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Preface

This volume contains the proceedings of the 29th edition of the International Static
Analysis Symposium, SAS 2022, held during December 5–7, 2022, in Auckland, New
Zealand. The conference was a co-located event of SPLASH, the ACM SIGPLAN
conference on Systems, Programming, Languages, and Applications: Software for
Humanity. Travel restrictions as a result of the COVID-19 pandemic forced us to
organize the conference in a hybrid form.

Static analysis is widely recognized as a fundamental tool for program verification,
bug detection, compiler optimization, program understanding, and software mainte-
nance. The series of Static Analysis Symposia has served as the primary venue for the
presentation of theoretical, practical, and application advances in the area. Previous
symposia were held in Chicago, Porto, Freiburg, New York, Edinburgh, Saint-Malo,
Munich, Seattle, Deauville, Venice, Perpignan, Los Angeles, Valencia, Kongens
Lyngby, Seoul, London, Verona, San Diego, Madrid, Paris, Santa Barbara, Venice,
Pisa, Paris, Aachen, Glasgow, and Namur.

SAS 2022 called for papers on topics including, but not limited to, abstract inter-
pretation, automated deduction, data flow analysis, debugging techniques, deductive
methods, emerging applications, model checking, data science, program optimizations
and transformations, program synthesis, program verification, machine learning and
verification, security analysis, tool environments and architectures, theoretical frame-
works, type checking, and distributed or networked systems. Besides the regular
papers, the authors were encouraged to submit short submissions in the NEAT category
to discuss experiences with static analysis tools, industrial reports, and case studies,
along with tool papers, brief announcements of work in progress, well-motivated
discussions of new questions or new areas, etc. Authors were encouraged to submit
artifacts accompanying their papers to strengthen evaluations and the reproducibility of
results.

The conference employed a double-blind reviewing process with an author response
period, supported on EasyChair. This year, SAS had 48 submitted papers (43 regular
and five NEAT). Of these, five were desk rejected due to not being in scope for SAS.
The Program Committee used a two-round review process, where each remaining
submission received at least three first-round reviews, which the authors could then
respond to. The author response period was followed by a two-week Program Com-
mittee discussion where consensus was reached on the papers to be accepted, after a
thorough assessment of the relevance and the quality of the work. Overall, 18 papers
were accepted for publication (16 regular and two NEAT) and appear in this volume.
The submitted papers were authored by researchers around the world: Canada, China,
France, Germany, India, Israel, Italy, Singapore, the UK, the USA, and several other
countries.

We view the artifacts as being equally important for the success and development of
static analysis as the written papers. It is important for researchers to be able to



independently reproduce experiments, which is greatly facilitated by having the orig-
inal artifacts available. Marc Chevalier, the artifact committee chair, set up the artifact
committee. In line with SAS 2021, the authors could submit either the Docker or
Virtual Machine images as artifacts. A public archival repository for the artifacts is
available on Zenodo, hosted at https://zenodo.org/communities/sas-2022. The artifacts
have badges awarded at three levels: Validated (correct functionality), Extensible (with
source code), and Available (on the Zenodo repository). The artwork for the badges is
by Arpita Biswas (Harvard University) and Suvam Mukherjee (Microsoft). SAS 2022
had 16 valid artifact submissions, of which one was desk rejected as the authors did not
submit a valid artifact. The review process for the artifacts was similar to those for the
papers. Each artifact was evaluated by three members of the artifact evaluation com-
mittee, and eight out of 15 valid artifacts were accepted.

In addition to the contributed papers, SAS 2022 also featured three invited talks by
distinguished researchers: Suguman Bansal (Georgia Tech, USA), Bernhard Scholz
(University of Sydney, Australia), and Nengkun Yu (University of Technology Syd-
ney, Australia). The Program Committee also selected the recipient of the Radhia
Cousot Young Researcher Best Paper Award, given to a paper with a significant
contribution from a student. This award was instituted in memory of Radhia Cousot,
for her fundamental contributions to static analysis and having been one of the main
promoters and organizers of the SAS series of conferences.

The SAS program would not have been possible without the efforts of many people.
We thank them all. The members of the Program Committee, the artifact evaluation
committee, and the external reviewers worked tirelessly to select a strong program,
offering constructive and helpful feedback to the authors in their reviews. The orga-
nizing committee of SPLASH 2022, chaired by Alex Potanin (Australian National
University, Australia), and the hybridization committee, chaired by Jonathan Aldrich
(CMU, USA) and Youyou Kong (Tokyo Institute of Technology, Japan), were
tremendously helpful in navigating the conference through these difficult times.
The SAS steering committee provided much-needed support and advice. Finally, we
thank Springer for their support of this event as well as for publishing these
proceedings.

October 2022 Caterina Urban
Gagandeep Singh
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Specification-Guided Reinforcement
Learning

Suguman Bansal(B)

Georgia Institute of Technology, Atlanta, USA

suguman@seas.upenn.edu

Abstract. The problem of reinforcement learning (RL) is to generate
an optimal policy w.r.t. a given task in an unknown environment. Tra-
ditionally, the task is encoded in the form of a reward function which
becomes cumbersome for long-horizon goals. An appealing alternate is to
use logical specifications, opening the direction of RL from logical spec-
ifications. This paper summarizes the trials and triumphs in developing
highly performant algorithms and obtain theoretical guarantees in RL
from logical specifications.

1 Introduction

The problem of Reinforcement Learning (RL) is to generate a policy for a given
task in an unknown environment by continuously interacting with it [30]. When
combined with neural-networks (NN), RL has made remarkable strides in con-
trol synthesis in real-world domains, including challenging continuous (infinite-
state) environments with non-linear dynamics or unknown models. Few exam-
ples include tasks such as walking [6] and grasping [3], control of multi-agent
systems [17,21,26], and control from visual inputs [23].

Yet, current RL approaches are poorly suited for control synthesis for long-
horizon tasks. A critical challenge facing RL is that the desired task is encoded
in the form of a reward. Specifying a long-horizon task in the form of a reward
can be highly non-intuitive; Poor reward specification could hinder the perfor-
mance and correctness of the learning algorithm. An appealing alternative is to
express the task in the form of a high-level logical specification, such as a tem-
poral logic [8,9,19,27], as opposed to a reward function. Logical specifications
combine temporal operators with boolean connectives, enabling more natural
encoding of a large class of desirable properties. Furthermore, logical specifica-
tions facilitate testing and verification, which could be used to rigorously evaluate
the correctness of the learned policy.

This paper provides a brief overview of recent progress in RL from logical
specifications. Formally, the problem is to learn a policy that optimizes the
probability to satisfy the given specification in an environment modeled by a
Markov Decision Processs (MDP). The defining assumption in RL is that the
transition probabilities of the MDP are unknown. Thus, the policy is learnt via

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 3–9, 2022.
https://doi.org/10.1007/978-3-031-22308-2_1
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4 S. Bansal

exploration via repeated sampling of the environment. We briefly summarize
performance of existing algorithms and known theoretical guarantees1.

2 Reinforcement Learning from Logical Specifications

Markov Decision Process. A Markov Decision Process (MDP) is a tuple
M = (S,A, η, P ), where S is a set of states, η : S → [0, 1] is the initial state
distribution, A is a finite set of actions, and P : S × A × S → [0, 1, ] is the
transition probability function with Σs′∈SP (s, a, s′) = 1 for all s ∈ S.

An infinite run ζ ∈ (S×A)ω is the sequence ζ = s0, a0, s1, a1 . . . , where s0 ∼ η
and P (si, ai, si+1) > 0 for all i ≥ 0. Similarly, a finite run ζ ∈ (S × A)∗ × S is
a sequence ζ = s0, a0, s1, a1 . . . at−1st. For any run of length at least j, we let
ζi:j = si, ai, . . . aj−1, sj be a sub-sequence of ζ for i, j ∈ N.

Let Runsf denote the set of all finite runs in the MDP. Let D(A) = {Δ :
A → [0, 1] s.t. Σa∈AΔ(a) = 1} be the set of all distributions on actions A. Then,
a policy π : Runsf → D(A) maps a history of finite runs to a distribution on
actions. Let Π denote the set of all policies.

