectations and pragmatics are the explanation.64

Community standards are largely set by the papers we publish. The literature codifies65

expectations for authors of the next batch of papers. These expectations slowly evolve in66

response to reviewer attitudes. So, we use stars because our peers do. And just as importantly67

for the pragmatic reason that GitHub does not provide an index of projects, nor does it68

allow to query over intrinsic attributes of code. Finding inputs is thus hobbled by limitations69

of our tools. Stars play a double role. They are a queryable index of projects as GitHub70

does provide an interface to obtain them. They also come with an expectation that starred71

projects enjoy some notion of quality [8]. This paper will show that stars do not necessarily72

correlate with quality and that they introduce reproduction barriers.73

We propose a methodology for designing reproducible software engineering experiments74

over large-scale repositories with the explicit goal of improving the generalizability of our75

results. The methodology is in line with evolving community standards [23] but specific to76

large-scale code analysis. We propose to follow the following protocol when designing a new77

experiment:78

1. Population Hypothesis: Give a brief description of the population of interest the79

research should generalize to; it may be narrow such as “programs written by students80

learning JavaScript” or as broad as “commercial code”.81
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2. Frame Oracle: Give a procedure for deciding if a project belongs to the population of82

interest. The procedure should be efficiently computable over intrinsic attributes of a83

project. An oracle could, say, return projects with a single JavaScript file created by a84

user with no previous commits.85

3. Sampling Strategy: Describe a strategy for selecting a subset of the entire population.86

Ideally, specified algorithmically. An example is random sampling without replacement87

from a known seed.88

4. Validity: Give an argument as to how the oracle and the sampling strategy are valid89

means to obtain representative samples. This can be a discussion of how to check result90

quality, such as manual inspection of samples written by beginners, and threats to validity.91

5. Reproduction Artifacts: Publish an artifact that reproduces exactly the reported92

results, and supports changes to either the input or the details of the experiment.93

Reproducibility has nuances. Our emphasis is on providing support for the following three use94

cases: Repetitions which run the reproduction artifact to obtain bit-for-bit equal results. This95

is the most stringent use case and often requires a reproduction artifact that bundles code and96

inputs. Reanalysis alters either the method or its input, it requires an executable artifact and97

a method for acquiring new inputs. Finally, reproductions are independent implementations98

that require the paper to have an unambiguous description of all experimental details.199

Supporting reproducibility can be greatly simplified with appropriate tooling. Our work100

builds on the CodeDJ infrastructure (codedj-prg.github.io). Our contributions are:101

1. A dataset of 2Mio+ projects with intrinsic attributes precomputed.102

2. A characterization of stars as a means to select inputs for code analysis experiments.103

3. A methodology that can be readily adopted to improve reproducibility.104

4. A reproduction that highlights challenges to generalization due to project selection.105

Our community has been moving towards broader adoption of the practice of artifact106

evaluation [11]. While artifacts are clearly helpful as they make papers providing them107

easier to reproduce, the selection of inputs is often hardwired and not considered part of108

the reproduction. The impact of our proposal, if adopted, would be to encourage authors of109

large-scale code studies to consider the collection of the inputs to their work to be part of110

the experiment and thus make it easy to change the way inputs are selected.111

Road map The structure of the paper is as follows.112

Section 2 begins with a short overview of the state with respect to methodologies for113

project selection and tooling to support it.114

Section 3 takes four practical examples, papers published at the Mining Software115

Repositories conference, and attempts to couch their experimental design in the terms116

introduced above. These example suggest that authors are not always clear about their117

intent and strategy. While looking at these papers we found a number of practical118

impediments to reproducibility.119

Section 4 describes characteristics of the projects hosted on Github and argues that stars120

cannot yield a representative sample of developed projects.121

Section 5 outlines our proposal for how to design large-scale program analysis experiments.122

Section 6 follows our guidelines and attempts to repeat the studies of Section 3 while123

perturbing the experimental inputs.124

1 The terminology comes from [24] and was used by SIGPLAN artifact evaluation committees.

ECOOP 2023

codedj-prg.github.io


23:4 Designing Reproducible Large-scale Code Analysis Experiments

Section 7 is responsive to reviewers of this paper and their request to reproduce an125

experiment from a paper with a verified artifact.126

Section 8 concludes and gives some parting thoughts. This paper improves on the state127

of the art in that it argues for a structured experimental design that relies on tooling for128

input selection.129

2 Related work130

We review relevant advice, warnings and the state of tooling.131

2.1 Community standards132

A push towards reproducibility is underway. The standards framework of Ralph et al. [23]133

includes a section on experimental design and specifically on sampling. This is further explored134

by Baltes and Ralph [1]. They argue that software engineering faces a generalizability crisis.135

In their meta-analysis of 120 papers, they find that convenience sampling2 is widely used136

to select projects to analyze from a large population. Convenience sampling rarely leads to137

representative samples, and – without a careful study of potential sources of bias – can lead138

to conclusions that do not generalize. They explain this state of affairs by a fundamental139

challenge: the lack of appropriate sampling frames to access elements of the population of140

interest. Earlier work by Nagappan et al. [19] already attempted to address this problem141

by defining the notion of sample coverage as a way to assess the quality of the data used as142

input to an experiment. Even closer to our paper is the study by Cosentino et al. [4] which143

reported that out of 93 large corpus papers, 63 papers failed to provide replication datasets.144

Most papers did not use random samples and omitted mentions of any limitations.145

