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SUMMARY

Java is becoming a viable platform for real-time computing. There are production and research real-
time Java VMs, as well as applications in both the military and civil sectors. Technological advances
and increased adoption of real-time Java contrast significantly with the lack of benchmarks. Existing
benchmarks are either synthetic micro-benchmarks, or proprietary, making it difficult to independently
verify and repeat reported results. This paper presents the CDx benchmark, a family of open-source
implementations of the same application that target different real-time virtual machines. CDx is, at its
core, a real-time benchmark with a single periodic task, which implements an idealized aircraft collision
detection algorithm. The benchmark can be configured to use different sets of real-time features and
comes with a number of workloads. It can be run on standard Java virtual machines, on real-time and
Safety Critical Java virtual machine, and a C version is provided to compare with native performance.
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1. INTRODUCTION

Driven by the popularity of Java, the availability of development tools, and wide library support,
the Real-Time Specification for Java (RTSJ) [1] is on the rise. It is used in avionics [2], shipboard
computing, industrial control [3], and music synthesis [4]. Real-time Java programs have char-
acteristics and requirements different from traditional Java programs. While throughput remains
important, it is predictability that is critical for real-time applications. Therefore, many of the
engineering tradeoffs that are an integral part of the design of a virtual machine have to be revisited
to favor predictability over throughput. In order for virtual machine developers to understand the
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impact of design decisions, and for end users to select the technology that suits the requirements
of a particular application, comprehensive and meaningful benchmarks are needed.

There are many Java benchmarks, ranging from synthetic micro-benchmarks to complex appli-
cations (e.g. SPECjvm [5], Dacapo [6], Java Grande, and SciMark [7]). While these benchmarks
can be used to evaluate the quality of real-time virtual machines, they are not representative of
real-time workloads. They aim to generate the highest sustainable load and they measure the mean
performance under this load, neither of which suits real-time systems (RTSs). RTSs are designed
such that deadlines are not missed. The ability to meet deadlines depends on the worst-case compu-
tation times of periodically scheduled tasks, which are not captured by mean performance metrics.
Moreover, programming styles for RTSs are very different from non-real-time throughput targeted
systems. The usefulness of benchmarks for performance evaluation is that the benchmarks, being
realistic models of real applications, put the system of interest under a workload similar to those
real applications. They allow us to capture and evaluate performance characteristics caused by
many aspects of program execution, some of which we may not be aware of or be able to predict.
For real-time Java, we thus need benchmarks that actually model RTSs, have deadlines, use RTSJ,
run on real-time OS kernels, use high precision timers, and measure workloads configured to never
miss a deadline. Unfortunately, it is notoriously difficult to find real-time applications in the wild.
Most RTSs are proprietary and are tied to some hardware/OS platform. Real-time Java being a
relatively young technology does not help.

This paper presents the CDx benchmark, a relatively small-sized (33KLOC), open-source, appli-
cation benchmark that can be targeted at different real-time platforms‡. At its core, CDx has a
periodic thread that detects potential aircraft collisions, based on simulated radar frames. Other
optional threads are used to generate simulated aircraft traffic, and create computational noise. The
benchmark can thus be used to measure the time between releases of the periodic task as well as
the time it takes to compute the collisions. This gives an indication of the quality of the virtual
machine and the degree of predictability that can be expected from it. CDx is configurable, it can be
used with a standard Java virtual machine, an RTSJ virtual machine with scoped memory or with
real-time garbage collection and a Safety Critical Java virtual machine. Finally a C implementation
is provided to allow for performance comparison with native compiled code.

Another potential use of CDx is linked to verification [8]. The increasing complexity of RTSs
is building up demand for automated verification tools. To develop these for Java, test cases are
necessary. Similar to benchmarking, plain Java programs are not enough, because they do not
use the real-time API and are too complex for worst-case execution time (WCET) analysis. The
real-time API introduces new behaviors and new error modes. In particular, these are the memory
assignment errors in systems with scoped memory, but also incorrect sizing of scopes must be
caught by these tools. CDx can be easily used as a test case for verification challenge problems.
The RTSJ version can be a test for the detection of memory assignment errors. Any version can
be used to test the maximum allocation per release and the GC/RTGC version to test the RTGC
overheads analysis. Bounds on WCET found by tools can then be verified against values measured
with the benchmark. The plain Java version also makes it easier to get started with some types
of analyses, gradually adding more and more RTSJ semantics to the verification, as current Java
verification tools generally do not support RTSJ.

‡The source code can be downloaded from http://www.ovmj.net/cdx/.
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Earlier versions and modifications of the collision detector (CD) were used in [9–12]. This
work presents a first open-source version of the benchmark with improved instrumentation,
several bug fixes, unification of a plain Java and RTSJ code, and a description of the application
logic.

2. BENCHMARKING REAL-TIME JAVA APPLICATIONS

Understanding the performance characteristics of a rich programming platform such as a Java
virtual machine is a complex task, and even more when real-time constraints are added. It is thus
highly unlikely that a single benchmark will ever provide all the information that is needed by
developers. To start with, Java benchmarks are used for different purposes, including:

• understanding the performance of a particular feature or algorithm in the virtual machine, for
instance, the cost of different implementations of locking or garbage collection,

• comparing the quality of virtual machines, for the purpose of selecting a vendor,
• evaluating the suitability of Java for a particular application and a particular deployment
platform.

At the end of the day, a given benchmark is only meaningful if its workload is represen-
tative of applications that are relevant to end-users. This section establishes a list of features
that should be covered by a real-time Java benchmark. It is not necessary for any benchmark
to address all these issues, different benchmarks addressing different subsets of the points listed
here can be used to give a comprehensive picture of the quality of a real-time Java virtual
machine.

• Object-oriented features: To be representative of idiomatic Java programs, object-oriented
features of the language should be exercised. These include: inheritance, interfaces, virtual,
and interface dispatch.

• Memory management: Allocation and de-allocation of heap memory is a key feature of Java.
This feature should be exercised with objects of different size classes. A real-time benchmark
should allow developers to contrast the RTSJ’s scoped memory management API with plain
Java garbage collection, real-time garbage collection, and possibly traditional hand-coded
object pooling.

• Code size and complexity: The size and complexity of the source code has an impact on the
performance in many different ways. Benchmarks should cover the range of program sizes
and complexities, from micro-benchmarks that can easily be optimized by an ahead-of-time
compiler, to more complex programs which are not as easy to optimize (e.g. for which the
compiler cannot de-virtualize all calls).