Task Specifications. There are different ways in which one can specify the
objective of the learning algorithm. We define a reinforcement learning task to
be a pair (M , φ) where M is an MDP and φ is a specification for M . In general,
a specification φ for M = (S,A, s0, P ) defines a function JM

φ : Π(S,A) → R and
the reinforcement learning objective is to compute a policy π that maximizes
JM

φ (π). Below, we define RL tasks traditionally using rewards and using logical
specifications.

Discounted-Sum Rewards. Traditionally, the specifications is a reward function
that maps transitions in M to real values. The specification consists of a reward
function R : S × A × S → R and a discount factor γ ∈]0, 1[—i.e., φ = (R, γ).
The value of a policy π is

JM
φ (π) = Eζ∼DM

π

[ ∞∑
i=0

γiR(si, ai, si+1)
]
,

where si and ai denote the state and the action at the ith step of ζ, respectively.
Limit-average instead of discounted-sum is also commonly used.

Logical Specifications. Rewards are defined w.r.t. a given set of states S and
actions A, and can only be interpreted over MDPs with the same state and action
spaces. Logical specifications are defined independently of S and A. To achieve
this, a common assumption is that there is a fixed set of propositions Prop, and a
labeling function L : S → 2Prop denoting which propositions hold in a given state.

1 Parts of the paper is based on joint work with Rajeev Alur, Osbert Bastani, and
Kishor Jothimurugan.
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Given a run ζ = s0a0s1a1 . . ., we let L(ζ) denote the corresponding sequence of
labels L(ζ) = L(s0)L(s1) . . .. A labeled MDP is a tuple M = (S,A, s0, P, L).
Wlog, we only consider labeled MDPs in the rest of the paper.

Formal languages are used to specify qualitative properties about runs of the
system. A logical specification φ = L ⊆ (2Prop)ω is a set of “desirable” sequences
of labels. The value of a policy π is the probability of generating a sequence in
L—i.e.,

JM
φ (π) = DM

π

({ζ ∈ Runs(S,A) | L(ζ) ∈ L}).
Examples of logical specifications are reachability properties, safety properties,
and temporal logics such as LTL [27], LTL over finite-traces [8], or SpectRL [19].

Reinforcement Learning. Given an RL task (M,φ), assuming the transition
probabilities of M are unknown, the problem of RL is to generate a policy

π∗ = arg max
π∈Π

JM
φ (π).

3 Algorithms

Recently, a myriad of algorithms have been proposed for learning from logi-
cal specifications [1,4,5,7,10,12,14–16,18,24,31,32,34]. These methods can be
categorized into two broad classes, as described below:

Specification to Rewards. Many early works on RL from logical specifications
took a natural approach to solve the problem. Here, the goal is to automatically
synthesize rewards from a given formal specification and then to use a traditional
RL algorithm to learn an optimal policy from the synthesized rewards. The
simplest reward function would be to assign a positive reward to executions that
satisfy the specification and a zero reward to the rest. This naive reward function
results in poor performance of the learning algorithm due to the sparsity of
rewards. Thus, most algorithms are modified to provide informative intermediate
rewards that also guide the search of an optimal policy. Few methods include
policy-preserving reward shaping and rewards based on distance metrics.

Mostly, these algorithms demonstrate merit in learning stateful policies. For
example, if the task was to learn to return to the initial state after visiting a
goal, then the movement of the agent along the path connecting the initial state
to the goal state depends on whether the goal has been visited or not. Since
most specification-to-reward conversion schemes are stateful, such information
automatically gets encoded in the learnt policy. By and large, these methods
have shown to learn high-quality policies in finite-state environments, and for
simple tasks in infinite-state environments.

Compositional Algorithm. These methods build on early progress of näıve app-
roach of converting specifications to rewards with the objective to scale to com-
plex long-horizon specifications in complex infinite-state environments. An exam-
ple of a task that proves to be too complex for early works is illustrated in
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Fig. 1. Left: The 9-rooms environment, with initial region S0 in the bottom-left, an
obstacle O in the middle-left, and three subgoal regions S1, S2, S3 in the remaining
corners. Middle: A user-provided specification φ. Right: Learning curves for composi-
tional approach DiRL [20] and some baselines; x-axis is number of steps and y-axis is
probability of achieving φ.

Fig. 1. Specification-to-reward based approaches fail on such examples due to
the inherent greedy nature of RL algorithms. In this example, the algorithms
learn to reach S2 instead of S1 as the former is easier to learn due to the absence
of any obstacle. However, this is not fruitful towards satisfaction of the original
specification as there is no direct path from S2 to S3.

Compositional approaches for learning from specifications leverage the struc-
ture of a given specification to first decompose the original task into several
simpler and easier-to-learn tasks and then compose the policies learnt for these
subtasks to obtain a policy that maximizes satisfaction of the original specifi-
cation. This way these algorithms combine planning on the high-specification
with learning on low-level tasks to scale to large and complex specifications. The
structure of the specification could be exploited further for significant improve-
ments in the performance of learning algorithms along the metrics of scalability
in specification, sample complexity, and quality of solutions.

4 Theoretical Guarantees

We present the theoretical foundations of RL from logical specifications. The
formal guarantees associated with the specification-to-reward approach of learn-
ing algorithms have been studied [11,13,28]. We will discuss PAC learning in the
context of RL from logical specifications. We then discuss recent results [2,33]
showing that PAC algorithms do not exist for Linear Temporal Logic (LTL)
specifications and present a high-level overview of a proof.

For this section, we assume an MDP is has finitely many states S and actions
A, and there is a unique initial state s0, i.e., η(s0) = 1 and η(s) = 0 for all
s ∈ S \ {s0}. A learning algorithm A can be thought of as an iterative process
that in each iteration (i) either resets the MDP state to an initial state or takes a
step in M , and (ii) outputs its current estimate of an optimal policy π. A learning
algorithm A induces a random sequence of output policies {πn}∞

n=1 where πn is
the policy output in the nth iteration.

Let J ∗(M,φ) = supπ JM
φ (π) denote the maximum value of JM

φ . We
let Πopt(M,φ) denote the set of all optimal policies in M w.r.t. φ—i.e.,



Specification-Guided Reinforcement Learning 7

Πopt(M,φ) = {π|JM
φ (π) = J ∗(M,φ)}. In many cases, it is sufficient to com-

pute an ε-optimal policy π̃ with JM
φ (π̃) ≥ J ∗(M,φ) − ε; we let Πε

opt(M,φ)
denote the set of all ε-optimal policies in M w.r.t. φ.

Definition 1. A learning algorithm A is said to be PAC-MDP for a class of
specifications C if, there is a function h such that for any p > 0, ε > 0,
and any RL task (M,φ) with M = (S,A, s0, P ) and φ ∈ C, taking N =
h(|S|, |A|, |φ|, 1

p , 1
ε ), with probability at least 1 − p, we have

∣∣∣
{

n | πn /∈ Πε
opt(M,φ)

}∣∣∣ ≤ N.

We say a PAC-MDP algorithm is efficient if the sample complexity function
h is polynomial in |S|, |A|, 1

p and 1
ε . There are efficient PAC-MDP algorithms

for discounted-sum rewards [22,29]. Unfortunately, we show that that it is not
possible to obtain PAC-MDP algorithms for safety specifications.

Theorem 1 [2]. There does not exist a PAC-MDP algorithm for the class of
safety specifications.

Intuitively, Theorem 1 follows from that fact that, when learning from sim-
ulation, it is highly likely that the learning algorithm will encounter identical
transitions when the underlying MDP is modified slightly. This makes it impos-
sible to infer an ε-optimal policy using a number of samples that is independent
of the transition probabilities since safety specifications are not robust [25]. For
a full proof, see [2].
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Abstract. Qubit is the basic unit of information in quantum computing.
It takes exponential time in the number of qubits to simulate the evolu-
tion of general quantum programs. This fact makes simulation infeasible
beyond 50 qubits on current supercomputers. This observation motivates
us to use static techniques to understand larger programs. We will briefly
overview our recent efforts to develop static methods for quantum pro-
gramming.

