
First-Class Environments in R
Aviral Goel

Northeastern University
Jan Vitek

Czech Technical University in Prague
Northeastern University

Abstract
The R programming language is widely used for statistical
computing. To enable interactive data exploration and rapid
prototyping, R encourages a dynamic programming style.
This programming style is supported by features such as
first-class environments. Amongst widely used languages,
R has the richest interface for programmatically manipulat-
ing environments. With the flexibility afforded by reflective
operations on first-class environments, come significant chal-
lenges for reasoning and optimizing user-defined code. This
paper documents the reflective interface used to operate over
first-class environment. We explain the rationale behind its
design and conduct a large-scale study of how the interface
is used in popular libraries.

CCS Concepts: • General and reference → Empirical
studies; • Software and its engineering → General pro-
gramming languages; Scripting languages; Semantics.
ACM Reference Format:
Aviral Goel and Jan Vitek. 2021. First-Class Environments in R. In
Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The ability to name values is a building block of linguistic
abstractions. Local variables, global variables, function pa-
rameters, all boil down to a mapping from names to values,
commonly referred to as an environment. The semantics of
environments have a profound impact on how languages can
be implemented. At a first approximation, the more restricted
the semantics, the easier it is to implement the language effi-
ciently. Early languages did not support recursion; thus their
compilers could generate code where each variable had its
unique, pre-determined location in the computer’s memory.
When a variable’s value was determined to be constant, it
did not even need a memory location; the variable was ef-
fectively an alias for that value. As languages became more
expressive, implementations had to store variables in data
structures such as the stack for traditional imperative lan-
guages or heap-allocated records for functional languages.
When the compiler could assume all variable accesses were

Conference’17, July 2017, Washington, DC, USA
© 2021 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of ACM Conference (Conference’17), https://doi.org/10.1145/
nnnnnnn.nnnnnnn.

known at compile-time, the variables could be represented
by offsets from a known location. On the other hand, for
languages that allowed symbolic lookups, the mapping be-
tween names and locations had to be retained. Each of these
choices comes with performance implications.

The R programming language was created in 1993 [Ihaka
and Gentleman 1996] as a direct descendent to S, whose
origin dates to 1976 [Becker et al. 1988]. Both languages
found inspiration in earlier work on Lisp [McCarthy 1959],
CLOS [Steele 1982], and Scheme [Adams and al. 1998]. How-
ever, they chose to depart from those previous languages in
small and large ways. R evolved to become a functional lan-
guage, without type annotations, with delayed evaluation of
function arguments, mutable state, and various mechanisms
for supporting object-oriented programming.
At heart, R is a simple language. Its expressivity stems

from the combination of delayed evaluation and the lan-
guage’s rich reflective interface that allows to extend the core
semantics in various ways. One of the keys design choices
was to make environments first-class and allow full program-
matic access over environments.
In R, an environment is an unordered mutable map from

symbols to values. Environments are omnipresent – they rep-
resent name spaces, or scopes, for variables within a function,
but also the name spaces that are constructed when a pack-
age is loaded. As they are the only mutable data structure
in the language, they are also used as hashmaps and objects.
They are created implicitly when a function is called and
explicitly with new.env. Operations are provided to read vari-
ables and update or delete them. It is even possible to change
the association between a closure and its environment. R’s
interface allows, for example, to acquires the environment
of the caller of the currently executing function, check if it
contains a variable x, and rename it to y. Needless to say that
this flexibility causes headaches to implementers, Flückiger
et al. [2019] give an account of these challenges.

This paper documents the interface that R exposes to en-
vironments. This interface evolved through the years. It is
rich and not always consistent, and certainly not minimal.
Through a dynamic analysis conducted on a corpus of pop-
ular R libraries and their clients, we report on the practical
usage of environments. This allows us to explain the need
for this interface and could, possibly, be a step towards a
re-design or a warning for compiler writers.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Goel, Vitek

2 Related Work
Imperative languages like C aim to have efficient imple-
mentations; variables are offsets from a stack pointer, and
symbolic references are only allowed when debugging non-
optimized code. Statically typed functional languages are
more expressive with first-class functions. Their implemen-
tations allocate environments on the heap, but retain the
variable-as-offset technique. Dynamic languages retain more
information at run-time to support dynamic code generation
through the eval function. Languages like Scheme or Python
retain the mapping between symbols and locations. When
languages allow to programmatically add and remove vari-
ables, achieving performance is even harder. Consider the
design of Scheme and Python. While the Scheme Standard
specifies that eval takes an environment-specifier which
needs not be a first-class environment [Adams and al. 1998].
MIT/GNU Scheme supports first-class environments and, as
a consequence, its eval takes an explicit environment. That
implementation provides functions to create new environ-
ments, read and write bindings, examine parent environ-
ments, and obtain the current environment as a reified value.
Unlike R, it does not provide access to caller environments.
Python provides the locals function that returns the local
bindings as a dictionary. Updates to this dictionary are not
reflected in the function’s scope. Caller’s bindings can be
accessed from their frame obtained by calling inspect.stack.
Calling locals outside of a function returns a namespace
which can be updated. The globals function returns a dic-
tionary of the global namespace whose updates are also
reflected in the namespace. Siskind and Pearlmutter [2007]
proposed the map-closure construct to construct a new clo-
sure with a modified environment. By design, this hides the
details of environments, and unlike R this does not allow
addition and removal of variables.
Morandat et al. [2012] discussed the design of R, includ-