• Multi-threading and synchronization: A real-time benchmark should exercise the scheduler
with multiple threads running at different priorities and with different release times. Synchro-
nization and priority avoidance are key features of the RTSJ, benchmarks should exercise
these features in a meaningful way with a mixture of contended and un-contended locking
operations.

• Other features: A number of other important features in the language should be exercised,
these include but are not restricted to: floating point operations, array accesses, exception
handling, and reflection.
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• RTSJ API coverage: A real-time Java benchmark should exercise the RTSJ APIs beyond
the creation of threads and memory management. Some important features that should be
exercised include: timers, asynchronous signals, and raw memory.

• Predictability measurements: Accuracy of release times and predictability of completion times
are critical in RTSs. A benchmark should have support for measuring the predictability of the
virtual machine. This should be performed at different levels of computational load and with
interference from unrelated low-priority tasks.

• Start-up jitter measurements: Some applications require low latency start-up times. A real-
time benchmark should be set up so that it is possible to obtain a simple measurement of
virtual machine start-up time.

• Throughput measurements: Predictability must also be correlated with throughput, as it is easy
to trade one for the other. A benchmark should support some form of throughput measurement.

• Self-checking: The benchmark should include self-tests for correctness to ensure that results
are only reported for correct runs of the benchmark.

• Open source: Free availability of source code for a benchmark, while not essential, is an
enabler for wider adoption.

• Portability: A desirable feature is to be able to compare results across languages, operating
systems, and hardware platforms.

• Documentation: The behavior, goals, and measurements performed by the benchmark should
be clearly documented, so that end-users can understand which parts of the platform are
exercised and the meaning of a particular result.

The importance of documentation should not be under-appreciated. Any result obtained from a
benchmark can only be understood in the context of the operation performed by that benchmark. For
instance, it is well known, though not properly documented, that the SPECjvm98 Jess benchmark
is dominated by the cost of exception handling, and that SPECjbb spends most of its time acquiring
and releasing uncontended fine-grained locks. If either of these operations is slow in one particular
virtual machine, the performance results for that benchmark will appear to seriously lag behind
competitors. The purpose of this paper is thus to ensure that users of CDx understand what is being
measured and what meaning to ascribe to the results obtained by running it.

2.1. Qualitative comparison of benchmarks

We are aware of three other benchmarks that have been used to evaluate real-time and embedded
Java programs. This section provides a qualitative comparison of these benchmarks based on
publicly available documentation. Table I summarizes our impressions.

SPECjbbRT : SPECjbbRT [13] is based on the industry standard SPECjbb benchmark. The
basic benchmark is written in an idiomatic object-oriented style and uses inheritance, interfaces,
and virtual dispatch liberally. Some standard Java collection classes are also used. The memory
management policy is purely garbage-collected (both plain and real-time) with high-allocation
rates that cause the GC to run regularly. The code base is medium-sized, several thousand lines,
of reasonable complexity. The benchmark can be configured to run with multiple threads and it
employs standard Java synchronized statements to protect shared objects at a rather fine-grained
level (there are roughly 125 synchronized blocks in the benchmark which are called often). The
RTSJ API coverage is minimal, the main change from the original benchmark is the addition of
real-time threads. The benchmark does not measure the predictability of releases, but rather the
jitter in completion times. This is mostly useful to estimate the execution time hazard introduced
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Table I. Qualitative comparison.

Features SPECjbbRT JBEmbedded Suramadu CDx

Object-oriented Yes No No Yes
Memory management GC/RTGC — Scopes/GC/RTGC Scopes/GC/RTGC/Man
Code size Medium Small Small Small
Multi-threading Yes No Yes Yes
Synchronization Sync — Sync/WF WF
Other — — Int/FP FP/Array
RTSJ coverage Small — High Small
Predictability Completion — Release/completion Release/completion
Throughput Yes Yes Yes Yes
Self-checking No No No No
Open source No Yes Yes Yes
Portability RTSJ Java RTSJ RTSJ/Java/C
Documentation Yes Yes Yes Yes

by the GC and JIT. The benchmark is thus more suitable for evaluation of VMs for soft real-
time Java systems than for hard real-time RTSJ applications. Throughput measurement can be
obtained with the number of transactions completed. There is no meaningful self-checking, we
have experimented with removing all synchronizations from the original SPECjbb and have never
seen a failing run on a 8-core desktop. In addition, the benchmark is not open source. To this day,
it has neither been adopted as a SPEC benchmark by the SPEC Corporation, nor otherwise been
made available. Portability is limited to Java and environments that support GC and have sufficient
memory. Some documentation is available. CDx complements SPECjbbRT in that it also exercises
scoped memory and supports manual memory allocation (the C version), it is available for multiple
platforms, it models a real-time application, it allows to measure predictability of releases and to
detect deadline misses, it exercises floating point unit and arrays, and it is publicly available and
open source. On the other hand, SPECjbbRT has a larger code base and exercises synchronization
and Java collection classes to a larger degree.

JavaBenchEmbedded: This benchmark suite is made up of a series of micro-benchmarks and
kernels that can be deployed on small embedded devices. The benchmarks do not use object-
oriented features, there is no inheritance, no interfaces, and minimal use of virtual dispatching. The
micro-benchmarks attempt to measure latencies of individual byte-code instructions, which only
makes sense on non-compiling VMs. On a compiling VM, compiler optimizations can arbitrarily
distort the results, and thus the measured values do not represent durations of individual instructions.
The benchmarks do not allocate substantial amounts of memory and thus do not exercise the
memory management subsystem. The code base is small and of limited complexity. The benchmark
suite is single threaded. The RTSJ APIs are not invoked. Measurements are limited to throughput.
Portability is limited to Java. The benchmark is open source and some documentation is available.