Keywords: Quantum programs · Abstract interpretation · Efficient
reasoning

1 First Section

The idea of quantum computing emerged in the 1980s:s: Feynman [20,21] noted
that a classical computer requires exponential time and space to simulate the
behaviour of an n-particle system that evolves according to the laws of quantum
mechanics. One can regard the particles themselves as a quantum computer that
appears to be exponentially more efficient. Benioff described the quantum model
of Turing machines in [8]. Deutsch resolved how quantum gates can function like
classical logical gates in [16,17].

Driven by a desire for great computational power, there have been signifi-
cant efforts to build quantum computers. We will likely have quantum comput-
ers with hundreds of qubits by 2024 [23]. Besides the efforts from the hardware
aspect, the software research for quantum computing also attracted lots of atten-
tion, including the design of quantum programming languages [4,25,29,33–35]
and develop quantum programming platforms such as Scaffold [1], Quipper [22],
QWIRE [30], Silq [10], Microsoft’s LIQUi| [38] and Q# [36], Google’s Cirq
[37], and IBM’s Qiskit [3]. Using these languages, researchers have implemented
programs for variational quantum algorithms [28,32] applied to quantum chem-
istry [13], quantum machine learning [9], and quantum approximate optimization
algorithms [5,19].

To show the quantum advantage in computation, we usually working with
quantum programs with many qubits.

How to check that a quantum program satisfies key correctness criteria?
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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There are many many approaches for checking correctness of classical pro-
grams. How do they carry over to quantum computing?

We may first look at dynamic techniques such as simulation. On the one hand,
it is not feasible to simulate a quantum program with a quantum computer since
we are still in the noisy intermediate-scale quantum (NISQ) era. On the other
hand, it is also infeasible to simulate a general quantum program with current
supercomputers because the simulation of a general quantum program with n
qubits requires working with 2n complex numbers. The number can go beyong
the number of atoms in the known universe as the number n goes to 300.

Many works take static verification techniques into quantum programming
[2]. Recent works have used Coq and why3 for checking the correctness of the
proof for a variety of quantum programs by Hietala et al. [24] and by Chareton et
al. [14]. The static techniques also include logical methods. Indeed, attempts to
develop Hoare-like logic for verification of quantum programs have been made
in a series of papers [2,6,7,12]. In particular, D’Hondt and Panangaden [18]
proposed to use quantum observables as predicates of quantum programs. Based
on this, they presented the the notion of quantum weakest precondition. Ying
[39] established quantum Hoare logic (QHL for short) for both partial correctness
and total correctness with (relative) completeness:

|= {P}S{Q}

of a quantum program S are defined by an inequality between the expectations
tr(Pρ) and tr(Q�S�(ρ)) of precondition and postcondition observables P and Q
in the input state ρ and the output state �S�(ρ), respectively.

QHL is attractive because of its (relatively) completeness. However, there is
an obvious gap between its theoretical characterization and practical use:

1. It is not friendly for testing purposes as measurements could destroy the
quantum state.

2. It involves complicated matrix calculations.
3. It does not provide an interpretation of approximation.

The many mathematical properties of projections make them versatile for
thinking about the correctness of quantum programs and resolving the above
questions [11,26]. In [43], we employed projections for static verification. Later,
we used projections for run-time verification in [27]. In [40], we used projections
to define temporal logic for quantum programs.

we only consider a special class of quantum Hoare triples {P}S{Q}, where
both precondition P and postcondition Q are projections, and all measurement
in program S are projective.

There is a one-onto-one correspondence between the closed subspaces of a
Hilbert space and projectors in it, and moreover, the inclusion between closed
subspaces is coincident with the Löwner order between their projectors. The
restriction to projective Hoare triples can significantly simplify the definition of
their correctness.



12 N. Yu

Projective Hoare triple {P}S{Q} is true in the sense of partial correctness
in aQHL, written

|=a {P}S{Q},

if for all ρ:
ρ |= P ⇒ �S�(ρ) |= Q,

where we say that ρ satisfies P , written ρ |= P , if supp(ρ) ⊆ P ; that is, Pρ = ρ.
However, all those methods require exponential space, which limits scalabil-

ity.
In [41], we break through the exponential barrier for deriving useful informa-

tion about quantum programs. Our approach rests on a central idea:

Rather than focusing on the whole quantum state, we focus on parts.

Our notion of a part is a well-known and extensively used concept in quantum
science: the reduced density matrix. Intuitively, a density matrix represents the
whole quantum state, while a reduced density matrix can represent a part of
the state. For example, a program with 20 qubits means that the state can be
represented by 220 complex numbers, we might track just 19 small 22×22 reduced
density matrices that focus on the qubit pairs {1, 2}, {2, 3}, · · · , {19, 20}. For
comparison, 220 is about a million, while 19 × 22 × 22 = 304. When the number
of qubits grows beyond fifty, tracking the whole state becomes infeasible, while
tracking reduced density matrices stays tractable.

Here is an analogy with static analysis of integer variables in classical comput-
ing. The full-density matrix is like a polyhedron that approximates the program
variables’ values. On the other hand, a tuple of reduced density matrices is like
a tuple of polyhedra, each over a subset of those program variables.

We can approximate each reduced density matrix by a projection. This
approximation enables us to define an abstract state as a tuple of projections.
The rest is to define a notion of state transition between such abstract states,
checked so we bring in abstract interpretation [15], which has been done mainly
for classical computing.

Perdrix [31] presented an abstract interpretation of quantum programs that is
sound but lacks a Galois connection between the concrete and abstract domains.

In [41], we present a new abstract interpretation of quantum programs. For
our notion of abstract states, we present abstraction and concretization functions
that form a Galois connection and use them to define abstract operations. Each
abstract step first concretizes to a more fine-grained abstract domain, then does
an abstract operation on that domain, and finally abstracts back to the original
abstract domain. We avoid concretizing to the concrete domain where we would
need exponential space.

Another method of reaching local reasoning is separation logic. In [42], we
propose a model of the substructural logic of Bunched Implications that is suit-
able for reasoning about quantum states. In our model, the separating conjunc-
tion of BI describes separable quantum states. We develop a program logic where
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pre- and post-conditions are BI formulas representing quantum states-the pro-
gram logic can be seen as a counterpart of separation logic for imperative quan-
tum programs. Intuitively, we take the tensor product of two quantum states
with disjoint domains, a quantum analogue of probabilistic independence, as
separation.
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TU Wien, Vienna, Austria
amrollahi.daneshvar@gmail.com,

{ezio.bartocci,george.kenison,laura.kovacs,
marcel.moosbrugger}@tuwien.ac.at, miroslav.ms.stankovic@gmail.com

Abstract. Automatically generating invariants, key to computer-aided
analysis of probabilistic and deterministic programs and compiler optimi-
sation, is a challenging open problem. Whilst the problem is in general
undecidable, the goal is settled for restricted classes of loops. For the
class of solvable loops, introduced by Kapur and Rodŕıguez-Carbonell in
2004, one can automatically compute invariants from closed-form solu-
tions of recurrence equations that model the loop behaviour. In this
paper we establish a technique for invariant synthesis for loops that are
not solvable, termed unsolvable loops. Our approach automatically parti-
tions the program variables and identifies the so-called defective variables
that characterise unsolvability. We further present a novel technique that
automatically synthesises polynomials, in the defective variables, that
admit closed-form solutions and thus lead to polynomial loop invariants.
Our implementation and experiments demonstrate both the feasibility
and applicability of our approach to both deterministic and probabilistic
programs.

Keywords: Invariant synthesis · Algebraic recurrences · Verification ·
Solvable operators

1 Introduction

With substantial progress in computer-aided program analysis and automated
reasoning, several techniques have emerged to automatically synthesise loop
invariants, thus advancing a central challenge in the computer-aided verification
of programs with loops. In this paper, we address the problem of automatically
generating loop invariants in the presence of polynomial arithmetic, which is still
unsolved. This problem remains unsolved even when we restrict consideration to
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loops that are non-nested, without conditionals, and/or without exit conditions.
Our work improves the state of the art under such and similar considerations.