2.2 Mining repositories146

GitHub is a popular data source. Warnings about its perils go back to the work of147

Kalliamvakou et al. [10] which highlighted “noise” among hosted projects. In particular, they148

point out, tiny and inactive projects dominate the platform. Lopes et al. [13] poured oil on149

that fire, showing that up to 95% of the files containing code in some language ecosystems150

were copies of one another and filtering by stars reduces the proportion of duplicates without151

eliminating them. One way researchers have strived to find signal in GitHub’s sea of noise is152

to use stars. But what do stars mean? We would like them to be correlated with quality153

code, code worth analyzing. Borges and Valente [2] conducted a user survey that found154

the most common reasons for starring a project was to show appreciation (e.g. starred this155

repository because it looks nice) and bookmark it (e.g. starred it because I wanted to try156

it later). They also warn against promotional campaigns to drive up ratings. Popularity157

of projects was studied by Han et al. [8], they found that while users believe stars are a158

measure of a project’s popularity, intrinsic attributes such as branches, open issues and159

contributors are better predictors. Expending on that result, Munaiah et al. [18] propose160

classifier for engineered projects, which they define as projects that leverage sound software161

engineering principles. They show that the classifier outperforms stars. Pickerill et al. [22]162

further improved classification with an approach based on time-series clustering.163

2 The Wikipedia definition of convenience sampling is a type of non-probability sampling that involves
the sample being drawn from that part of the population that is close to hand.
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2.3 Tools for miners164

A number of infrastructures have been developed to assist researchers in the field. The most165

ubiquitous was, the now defunct, GHTorrent [6]. The project offered a continuously updated166

database of metadata about public projects that was a valuable building block for other167

tools. Boa is complementary as it lets users write sophisticated queries over source code [5].168

CodeDJ is a newer infrastructure that supports queries over both meta-data and file contents169

and is language agnostic [15]. Recent works address performance issues of querying at scale170

[14, 17]. Of these, only CodeDJ ensures reproducible queries.171

3 State of practice172

How do people design experiments for large-scale code studies? This section gives some173

examples that we believe to be representative which we will revisit later when we attempt to174

reproduce the results with different inputs. For each paper, we provide a brief summary of175

the scientific claims made by the authors. Then, we attempt, with our best understanding of176

the work, to reverse engineer a version of the protocol laid out in the introduction. We, thus,177

give an account of each paper’s population hypothesis, a description of the frame oracle,178

sampling strategy, validation and reproduction artifacts. We conclude the section with some179

observations general reproduction issues that show up in these papers.180

3.1 MSR 2020: What is software181

“Software” has an intuitive definition, namely code, but there is more. The paper by182

Pfeiffer [21] classifies the content of repositories in categories such as code, data and183

documentation. They, then, observe that software is more than just code. Documentation184

is an integral constituent of software, and software without data is often correlated with185

libraries, and finally that software without code is rare, but exists. The paper answers186

the question “what are the constituents of software and how are they distributed?” The187

paper argues that existing definitions of the term are non-descriptive, inconclusive and even188

contradictory.189

Population Hypothesis: Implicitly, the population is all inclusive.190

Frame Oracle: Given the lack of details, we assume all projects on GitHub belong.191

Sampling Strategy: the authors carry out convenience sampling by choosing popular192

repositories. Stating “by popularity we mean the starred criteria with which GitHub users193

express liking similar to likes in social networks.” Most-starred projects in 25 languages were194

acquired by executing one query by language, saying that “without language qualifier, the195

API returns only 1,020 repositories in total, which we decided is not enough for our study.”196

Validity: No discussion of relevant issues or threats.197

Reproducibility Artifacts: A listing of files and repositories is provided along with the code198

of the classifier and a notebook. Repository contents were not preserved.199

3.2 MSR 2020: Method chaining200

In an object-oriented language, a method chain occurs when the result of a method invocation201

is the receiver of a subsequent invocation. In Java, chains manifest as sequences of calls202

connected by dots. Nakamura et al. [20] analyze trends in usage of method chains and203

conclude that they increase over a period of eight years.204

ECOOP 2023
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Population Hypothesis: Java projects developed “by real-world programmers.” The authors205

state that they ”did not apply any filter to the collected repositories. This supports the206

generalizability of our results.” The authors also consider generalization beyond Java, saying207

“our results are more likely to be applied to a language that does not provide such a construct208

(e.g. PHP and JavaScript). The empirical study of this hypothesis is future work.”209

Frame Oracle: Implicitly, all Java projects hosted on GitHub.210

Sampling Strategy: The authors use convenience sampling, taking 2,814 projects that211

appeared at least once in the list of the 1K most-starred projects in November 2019. Projects212

were deduplicated and filtered for syntactically invalid files.213

Validity: No discussion of relevant issues.214

Reproducibility Artifacts: Project metadata and computed chain lengths are available.215

Communication with the authors reveals that their reproduction package is not available.216

3.3 MSR 2019: Style analyzer217

Each software project seems to develop its own formatting conventions. Markotsev et al. [16]218

demonstrate that an unsupervised learning algorithm can automate project-specific code219

formatting. They reproduce styles with a high degree of precision for a set of repositories.220

Population Hypothesis: The authors speak of “real projects” and their artifact support221

JavaScript, so we assume an expectation that the projects “developed” in a sense similar222

to [18].223

Frame Oracle: All developed JavaScript projects hosted on GitHub.224

Sampling Strategy: Convenience sampling yielded 19 JavaScript projects with high star225

counts.226

Validity: Authors manually inspected projects in the selection.227

Reproducibility Artifacts: A GitHub repository containing the tool and a file with project228