ing its scoping and evaluation mechanism. While the paper
presents some data on environments, it does not discuss ex-
plicit environment creation using new.env. In comparison
to their work, we focuses on environments and provides
a more detailed qualitative and quantitative account. Our
study shows a significantly larger and richer use of explicit
environments in the R ecosystem compared to theirs. Goel
and Vitek [2019] studied the design and use of laziness in
R. They provide a detailed account of the language’s evalu-
ation strategy with a small-step operational semantics and
an empirical evaluation of laziness. Their semantics shows
that promises are stored in environments and can outlive the
frame that created them if they are returned as part of that
environment. Turcotte et al. [2020] inferred type signatures
for R functions by observing the type of argument and return
values. Their type language includes a type for first-class
environments.

3 The R language
A presentation of the language requires introducing some
key concepts. We will be brief; interested readers should
consult [Wickham 2019].

Functions. Functions are first-class, anonymous, lexically-
scoped values with optional parameters and default values. R
is “functional” in the sense that values have a copy-on-write
semantics, so side-effects to arguments inside a function are
not reflected to the caller.

Promises. R is a mostly lazy language. Arguments to func-
tions are packaged into promises which bundle an expression
and its environment. When the value of a promise is needed,
the expression is evaluated in the adjoined environment, and
the result is cached in the promise.

Vectors. Most values in R are vectors, and most operations
are vectorized. Vectors are homogeneous arrays of integer,
double, character, logical, complex, or raw values.

Lists. Lists are heterogeneous vectors with optionally
named elements. They can be indexed by position or name.
Lists (and vectors) have a copy-on-write semantics.

Attributes. Values can be tagged with user-defined at-
tributes which are a map from string to value. Consider the
following code, which sets the attributes dim and class of
some vector x.
x <- c(1,2,3,4)
attr(x, dim) <- c(2,2)
class(x) <- c("cat")

Setting the dim attribute causes the vector to be subsequently
treated as a 2×2 matrix. Similarly, the class attribute is used
for method dispatch in an object-oriented style.

Metaprogramming. Expressions can be evaluated explic-
itly in an environment using eval. Moreover, substitute
extracts the unevaluated argument text from the promise
bound to an argument in the supplied environment. The
following example demonstrates how substitute constructs
an AST by replacing parameters x and y with the argument
expressions a+b and c*d, respectively.
f <- function(x, y) substitute((x) + y)
f(a + b, c * d)
(a + b) + c * d

Formulas. A formula is a compact symbolic representa-
tion of models used by statistical functions. For example, the
linear model y~x-1 specifies a line through the origin. Each
formula contains a reference to the environment in which it
is defined.

2

First-Class Environments in R Conference’17, July 2017, Washington, DC, USA

4 Environments in R
The evolution of R has been gradual, rather a panoply of
abstractions, the language designer opened up the internals
of the interpreter for all to see, and packaged some commonly
needed functionality with the core of the language. Thus, the
task of describing the “interface” of environments as seen
by developers and end-users involves some sleuthing. As we
prepared this paper, we kept discovering new functions that
accessed environments from native code. This section is not
meant to be exhaustive, but it gives an overview of the most
commonly used functions.
Environments are implemented either by an association

list or a hashmap, as specified by a construction parameter.
Each environment also has a parent, forming an acyclic chain
terminated by the empty environment. That environment is
returned by emptyenv(). Unlike other values, environments
are mutable.

4.1 Environments as Packages
Packages are loaded by calls to the library() function and
are represented by environments; their names are added
to a global search path. A package can be retrieved by po-
sition, the n-th package is accessed by as.environment(n)

or by name. Every package has a corresponding names-
pace that contains its private bindings and implementation
specific metadata. A namespace can be obtained by calling
getNamespace(p). baseenv() returns the base package envi-
ronment that is pre-loaded with R. The base package environ-
ment is also bound to the global variable, .BaseNamespaceEnv.

4.2 Environments as Lexical Scopes
In R, each function has a lexical scope. Furthermore, each
nested function introduces a nested scope. When a function
begins executing, its scope is initialized with parameters,
and, as it runs, new variables are introduced implicitly each
time an undefined symbol is assigned to. R allows obtaining
the current scope with a call to environment(). From there,
it is possible to read and update the environment through
the reference returned by that function.

R provides access to the call stack. Frames start from 0 and
increase by one for each nested call. Function sys.nframe re-
turns the current frame number, and sys.parent(n) returns
the number of the n th parent. The function sys.frame(n)

returns environment at that position (counting backward if n
is negative); parent.frame(n) optimises calls to sys.frame(

sys.parent(n)). Lastly, sys.frames() returns a list of active
environments.

f <- function() { print(environment()); g() }
g <- function() { print(parent.frame(1)); }
f()
<env: 0x7f2> <env: 0x7f2>

In the above code snippet, f accesses its environment us-
ing the call to environment(), and its callee g accesses f’s
environment by calling parent.frame(-1).