Loop invariants, in the sequel simply invariants, are properties that hold
before and after every iteration of a loop. As such, invariants provide the key
inductive arguments for automating the verification of programs; for example,
proving correctness of deterministic loops [16,21,22,27,29] and correctness of
hybrid and probabilistic loops [1,13,17], or data flow analysis and compiler opti-
misation [26]. One challenging aspect in invariant synthesis is the derivation
of polynomial invariants for arithmetic loops. Such invariants are defined by
polynomial relations P (x1, . . . , xk) = 0 among the program variables x1, . . . , xk.
While deriving polynomial invariants is, in general, undecidable [12], efficient
invariant synthesis techniques emerge when considering restricted classes of poly-
nomial arithmetic in so-called solvable loops [29], such as loops with (blocks of)
affine assignments [16,21,22,27].

A common approach for constructing polynomial invariants, first pioneered
in [7,18], is to (i) map a loop to a system of recurrence equations modelling the
behaviour of program variables; (ii) derive closed-forms for program variables by
solving the recurrences; and (iii) compute polynomial invariants by eliminating
the loop counter n from the closed-forms. The central components in this setting
follow. In step (i) a recurrence operator is employed to map loops to recurrences,
which leads to closed-forms for the program variables as exponential polynomials
in step (ii); that is, each program variable is written as a finite sum of the form∑

j Pj(n)λn
j parameterised by the nth loop iteration for polynomials Pj and

algebraic numbers λj . From the theory of algebraic recurrences, this is the case
if and only if the behaviour of each variable obeys a linear recurrence equation
with constant coefficients [8,19]. Exploiting this result, the class of recurrence
operators that can be linearised are called solvable [29]. Intuitively, a loop with a
recurrence operator is solvable only if the non-linear dependencies in the result-
ing system of polynomial recurrences are acyclic (see Sect. 3). However, even
simple loops may fall outside the category of solvable operators, but still admit
polynomial invariants and closed-forms for combinations of variables. This phe-
nomenon is illustrated in Fig. 1 whose recurrence operators are not solvable (i.e.
unsolvable). In general, the main obstacle in the setting of unsolvable recur-
rence operators is the absence of “well-behaved” closed-forms for the resulting
recurrences.

Related Work. To the best of our knowledge, the study of invariant synthesis from
the viewpoint of recurrence operators is mostly limited to the setting of solvable
operators (or minor generalisations thereof). In [28,29] the authors introduce solv-
able loops and mappings to model loops with (blocks of) affine assignments and
propose solutions for steps (i)–(iii) for this class of loops: all polynomial invari-
ants are derived by first solving linear recurrence equations and then eliminating
variables based on Gröbner basis computation. These results have further been
generalised in [16,22] to handle more generic recurrences; in particular, deriving
arbitrary exponential polynomials as closed-forms of loop variables and allowing
restricted multiplication among recursively updated loop variables. The authors
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Fig. 1. Two running examples with unsolvable recurrence operators. Nevertheless, P�
admits a closed-form for combinations of variables and PSC admits a polynomial invari-
ant. Herein we use � (rather than a loop guard or true) as loop termination is not our
focus. For the avoidance of doubt, in this paper we consider standard mathematical
arithmetic (e.g. mathematical integers) rather than machine floating-point and finite
precision arithmetic.

of [9,21] generalise the setting: they consider more complex programs and devise
abstract (wedge) domains to map the invariant generation problem to the problem
of solving C-finite recurrences. (We give further details of this class of recurrences
in Sect. 2). All the aforementioned approaches are mainly restricted to C-finite
recurrences for which closed-forms always exist, thus yielding loop invariants.
In [1,2] the authors establish techniques to apply invariant synthesis techniques
developed for deterministic loops to probabilistic programs. Instead of devising
recurrences describing the precise value of variables in step (i), their approach
produces C-finite recurrences describing (higher) moments of program variables,
yielding moment-based invariants after step (iii).

Pushing the boundaries in analyzing unsolvable loops is addressed in [10,21].
The approach of [21] extracts C-finite recurrences over linear combinations of
loops variables from unsolvable loops. For example, the method presented in [21]
can also synthesise the closed-forms identified by our work for Fig. 1a. However,
unlike [21], our work is not limited to linear combinations (we can extract C-
finite recurrences over polynomial relations in the loop variables). As such, the
technique of [21] cannot synthesise the polynomial loop invariant in Fig. 1b,
whereas our work can. A further related approach to our work is given in [10],
yet in the setting of loop termination. However, our work is not restricted to
solvable loops that are triangular, but can handle mutual dependencies among
(unsolvable) loop variables, as evidenced in Fig. 1.

Related work in the literature introduces techniques from the theory of mar-
tingales in order to synthesise invariants in the setting of probabilistic programs
[4]. Therein, the programming model is represented by a class of loop programs
where all updates are linear and the synthesized invariants are given by linear
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templates. By contrast, our method allows us to handle polynomial arithmetic;
in particular, we automatically generate invariants given by monomials in the
program variables. On the other hand, the approach of [4] can also synthesise
supermartingales whereas our work is restricted to invariants defined by equali-
ties.

Our Contributions. In this paper we tackle the problem of invariant synthesis
in the setting of unsolvable recurrence operators. We introduce the notions of
effective and defective program variables where, figuratively speaking, the defec-
tive variables are those “responsible” for unsolvability. Our main contributions
are summarized below.

1. Crucial for our synthesis technique is our novel characterisation of unsolvable
recurrence operators in terms of defective variables (Theorem 1). Our app-
roach complements existing techniques in loop analysis, by extending these
methods to the setting of ‘unsolvable’ loops.

2. On the one hand, defective variables do not generally admit closed-forms.
On the other hand, some polynomial combinations of such variables are well-
behaved (see e.g., Fig. 1). We show how to compute the set of defective vari-
ables in polynomial time (Algorithm 1).

3. We introduce a new technique to synthesise valid polynomial relations among
defective variables such that these relations admit closed-forms, from which
polynomial loop invariants follow (Sect. 5).

4. We generalise our work to the analysis of probabilistic program loops (Sect. 6)
and showcase further applications of unsolvable operators in such programs
(Sect. 7).

5. We provide a fully automated approach in the tool Polar1. Our experiments
demonstrate the feasibility of invariant synthesis for ‘unsolvable’ loops and
the applicability of our approach to deterministic loops, probabilistic models,
and biological systems (Sect. 8).

Beyond Invariant Synthesis. We believe our work can provide new solutions
towards compiler optimisation challenges. Scalar evolution2 is a technique to
detect general induction variables. Scalar evolution and general induction vari-
ables are used for a multitude of compiler optimisations, for example inside the
LLVM toolchain [23]. On a high-level, general induction variables are loop vari-
ables that satisfy linear recurrences. As we show in our work, defective variables
do not satisfy linear recurrences in general; hence, scalar evolution optimisa-
tions cannot be applied upon them. However, some polynomial combinations of
defective variables do satisfy linear recurrences, which opens avenues where we
can apply scalar evolution techniques over such defective variables. Our work
automatically computes polynomial combinations of some defective loop vari-
ables, which potentially enlarges the class of loops that, for example, LLVM can
optimise.
1 https://github.com/probing-lab/polar.
2 https://llvm.org/docs/Passes.html.

https://github.com/probing-lab/polar
https://llvm.org/docs/Passes.html
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Structure and Summary of Results. The rest of this paper is organised as fol-
lows. We briefly recall preliminary material in Sect. 2. Section 3 abstracts from
concrete recurrence-based approaches to invariant synthesis via recurrence oper-
ators. Section 4 introduces effective and defective variables, presents Algorithm 1
that computes the set of defective program variables in polynomial time, and
characterises unsolvable loops in terms of defective variables (Theorem 1). In
Sect. 5 we present our new technique that synthesises polynomials in defective
variables that admit well-behaved closed-forms. In Sect. 6 we detail the nec-
essary changes to the invariant synthesis algorithm in Sect. 5 for probabilistic
programs. We illustrate our approach with several case-studies in Sect. 7, and
describe a fully-automated tool support of our work in Sect. 8. We also report
on accompanying experimental evaluation in Sects. 7–8, and conclude the paper
in Sect. 9.