URLs along with their head and base commits is provided. Contents of repositories are not229

included. Run scripts did not run out of the box.230

3.4 MSR 2020: Code smells231

Code smells are programming idioms correlated with correctness or maintenance issues.232

Jebnoun et al. [9] contrast code smells in projects related to deep learning and general purpose233

software. Their claim is that for large and small projects there is a statistical difference in234

the occurrence of code smells, whereas medium sized projects are indistinguishable.235

Population Hypothesis: The paper focuses on two populations: projects related to deep236

learning, and general purpose software. For pragmatic reasons, they focus on Python as it is237

popular for machine learning.238

Frame Oracle: Python projects with keywords indicating machine learning, discarding239

tutorials. Furthermore, the authors “also carefully select popular and mature DL projects240

from them by employing maturity and popularity metrics (e.g., issue count, commit count,241

contributor count, fork count, stars).”242

Sampling Strategy: A staged strategy was employed. The authors relied on judgment243

sampling to manually select 59 deep learning projects. For general purpose projects, they244

used a top-starred list of 106 Python projects from [3] and randomly sampled 59 projects.245

Projects were further clustered into small (≤ 4, 000), medium, and large (≥ 15, 000) based246

on size.247
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Validity: No issues were discussed.248

Reproducibility Artifacts: A listing of the 59 deep learning projects is provided.249

3.5 Summary and discussion250

The papers we have reviewed do not explicitly talk about any of the four points in our251

protocol, in all cases we had to reverse engineer (or guess) some of them. This suggests that252

our proposal would improve the generalizability of the research.253

While the mentioned research projects were done with care, there were challenges254

reproducing them out of the box. Common sources of reproducibility failures that occur in255

the papers we have reviewed are:256

Missing descriptions: Failure to specify either one of: population hypothesis, frame oracle257

or sampling strategy. Reproduction is fraught with perils and an apple-to-apple comparison258

between papers is difficult. This affects [21, 20, 16, 9] as their descriptions are open to259

interpretation.260

Missing projects: Even with a list of URLs, the corresponding projects may vanish at any261

time (e.g., deleted or made private). Reproductions are partial at best, we have seen a262

project disappear while being downloaded. This affects [21, 20, 16, 9].263

Fading stars: Stars are volatile. [20] observed close to 3,000 projects in the top 1K264

during a period of two months. Without a history of star attribution and a timestamp,265

reconstructing the star listings is not possible. Stars volatility also caused problems for [9].266

Shifting contents: The contents of a project change with new commits. To reconstruct the267

data, ids of the last observed commit must be specified. Even that is not foolproof as Git268

histories can be updated destructively. This affects [21, 20, 9].269

Language attribution: Projects contain code in many languages. For reproduction270

attribution must be specified. While delegating to, e.g. GitHub, is reasonable, one271

should be aware that GitHub has changed their attribution algorithm several times.272

Double counting a project is sometimes valid. This affects [21, 20, 16].273

Deterministic replay: Non-determinism must be limited. Random sampling seeds should274

be specified. This affects [16].275

4 Mapping the GitHub landscape276

The meta-study of Table 1 highlights the dominant position of GitHub as a data source in277

large-scale code analysis studies. The size of GitHub is such that it is necessary to resort to278

sampling to yield manageable datasets. As shown in the previous section, authors often look279

for some notion of “developed” projects, that is, they want projects that contains code of280

some quality.281

We claimed that convenience sampling using stars as a proxy for various other characteristics282

of “real-world” software is flawed. While this may sound plausible to some readers, it should283

be backed up with data. Given the size of GitHub, this section uses sampling to answer284

the following questions: Are starred projects a representative sample of all projects? and285

Are starred projects a representative sample of developed projects? where what it means for286

a project to be developed is purposefully left open as there is no agreement on a precise287

definition of the term.288

Since the later parts of this paper require Java, Python and JavaScript, we acquire289

samples of these three ecosystems. We use CodeDJ to do this. It is an open source project290

ECOOP 2023
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that allows users to create a dedicated input project database and ensure reproducibility of291

queries.292

We used random sampling over the entire GHTorrent dataset to select which projects to293

acquire in each of the languages of interest. The number of downloaded projects is somewhat294

arbitrary as it is based on available hardware during the acquisition phase. The datastore295

has 1,111,950 Java projects, 216,602 Python projects and 1,259,856 JavaScript projects. To296

give an idea of the scale, our Java dataset accounts for 20% of all non-forked GitHub Java297

projects. To get a manageable size, we down-sample further, randomly selecting 1Mio Java298

and JavaScript projects, and 200K Python projects.299

4.1 Attributes300

With CodeDJ, it is easy to write queries that compute project attributes. For this paper, we301

calculate five attributes that highlight the differences between projects:302

C-index: A developer handle has a C-index of n if that developer was party to at least303

n commits to n projects (i.e. n2 commits). The C-index of a project is the highest such304

number across developers. This measures developer expertise.305

Age: The age of a project is the number of days separating the first commit and the most306

recent commit. This correlates with the maturity of a project.307

Devs: The count of unique developer handles in the git logs; includes both the author of308

a code change and the committer of that change. Devs approximates the size of a team,309

as some individuals may have more than one handle this is an upper bound.310

Locs: The total number of lines in files that are recognized as code, in any language, and311

appear in the head of the default branch.312

Versions: A version is implicitly created for each commit touching a file, be that for313

creation, deletion or update. This counts versions in the entire project’s history including314

branches. Versions measure the activity in a project.315

While we make no claims that these attributes suffice to fully describe a software project, we316

have found them to be an effective summary in many interesting dimensions.317

4.2 Stars v. All318

What do these attributes tell us about the overall population and about starred projects?319