The global environment, referred to by the variable .GlobalEnv
(at offset 0), is returned by globalenv(). One can rebind the
enclosing environment of a function with environment(f)<-

e.

f <- function() print(environment())
environment(); environment(f); f()
<env: Global> <env: Global> <env: 0x7ff>
e <- new.env()
print(e)
<env: 0x7f1>
environment(f) <- e
environment(f)
<env: 0x7f1>

The code snippet above modifies the enclosing scope of f,
defined at the top-level. The environment e, created using
new.env, is assigned the enclosing scope of f using environment
(f)<-e.

4.3 Environments as Data Structures
Environments can be created by calls to new.env; it takes
three optional arguments: a boolean to select how the envi-
ronment is represented, the pre-allocation size, and an en-
closing environment. length returns the number of bindings
in an environment. parent.env yields the enclosing environ-
ment and parent.env(e)<-p sets e’s enclosing environment
to p. The code snippet below illustrates these functions.

e <- new.env(parent=emptyenv())
length(e)
0
parent.env(e)
<environment: R_EmptyEnv>
parent.env(e) <- globalenv()
parent.env(e)
<environment: R_GlobalEnv>

as.list converts environments to lists. list2env copies a
list to an environment. The variables of an environment can
be retrieved as a vector using the ls and objects functions
as shown below.

l <- list(x=1, y=2); e <- list2env(l)
length(e)
2
as.list(e)
list(y = 2, x = 1)
ls(e)
[1] "x" "y"

A variable’s existence can be queried using exists. Its value
can be retrieved using $ and [[operators. get, get0, mget
, and dynGet are generalizations of these operators with
options to perform lookup recursively in parent environ-
ments (inherits=TRUE) and validate the type of value bound

3

Conference’17, July 2017, Washington, DC, USA Goel, Vitek

to the variable being read (mode="integer"). mget is a vec-
torized version of get; it reads multiples variables supplied
as a vector and returns a list of values. dynGet performs
recursive lookups in caller frames, i.e., dynamic scopes, un-
like the other functions which perform lookups in lexical
scopes. Writes are performed using assign and e$v<-x, and
e[["v"]]<-x. Bindings can be removed from an environ-
ment using the rm and remove function. Environments can
be protected from addition or removal of bindings by call-
ing lockEnvironment. This does not prevent updates of ex-
isting variables, those need to be explicitly locked using
lockBinding.

5 Infrastructure and Corpus
The experimental results reported in this paper are produced
by a dynamic analysis infrastructure running over a large
corpus of R programs. The infrastructure has three tasks:
assembling executable programs from R packages, gener-
ating execution traces using a modified R interpreter, and
post-processing the traces to generate graphs and statistics.
For reproducibility, the infrastructure lives in a Docker con-
tainer based on Debian 10.9. Figure ?? shows the pipeline
along with the duration of each stage and the size of returned
results. We discuss the three tasks of this pipeline next.

Corpus Tracing Analysis

10 Hours
100 Packages
6.7 K Files

8 Hours
732 GB

72.5 K Files

3.5 Hours
1.5 GB

7 Reports

Figure 1. Pipeline

Corpus. Our corpus is assembled from R packages hosted
on CRAN [Ligges 2017], the official R package repository.
We mirror CRAN on our server and install its packages. We
downloaded and installed 17,133 CRAN packages.1 From
these, we select the 100 CRAN packages with the highest
number of clients. These 100 packages together have 11,786
clients (ggplot2 has the highest number of clients, 2,320, and
package vctrs has the fewest, 108). These packages contain
481K lines of R code and 1M lines of native code. During
execution, these 100 packages call functions from 186 other
packages, so our evaluation also includes them. These extra
packages have 478K lines of R code and 1.1M lines of native
code.
CRAN packages come equipped with runnable code in

the form of tests, examples, and long-form examples called
vignettes. Examples demonstrate the use of a package’s func-
tions, and vignettes illustrate a package’s functionality with a

1Snapshot taken on 29 May 2021.

larger example, typically using data supplied with the pack-
age. These programs are extracted as independently exe-
cutable scripts for evaluation by the analysis pipeline. Over-
all, there are 6.9K scripts with 205.8K lines of code, Table 1
has details.

Table 1. Corpus

Tests Examples Vignettes

Scripts 1.5K 5.0K 187

LOC 136.7K 55.2K 13.9K

Tracing. Execution traces are generated using envtracer,
a dynamic analyzer built on top of R-dyntrace. R-dyntrace
modifies GNU R 4.0.2 [Goel and Vitek 2019] to record events
during program execution. envtracer collects execution in-
formation associated with environments from these events.

Analysis. The tracing step generates 681GB of data; ana-
lyzing data at this scale is thus the major challenge. We use
a custom map-reduce analysis that first processes individual
traces in parallel to generate smaller tables per program. This
is expensive, but it substantially reduces data size. Then the
tables are concatenated into a single table per analysis. Fi-
nally, summaries are computed from the concatenated tables.
The report phase generates graphs and tables from these
summaries.