2 Preliminaries

Throughout this paper, we write N, Q, and R to respectively denote the sets of
natural, rational, and real numbers. We write Q, the algebraic closure of Q, to
denote the field of algebraic numbers. We write R[x1, . . . , xk] and Q[x1, . . . , xk]
for the polynomial rings of all polynomials P (x1, . . . , xk) in k variables x1, . . . , xk

with coefficients in R and Q, respectively (with k ∈ N and k �= 0). A monomial
is a monic polynomial with a single term.

For a program P, Vars(P) denotes the set of program variables. We adopt the
following syntax in our examples. Sequential assignments in while loops are listed
on separate lines (as demonstrated in Fig. 1). In programs where simultaneous
assignments are performed, we employ vector notation (as demonstrated by the
assignments to the variables x and y in program PMC in Example 2).

We refer to a directed graph with G, whose edge and vertex (node) sets are
respectively denoted via A(G) and V (G). We endow each element of A(G) with
a label according to a labelling function L. A path in G is a finite sequence of
contiguous edges of G, whereas a cycle in G is a path whose initial and terminal
vertices coincide. A graph that contains no cycles is acyclic. In a graph G, if
there exists a path from vertex u to vertex v, then we say that v is reachable
from vertex u and say that u is a predecessor of v.

C-Finite Recurrences. We recall relevant results on (algebraic) recurrences and
refer to [8,19] for further details. A sequence in Q is a function u : N → Q, shortly
written also as 〈u(n)〉∞

n=0 or simply just 〈u(n)〉n. A recurrence for a sequence
〈u(n)〉n is an equation u(n+�) = Rec(u(n+�−1), . . . , u(n+1), u(n), n), for some
function Rec: R�+1 → R. The number � ∈ N is the order of the recurrence.

A special class of recurrences we consider are the linear recurrences with
constant coefficients, in short C-finite recurrences. A C-finite recurrence for a
sequence 〈u(n)〉n is an equation of the form

u(n+�) = a�−1u(n+�−1) + a�−2u(n+�−2) + · · · + a0u(n) (1)
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where a0, . . . , a�−1 ∈ Q are constants and a0 �= 0. A sequence 〈u(n)〉n satisfying
a C-finite recurrence (1) is a C-finite sequence and is uniquely determined by
its initial values u0 = u(0), . . . , u�−1 = u(�−1). The characteristic polynomial
associated with the C-finite recurrence relation (1) is

xn+� − a�−1x
n+�−1 − a�−2x

n+�−2 − · · · − a0x
n.

The terms of a C-finite sequence can be written in a closed-form as exponential
polynomials, depending only on n and the initial values of the sequence. That is,
if 〈u(n)〉n is determined by a C-finite recurrence (1), then u(n) =

∑r
k=1 Pk(n)λn

k

where Pk(n) ∈ Q[n] and λ1, . . . , λr are the roots of the associated characteristic
polynomial. Importantly, closed-forms of (systems of) C-finite sequences always
exist and are computable [8,19].

Invariants. A loop invariant is a loop property that holds before and after each
loop iteration [11]. In this paper, we are interested in polynomial invariants the
class of invariants given by Boolean combinations of polynomial equations among
loop variables. There is a minor caveat to our characterisation of (polynomial)
loop invariants. We assume that a (polynomial) invariant consists of a finite
number of initial values together with a closed-form expression of a monomial
in the loop variables. Thus the closed-form of a loop invariant must eventually
hold after a (computable) finite number of loop iterations. Let us illustrate this
caveat with the following loop:

x ← 0
while � do

x ← 1
end while
Here the loop admits the polynomial invariant given by the initial value

x(0) = 1 of x and the closed-form x(n) = 1. For each n ≥ 1, we denote by
x(n) the value of loop variable x at loop iteration n. Herein, we synthesise
invariants that satisfy inhomogeneous first-order recurrence relations and it is
straightforward to show that each associated closed-form holds for n ≥ 1.

Polynomial Invariants and Invariant Ideals. A polynomial ideal is a subset
I ⊆ Q[x1, . . . , xk] with the following properties: I contains 0; I is closed under
addition; and if P ∈ Q[x1, . . . , xk] and Q ∈ I, then PQ ∈ I. For a set of polyno-
mials S ⊆ Q[x1, . . . , xk], one can define the ideal generated by S by

I(S) := {s1q1 + · · · + s�q� | si ∈ S, qi ∈ Q[x1, . . . , xk], � ∈ N}.

Let P be a program as before. For xj ∈ Vars(P), let 〈xj(n)〉n denote the
sequence whose nth term is given by the value of xj in the nth loop iteration.
The set of polynomial invariants of P form an ideal, the invariant ideal of P [28].
If for each program variable xj the sequence 〈xj(n)〉n is C-finite, then a basis
for the invariant ideal can be computed as follows. Let fj(n) be the exponential
polynomial closed-form of variable xj . The exponential terms λn

1 , . . . , λn
s in each
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of the fj(n) are replaced by fresh symbols, yielding the polynomials gj(n). Next,
with techniques from [20], the set R of all polynomial relations among λn

1 , . . . , λn
s

(that hold for each n ∈ N) is computed. Then we express the polynomial relations
in terms of the fresh constants, so that we can interpret R as a set of polynomials.
Thus

I({xj − gj(n) | 1 ≤ i ≤ k} ∪ R) ∩ Q[x1, . . . , xk]

is precisely the invariant ideal of P. Finally, we can compute a finite basis for the
invariant ideal with techniques from Gröbner bases and elimination theory [20].

3 From Loops to Recurrences

Modelling properties of loop variables by algebraic recurrences and solving the
resulting recurrences is an established approach in program analysis. Multiple
works [9,15,16,21,22] associate a loop variable x with a sequence 〈x(n)〉n whose
nth term is given by the value of x in the nth loop iteration. These works are
primarily concerned with the problem of representing such sequences via recur-
rence equations whose closed-forms can be computed automatically, as in the
case of C-finite sequences. A closely connected question to this line of research
focuses on identifying classes of loops that can be modelled by solvable recur-
rences, as advocated in [29]. To this end, over-approximation methods for general
loops are proposed in [9,21] such that solvable recurrences can be obtained from
(over-approximated) loops.

In order to formalise the above and similar efforts in associating loop vari-
ables with recurrences, herein we introduce the concept of a recurrence operator,
and then solvable and unsolvable operators. Intuitively, a recurrence operator
maps program variables to recurrence equations describing some properties of
the variables; for instance, the exact values at the nth loop iteration [9,22,29]
or statistical moments in probabilistic loops [1].

Definition 1 (Recurrence Operator). A recurrence operator R maps the
program variables Vars(P) to the polynomial ring R[Varsn(P)]. The set of equa-
tions {x(n+1) = R[x] | x ∈ Vars(P)} constitutes a polynomial first-order system
of recurrences. We call R linear if R[x] is linear for all x ∈ Vars(P).

One can extend the operator R to R[Vars(P)]. Then, with a slight abuse of
notation, for P (x1, . . . , xj) ∈ R[Vars(P)] we define R(P ) by P (R[x1], . . . ,R[xj ]).

For a program P with recurrence operator R and a monomial over program
variables M :=

∏
x∈Vars(P) xαx , we denote by M(n) the product of sequences

∏
x∈Vars(P) xαx(n). Given a polynomial P over program variables, P (n) is defined

by replacing every monomial M in P by M(n). For a set T of polynomials over
program variables let Tn := {P (n) | P ∈ T}.