Suramadu: The open-source Suramadu benchmark suite [14] includes benchmarks that focus on
low-level measurement of jitter, throughput, and latency of various RTSJ operations. The original
suite also probably included one computational kernel throughput benchmark, but the core part of
the code is missing in the open-source release. The micro-benchmarks test individual features of the
RTSJ for performance and predictability. The benchmarks do not rely on object-oriented features
or libraries. The benchmarks test allocation in scoped memory or garbage collected memory.
The suite measures context switch latency, class loading costs, asynchronous event latency, cost
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overrun, interrupt latency, JNI overhead, priority inheritance latency, synchronization latency, wait
free queues, floating point, integer, and shift operations. The code size is small and the complexity
is minimal. The benchmark is not self-checking. The suite is open source. Its portability is limited
to RTSJ. Documentation is available. The strongest weakness of the suite is that it only contains
simple synthetic micro-benchmarks. Particularly, the throughput micro-benchmarks are of little
use, as they repeatedly measure an arbitrary hard-coded sequence of Math operations (one for
floating point, one for integer operations, and one for shifting). The isolated execution of these
sequences cannot reveal the throughput performance of real applications, which include a mix of
different types of instructions and indeed different sequences. Moreover, the instruction sequences
heavily use constants, leaving most work to the compiler in the compiling VMs. Representative
throughput performance measurements can only be obtained by application benchmarks, such
as CDx . Suramadu exercises the memory management using a simple sequence of allocation
requests. CDx includes a realistic allocation sequence in the application logic and a synthetic, yet
more configurable, allocation sequence in its noise generators. The Suramadu micro-benchmarks
that measure RTSJ-related latencies in synthetic workloads can provide useful results for WCET
estimates. Suramadu allows to measure predictability of releases and completions again using
a trivial synthetic workload. CDx can measure these using more complex application workload,
allowing to take into account additional aspects of the VM, such as garbage collection pauses. The
advantage of CDx is also that it has a plain Java and C version.

CDx : This is an application level benchmark. It has been written in an object-oriented style
using inheritance, interfaces, virtual dispatching, and some collection classes from the standard
library. Different versions of the benchmark allocate memory in scopes, on the heap, and even
with malloc/free . The total code size is medium sized with a reasonable complexity, the part that
exercises real-time capabilities of Java is relatively small (about 5000 LOC). The benchmark is
multi-threaded and uses wait-free queues for communication. The benchmark uses arrays and
floating point operations extensively. It is set up to allow measurement of both release time and
completion time of the main periodic thread. Additional computational noise can be configured
in non-real-time threads. Additional allocation noise can be configured in the real-time threads.
Throughput can be calculated from the measured completion times, i.e. as a sum or average. The
output of the application logic of the benchmark is deterministic, it is thus possible to make the
benchmark self-checking, though this remains to be done. The benchmark is open source and has
been ported to plain Java, RTSJ, SCJ, and C code. It has been run on Linux, OS/X, and RTEMS.

Overall, CDx covers a combination of features that was missing in the previous work. While
micro-benchmarks are well suited to stress test individual features in isolation, they do not provide
a workload that is representative of real-world applications and can magnify differences that do not
show up in deployed systems. CDx complements them by providing a larger application benchmark.
SPECjbbRT is comparable in size, and exercises threading and synchronization but is mostly a
throughput benchmark. Finally, CDx is the only benchmark that allows comparison across both
different variants of Java (Java, RTSJ, RTSJ+RTGC, SCJ), different operating systems (Linux,
RTEMS,. . .), and even different programming languages (C/Java).

3. CDx BENCHMARK ALGORITHMIC DESCRIPTION

The CD application was designed by Titzer and Vitek as a software engineering project. CDx is
based on an implementation of this project done by Hagelberg and Pizlo at Purdue in 2001. The
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benchmark was modified many times over the years. Its key components are an air traffic simulator
(ATS), which generates radar frames based on user-defined air traffic configurations, and a CD,
which detects potential aircraft collisions. The program was designed so that collision detection
and air traffic simulation could be performed independently. Indeed, in the original design the
CD was a real-time thread whereas ATS was a plain Java thread and communication between the
two was performed by a non-blocking queue. In that design we relied on the simulator to create
computational noise and to occasionally trigger garbage collection. The version of the benchmark
presented here can also use an external program to create computational noise and pre-generate
all the radar frames needed for a run of the CDx .

3.1. Air traffic simulator

The ATS generates radar frames with aircraft positions, based on a user-defined configuration.
A radar frame is a list of aircraft and their current positions. An aircraft is identified by its call
sign (a string). A position is a 3-d floating point vector in the Cartesian coordinate system. The
simulation runs for tmax seconds. Radar frames are generated periodically, providing a user-defined
number of radar frames per second (fps ) and number of frames in total (frames ). Thus, tmax is
frames/fps . The set of aircraft does not change during the simulation (i.e. none of the aircraft
lands, takes-off, crashes, or otherwise enters or leaves the covered area). With respect to detected
collisions, the semantics can be optimistically explained such that the pilots always avoid the
collision in the end. The ATS is configured by a textual file, where each line describes a single
aircraft. Each line contains the call sign of the aircraft and three columns with expressions giving the
aircraft coordinates x , y, z as functions of time. The expressions thus use ‘t’ as a variable and then
common mathematical operations: arithmetics with brackets, trigonometric functions, logarithms,
absolute value, etc. Coordinates can also be constants, i.e. aircraft can fly at a constant altitude.

3.2. Collision detector

The CD detects a collision whenever the distance between any two aircraft is smaller than a
pre-defined proximity radius. The distance is measured from a single point representing an aircraft
location. As the aircraft location is only known at times when the radar frames are generated, it
has to be approximated for the times in between. The approximated trajectory is the shortest path
between the known locations. Another simplification is that constant speed of aircraft is assumed
between the two consecutive radar frames. For these assumptions to be realistic, the frequency of
the radar frames should be high (we typically run the benchmark at 100 Hz). To allow such high
frequency, the detection has to be fast. This is achieved by splitting it into two steps. First, the set
of all aircraft is reduced into multiple smaller sets of aircraft that have to be checked for collision
(reduction). This step allows CD to quickly rule out collisions of aircraft that are very far from
each other. Second, for each of the identified sets, every two aircraft are checked for collisions
(collision checking). This step would functionally be sufficient, as it could be run on the set of all
aircraft seen by the radar, but the computation would take too long. Both the reduction and the
checking operate on motions. A motion is a pair of 3-d vectors describing the initial position, "i ,
and the final position, "f , of an aircraft ("i is from the previous frame, "f is from the current frame).
The frame also contains the call sign of the aircraft, which identifies the aircraft. A motion vector
"m is then defined as "m= "f −"i .
Reduction. Reduction is already collision detection, but of much less precise form than the one