6 How Frequent are Environments?
The 286 corpus packages have 44K functions, of which 18K
are exercised. From the un-exercised 26K functions, the ma-
jority belong to transitively included packages for which
we do not have tests, and, some 8K functions are from our
initial target packages but were unused. Table 2 presents the
distribution of exercised functions across these packages. We
observe that 171 packages have 25 functions or less. There
are few large packages; 8 with more than 500 functions.

Table 2. Package Size

Functions Packages

1–25 169
26–50 40
51–100 17
101–150 14
151–200 11
201–250 15

Functions Packages

251–300 4
301–400 6
401–500 2
501–600 3
601–700 0
701–800 3

We observed 42M calls to these functions. Figure 2 shows
the distribution of calls: 53% of functions are called more
than ten times, and 14% of functions are called only once.
These functions have a total of 67K parameter positions. Fig-
ure 3 shows the distribution of parameters: 3% functions

4

First-Class Environments in R Conference’17, July 2017, Washington, DC, USA

0 2K 5K 8K 10K

1
2
3
4
5
6
7
8
9
10

> 10

0% 20% 40%
Functions

Ca
lls

Figure 2. Call Distribution

have none, 22% have one parameter, and 5% have over 10.
There are 4 functions with over 50 parameters, and the
ggplot2::theme function has 95 parameters.

0 1K 2K 3K 4K 5K

0
1
2
3
4
5
6
7
8
9
10

> 10

0% 10% 20%
Functions

Pa
ra
m
et
er
s

Figure 3. Parameter Distribution

We counted 1.2B environments, which makes them the
second most widely allocated values. Table 3 shows the fre-
quency of other values for comparison. Promises lead as
there is one per parameter [Goel and Vitek 2019]. Vectors
of logicals and characters are more frequent than integers,
reals, and raw.

Table 3. Object Counts

Type Count

Promise 2.8B
Environment 1.2B
Logical 1.0B
Character 929.9M
Language 483.9M
Integer 453.5M

Type Count

List 159.3M
Closure 114.0M
Real 113.4M
Symbol 73.5M
Raw 46.4M
Other 15.2M

Table 4 gives the number of calls made to the various envi-
ronment APIs. Each of these functions takes or returns an
environment as an argument. Overall, they cover most of
the non-traditional uses of environments.

Table 4. API Calls

Function Calls

substitute 15.8M
environment 13.0M
baseenv 12.2M
as.environment 10.0M
parent.frame 6.9M
getNamespace 6.9M
sys.frame 6.2M
get0 6.1M
get 4.9M
sys.parent 3.8M
[[3.6M

Function Calls

sys.function 3.2M
list2env 2.6M
sys.call 2.2M
parent.env<- 2.2M
parent.env 2.1M
$ 2.1M
.subset2 954.4K
sys.nframe 705.7K
environment<- 697.0K
$<- 659.0K
exists 505.1K

Function Calls

assign 392.4K
lockBinding 332.2K
mget 291.4K
emptyenv 234.0K
as.list 216.0K
lockEnvironment 206.2K
globalenv 179.1K
˜ 129.9K
environmentName 66.9K
rm 21.1K

Function Calls

[[<- 21.1K
remove 14.0K
sys.parents 7.2K
sys.frames 3.6K
dynGet 2.6K
ls 2.5K
unlockBinding 1.3K
length 375
objects 119
pos.to.env 7

7 Where do Environments come from?
Table 5 presents the distribution of environments by origin.
The Core row is for environments created by R’s implemen-
tation and its 16 core packages.2 The User row is for envi-
ronments that come from user-defined packages. We further
differentiate between environments created in native code
and in R code. Native environments are created using C APIs:
allocSExp, Rf_NewEnvironment, and R_NewHashedEnv. R envi-
ronments come from calls to new.env. Core is responsible for
over 99% of environments, mostly from C code. Whereas the
0.03% of User environment are twice as likely to originate in
R. We encountered 904K environments created during the
initialization of the R session, we ignored those from the rest
of the discussion.

Table 5. Environment Source

Source # %

Core Native 1.2B 99.62%
R 3.1M 0.27%

User Native 154.9K 0.01%
R 240.4K 0.02%

2They are base, compiler, datasets, grDevices, graphics, grid, methods, par-
allel, profile, splines, stats, stats4, tcltk, tools, translations, and utils.

5

Conference’17, July 2017, Washington, DC, USA Goel, Vitek

In the Core Native class, 99% of environments are needed to
implement function environments. There 344K environment
used for package namespaces, as well as 2.8M for the S4
object system implemented by the methods package. Some
165K were used for eval and 145K for substitute. In the
Core R class, 94% of the environments come from the base

package and 5% from methods.

8 How are Environments Used?
We divide environments into three categories, presented in
Table 6: Calls are environments used for evaluating function
calls, Explicits are created for non-standard purposes, and
Packages are needed for package loading.

Table 6. Environment Categories

Calls 1.2B 99.3%
Explicits 3.7M 0.3%
Packages 3.3M 0.2%

8.1 Calls
Of 1.2B calls, only 20M environments are passed to the func-
tions of Table 4. The remaining environments are used only
as “traditional” environments for creating, reading, and up-
dating variables. To understand how those 20M environ-
ments are used, we summarize manipulation of these envi-
ronments with four groups of operations:

• A: variable reads, writes and removes.
• V: eval.
• S: substitute.
• X: parent.frame, sys.frame or sys.frames.