Example 1. Consider the program PSC in Fig. 1b. One can employ a recurrence
operator R in order to capture the values of the program variables in the nth
iteration. For v ∈ Vars(PSC), R[v] is obtained by bottom-up substitution in the
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polynomial updates starting with v. As a result, we obtain the following system
of recurrences:

w(n+1) = R[w] = x(n) + y(n)

x(n+1) = R[x] = x(n)2 + 2x(n)y(n) + y(n)2

y(n+1) = R[y] = x(n)3 + 3x(n)2y(n) + 3x(n)y(n)2 + y(n)3.

Similarly, for the program P� of Fig. 1a, we obtain the following system of
recurrences:

z(n+1) = R[z] = 1 − z(n)

x(n+1) = R[x] = 2x(n) + y(n)2 − z(n) + 1

y(n+1) = R[y] = 2y(n) − y(n)2 − 2z(n) + 2.

Solvable Operators. Systems of linear recurrences with constant coefficients
admit computable closed-form solutions as exponential polynomials [8,19]. This
property holds for a larger class of recurrences with polynomial updates, which
leads to the notion of solvability introduced in [29]. We adjust the notion of solv-
ability to our setting by using recurrence operators. In the following definition,
we make a slight abuse of notation and order the program variables so that we
can transform program variables by a matrix operator.

Definition 2 (Solvable Operators [27,29]). The recurrence operator R is
solvable if there exists a partition of Varsn; that is, Varsn = W1  · · ·  Wk such
that for x(n) ∈ Wj,

R[x] = Mj · W�
j + Pj(W1, . . . ,Wj−1)

for some matrices Mj and polynomials Pj. A recurrence operator that is not
solvable is said to be unsolvable.

This definition captures the notion of solvability in [29] (see the discussion
in [27]).

We conclude this section by emphasising the use of (solvable) recurrence
operators beyond deterministic loops, in particular relating its use to probabilis-
tic program loops. As evidenced in [1], recurrence operators model statistical
moments of program variables by essentially focusing on solvable recurrence
operators extended with an expectation operator E( · ) to derive closed-forms of
(higher) moments of program variables, as illustrated below.

Example 2. Consider the probabilistic program PMC of [5,31] modelling a non-
linear Markov chain, where Bernoulli(p) refers to a Bernoulli distribution with
parameter p. Here the updates to the program variables x and y occur simulta-
neously.

while � do
s ← Bernoulli(1/2)
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if s = 0 then(
x
y

)

←
(

x + xy
1
3x + 2

3y + xy

)

else(
x
y

)

←
(

x + y + 2
3xy

2y + 2
3xy

)

end if
end while
One can construct recurrence equations, in terms of the expectation operator

E( · ), for this program as follows:

E(sn+1) = 1
2

E(xn+1) = E(xn) + 1
2E(yn) + 5

6E(xnyn)

E(yn+1) = 1
6E(xn) + 4

3E(yn) + 5
6E(xnyn).

4 Defective Variables

To the best of our knowledge, existing approaches in loop analysis and invari-
ant synthesis are restricted to solvable recurrence operators. In this section, we
establish a new characterisation of unsolvable recurrence operators. Our char-
acterisation pinpoints the program variables responsible for unsolvability, the
defective variables (see Definition 5). Moreover, we provide a polynomial time
algorithm to compute the set of defective variables (Algorithm 1), in order to
exploit our new characterisation for synthesising invariants in the presence of
unsolvable operators in Sect. 5.

For simplicity, we limit the discussion in this section to deterministic pro-
grams. We note however that the results presented herein can also be applied to
probabilistic programs. The details of the necessary changes in this respect are
given in Sect. 6.

In what follows, we write Mn(P) to denote the set of non-trivial monomials
in Vars(P) evaluated at the nth loop iteration so that

Mn(P) :=
{∏

x∈Vars(P)x
αx(n) | ∃x ∈ Vars(P) with αx �= 0

}
.

We next introduce the notions of variable dependency and dependency graph,
needed to further characterise defective variables.

Definition 3 (Variable Dependency). Let P be a loop with recurrence oper-
ator R and x, y ∈ Vars(P). We say x depends on y if y appears in a monomial
in R[x] with non-zero coefficient. Moreover, x depends linearly on y if all mono-
mials with non-zero coefficients in R[x] containing y are linear. Analogously,
x depends non-linearly on y if there is a non-linear monomial with non-zero
coefficient in R[x] containing y.

Furthermore, we consider the transitive closure for variable dependency. If z
depends on y and y depends on x, then z depends on x and, if in addition, one
of these two dependencies is non-linear, then z depends non-linearly on x. We
otherwise say the dependency is linear.
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For each program with polynomial updates, we further define a dependency
graph with respect to a recurrence operator.

Definition 4 (Dependency Graph). Let P be a program with recurrence
operator R. The dependency graph of P with respect to R is the labelled directed
graph G = (Vars(P), A,L) with vertex set Vars(P), edge set A := {(x, y) | x, y ∈
Vars(P)∧x depends on y}, and a function L : A → {L,N} that assigns a unique
label to each edge such that

L(x, y) =

{
L if x depends linearly on y, and
N if x depends non-linearly on y.

In our approach, we partition the variables Vars(P) of the program P into two
sets: effective- and defective variables, denoted by E(P) and D(P) respectively.
Our partition builds on the definition of the dependency graph of P, as follows.

Definition 5 (Effective-Defective). A variable x ∈ Vars(P) is effective if:

1. x appears in no directed cycle with at least one edge with an N label, and
2. x cannot reach a vertex of an aforementioned cycle (as in 1).

A variable is defective if it is not effective.

Example 3. From the recurrence equations of Example 1 for the program PSC

(see Fig. 1b), one obtains the dependencies between the program variables of
PSC: the program variable w depends linearly on both x and y, whilst x and y
depend non-linearly on each other and on w. By definition, the partition into
effective and defective variables is E(PSC) = ∅ and D(PSC) = {w, x, y}.

Similarly, we can construct the dependency graph for the program P� from
Fig. 1a, as illustrated in Fig. 2. We derive that E(P�) = {z} and D(P�) = {x, y}.

Fig. 2. The dependency graphs for PSC and P� from Fig. 1.

The concept of effective, and, especially, defective variables allows us to estab-
lish a new characterisation of programs with unsolvable recurrence operators: a
recurrence operator is unsolvable if and only if there exists a defective variable
(as stated in Theorem 1 and automated in Algorithm 1). We formalise and prove
this results via the following three lemmas.
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Lemma 1. Let P be a program with recurrence operator R. If D(P) is non-
empty, so that there is at least one defective variable, then R is unsolvable.

Proof. Let x ∈ Vars(P) be a defective variable and G = (Vars(P), A,L) the
dependency graph of P with respect to a recurrence operator R. Following Def-
inition 5, there exists a cycle C such that x is a vertex visited by or can reach
said cycle and, in addition, there is an edge in C labelled by N .

Assume, for a contradiction, that R is solvable. Then there exists a partition
W1, . . . ,Wk of Varsn(P) as described in Definition 2. Moreover, since C is a
cycle, there exists j ∈ {1, . . . , k} such that each variable visited by C lies in Wj .
Let (w, y) ∈ C be an edge labelled with N . Since w depends on y non-linearly,
and R[w] = Mj · W�

j + Pj(W1, . . . ,Wj−1) (by Definition 2), it is clear that
y(n) ∈ W� for some � �= j. We also have that y(n) ∈ Wj since C visits y. Thus
we arrive at a contradiction as W1, . . . ,Wk is a partition of Varsn(P). Hence R
is unsolvable. ��

Given a program P whose variables are all effective, it is immediate that a pair
of distinct mutually dependent variables are necessarily linearly dependent and,
similarly, a self-dependent variable is necessarily linearly dependent on itself.
Consider the following binary relation ∼ on program variables:

x ∼ y ⇐⇒ x = y ∨ (x depends on y ∧ y depends on x).

Thus, any two mutually dependent variables are related by ∼. Under the assump-
tion that all variables of a program P are effective, it is easily seen that ∼ defines
an equivalence relation on Vars(P). The partition of the equivalence classes Π of
Vars(P) under ∼ admits the following notion of dependence between equivalence
classes: for π, π̂ ∈ Π we say that π depends on π̂ if there exist variables x ∈ π
and y ∈ π̂ such that variable x depends on variable y.