performed during collision checking. The 3-d detection space is reduced to 2-d and the conditions
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for detecting a collision are relaxed. These two simplifications are designed such that all collisions
are still detected, but some of the collisions detected may not be really collisions in the 3-d space
(false positives). The advantage is reduced complexity. The reduced 2-d space is created from the
original 3-d space simply by ignoring the altitude (the z coordinate). The 2-d space is divided
into a grid; a collision is detected whenever two aircraft span the same grid element. For each
grid element with a collision, the reducer then outputs the set of aircraft that spanned the element.
Each of these sets is then checked by the collision checker to filter out false positives. The reducer
maintains a mapping from a grid element to a set of motions that span the element. The reducer
proceeds as follows. Starting with an empty mapping, it keeps adding motions to the map:

void
if

foreach in

The code above could be improved to avoid checking of some grid elements and redundant
checking of some grid boundaries using algorithms common in the ray tracing domain or simply
with the Bresenham’s line drawing algorithm [15]. It should be easy to plug an implementation
of a better algorithm into the benchmark. The key test in the procedure is spansElement . It checks
whether a particular motion spans a given grid element, which is extended by half of the proximity
radius at each side. The test is implemented as a geometric test for intersection of a line segment
and a square. To keep the memory requirements reasonable, and in particular independent on the
dimensions of the 2-d detection space, the mapping of grid elements to aircraft that span it is
implemented using a hash table, rather than a 2-d array. The reducer algorithm is described in
Figures 1 and 2.

Collision checking. Collision checking is a full 3-d collision detection. The checker detects
collisions of all pairs of aircraft belonging to each set identified by the reducer. The algorithm is
based on checking the distance of two points (centers of the aircraft) traveling in time. If these
points ever get closer than the proximity radius, a collision is detected. The test assumes that the
speed of each of the aircraft is constant between two consecutive radar frames and that the aircraft
trajectories are line segments. The calculations involved in the algorithm are described in Figure 3.

3.3. Interaction between the ATS and the CD

The ATS, which is a non-real-time task, needs to transfer the generated frames to the CD, which
is a real-time task. This is done through a frame buffer of fixed size, implemented as a wait-free
queue. The simulator copies frames to the buffer, where the detector can read them. The CD is a
periodic task. When released, it reads the next frame from the buffer. If a frame is available, it runs
the detection algorithm, otherwise it does nothing. Three modes of interaction between the ATS
and the CD are supported: pre-simulation, concurrent simulation, and synchronous simulation.
With pre-simulation, the simulator first generates all frames and stores them in the buffer, which
is set large enough to hold them all. This simplifies the analysis by avoiding any dependencies of
the detector on the simulator. In concurrent simulation, the simulator runs concurrently with the
detector, adding some background noise to the system and reducing memory requirements of the
frame buffer. The speed of the simulator has to be configured carefully: if the simulator is too fast,
frames may not fit into the buffer and be dropped. If it is too slow, frames will not be ready when
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Figure 1. Reducer algorithm.
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(a) (b) (c)

Figure 2. Rectangle positions for reducer algorithm: (a) Case 1; (b) Case 2; and (c) Case 3.

Figure 3. Collision detector algorithm.
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required by the detector. The speed of the simulator is controlled by command line arguments. In
synchronous simulation, the detector waits for the simulator to generate a frame, as well as the
simulator waits for the detector to finish processing the previous frame. This mode is intended
only for debugging. The ATS can also store the generated air traffic into a binary file for later use.
The benchmark can then run with a simplified version of the simulator that only reads data from
this binary file, storing them into the buffer before CD starts. As a step towards benchmarking on
embedded systems with further reduced resources, the binary dump of the air traffic can also be
converted into Java source code. Thus, we can generate a simulator for a particular workload and
use it on systems where file I/O is not available, or for program analysis with tools that would be
confused with the I/O (such as a model checker). The binary dump of the air traffic can also be
converted into a CSV file for further analysis with statistical software.

4. BENCHMARK IMPLEMENTATION

The CDx benchmark is configurable to support different runtime environments and programming
languages. The benchmark comes in three major versions, listed in the table below. CD j is the Java
version, it can be linked against the RTSJ APIs or against a placebo library to allow for execution
on a standard Java virtual machine, CDs is a version of the benchmark written against the upcoming
Safety Critical Java specification, and CDc is an idiomatic ANSI-C version of the benchmark.

CD j For both Java and RTSJ.
CDs For the Safety Critical Java version.
CDc For the ANSI C equivalent.

The benchmark can be run with pre-generated data, or can simulate frames online. Online
simulation is only available in CD j and can be done (i) concurrently, in a low-priority thread, (ii)
synchronously with the main detector thread, or (iii) before the main detector thread is started.
There is a version of CD j for each of these configurations. CDs and CDc only support pre-generated
data, CDc reads the data from a binary file, while CDs uses compiled-in data. The data can be
generated and stored by CD j , either to a binary file or to a Java source file.

PDSK All frames are pre-simulated offline and stored on disk.
PBIN All frames are pre-simulated offline and linked into the binary.
PMEM All frames are pre-simulated online and stored into memory.
SSYN Frames are simulated online, synchronously with main detector thread.
SCON Frames are simulated online, concurrently with main detector thread.

The memory management options for CD j are scoped memory or garbage collection, be it plain
Java garbage collection or real-time garbage collection. CDs can only use scoped memory as it is
the only option supported by Safety Critical Java. CDc uses malloc() and free() for manual memory
management.

SCP Scoped memory is used for all dynamically allocated data.
GC/RTGC Standard/real-time garbage collection is used to reclaim memory.

MAN Manual memory management using malloc() and free() .
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Finally, computational noise can be configured in the CD j benchmark by adding a plain Java
thread that runs an unrelated program for the purpose of stressing the virtual machine. In addition,
simple synthetic allocation noise can be added to the main detector thread of CD j . The algorithm
of this noise generator is described in the following section.

CNG Computational ‘noise’ is generated by a non-real-time thread.
ANG Allocation ‘noise’ is generated in the main detector thread.