If starred projects were representative of the entire population, they would share the same320

statistical distribution.321

Fig. 1 is a histogram of each attribute; the x-axis is log scaled values in the unit of each322

attribute, the y-axis is the proportion of projects normalized for the maximum height. Grey323

denotes the whole population, red and blue denote the 1K most starred projects written324

in Java and Python respectively. The black, red and blue bars denote the median of their325

respective populations.326

Consider the grey bars for the whole population, when comparing Java and Python, we327

see the same general shapes. The C-index is low, with a median of 2 for Java and Python.328

This means that half of the projects hosted on GitHub, have developers who have made at329

most two commits. The median age of Java projects is 7 days, while Python projects trend330

slightly older, 46 days. The median number of developers for both languages is 2. As for331

median lines of code, Java project are slightly larger than Python, 655 compared to 448. The332

median number of commits (versions) is 16 for both languages. Overall, this confirms that333

most projects are small, short-lived and created by relative newcomers.334
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The top 1K starred projects have a very different make up. Visually it is clear from the335

fact that every distribution is shifted right. Starred projects are larger, older, with more336

experienced developers. While there are slight differences between languages, the overall337

picture is consistent.338

Consider for instance, the C-index and age attributes. While many starred projects are339

team efforts, a significant number of projects have few contributors. Their C-index is high,340

with median of 19 for Java and 15.5 for Python, suggesting that experienced developers tend341

to contribute to popular repositories. The median age projects is more surprising with 2,581342

and 1,440 days. Manual inspections suggest that many starred projects are indeed long lived343

but also have been inactive for years. Projects rarely “loose” stars, so if a project gets to the344

top there is a chance it will stay there long past its useful lifetime.345

The answer to our first question is clearly negative. Starred projects are not representative346

of the overall population. This is not necessarily a bad thing, as folklore suggests that most347

of GitHub is uninteresting. Perhaps it is the case that starred projects are more “interesting.”348

4.3 Stars v. Developed349

Researchers often look for engineered [18, 22] or developed projects – informally, projects350

created with some care – alas there is little agreement on a precise definition.351

Slightly easier, perhaps, is to settle on what we do not want, the projects that are352

uninteresting, one that are clearly of little value for any reasonable research question.353

Moreover, one could hope that the complement of uninteresting projects are the projects354

researchers look for. Let us define a project as uninteresting if it has less than 100 lines of355

code, fewer than 7 days old, and fewer than 10 commits. When this definition is used to356

filter projects, this rather low bar manages to eliminate 71% of Java and 55% of Python357

projects. For the purpose of this discussion we term the remaining projects are developed or358

interesting. It would be nifty if stars were a proxy for filtering out uninteresting projects.359

Figure 1 Comparing datasets

ECOOP 2023
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Fig. 2 shows the distribution of the whole population in Grey (in the same way as in360

Fig. 1), the interesting projects in Black and the top 1K starred projects in Red. Clearly, the361

shape of the Black and Red distributions do not align suggesting that stars do not represent362

interesting projects.363

Manual inspection of the starred project highlights their main issue – stars are extrinsic364

properties without a direct connection to any attributes of a project. Unlike our computed365

attributes, stars grow monotonically. Their meaning is unclear as users award them for366

various reasons including humor and shock value. Some projects earned stars because of a joke367

not fit for this audience (e.g. github.com/dickrnn/dickrnn.github.io), or have dared368

users to star junk (github.com/gaopu/java). Stars do not measure quality or usefulness of369

repositories.370

To further illustrate the limitation of stars as a filter, we take, for each attribute, the 20371

projects with the lowest score for that attribute. Table 2 shows a manual classification of372

these projects. None of these projects is useful: externals lack histories, widgets are small373

and biased by their application domain, babies are too small to yield much insights, and the374

remaining ones only have code snippets.375

The answer to our second question is also negative. Starred projects are not representative376

of the interesting ones. To summarize what we learned about stars, they capture extrinsic377

characteristics of GitHub projects and are at best an indirect and noisy proxy for a robust378

frame oracle.379

Versions

Locs

Devs

Age

C−Index

1 10 100 1k 10k 100k 1m 10m

Entire Dataset
Interesting
Top Stars

Figure 2 Comparing developed and starred projects

github.com/dickrnn/dickrnn.github.io
github.com/gaopu/java
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Category Java Python Description
Externals 9% 5% Infrequent synchronization with another repository.

Widgets 43% 0% Tiny projects with little activity, popular UI widgets or plugins.
Docs 4% 15% Interview questions, course materials, games, knitting patterns.

Tutorials 17% 9% Educational materials, tutorials and example applications.
Babies 16% 32% Valid but extremely small projects with little activity.

Artifacts 0% 21% Research artifacts developed elsewhere and deposited for sharing.
Deprecates 1% 5% Deprecated projects, no code on the main branch.