Lemma 2. Suppose that all variables of a program P are effective. Consider the
graph G with vertex set given by the set of equivalence classes Π and edge set
A′ := {(π, π̂) | (π �= π̂) ∧ (π depends on π̂)}. Then G is acyclic.

Proof. From the definition of G, it is clear that the graph is directed and has no
self-loops. Now assume, for a contradiction, that G contains a cycle. Since the
relation ∼ is transitive, there exists a cycle C in G of length two. Moreover, the
variables in a given equivalence class are mutually dependent. Thus the elements
of the two classes in C are equivalent under the relation ∼, which contradicts
the partition into distinct equivalence classes. Therefore the graph G is acyclic,
as required. ��
Lemma 3. Let P be a program with recurrence operator R. If each of the pro-
gram variables of P is effective then R is solvable.

Proof. By Lemma 2, the associated graph G = (Π,A′) on the equivalence classes
of Vars(P) is directed and acyclic. Thus there exists a topological ordering of
Π = {π1, . . . , π|Π|} such that for every (πi, πj) ∈ A′ we have i > j. Thus if x ∈ πi
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Algorithm 1. Construct E(P) and D(P) from program P with operator R.
Let G = (Vars(P), A, L) be the dependency graph of P with respect to R.
D(P) ← ∅
for (x, y) ∈ A where L(x, y) = N do

if x = y then
predecessor ← ∅
DFS(x, predecessor)
D(P) ← D(P) ∪ predecessor

end if
if x �= y then

predecessor ← ∅
DFS(y, predecessor)
if x ∈ predecessor then

D(P) ← D(P) ∪ predecessor

end if
end if

end for
E(P) ← Vars(P) \ D(P)

then x does not depend on any variables in class πj for j > i. Moreover, for each
πi ∈ Π, if x, y ∈ πi then x cannot depend on y non-linearly because every
variable is effective (and all the variables in πi are mutually dependent). Thus
Π evaluated at loop iteration n partitions Varsn(P) and satisfies the criteria in
Definition 2. We thus conclude that R is solvable. ��

Together, Lemmas 1–3 yield a new characterisation of unsolvable operators.

Theorem 1 (Defective Characterisation). Let P be a program with recur-
rence operator R, then R is unsolvable if and only if D(P) is non-empty.

In Algorithm 1 we provide a polynomial time algorithm that constructs both
E(P) and D(P) given a program and a recurrence operator. We use the initialism
“DFS” for the depth-first search procedure. Algorithm 1 terminates in polyno-
mial time as both the construction of the dependency graph and depth-first
search exhibit polynomial time complexity. The procedure searches for cycles
in the dependency graph with at least one non-linear edge (labelled by N). All
variables that reach such cycles are, by definition, defective.

In what follows, we focus on programs with unsolvable recurrence operators,
or equivalently by Theorem 1, the case where D(P) �= ∅. The characterisation
of unsolvable operators in terms of defective variables and our polynomial algo-
rithm to construct the set of defective variables is the foundation for our app-
roach synthesising invariants in the presence of unsolvable recurrence operators
in Sect. 5.

Remark 1. The recurrence operator R[x] for an effective variable x will admit a
closed-form solution for every initial value x0. For the avoidance of doubt, the
same cannot be said for the recurrence operator of a defective variable. However,
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it is possible that a set of initial values will lead to a closed-form expression as a
C-finite sequence: consider a loop with defective variable x and update x ← x2

and initialisation x0 ← 0 or x0 ← ±1.

5 Synthesising Invariants

In this section we propose a new technique to synthesise invariants for pro-
grams with unsolvable recurrence operators. The approach is based on our new
characterisation of unsolvable operators in terms of defective variables (Sect. 4).

For the remainder of this section we fix a program P with an unsolvable
recurrence operator R, or equivalently with D(P) �= ∅. We start by extending
the notions of effective and defective from program variables to monomials of
program variables. Let E be the set of effective monomials given by

E(P) =

⎧
⎨

⎩

∏

x∈E(P)

xαx | αx ∈ N

⎫
⎬

⎭
.

The complement, the defective monomials, is given by D(P) := M(P) \ E(P).
The difficulty with defective variables is that in general they do not admit closed-
forms. However, polynomials of defective variables may allow for closed-forms as
illustrated in previous examples. The main idea of our technique for invariant
synthesis in the presence of defective variables is to find such polynomials. We
fix a candidate polynomial called S(n) based on an arbitrary degree d ∈ N:

S(n) =
∑

W∈Dn(P)�d
cW W, (2)

where the coefficients cW ∈ R are unknown real constants. We use Dn(P) �d to
indicate the set of defective monomials of degree at most d.

Example 4. For P� in Fig. 1a we have Dn(P�) �1= {x, y}, and Dn(P�) �2=
{x, y, x2, y2, xy, xz, yz}.

On the one hand, all variables in S(n) are defective; however, S(n) may admit
a closed-form. This occurs if S(n) obeys a “well-behaved” recurrence equation;
that is to say, an inhomogeneous recurrence equation where the inhomogeneous
component is given by a linear combination of effective monomials. In such
instances the recurrence takes the form

S(n+1) = κS(n) +
∑

M∈En(P)

cMM (3)

where the coefficients cM are unknown. Thus an intermediate step towards
our goal of synthesising invariants is to determine whether there are constants
cM , cW , κ ∈ R that satisfy the above equations. If such constants exist then we
come to our final step: solving a first-order inhomogeneous recurrence relation.



32 D. Amrollahi et al.

There are standard methods available to solve first-order inhomogeneous recur-
rences of the form S(n+1) = κS(n) + h(n), where h(n) is the closed-form of∑

M∈En(P) cMM , see e.g., [19]. We note h(n) is computable and an exponential
polynomial since it is determined by a linear sum of effective monomials. Thus
〈S(n)〉n is a C-finite sequence.

Remark 2. Observe that the sum on the right-hand side of Eq. (3) is finite, since
all but finitely many of the coefficients cM are zero. Further, the coefficient cM

of monomial M is non-zero only if M appears in R[S].

Going further, in Eq. (3) we express S(n+1) in terms of a polynomial in
Varsn(P) with unknown coefficients cM , cW , and κ. An alternative expression
for S(n+1) in Varsn(P) is given by the recurrence operator S(n+1) = R[S].
Taken in combination, we arrive at the following formula

R[S] − κS(n) −
∑

M∈En(P)

cMM = 0,

yielding a polynomial in Varsn(P). Thus all the coefficients in the above formula
are necessarily zero as the polynomial is identically zero. Therefore all solutions
to the unknowns cM , cW , and κ are computed by solving a (quadratic) system
of equations.

Example 5. We demonstrate our procedure for invariant synthesis by applying
the method to an example. Recall program P� from Fig. 1a:

z ← 0
while � do

z ← 1 − z
x ← 2x + y2 + z
y ← 2y − y2 + 2z

end while
From Algorithm 1 we obtain E(P�) = {z} and D(P�) = {x, y}. Because

D(P�) �= ∅, we deduce using Theorem 1 that the associated operator R is
unsolvable. Consider the candidate S(n) = ax(n)+by(n) with unknowns a, b ∈ R.
The recurrence for S(n) given by R is

S(n+1) = R[S] = aR[x] + bR[y]

= a + 2b + 2ax(n) + 2by(n) − (a + 2b)z(n) + (a − b)y2(n).

We next express S(n+1) in terms of an inhomogeneous recurrence equation
(cf. Eq. (3)). When we substitute for S(n), we obtain

S(n+1) = κ(ax(n) + by(n)) + (cz(n) + d)

where the coefficients in the inhomogeneous component are unknown. We then
combine the preceding two equations (for brevity we suppress the loop counter
n in the program variables x, y, z) and derive

(a + 2b − d) + (−a − c − 2b)z + (2a − κa)x + (2b − κb)y + (a − b)y2 = 0.
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Thus we have a polynomial in the program variables that is identically zero.
Therefore, all the coefficients in the above equation are necessarily zero. We
then solve the resulting system of quadratic equations, which leads to the non-
trivial solution a = b, κ = 2, d = 3a, and c = −3a. We substitute this solution
back into the recurrence for R[S] and find

S(n+1) = 2S(n) + 3a(1 − z(n)) = 2S(n) + 3a
1 + (−1)n

2
.