The plain Java version of CDx is obtained through wrapper functions that provide plain Java
implementations of the requested RTSJ functionality. While the dependency of the benchmark
code on the RTSJ library can be removed by the wrappers and the benchmark indeed run by a
plain Java virtual machine, the impact of RTSJ memory semantics on the architecture could not
be abstracted out. The use of scopes and immortal memory by itself requires additional threads
in the application. In addition, memory assignment rules sometimes lead to the need of copying
arguments passed between memory areas (i.e. heap to scope, inner scope to outer scope). Even
more, we also structured the code to make it easier for programmers to keep track of which objects
live in which memory areas. Thus, the architecture is representative of an RTSJ application. The
plain Java version of the benchmark can be both compiled and run with standard Java. The RTSJ
Java libraries and an RTSJ VM are only needed to build and run the RTSJ version of the benchmark
with immortal memory, scopes or GC/RTGC. The RTSJ code has been tested with Sun’s Java
RTS, IBM’s WebSphere Real-Time (WRT), Fiji VM, and Ovm. The Safety Critical Java version
has been run with Ovm.

4.1. Noise generators

The CD component of CDx is by itself quite efficient in memory usage. To allow scaling the GC
work generated by the detector better, we added an optional synthetic allocation noise generator
which can run within the main CD thread. The generator has an array of references (root array),
which is initialized to null references at start-up. The array implements a write-only cyclic buffer.
Pointers to newly allocated objects are stored to the array, overwriting the oldest ones. During
each release of the detector, a constant number of objects is allocated:

for
new byte

This simple algorithm allows the tester to tune the allocation rate by tuning size , and the amount
of reclaimed objects by tuning the size of the root array. On the other hand, the reuse of objects
of constant size can be very easy for a garbage collector, adding relatively small amounts of GC
work per computation—the computation time could easily be the bottleneck with such a noise
generator. We thus add an option to vary the object size: there is a minimum and maximum object
size and a step by which the object size is increased after each allocation:

int
for

new byte

In order to provide a more realistic source of allocation noise and/or some background compu-
tational noise, we support the execution of an external benchmark in low-priority threads. The
external benchmark is run using Java reflection, thus it need not be available at build time and the
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code base is completely independent. For our experiments, we used SPECjvm98 javac benchmark
for its non-trivial memory use that includes fragmentation. Indeed, although the allocation noise
of this background benchmark is far more realistic than that of the noise generator, it is still not
representative of a RTS.

4.2. Using scoped memory areas

In the SCP configuration of CD j , the ATS runs in the heap, the frame buffer is allocated in
immortal memory, and the CD is allocated in scoped memory. The SCP configuration of CDs uses
the same memory areas except for ATS, which it does not have. We use two scoped areas, the
first is for persistent detector data (stored locations of aircraft) which we call the persistent scope,
and the second is a nested scope used as a scratch pad for each iteration of the algorithm, which
we call the transient scope. The persistent scope is entered once before the first detector release
and left when the benchmark exits. The transient scope is re-entered for every frame. To assist
in keeping track of where objects are allocated, we reflect their allocation context in the package
structure of the code following the approach described in [11]. Thus, there are packages named
heap , immortal , immortal.persistentScope , and immortal.persistentScope.transientScope . It is correct to pass
references to sub-packages, but data have to be copied when they have to be passed to parent
packages. There are two exceptions to the rule for placement of classes into packages: entry threads
and parameter copying. Each of the non-heap areas is entered through its singleton entry thread
object. An entry thread is sometimes a multi-area object, which means that some methods, such
as the constructor, execute in a different area from the other. Still, we always place an entry thread
into the package of the scope that is being entered. In order to copy parameters to a memory area,
we again use a multi-area object, because code that does the allocation of the target buffer for the
copy needs to run in the target memory area, whereas the code that does the actual copy has to run
in the source memory area. An example is storing a transient motion vector into persistent state.
This is handled by immortal.persistentScope.StateTable.put() method which runs in the transient detector
scope, but the StateTable lives in the persistent scope.

4.3. Code metrics

Complexity metrics can provide an objective and compact characterization of the source code
of a benchmark. In our case, we are interested in more than just the code size. We also want
to know whether the benchmark uses object-oriented features in a sophisticated or trivial way.
For this, we measure the complexity of the benchmark code with the Chidamber and Kemerer
object-oriented programming (CK) metrics [16], with the ckjm tool [17], which has also been
used to evaluate the DaCapo benchmarks [6]. We apply the CK metrics to the classes that the
application loads. Each metric is defined for a class. Weighted methods per class (WMC) is the
number of methods in a class. Depth of inheritance tree (DIT) is the number of ancestor classes of
a class. Number of children (NOC) is the number of direct subclasses of a class. Coupling between
object classes (CBO) is the number of classes coupled to a class. Two classes are coupled if one of
them uses the methods or fields of the other class. This includes inheritance, method arguments,
method types, and exceptions. Response for a class (RFC) the number of methods that can be
called, recursively, from any method of the class. The tool uses an approximation, where it only
counts the number of methods of the class plus the number of directly called external methods.
Lack of cohesion (LCOM) quantifies the number of methods of a class that do not share instance
variables. The resulting number is calculated as |P|−|Q|, where P is the set of all method pairs
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Table II. Complexity of simulator and detector.

WMC DIT NOC CBO

Med Max Sum Med Max Sum Med Max Sum Med Max Sum

All code 5 95 2109 2 5 564 0 28 128 5 77 2004
No libraries 5 46 1140 2 5 379 0 28 77 5 77 1258
Detect. only 4 27 217 1 5 69 0 2 11 4 23 243
Simul. only 5 46 914 3 5 305 0 28 66 6 77 1002
Libraries only 6 95 969 2 4 185 0 8 51 5 48 746

RFC LCOM LOC

Med Max Sum Med Max Sum Med Max Sum

All code 11 117 4294 1 4465 12969 53 6023 50848
No libraries 10 94 2566 1 979 5392 57 6023 33761
Detect. only 7 53 498 0 351 563 46 652 5281
Simul. only 11 94 2003 3 979 4818 59 6023 27595
Libraries only 12 117 1728 0 4465 7577 49 4151 17087

Table III. Complexity of detector with pre-simulated radar frames.