Any environment may be used by a combination of the oper-
ations above. Table 7 has the frequency of the most common
“sets” of operations, these are operations that happen to the
same environment in no particular order or frequency. Over-
all, there are 63 sets but the top four explain 98% of non-trivial
call environments.

Table 7. Operation mix

Event # Cum. %

S 9.8M 46%
X,A 8.3M 86%
X,V,A 2.2M 97%
X,S,V,A 312K 98%

S: Most uses of substitute originate from base package
functions such as ::. When users write ns::sym, this
has the effect of reading variable sym publicly exported
from namespace ns. Here, substitute is used to ac-
cess the symbol and namespace names, the names are
converted to strings, then get does the actual lookup.

`::` <- function(pkg, name) {
pkg <- as.character(substitute(pkg))
name <- as.character(substitute(name))
getExportedValue(pkg, name)

}

X,A: These environments are obtained as values and then
used for accessing their bindings. For instance, register
-S3method::assignWrapped uses parent.frame to get
the caller environment and then evaluates a promise
in that environment accessing its variables.

assignWrapped <- function(x, method, home,
envir) {

method <- method
home <- home
delayedAssign(x, get(method, envir = home),

assign.env = envir)
}
home <- parent.frame()
assignWrapped(home = home, ...)

X,V,A: These environments are obtained for the purpose
of evaluating code in them. The use of glue::glue by
waldo::path_attr is an example where glue performs
string interpolation by extracting the caller’s environ-
ment and evaluating embedded code blocks.

path_attr <- function(path, i) {
funs <- c("comment", "class", "dim")
ifelse(i %in% funs,

glue("{i}({path})"),
glue("attr({path},␣'{i}')"))

}

X,S,V,A: These environments are used in a combination of
eval and substitute use cases. This occurs in match.arg

when the set of values against which the argument is
to be matched are not provided, then match.arg uses
substitute to get argument names and reflectively ac-
cess their default values from the caller environment.

match.arg <- function(arg, choices,
several.ok = FALSE) {

sysP <- sys.parent()
formal.args <- formals(sys.function(sysP))
argname <- as.character(substitute(arg))
choices <- eval(formal.args[[argname]],

envir = sys.frame(sysP))

Apart from these, formula construction also stands out as a
frequent operation. These formulas extract the environment
of the call in which they are created and carry them around
as attributes. We observed 66K formulas constructed in call
environments. The most common example is the stats::

formula function.
6

First-Class Environments in R Conference’17, July 2017, Washington, DC, USA

While one could hope an optimizing compiler would opti-
mize most call environments, unfortunately, there are suffi-
cient number of reflective accesses that it may be hard for
the compiler to be able to determine that an environment
can be elided.

8.2 Explicits
Explicit environments created using new.env mostly come
from core, and 395K are created in user code.

8.2.1 Core Explicits. Nine packages are responsible for
all explicits in Core. Table 8 shows these packages and the
number of environments created. The base and methods pack-
ages alone account for 99% of environments. Table 9 shows
the six functions that alone contribute to 98% of all explicit
environments.

Table 8. Core Explicit Environment Packages

Package # %

methods 3.0M 89.2%
base 329.9K 99.0%
grid 15.7K 99.5%
grDevices 10.7K 99.8%
stats 2.7K 99.9%
compiler 2.4K 100%
parallel 610 100%
tools 217 100%
utils 7 100%

Table 9. Core Explicit Environment Functions

Function # Cum. %

methods::new 2.8M 84.3%
base::eval 165.5K 89.2%
base::substitute 145.8K 93.5%
methods::.mlistAddToTable 50.2K 95.0%
methods::.resetInheritedMethods 50.2K 96.5%
methods::makeGeneric 50.2K 98.0%

We now turn our attention to how these environments are
used. Table 10 shows the top 5 of the full sets of operations
performed on these environment. These sets include the
following new operations:

• L: locking environments or bindings.
• Z: modifying parent environment.
• !: using environment as parent or lexical scope.

A: This is the most common case; environments that are
only used to access variables, as in the methods::new

function that is used for creating S4 objects.
A,V: These environments are used for evaluation by the

eval and evalq functions.

Table 10. Core Explicit Environment Events

Event # Cum. %

A 3.0M 88.4%
A,V 165.6K 93.4%
S 145.8K 97.7%
A,Z,! 50.2K 99.2%
A,L,! 12.1K 99.6%

S: These environments are used with substitute.
A,Z,!: An example of this is the methods::makeGeneric func-

tion. It creates a new environment, assigns the field
".Generic" to the name of the generic method, sets its
parent as the lexical scope of the function, and finally,
sets the new environment as the lexical scope of the
function.

ev <- new.env()
parent.env(ev) <- environment(fdef)
environment(fdef) <- ev
packageSlot(f) <- package
assign(".Generic", f, envir = ev)

A,L,!: This happens in S4 objects, which lock the object’s
data store.

Overall, 168K environments are passed to eval, and only
100 were used for formula construction. Overall, explicit
environments are used for evaluation, substitution, and in
the S4 object system. This category is integral to the language
implementation.