Table 2 Categorizing 200 starred projects

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k 100k 1m

%

Locs
Versions

Age
C-Index

Devs
Stars

Figure 3 Cumulative Density Functions

4.4 How to select projects?380

What to use for project selection if not stars? We argue that selection must be based on381

intrinsic features – measurable attributes of a project’s contents. While one may use machine382

learning [18, 22] to build classifiers, in this paper we will use our five computed attributes383

(we leave machine learning as an interesting area of future work).384

Fig. 3 is the cumulative density function of the various attributes for Java (the shapes of385

the curves for Python are similar). The interpretation of each line is what percentage of the386

dataset is filtered for a particular attribute value. Project selection can be performed by a387

combination of attributes with cutoffs. We do not argue for a particular formula; researchers388

must make their own choices in this respect.389

For instance, if one were to use 10 days of age as a cutoff, then 52% of the dataset would390

be filtered out. Whereas picking a 10 star cutoff, filters out 98% of projects.3391

4.5 Validity of our dataset392

We noticed an oddity around project ages in our dataset. Experience with GitHub trained393

us to expect the unexpected. Our investigation started with a plot of creation dates.394

Fig. 4 shows the log scaled counts of new projects over time. While there is a steady395

3 The discontinuity of C-Index at 65 is odd. After manual investigation, we found that there is a single
developer with that C-index, it turns out that the “developer” is a bot doing automated updates.

ECOOP 2023
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progression in the count of projects created each year, we see a significant drop in 2015 and396

a plateau until 2019.397

Figure 4 Creation date

We reviewed our pipeline to no avail. We use GHTorrent to acquire all available URLs.398

Then, we randomly sample projects from that list. We validated both acquisition and399

sampling. This leaves us with two hypotheses. First is a consistent flaw in the CodeDJ400

downloader causing some projects to fail to download. 17% URLs obtained from GHTorrent401

point to dead projects, but there is no apparent bias. Second some projects could be missing402

in GHTorrent.403

Another issue showed up on inspection, JavaScript project ages are significantly higher404

than those of other languages. We found that GitHub timestamps are frequently inconsistent.405

Why should JavaScript be more affected? Until an explanation can be found, we removed406

JavaScript from the overall comparison and use JavaScript projects in the reproduction with407

extreme care.408

5 Reproducible large-scale analysis experiment design409

This paper proposes that researchers conducting experiments over large-scale software410

repositories follow a specific experimental design methodology to ensure their work can411

be reproduced and increase chances that their results generalize as expected. While the412

mechanics of reproducibility of the actual experiment itself vary, the setup of the experiment413

is a common problem. The proposed methodology has five steps, we encourage researchers414

to document each of these steps explicitly.415

5.1 Population hypothesis416

Formulating a population hypothesis lets researchers stake a claim about the applicability417

of their work. This represents the population to which the result of an experiment should418

generalize to. The statement of that hypothesis can be brief and appeal to intuition, the419

other parts of the description flesh out the details.420

Ideally, we would like our results to be as broadly applicable as possible, but pragmatically421

designing experiments that back up overly broad claims is difficult. Some populations of422

interest are difficult to sample, for instance “commercial software” is a relatively simple423
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and unambiguous description but one that we typically cannot sample from as most of the424

commercial software is not in the public domain. Other populations can be difficult to425

identify. Imagine a study of the challenges linked to retraining imperative programmers to426

use functional idioms. Finding code written by such developers can be done manually but427

is difficult to automate. It is often easier to describe a population by intrinsic features of428

projects such as the language used to write the code or some estimate of the size of the429

project.430

5.2 Frame oracle431

A frame oracle is a, possibly noisy, deterministic algorithm for deciding if a project belongs432

to the population of interest. The oracle is our best approximation of the population of433

interest. An executable and reproducible oracle allows to compare different papers with the434

same selection. The description of the oracle should specify the data source along with any435

information required to acquire projects. The procedure for evaluating a project should be436

clear and based on intrinsic attributes. A paper should at least have a short description of437

the oracle, full details should be given in the reproduction artifact.438

5.3 Sampling strategy439

The literature has an abundant advice on sampling (see e.g. [12]). Briefly, a sampling440

strategy picks the type of sampling (probabilistic or non-probabilistic) and describes the441

steps used to obtain a sample. The sampling implementation is expected to be found in the442

reproduction artifact.443

Many works use convenience sampling as it is simpler, cheaper and less time consuming.444

A better alternative is some form of probabilistic sampling as it is more likely to yield a445

representative sample. Probabilistic sampling can be staged if the structure of the population446

is more complex. The simplest approach is random sampling where each element has the same447

chance of being picked. We often have to resort to stratified sampling when the population448

is divided into subgroups of different sizes. Typically we sample without replacement as we449

do not want to pick the same project multiple times.450

5.4 Validity451

The validity section argues, when there are reasons for doubt, why using the frame oracle452

and the sample strategy results in representative samples of the population of interest. This453

section should address potential sources of bias and attempts by the authors to control for454

them. This section also should address any foreseen challenges to reproducibility and offer455

means to mitigate them.456

5.5 Reproducibility artifacts457

Finally, we advocate to link the paper to a reproduction artifact that contains code and data458

to support experimental repeatability and reanalysis.459

Section 3 listed issues with reproducibility. In some cases, the authors did not give a460

precise description of the steps needed for reproduction. Following our proposed methodology461

along with a reproduction artifact will greatly help.462

The second category of issues are more pragmatic, it is difficult to repeat the analysis463

of a paper because some aspect of the data used is not available. We suggest that research464

infrastructures should support this task.465
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An example of an infrastructure is CodeDJ which is both a continuously updated datastore466

and a database that can be queried by a DSL. We adopted it for our work and illustrate how467

it helps with reproducibility. The implementation of a frame oracle and sampling strategy468

can be combined into a single expression. Fig. 5 shows a query which starts by filtering out469

projects containing fewer than 80% JavaScript code, then it uses pre-computed attributes470