WMC DIT NOC CBO

Med Max Sum Med Max Sum Med Max Sum Med Max Sum

All code 4 95 676 1 5 121 0 2 18 4 39 475
Detect. only 4 27 217 1 5 69 0 2 11 4 23 241
Libraries only 14 95 417 1 4 43 0 2 7 6 39 213

RFC LCOM LOC

Med Max Sum Med Max Sum Med Max Sum

All code 10 117 1338 1 4465 7417 72 4151 15769
Detect. only 7 53 498 0 351 563 46 652 5281
Libraries only 16 117 694 28 4465 6646 25 4151 8819

that do not share any variable, and Q is the set of all pairs that do. Finally, lines of code (LOC)
is the normalized number of LOC of a class. While not a Chidamber and Kemerer metric, it has
a straightforward interpretation. The ckjm tool counts the number of lines of normalized source
code that could be generated from a byte-code representation of the class: it sums up the number
of methods, number of fields, and number of byte-code instructions of methods.

The results are shown in Table II for CDx configurations with both full simulator and detector
(SSYN , SCON ), and in Table III for configurations that use pre-simulated radar frames (PDSK or
PBIN excluding the frames themselves). We summarize each metric using median, maximum,
and total. The median and maximum seem more natural to most metrics and were used in [16],
whereas the total has been used in [6] and is natural for LOC and WMC. The libraries used by the
program are mostly collection classes from java.util . The source code includes implementation of
these classes taken from GNU Classpath, so that one can reduce the impact of class libraries on
performance when comparing different virtual machines. The tables show the complexity of these
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Table IV. Source lines of code of CDx.

With simulator All code 37 875 Pre-simulated All code 20 127
No libraries 17 741 Detect. only 2761
Detect. only 2761 Libraries only 16 578
Simul. only 14 633
Libraries only 20 134

selected collection classes separately from the complexity of the rest of the program. In Table IV
we also provide the raw source lines of code (SLOC) summarized over all source input files from
a particular version. This metric is influenced by the particular formatting of the source code we
use. We use the same tool and metrics as in the DaCapo benchmarks [6], which allows us to
compare CDx to non-real-time application benchmarks: SPECjvm98, DaCapo version beta-2006-
08, and pseudojbb. With standard libraries excluded, the CDx version with simulator (Table II)
is more complex than SPECjvm98 benchmarks and pseudojbb (only javac has higher RFC and
jack has higher LCOM). It is more complex than luindex and lusearch benchmarks from DaCapo,
and sometimes it beats another of DaCapo benchmarks in some metric of complexity. But it is
significantly simpler than eclipse, the most complex DaCapo benchmark.

4.4. Workload characterization

The CDx workload is highly configurable. We describe two pre-configured workloads, named
NOI and COL . Other workloads are used when necessary. The basic parameters of the two work-
loads are summarized in Figure 5. The air traffic configuration of NOI and COLworkloads was
selected to be intuitive and stress the system enough—have enough collisions (COL ) or enough
artificial noise (NOI ). It is by no means a realistic air traffic. All aircraft fly at the same altitude at
all times. The y coordinate of each aircraft is constant, but different aircraft sometimes have it set
differently (Figure 4(b)), such that they could never collide with each other. Only the x coordinate
changes in time (Figure 4(a)). The NOIworkload (the lower part of the figure) has 20 aircraft, first
ten of them flying at y=120§, the other 10 flying at y=130. The x coordinates are set such that the
aircraft never collide—the aircraft fly in parallel far enough from each other. The COLworkload
has 40 aircraft, 20 of which fly at y=100 and the other 20 at y=120. The x coordinates are
set such that there are regularly massive collisions, as visible graphically in Figure 4(a). In the
NOIworkload, all aircraft fly at the same speed, which is however not constant in time. The speed
is shown in Figure 4(a) (the lower part). The COLworkload has two groups of aircraft, 40 of
them fly at the same speed as the aircraft in the NOIworkload, the other 40 at the speed shown
in the upper part of the figure. The structure of COLworkload collisions and their occurrence in
time is shown in Figure 6. The upper part of the figure is the number of detected collisions by
the collision checker (number of pairs of colliding aircraft in 3-d). The lower part is the number
of grid elements of the 2-d grid that were occupied by two and more planes, as identified by the
reducer. The peaks of collisions well align with the x coordinates of the trajectories in Figure 4(a)
(upper part).

We conducted some experiments to investigate how the computation time and allocation rates
are related to collisions. The computation time of the detector depends on the amount of work the

§We omit units for lengths and speeds as they do not have realistic physical meaning.
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Figure 4. Aircraft coordinates and speed in COL (top) and NOI (bottom) workloads: (a) X of all aircraft
in first 30 s; (b) Y of all aircraft at any time; and (c) instantaneous aircraft speed.

Figure 5. Sample workloads summary.

Figure 6. Collisions in COLworkload. The upper graph shows 3D collisions and the lower
the number of 2D collisions.

reducer and the collision checker have to do, which in turn depends on the number of collisions
in the workload. Figure 7 shows the relation between computation time (max and mean) and the
number of collisions. The dependency is largely linear. As the case with no collisions is more
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Figure 7. Computation time relative to number of collisions.

Figure 8. Allocation rate.

frequent than with non-zero collisions, interference from the OS or hardware is more likely, and
thus the measured maximum is higher. Figure 8 shows memory allocation per detector invocation
throughout the execution of the benchmark. The peaks in allocation correspond to the presence of
collisions in the workload.

5. METRICS AND MEASUREMENTS

This section describes in detail what kind of data can be obtained by running CDx and gives
examples of the benchmark use on a number of configurations.

5.1. Properties of CDx

Measurements in CDx focus on the periodic real-time task that performs the detection. The task
has period T given by the number of frames produced per second: T =1/FPS (e.g. 10ms). The
deadline for the task is its period, D=T . The important performance metrics for such a task
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Figure 9. Metrics and measurements.

(Figure 9) are release jitter J j , computation time C j , and response time R j ( j is the invocation
index). The release jitter is influenced mainly by the system timer implementation, scheduling
overheads, and incrementality of the VM runtime, mostly the garbage collector. A particular
problem that has to be taken care of is phase shift. The phase shift is present in systems with
tick schedulers [18], where tasks can only be rescheduled at specified periodic intervals when the
system timer ticks. With the single task in our case and with a period T being a multiple of the
system timer period, the phase shift would be zero for the start time tr0 at a system timer tick, up
to the timer period for unlucky time tr0 . As the system timer can run at periods around 500 !s or
even more, with a naive (random) choice of tr0 the phase shift dominates the release jitter in the
benchmark, rendering the other overheads in release jitter unmeasurable. The benchmark thus sets
tr0 to start at absolute time rounded up to a single benchmark period T , making the phase shift more
deterministic. Typically, T is also a multiple of the system timer period, and thus this also reduces
the phase shift to scheduling overhead and overhead of the set-up code. This trick indeed depends
on more technical subtleties, as there can be multiple timers (OS,VM) and multiple clocks in the
system. We have successfully tested it empirically with Ovm, RTS, and WRT on Real-Time Linux.
The computation time is mainly influenced by the implementation and workload configuration.
Indeed it also depends on the (non-real-time) performance of the complete system. The response
time is in our case just the sum of release jitter and computation time of each detector release.