8.2.2 User Explicits. User explicits come from 55 pack-
ages. Table 11 shows the distribution of the top 8 packages,
which account for 96% of creations. The vctrs package al-
lows for type-coercion and size-recycling of vectors. The
rlang package provides utility functions for working with
objects and a variant of eval. The R6 package implements an
object-oriented system. The codetools package implements
code analysis. The ggplot2 package is a popular plotting
library. The testthat package is used for testing. The dplyr

package implements a DSL for SQL-like queries on data
frames. Lastly, magrittr implements the pipe operator for
composing function. Table 12 shows the top ten functions
creating environments; they contribute to 65% of all explicits.
Now, we turn our attention to how these environments

are used. Table 13 shows the top 7 of the 82 operation mixes
which characterize 96% of these environments. We observe
a new operation, @, used to set class attributes.
A,V: These environments are created for custom evaluation

strategies, i.e., for evaluating expressions with custom
bindings. For example, the testthat library uses them
for running tests.

test_code <- function(code, env = test_env()) {
test_env <- new.env(parent = env)

7

Conference’17, July 2017, Washington, DC, USA Goel, Vitek

Table 11. Explicits Packages

Package # Cum. %

vctrs 142.9K 36.2%
rlang 75.2K 55.2%
R6 74.1K 73.9%
codetools 39.2K 83.8%
ggplot2 24.3K 90.0%
testthat 9.1K 92.3%
dplyr 8.3K 94.4%
magrittr 6.1K 95.9%

Table 12. Explicits Functions

Function # Cum. %

R6::generator_funs::new 63.4K 16.0%
vctrs::vec_c 55.7K 30.1%
codetools::mkHash 31.3K 38.0%
ggplot2::ggproto 24.3K 44.2%
rlang::eval_tidy 18.1K 48.8%
vctrs::vec_slice 16.5K 52.9%
rlang::new_data_mask 13.8K 56.4%
vctrs::vec_cast_common 12.8K 59.7%
vctrs::vec_as_names 10.7K 62.4%
R6::create_super_env 10.6K 65.1%

Table 13. Explicits Operations

Events # Cum. %

A,V 154.0K 39.0%
A 102.8K 65.0%
A,! 43.8K 76.1%
A,@ 38.9K 85.9%
A,L 30.4K 93.6%
A,L,@ 8.3K 95.7%
A,@,! 3.2K 96.5%

eval(code, test_env)

A: These environments are used as hash tables and muta-
ble state. For example, the codetools::mkHash function
creates an environment to store intermediate static
analysis information.

findGlobals <- function(fun, merge = TRUE) {
funs <- mkHash()
enter <- function(v) assign(v, TRUE, funs)
collectUsage(fun, enterGlobal = enter)
fnames <- ls(funs, all.names = TRUE)

A,!: These environments are used as parents of other en-
vironments or functions. For example, the R6 package
creates new environments and sets them as lexical
scope of object methods.

assign_func_envs <- function(objs, env) {
lapply(objs, function(x) {
if (is.function(x)) environment(x) <- env
x

})
}

new <- function(...) {
env <- new.env(parent=parent_env,hash=FALSE)
methods <- assign_func_envs(methods, env)

A,@: These environments are used to create custom ob-
jects which can be used for dispatch. For example, the
ggproto objects are explicit environments with the "

ggproto" class attribute.

ggproto <- function(`_class` = NULL, ...) {
e <- new.env(parent = emptyenv())
e$super <- find_super
class(e) <- c(`_class`, "ggproto", "gg")

A,L: This operation mix is seen in environments created
by the R6 package which locks them during object
instantiation to prevent any modification.

new <- function(...) {
pub_env <- new.env(parent=emptyenv())
lockEnvironment(pub_env)

A,L,@: These environments come from the later package
which uses them as handles for event loop objects.
These objects contain a unique loop identifier that is
locked to prevent modification. The environments are
given the class attribute "event_loop".

create_loop <- function(...) {
loop <- new.env(parent = emptyenv())
class(loop) <- "event_loop"
loop$id <- id
lockBinding("id", loop)

A,@,!: These environments shows up in the plyr package,
which creates environments with attribute "idf" for
immutable data frames. It also assigns getter functions
to these environments to access the columns of the
data frame, and sets their lexical scope to be the envi-
ronment itself.

idata.frame <- function(df) {
self <- new.env()
self$`_data` <- df
self$`_getters` <- lapply(names(df), ...)
names(self$`_getters`) <- names(df)
for (name in names(df)) {
f <- self$`_getters`[[name]]
environment(f) <- self

}
structure(self, class = c("idf"))

}

8

First-Class Environments in R Conference’17, July 2017, Washington, DC, USA

Only 597 environments in this category were used for for-
mula construction. Out of these, 389 were created in tests.
The survival package stands out as it creates explicits for
formulas. 162K of explicits were used for dynamic code eval-
uation. 50K of these environments have a class attribute.
Table 14 presents the class attributes attached to environ-
ments.