Locs, Age and Devs to filter further. The last stage of filtering involves computing an471

attribute on the fly, here we sum up the commits in the project, before performing random472

sampling.473

database.projects().filter(|p| {
p.language_composition().map_or(false, |langs| {

langs.into_iter().any(|(lang, rate)| { lang == JavaScript && rate >= 80 })
})

})
.filter_by(AtLeast(Locs, 5000))
.filter_by(AtLeast(Age, Duration::from_months(12)))
.filter_by(AtLeast(Devs, 2))
.filter_by(AtLeast(Count(Commits), 100))
.sample(Random(30, SEED)))

Figure 5 Project selection with CodeDJ

CodeDJ is split between a persistent datastore in which every data item is timestamped,474

and an ephemeral database used to service queries. A reproducible query is a Rust crate475

archived in a git repository associated to the datastore. Running the query produces a receipt476

which is the hash of a commit automatically added to the archive repository. The receipt477

can be used to share the query (exactly as executed) and its results (exactly as produced). It478

can be used to retrieve the Rust crate and re-execute the code. Code re-execution is helped479

by the fact that queries are deterministic and the crate contains a list of all dependencies,480

a timestamp, and all random seeds. When a query with an embedded date is executed,481

CodeDJ accesses the exact state of the datastore at the specified date. Since CodeDJ stores482

the contents of files, entire experiments can be fully reproduced.483

6 Reproductions484

We illustrate the use of the proposed methodology by revisiting the papers we discussed485

in section 3. For each paper, we attempt reproduction where we vary the input. The486

original papers used stars in their selection, we will explore different inputs based on intrinsic487

attributes.488

If the results of the reproduction match the original results, then it suggests that stars489

were an appropriate filter. If the reproduction departs, this suggests that there may be need490

to conduct further experiments to be confident in the results.491

For each paper, we picked a subset of the scientific claims to fit the reproduction in the492

available space. We use our proposed methodology to describe the details of the reproduction.493

One may wonder how we selected the paper to reproduce. Our criteria were (1) papers494

that used automated techniques to analyze properties of the code contained in Github495

projects, (2) their population of interest was a large subset of Github, (3) a working artifact496

could be located, and (4) the input could be changed with ease. We did not cherry-pick as497

even positive results would be interesting. Our choice was limited by the fact that many498

papers either did not have artifacts or that they were not working anymore. Furthermore,499

some papers had hardwired they selection of projects by, for example, preprocessing the500
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Figure 6 Proportion of projects without code, data or documentation

input data and omitting to include the tooling to repeat that processing. Given more time,501

more works could be reproduced.502

6.1 Reproduction: What is software503

This reproduction aims to validate two findings of [21]: (C1) 4% of repositories do not contain504

code, data and documentation; (C2) 2% of repositories do not contain documentation.505

Population Hypothesis: The universe of software projects.506

Frame Oracle: To understand the impact of project selection we consider two oracles. O1507

accepts any project hosted on GitHub. O2 removes uninteresting projects (as defined above).508

Sampling Strategy: We report on three samples. S0 is a convenience sample of starred509

following [21]. S1 and S2 are random samples without replacement from O1 and O2510

respectively, stratified by language and deduplicated.511

Validity: Our reproduction differs in the number of languages (3 v. 25) and by categorizing512

files based on the file path alone. We tested stability of our results with multiple samples of513

varying sizes and manually inspected the produced labels.514

Reproduction Artifact: Our artifact contains a CodeDJ receipt for this query.515

6.1.1 Results516

Fig. 6 shows results for claims C1 and C2. Compare the percentages between S0 (original)517

and S1 (target population). Statistical analysis is not required to see that the difference is518

significant. The sample S2 (without uninteresting projects) is there to illustrate the impact519

of slightly more developed population, but even these are still quite different.520

Would the results agree if we included more languages? The three languages we521

downloaded account for most of GitHub, it is conceivable that other languages could affect522

results, but that would just push the generalizability issue somewhere else as the claims523

would become language-specific.524

6.2 Reproduction: Method chaining525

Nakamura et al. [20] claim that 50% of projects in 2018 had method chains longer than 7526

while in 2010 that number was 42%. They state that “chains of length 8 are unlikely to527

be composed by programmers who tend to avoid method chaining, this result is another528

supportive evidence for the widespread use of method chaining.”529
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Population Hypothesis: The universe of real-world Java programs.530

Frame Oracle: We accept any Java project hosted on GitHub and delegate to Github for531

language attribution.532

Sampling Strategy: Stratified sampling to randomly select projects with commits in 2010533

and 2018.534

Validity: To reproduce the original results, we performed stratified sampling to get top535

starred projects active in the target years. The authors used a different sample of top stars.536

The original paper had different sample sizes for each year, but those are not specified. We537

fix the sample size to 250. The authors could not locate the code of their chain detector, so538

we use our own implementation.539

Reproduction Artifact: Our artifact contains a CodeDJ receipt for this query.540

6.2.1 Results541

Fig. 7 shows the difference in proportion of projects at various chain lengths. The solid542

line uses stars, colors represent different random samples. For instance, if we pick chains of543

length 8, the number used by [20], the difference is a 13% increase in the number of projects544

between 2011 and 2018. The differences for our random samples are -2%, 0.6% and 0.7%.545