5.2. Measurement technique

Figure 9 shows measurement points for each release j that allow the tester to calculate metrics J j ,
C j , and R j . These measurement points record ideal release time trj , actual start time of detector
thread t sj , and completion time t cj . The ideal release time is calculated from the system start time tr0 ,
trj = tr0 + j T . The benchmark records absolute times at all these points, which allows the tester to
map anomalies to other activities identified by absolute times, such as various GC events. All times-
tamps are stored in a pre-allocated (immortal) memory buffer and are dumped after the measurement
is over. Calculating C j is simple: C j = t cj − t sj . Once we have J j , R j = J j +C j . Calculating J j is
however more subtle. The problem is that we want to measure real-time performance at steady
state, allowing missed deadlines during a fixed number of initial releases (warm-up). This might
not be needed on a real-time OS with ahead-of-time compilation, but we want to be able to run on
Real-Time Linux with RT JVMs with JIT, in particular in WRT and RTS. We have found experi-
mentally that these cannot meet the deadlines reliably from the beginning in this benchmark in a
configuration sufficiently challenging at steady state. The problem with the missed deadlines during
initialization is that we have to map the steady state release times to start times: with missed dead-
lines at initialization, we have release times trk , start times t sj , and completion times t cj . We thus need
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to find a mapping k↔ j to calculate J j and R j . This mapping is influenced by missed deadlines,
which can be either reported via the RTSJ API (waitForNextPeriod returns false ) or unreported by the
VM. Let us assume that we have verified that the benchmark warms up well within Tk0 seconds.
Now, if there was any reported deadline miss after this time, we reject the data and do not need the
mapping. Otherwise, we find (the smallest) j0 that minimizes the offset of a measured task start
from the ideal release |t sj0 − trk0 |. The mapping k↔ j is then given by k−k0= j− j0 and for j! j0,
we have

J j = t sj − trj− j0+k0

and we can compute R j . If ∃ jm, jm" j0∧R jm"T , there is an unreported deadline miss and we
reject the data. Note, however, that the test does not allow the tester to reliably find out how many
deadlines were missed or when the misses took place, because the mapping k↔ j does not have
clear semantics in the presence of missed deadlines. On the other hand, if there is no such jm,
there was no deadline miss, the mapping is sound and we accept the data with the measured R j ,
C j , and J j .

5.3. Experimental result format

Once the metrics are calculated and the results are shown to have no missed deadlines, some
summarization and presentation of the data is needed. This has to include results from multiple
executions of the benchmark to account for random effects at various levels in the measured system.
A sample data presentation is provided in Figures 10 and 11 (CD j COL workload, PDSK GC/RTGC ,
SUN RTS, Linux, x86). Recall that PDSK states that all frames are pre-simulated offline and stored
to disk. Figure 11 shows minimum, mean, standard deviation, and maximum of the response time,
computation time, and jitter. The values are taken from 50 executions of the benchmark, skipping
a safe amount of initial measurements to allow the system to stabilize. Based on manual inspection
of the measured data, we decided that the system stabilized well within the first 20 s of execution,

Figure 10. Sample response time plot: histogram, boxplot, and run-sequence plot.

Figure 11. Sample results table.
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Figure 12. Platform settings.

Figure 13. Relative frequency histogram of release jitter.

and thus we dropped the initial 2000 measured values. Figure 10 shows a histogram, boxplot,
and run-sequence plot for the response time. The histogram and the boxplot use the same values
from all the 50 executions. In the boxplot, the bullets are the extremes. We use the default boxplot
definition from R statistical software: the central bold line marks the median, the hinges mark the
quartiles and the whiskers are each up to 1.5× the inter-quartile-range from the closer quartile. The
run-sequence plot only shows values from a single execution of the benchmark. The horizontal
axis of the run-sequence plot is experiment time in seconds (it starts at 20, as the initial 20 s were
assumed to be the warm-up). The same plot could indeed be created also for the computation
time and the jitter. Figure 13 then shows a relative frequency histogram of the release jitter. Four
outliers of about 530 !s were excluded from the plot. The sample results were measured on a
platform characterized in Figure 12.

5.4. Stress tests

The noise generators included in the benchmark lend themselves well to stress testing virtual
machines. Stress tests are needed to evaluate scalability as well as discovering breaking points of
the measured system. The natural parameter to vary is the number of allocated objects: one can
measure the system for a varying number of allocated objects per release. The noise generator that
uses variable object size stresses both the garbage collector (if present) and the memory manager.
The noise generator with the constant object size then usually stresses the memory manager more
than the garbage collector, because the memory for the objects can easily be reused, as the noise
generators maintain a constant number of objects reachable from their structures. A sample result
of a stress test is shown in Figure 14. The test used the noise generator with fixed allocation
size, which was set to 64 bytes. To allow the system to run successfully with different stress
levels, we have used a custom workload with a 10 ms period, 19 aircraft, no actual collisions,
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Figure 14. Sample stress test: response time for an increasing amount of allocation noise on RTS.

and no background noise. For every bullet shown in the figure, we have executed the benchmark
three times, processing 10 000 frames in each execution. The figure shows clear linear dependency
of the minimum and the median response time on the number of allocated objects in the noise
generator, which is the expected behavior. For larger number of allocated objects, the maximum
response time has occasional peaks of about 2ms, which suggests infrequent but present slow
paths in the memory allocator. The test was run with Sun RTS’s RTGC, which was configured
to behave as Henriksson’s GC [19]. Therefore, the collector has only been running when the
application was idle, and thus could not have been the direct cause of the peaks. The two vertical
gray lines in the plot show two significant breaking points discovered by the experiment. The
first denotes the largest number of allocated objects for which all executed experiments finished
successfully without missing a deadline. For even larger numbers of allocated objects, some of
the experiments have failed. The second gray line then denotes the smallest number of allocated
objects for which all experiments have failed (we have run tests for up to 40 000 allocated objects,
which are not shown in the plot). In this particular experiment, the failures were all due to running
out of memory: the benchmark allocated more memory than the collector was able to reclaim
during the idle time. Note that with the increasing number of allocated objects, the idle time was
decreasing as well as the amount of allocation increasing, both contributing to greater challenge
for the collector. This experiment is useful to understand the impact of allocation on the real-time
collector. It demonstrates that after 15K objects the worst case time starts to experience outliers
due to GC and after 25K objects the garbage collector starts to fail.