Table 14. Environment Attributes

Package Attributes # Cum. %

ggplot2 ggproto gg 24.3K 47.8%
rlang rlang_ctxt_pronoun 12.1K 71.5%
R6 R6 9.2K 89.5%
rlang r6lite 3.7K 96.8%
plyr idf environment 1.2K 99.2%
later event_loop 279 99.7%
R6 R6ClassGenerator 113 100%
shiny session_proxy 12 100%
XML XMLHashTree XMLAbstractDocument 10.0 100%
xts replot_xts environment 2 100%

8.3 Packages
We observe 3.3M environments related to packages and
namespaces. The package loadingmechanism alone accounts
for 2.9M of these. The remaining are used as package names-
paces. 2.3M of these environments originate from lazyLoadDB

-exec, an internal function responsible for loading a pack-
age’s code from a binary file. A few environments are cre-
ated internally by the interpreter to store a package’s native
functions. The internal structure of these environments is
unspecified.

9 Enclosing Scope Manipulation
A closure’s enclosing scope can be accessed using env(fun)

and modified using env(fun)<-e. Table 15 lists calls to these
functions.

Table 15. Enclosing Scope API

P# F# C# C%

environment Core 5 37 249.3K 97%
User 15 33 6.7K 3%

environment<- Core 2 4 114.4K 48.0%
User 17 37 122.9K 52.0%

First, we look at the environment function called 97% of the
time from Core. The methods::registerS3methods is respon-
sible for 43.8% of calls to environment. This function registers
S3 methods for dispatch. It extracts the enclosing environ-
ment of the method and updates the method information in
its S3MethodsTable.

defenv <- environment(genfun)
table <- new.env(hash = TRUE, parent = baseenv())
defenv[[".__S3MethodsTable__."]] <- table

Overall, the methods package is responsible for 52.2% of
the calls.

The compiler::cmpfun function, used for byte code compi-
lation is another client. It extracts the body, formal parameter
list, and the enclosing scope of the function to be compiled.
cmpfun <- function (f, options = NULL) {

cntxt <- make.toplevelContext(makeCenv(
environment(f)), options)

ncntxt <- make.functionContext(cntxt, formals(f),
body(f))

Only, 3% of the calls to environment originate from User.
The primary contributor to these calls is the R.oo package.
This package implements objects with a getStaticInstance.Class
function that calls the environment function.
setMethodS3("getStaticInstance", "Class", function(

this, ...) {
environment(static) <- environment(this)

We observe that environment<- is called almost equally
by both Core and User packages. Table 16 gives the top five
callers of environment<-, which account for 98.59% of calls.

Table 16. Top environment<- Callers

Function Call %

R6::assign_func_envs 50.0%
methods::.makeDefaultBinding 32.6%
stats::make.link 11.8%
methods::installClassMethod 3.8%
MASS::negative.binomial 0.4%

On the Core side, methods, and stats are responsible for all
calls to environment<-. Two functions in methods, .makeDef
-aultBinding and installClassMethod, are responsible for
75.47% of all Core calls.
.makeDefaultBinding <- function(...) {
f <- function(value) ...
environment(f) <- where

The stats::make.link function returns a list of functions
related to a model. These functions are defined as its inner
functions which don’t use any of the parent scope bindings.
Before returning, it modifies their definition environment to
be the stats package namespace.
make.link <- function (link) {

linkfun <- function(mu) ...
linkinv <- function(eta) ...
mu.eta <- function(eta) ...
valideta <- function(eta) ...

9

Conference’17, July 2017, Washington, DC, USA Goel, Vitek

environment(linkfun) <- environment(linkinv) <-
environment(mu.eta) <- environment(valideta) <-
asNamespace("stats")

On the User side, R6 dominates calls to environment<-. R6::
assign_func_envs is the most frequent caller, accounting for
half of all calls. It uses environment<- to change the enclosing
scope of object methods.

assign_func_envs <- function(objs, target_env) {
lapply(objs, function(x) {
if (is.function(x)) environment(x) <- target_env
x

})
}

The MASS::negative.binomial function uses environment
<- to modify the parent scope of its inner functions, similar
to the stats::make.link function described above.

10 Locking
Calling lockEnvironment prevents the introduction of new
bindings while lockBinding prevents their mutation. Bind-
ings can be unlocked with unlockEnvironment; the use of
this function triggers a warning from the automated pack-
age checker. Table 17 presents the distribution of calls to
these functions.

Table 17. Locking and Unlocking API

P# F# C# C%

lockEnvironment Core 1 3 166.4K 80.1%
User 2 3 41.3K 19.9%

lockBinding Core 1 3 32.1K 9.4%
User 6 7 309.0K 90.6%

unlockBinding Core 1 1 688.0 53.8%
User 5 5 590.0 46.2%

lockEnvironment is called 80.1% of the time by three base

functions, sealNamespace, attachNamespace, and envhook. The
first two initialize package and namespace environments.
The third loads code from a database.