In other words, the samples from this particular population do not seem to show the effect546

expected by the authors. We surmise that some notion of developed project may show more547

favorable results, but without more guidance in the population hypothesis it is hard to guess548

which to pick.549

Figure 7 Difference in chain lengths
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6.3 Reproduction: Style analyzer550

Markovtsev et al. [16] builds a model of the style of a repository and apply this model551

on a held-out part of that repository to produce corrections. Their experiment uses 19552

top-starred JavaScript project to gauge the precision with which the tool flags formatting553

discrepancies and the relationship between this precision and the size of the project. They554

report a precision of 94% (average, weighed by project size) and better overall performance555

for large projects and projects with better style guidelines.556

Population Hypothesis: Developed JavaScript projects.557

Frame Oracle: JavaScript projects with at least 80% JavaScript code, Loc ≥ 5000, Age558

≥ 12 ∗ 31 and Devs ≥ 2.559

Sampling Strategy: We randomly select 10 sets of 30 projects. This is more projects than560

the original sample to account for errors in processing. After processing is finished, following561

the original paper, we randomly select 19 projects out of the pool of successfully processed562

projects.563

Validity: Given that the author’s artifact lacks a configuration, we used the default one.564

This increases project size, as compared to the published numbers, by 38% per project (up565

to a maximum of 154%) and causes precision to diverge by 2.2% on average, and up to 7.9%.566

The tool failed to process 4 projects: freecodecamp and atom due to errors in unicode567

processing, express due to a programming bug, and 30-seconds-of-code due to bad file568

identification. Three of the missing projects were located close to the median in terms of569

precision, prediction rate, and project size in the original paper, while axios was in the lower570

quartile for sample count.571

Style analyzer analyzes each project at two points in its history specified by a base commit572

and a head commit. The base commit is a point in the past which the tool checks out to573

learn the project’s formatting style. The head commit is a more recent point used to evaluate574

the model and calculate precision. The original paper provides head and base commits for575

each project in their experiment, but does not specify the method of selecting these commits.576

We pick the current head of the default branch as the head commit. For base commit we pick577

one that lies at an offset equal to 10% of the number of all commits in the default branch578

from the head commit. This retrieves different commits than the original paper, which causes579

a 3% median change in precision (up to 17%—telescope) and a median project size increase580

of 76%, and up to 311% (reveal.js).581

Reproduction Artifact: Datasets, receipts from submitted queries, style analyzer’s reports582

and scripts for the entire experimental pipeline are included in the artifact.583

6.3.1 Results584

We recreate a plot of the effect of the number of items in the training set on precision from585

the original paper in Fig. 8. The training set consists of snippets created around tokens/AST586

nodes relevant to formatting (whitespace, indentation, quotes, zero-length gaps). We plot the587

selection from the original paper along three selections from our interesting project frames.588

In addition, we plot the distributions of precision in each selection in589

In Fig. 9, we compare the precision scores in each sample with the selection used in the590

original paper using a Mann-Whitney U test to show which samples performed statistically591

differently from the original. The scatter plots show a different grouping of results from592

the original paper. The groupings in the scatter plot visibly differ between selections. The593

distribution comparison shows that our selections generate significantly smaller training594
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Figure 8 Relationship between label groups and precision

sets in all cases and yield lower precision. In addition, 3 out of the 10 interesting project595

selections produced significantly lower precision, with the remainder producing a statistically596

equivalent distribution.597

Overall, we see our selections yielding precision between 0.9 and 0.95 (the paper sets a598

precision of 0.95 as a benchmark for success). We also do not see a clear relationship between599

the number of label groups and precision, such as the one the authors note in the original600

paper.601

6.4 Reproduction: Code smells602

We seek to validate the claim of [9] that for large and small projects there is a statistical603

difference in the occurrence of code smells between machine learning and most popular604

Python repositories, whereas medium sized projects are indistinguishable.605

Population Hypothesis: Mature Python projects in all application domains including machine606

learning.607

Frame Oracle: Projects with C-Index ≥ 5, or Age ≥ 180, or Locs ≥ 10, 000, or Versions608

≥ 100.609

Sampling Strategy: The deep learning projects were provided by the authors. Out of 59610

projects, 57 were still accessible on August 2nd 2021. At download time there were 6 small,611

13 medium, and 38 large deep learning projects. For the reproduction of the original results,612

we used a staged strategy, first convenience sampling the top starred Python projects and613

amongst those used stratified sampling to select 57 projects with a similar distribution of614

sizes. To generalize the results we used quota sampling to match the size distribution.615

Validity: Our reproduction uses the Locs reported by CodeDJ. The date the authors616
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Figure 9 Comparing label group count and precision

downloaded the repositories is unknown. We use the content of the main branch of each617

repository as of April 1st, 2020. The authors say “each of repositories is pre-processed618

and prepared for code smell detection”, however details are missing. We used the default619

thresholds of their tool.620

Reproduction Artifact: A CodeDJ receipt is included in our reproduction package along621

with code to run the experiment.622

6.4.1 Results623

Fig. 10 contrasts the distribution of code smells for deep learning projects, top starred624

projects, and three random samples. Computing the p-values with the non-parametric625

Mann-Whitney Wilcox shows that while we were able to reproduce the statistically significant626

results for the small projects, we disagree on the large most popular projects with the original.627

The disagreement is even greater in the random samples where no large projects and only628

one small project is statistically different. Generalizability of the results is thus questionable.629