5.5. Start-up time

In many real-time applications start-up behavior is important. CDx can be set up to measure the
start-up behavior of virtual machines. In this experiment we contrast the behavior of ahead-of-time
compiler with that of just-in-time compiler (JIT). We typically ignore, or drop, the completion
of the initial frames from our measurements. However, to understand the impact of a JIT, which
may induce pauses in the early stages of the computation, we analyze those initial measurements
more carefully. In particular, we will look at the worst case completion time (more detail on this
test is in [20]). Figure 15 illustrates the evolution of the worst observed time as we remove initial
iterations of the benchmark. By this we mean that position 0 on the X -axis shows the worst
observed case for all 10 000 iterations of the algorithm. This measure is dominated by the cost
of just-in-time compilation. At offset 100, for example, the graph shows the worst-case observed
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Figure 15. Start-up costs. The Y -axis is the worst case observed execution time, whereas the X -axis shows iterations
dropped from the 10 000 performed for each VM. The initial iterations are dominated by the just-in-time compiler.

If roughly 300 or more iterations are dropped, the worst case is dominated by garbage collection.

between iterations 101 and 10 000. Finally, the far right of the graph shows the worst-case times
when the first 400 iterations are ignored. At that point the worst-case time is dominated by GC.
It is interesting to observe that the costs of JIT compilation are highest in Hotspot Server and
they take longer to stabilize. Hotspot Client is less aggressive and reaches fixpoint in around 60
iterations of the benchmark. WebSphere tries to compile code quickly, but the data show that some
compilation is still happening until around 200 iterations. Unsurprisingly, Fiji VM has no start-up
jitters as it is an ahead-of-time compiler.

5.6. Evaluating an embedded configuration

In this section we illustrate that CDx can indeed be used on embedded platforms. For this example
run we selected the LEON3—a SPARC-based architecture that is used both by the NASA and
the European Space Agency [21]—and the RTEMS real-time operating system. Our experiments
were run on a GR-XC3S-1500 LEON development board. The board’s Xilinx Spartan3-1500
field programmable gate array was flashed with a LEON3 configuration running at 40MHz. The
development board has an 8MB flash PROM and 64MB of PC133 SDRAM split into two 32MB
banks. The version of RTEMS is 4.9.3. The experiment compares the performance of CDs , the
Safety Critical Java version of CDx , running on the Ovm virtual machine with scoped memory, to
CDc , the ANSI-C version of the same benchmark. We configured the benchmark to run the real-
time periodic task every 120ms. The benchmark tracks six airplanes and executes the algorithm
for 10 000 iterations. The computation took roughly 20min to complete on the LEON3 platform.
The raw runtime performance of CDc compared to CDs is presented in Figure 16. As we can see,
in most cases the execution time of one iteration in CDc is around 53ms, whereas for CDs it is
around 78ms. The median execution time for CDc is 50% smaller than the median for CDs . For
real-time developers, the key metric of performance is the worst observed time. In our benchmarks,
SCJ is 50% slower than C in the worst case. No deadlines were missed in any executions. A more
detailed view of the performance of CDc and CDs for a subset of the iterations is presented in
Figure 17. The graph clearly indicates that there is a strong correlation of execution times between
CDc and CDs , and that indeed the workload is highly deterministic.
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Figure 16. Histograms of iteration execution times for CDc and CDs on RTEMS/LEON3. SCJ’s worst
observed case is 50% slower than C, and the median is also 50% slower.

Figure 17. A detailed runtime comparison of CDc and CDs for 200 iterations on LEON3. SCJ and C
execution times are closely correlated.

5.7. Comparing virtual machines

Our last example use of CDx is a comparison of the predictability of different virtual machines.
In this experiment we compare WebSphere SRT, Hotspot Client, Hotspot Server, and Fiji VM
using CD j , PDSK GC/RTGC running on a multicore. CD j was configured to use up to 60 planes
with a 10-ms period and 10 000 iterations. All VMs were given maximum heap sizes of 35MB
to execute CD j and were run with default options. The goal of the experiment is to have a
rough idea of the difference in predictability between VMs. The histograms of Figure 18 show
the frequency of execution times for each VM with the first 1000 iterations of the algorithm
dropped to avoid bias due to the just-in-time compiler. The data demonstrate that the average case
performance is better for Hotspot. Specifically, Hotspot Server is 37% faster than Fiji VM. The
worst observed case is more important for real-time developers. There Hotspot performs between
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Figure 18. Histograms of iteration execution times for CD j on Linux/x86.

185 and 200% worse than Fiji; these difference are caused by garbage collection pauses. Fiji VM
has the tightest distribution (i.e. least deviation from peaks to valleys) of any virtual machine for this
benchmark.

6. CONCLUSION

Publicly available real-time Java benchmarks are needed for repeatable and trusted comparisons of
real-time Java products and for decisions in their design. The only available (freely or commercially)
benchmarks to this end are micro-benchmarks measuring various real-time latencies in isolation
under a purely synthetic workload. Application benchmarks, which could measure real-time aspects
in more realistic settings, are only used internally by companies and universities, making results
non-repeatable, unverifiable, and hard to interpret. We present CDx , an open-source real-time Java
benchmark family that models a real-time aircraft collision detection application. For comparing
the quality of RTSJ implementations, it utilizes RTSJ scopes and immortal memory features. For
comparing the quality of real-time garbage collectors, it supports a mode with heap only allocations
and RTSJ timers and threads. For the ease of development and educational purposes, it also runs
in a plain Java VM. To our knowledge, CDx is the only application-level real-time Java benchmark
publicly available. It is also the most complex freely available RTSJ code actually using scopes
and immortal memory.
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