On the User side, only packages R6 and rlang lock envi-
ronments. Most calls originate from R6. An example is the
R6::clone method that locks the public and private method
environments of object clones.

clone <- function(deep = FALSE) {
lockEnvironment(new_1_binding)
lockEnvironment(new_1_private)

The methods package is responsible for all calls to lockBinding
and unlockBinding on the Core side. On the User side, the
use of these functions is varied. Most package functions call
them in a matched pair. For insance, gtools locks bindings to

circumvent a a bug in R.3 Some functions in gtools cause the
bytecode interpreter to run out of stack space. The package
has a function, unByteCodeAssign, that calls assignEdgewise
to update the functions that trigger the bug to an equivalent
non-bytecode version.

assignEdgewise <- function(name, env, value) {
unlockBinding(name, env = env)
assign(name, envir = env, value = value)
lockBinding(name, env = env)
invisible(value)

}

unByteCodeAssign <- function(fun) {
FUN <- unByteCode(fun)
retval <- assignEdgewise(name=name, env=environment

(FUN), value=FUN)
}

Overall, R6 is the biggest user of locking. Bindings are
rarely unlocked, and they are never used to inject new bind-
ings in other packages.We only found one package, data.table
, which unlocked bindings to update base functions cbind
and rbind.

11 Conclusion
This paper looked at first-class environments in R. We in-
troduced the main functions that operate on environments
and reported on an observational study of 100 popular R
packages. At the outset, our hope was that we could un-
cover some ways to simplify and rationalize the design of
R’s environments. We conclude with the rather disappoint-
ing observation that it seems that all of the generality of
the environment interface is needed, or at least that it is
used. While in the vast majority of cases environment access
could be optimized and environment could be implemented
in a straightforward manner, there are sufficient number of
cases where environments escape and are used in a reflective
manner that it is not clear such optimizations can be widely
applied.

Acknowledgments. This work has received funding from
National Science Foundation awards 1759736, 1925644 and
1618732, the Czech Ministry of Education, Youth and Sports
from the Czech Operational Programme Research, Develop-
ment, and Education, under grant agreement No. CZ.02.1.01/0.-
0/0.0/15_003/0000421, and the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme, under grant agreement No. 695412.

References
N. Adams and al. 1998. Revised5 Report on the Algorithmic Language

Scheme. SIGPLAN Not. 33, 9 (1998). https://doi.org/10.1145/290229.
290234

3https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15215

10

https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/290229.290234
https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15215

First-Class Environments in R Conference’17, July 2017, Washington, DC, USA

Richard A. Becker, John M. Chambers, and Allan R. Wilks. 1988. The New S
Language. Chapman & Hall.

Olivier Flückiger, Guido Chari, Jan Jecmen, Ming-Ho Yee, Jakob Hain, and
Jan Vitek. 2019. R melts brains: an IR for first-class environments and lazy
effectful arguments. In International Symposium on Dynamic Languages
(DLS). https://doi.org/10.1145/3359619.3359744

Aviral Goel and Jan Vitek. 2019. On the design, implementation, and use
of laziness in R. Proc. ACM Program. Lang. 3, OOPSLA (2019). https:
//doi.org/10.1145/3360579

Ross Ihaka and Robert Gentleman. 1996. R: A Language for Data Analysis
and Graphics. Journal of Computational and Graphical Statistics 5, 3
(1996). http://www.amstat.org/publications/jcgs/

Uwe Ligges. 2017. 20 Years of CRAN (Video on Channel9). In UseR! Confer-
ence.

John McCarthy. 1959. LISP: a programming system for symbolic manipula-
tions. In National meeting of the Association for Computing Machinery.

https://doi.org/10.1145/612201.612243
Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Evaluating

the Design of the R Language: Objects and Functions for Data Analysis.
In European Conference on Object-Oriented Programming (ECOOP). https:
//doi.org/10.1007/978-3-642-31057-7_6

Jeffrey Mark Siskind and Barak A. Pearlmutter. 2007. First-Class Nonstan-
dard Interpretations by Opening Closures. POPL ’07 (2007). https:
//doi.org/10.1145/1190216.1190230

Guy L. Steele. 1982. An Overview of Common Lisp. In Symposium on LISP
and Functional Programming (LFP).

Alexi Turcotte, Aviral Goel, Filip Krikava, and Jan Vitek. 2020. Designing
Types for R, Empirically. Proc. ACM Program. Lang. 4, OOPSLA (2020).
https://doi.org/10.1145/3428249

Hadley Wickham. 2019. Advanced R. Chapman and Hall/CRC.

11

https://doi.org/10.1145/3359619.3359744
https://doi.org/10.1145/3360579
https://doi.org/10.1145/3360579
http://www.amstat.org/publications/jcgs/
https://doi.org/10.1145/612201.612243
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1007/978-3-642-31057-7_6
https://doi.org/10.1145/1190216.1190230
https://doi.org/10.1145/1190216.1190230
https://doi.org/10.1145/3428249

	Abstract
	1 Introduction
	2 Related Work
	3 The R language
	4 Environments in R
	4.1 Environments as Packages
	4.2 Environments as Lexical Scopes
	4.3 Environments as Data Structures

	5 Infrastructure and Corpus
	5.1 A Corpus of R Programs
	5.2 Dynamic Analysis of R
	5.3 Post-processing Traces

	6 How Frequent are Environments?
	7 Where do Environments come from?
	8 How are Environment Used?
	8.1 Calls
	8.2 Explicits
	8.3 Packages

	9 Enclosing Scope Manipulation
	10 Locking
	11 Call Stack Reflection
	12 Conclusion
	References