7 Collaborative Reproduction630

We perform one last reproduction in which we obtain the assistance of the study’s authors631

to validate whether stars are a good input selection strategy. For this reproduction we632

selected a distinguished paper from the Foundations of Software Engineering conference633

(2020), “The Evolution of Type Annotations in Python” [7]. The paper has a reusable artifact634

for repetition of the original results. Our reproduction only required to change the list of635

GitHub URLs used as input in the analysis. The authors helpfully allowed us to run the636

rather computationally intensive workload on their machine.637

The original study reported the following protocol for input selection. “We group projects638

by creation date, considering projects created in the years 2010 to 2019, into ten groups. We639

sort each group by number of stars and select the top-1000 per group, which yields a total of640

10,000 projects. The rationale for first grouping and then sampling is to avoid biasing our641

study toward projects created in a particular time frame, e.g., mostly old projects. Removing642

projects that we could not clone, e.g., because they became unavailable since the beginning of643
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our study, the total number of analyzed repositories is 9,655.”644

The first research questions was related to the evolution in the number of type annotations645

in projects. The main insight from the work was that “better developer training and automated646

techniques for adding type annotations are needed, as most code still remains unannotated,647

and they call for a better integration of gradual type checking into the development process.”648

For this reproduction, we discussed input selection criteria with the authors and arrived649

at the following formulation.650

Population Hypothesis: Python projects in all application domains with earliest commit651

date in 20154 as this was the year when early adoption of type annotations began.652

Frame Oracle: Python projects whose life span is longer or equal to 7 days and that have653

over 100 lines of Python code. The study authors intended their work to be representative of654

most of the Python ecosystem, but closer inspection of some of the small projects suggested655

that they would introduce noise. The particular cutoffs were chosen heuristically.656

Sampling Strategy: Projects were grouped by year active and, for each year, a random657

sample of 1200 projects was selected. The goal was to get close to a thousand usable projects658

for each year. As some of the projects in our database are no longer available, the sample659

size is increased heuristically.660

Fig. 11 illustrates the reproduction results (and mirrors Fig. 2 in [7]). The plot on the661

left shows the number of type annotations found per thousand lines of code in the projects662

being looked at. The red line has the new data, the blue one is for the original study. The663

4 2015 is when type annotations were added to Python.
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y-axis is logarithmic. The two lines start at zero in 2015. Both data sets tell a similar story:664

type annotations are gradually added to projects. The plot on the right shows the total665

number of annotations found each year in all projects. The y-axis is in thousands. In 2021,666

the original data had close to 800,000 annotation while the new data is under 250,000.667

Both data sets are large. The original one contains 1,123,393 commits and the new data668

set 1,535,824 – suggesting that projects are slightly larger in the randomly selected data then669

in the most starred projects. In both cases, only a fraction of the repositories have types. In670

the old data 668 repositories are type-annotated, whereas in the new data 1,040 projects671

have at least one type. The fraction of commits that change a type annotation is small in672

both cases 5.5% in the original data and 2.1% in the new data.673

Overall, the reproduction verifies and, even, strengthens the conclusion of the original674

paper. Five years after introduction of type annotations, their use remains rather limited.675

Having said this, it is true that actual values reported are different enough to be noticeable.676

8 Conclusions677

Sometimes, doing it wrong is so much easier than the alternative, that we convince ourselves678

that a little wrong can be right enough. Our paper is unusual. While it purports to contain a679

call to arms for better experimental practices, it is just as much a record of our own journey680

to that goal. What reads as criticism is really written in self-reflection. So, what can a681

researcher take away from this paper? There are three ideas we would like to leave the reader682

with.683

Generalizability. The value of an experiment often lies as much in what it generalizes to,684

as in the experiment’s outcome. We found that many researchers rely on GitHub stars to685

pick representative samples of software projects, yet starred projects tend to be larger in686

most dimensions than typical ones, also that they are more likely to be inactive, and that687

their ranking is not a measure of intrinsic qualities of the code. Hopefully, this paper is the688

last nail in that coffin. More generally, we advocate for the use of probabilistic sampling over689

populations defined by intrinsic attributes of software, and also for clear and standardized690

documentation of experimental design.691

Reproducibility. The value of a scientific experiment also lies in our ability to reproduce692

it. Carrying out reproducible experiments over large-scale software repositories is hard.693

Especially when aiming to support the three reproduction modalities: repetition, as practiced694
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in artifact evaluation, where an artifact is re-executed to obtain identical results; reanalysis,695

where the artifact or its input are modified; and independent reproduction, where the entire696

experiment is re-implemented from scratch. The first modality requires faithful replay and697

is best served if all data used is included with the artifact. The second, requires support698

for automatically acquiring new representative samples. The third needs an unambiguous699

description of all experimental steps. We advocate for reproductions artifacts that supports700

the first two modes, and a detailed description of the experiment for the last.701

Tooling. Generalizability and reproducibility, while worthy goals, represent much work,702

and they are work that is orthogonal to the scientific goals of researchers. The only703

reasonable answer is to provide tooling that automates acquisition of representative samples704

and generation of reproduction artifacts. In this paper, we used CodeDJ and found it helpful705

as it let us specify queries over attributes of the code for many projects, while also supporting706

experimental repetition and reanalysis through historical queries. It has its limitations, we707

found execution times to be somewhat long and doubt it will scale to the whole of GitHub.708

Our vision for a brighter future is one where the community agrees on standard tools and709

techniques for this kind of experiment, tools which automate the acquisition and packaging710

of input datasets and the re-execution of entire experiments.711
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