Here, we have used the closed-form solution z(n) = 1/2 − (−1)n/2 of the effec-
tive variable z. We can compute the solution of this inhomogeneous first-order
recurrence equation. In the case that a = 1, we have S(n) = 2n(S(0) + 2) −
(−1)n/2 − 3/2. Therefore, the following identity holds for each n ∈ N:

x(n) + y(n) = 2n(x(0) + y(0) + 2) − (−1)n/2 − 3/2

and so we have synthesised the closed-form of x + y for program P� of Fig. 1a.

5.1 Solution Space of Invariants for Unsolvable Operators

Given a program and a recurrence operator, our invariant synthesis technique
is relative-complete with respect to the degree d of the candidate S(n). This
means, for a fixed degree d ∈ N, our approach is in theory able to compute all
polynomials of defective variables with maximum degree d that satisfy a “well-
behaved” recurrence; that is, a first-order recurrence equation of the form (3).
This holds because of our reduction of the problem to a system of quadratic
equations for which all solutions are computable. Our technique can also rule
out the existence of well-behaved polynomials of defective variables of degree at
most d if the resulting system has no (non-trivial) solutions.

Let P be a program with program variables Vars(P) = {x1, . . . , xk}. The set
of polynomials P with P (x1(n), . . . , xk(n))=0 for all n ∈ N form an ideal, the
invariant ideal of P. The requirement of closed-forms is the main obstacle for
computing a basis for the invariant ideal in the presence of defective variables.
Our work introduces a method that includes defective variables in the com-
putation of invariant ideals, via the following steps of deriving the polynomial
invariant ideal of an unsolvable loop:

– For every effective variable xi, let fi(n) be its closed-form and assume h(n)
is the closed-form for some candidate S given by a polynomial in defective
variables.

– Let λn
1 , . . . , λn

s be the exponential terms in all fi(n) and h(n). Replace the
exponential terms in all fi(n) as well as h(n) by fresh constants to construct
the polynomials gi(n) and l(n) respectively.

– Next, construct the set R of polynomial relations among all exponential terms,
as explained in Sect. 2. Then, the ideal

I({xi − gi(n) | xi ∈ E(P)} ∪ {S − l(n)} ∪ R) ∩ Q[x1, . . . , xk]
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contains precisely all polynomial relations among program variables implied
by the equations {xi = fi(n)} ∪ {S = g(n)} in the theory of polynomial
arithmetic.

– A finite basis for this ideal is computed using techniques from Gröbner bases
and elimination theory. This step is similar to the case of the invariant ideal
for solvable loops, see e.g., [22,29].

In conclusion, we infer a finite representation of the ideal of polynomial invariants
for loops with unsolvable recurrence operators.

6 Adjusting Defective Variables for Unsolvable Operators
in Probabilistic Programs

The works [1,25] defined recurrence operators for probabilistic loops. Specifi-
cally, a recurrence operator is defined for loops with polynomial assignments,
probabilistic choice, and drawing from common probability distributions with
constant parameters. Recurrences for deterministic loops model the precise val-
ues of program variables. For probabilistic loops, this approach is not viable,
due to the stochastic nature of the program variables. Thus a recurrence oper-
ator for a probabilistic loop models (higher) moments of program variables. As
illustrated in Example 2, the recurrences of a probabilistic loop are taken over
expected values of program variable monomials.

In [1,25], the authors explicitly excluded the case of circular non-linear
dependencies to guarantee computability. However, in contrast to our notions
in Sects. 3, they defined variable dependence not on the level of recurrences but
on the level of assignments in the loop body. To use the notions of effective and
defective variables for probabilistic loops, we follow the same approach and base
the dependency graph on assignments rather then recurrences. We illustrate the
necessity of this adaptation in the following example.

Example 6. Consider the following probabilistic loop and associated set of first-
order recurrence relations in terms of the expectation operator E( · ):

while � do
y ← 4y(1 − y)
x ← x − y {1/2} x + y

end while

E(yn+1) = 4E(yn) − 4E(y2
n)

E(xn+1) = E(xn)

E(x2
n+1) = E(x2

n) + E(y2
n+1)

It is straightforward to see that variable y is defective from the determin-
istic update y ← 4y(1 − y) with its characteristic non-linear self-dependence.
Moreover, y appears in the probabilistic assignment of x. However, due to the
particular form of the assignment, the recurrence of E(xn) does not contain y.
Nevertheless, y appears in the recurrence of E(x2

n). This phenomenon is specific
to the probabilistic setting. For deterministic loops, it is always the case that if
the values of a program variable w do not depend on defective variables, then
neither do the values of any power of w.
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In light of the phenomenon exhibited in Example 6, for probabilistic loops, we
adapt our notion of variable dependency. Without loss of generality, we assume
that every program variable has exactly one assignment in the loop body. Let P
be a probabilistic loop and x, y ∈ Vars(P). We say x depends on y, if y appears in
the assignment of x. Additionally, the dependency is linear if all occurrences of y
in the assignment of x are linear, else the dependency is non-linear. Further, we
consider the transitive closure of variable dependency analogous to deterministic
loops and Definition 3.

With variable dependency thus defined, the dependency graph and the
notions of effective and defective variables follow immediately. Analogous to
our characterisation of unsolvable recurrence operators in terms of defective
variables for deterministic loops, all (higher) moments of effective variables of
probabilistic loops can be described by a system of linear recurrences [1,25]. For
defective variables this property will generally fail For instance, in Example 6,
the variable x is now classified as defective and E(x2

n) cannot be modelled by
linear recurrences for some initial values.

The only necessary change to the invariant synthesis algorithm from Sect. 5
is that instead of program variable monomials, we consider expected values of
program variable monomials. Now, our synthesis technique from Sect. 5 can also
be applied to probabilistic loops to synthesise combinations of expected values
of defective variable monomials that do satisfy a linear recurrence.

7 Applications of Unsolvable Operators Towards
Invariant Synthesis

Our approach automatically generates invariants for programs with defective
variables (Sect. 5), and pushes the boundaries of both theory and practice of
invariant generation: we introduce and incorporate defective variable analysis
into the state-of-the-art methodology of reasoning about solvable loops, comple-
menting thus existing methods, see e.g., [16,21,22,29], in the area. As such, the
class of unsolvable loops that can be handled by our work extends (aforemen-
tioned) existing approaches on polynomial invariant synthesis. The experimental
results of our approach (see Sect. 8) demonstrate the efficiency and scalability
of our work in deriving invariants for unsolvable loops. Since our approach to
loops via recurrences is generic, we can deal with emerging applications of pro-
gramming paradigms such as: transitions systems and statistical moments in
probabilistic programs; and reasoning about biological systems. We showcase
these applications in this section and also exemplify the limitations of our work.
In the sequel, we write E(t) to refer to the expected value of an expression t,
and denote by E(tn) (or E(t(n))) the expected value of t at loop iteration n.

Example 7. (Moments of Probabilistic Programs [31]). Recall the program PMC

of Example 2. One can easily verify that E(xn −yn) = 5n

6n (x0 −y0) and so obtain
an invariant for PMC. Closed-form solutions for higher order expressions are also
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available; for example,

E((xn − yn)d) =
(2d + 3d)n

2n · 3dn
(x0 − y0)d

refers to the dth moment of x(n) − y(n). While the work in [31] uses martingale
theory to synthesise the above invariant (of degree 1), our approach automat-
ically generates such invariants over higher-order moments (see Table 2). We
note to this end that the defective variables in PMC are precisely x and y as
can be seen from their mutual non-linear interdependence. Namely, we have
D(PMC) = {x, y} and E(PMC) = {s}.

Example 8. (non-lin-markov-2 ). We give a second example of a non-linear
Markov chain. We analyse the moments of this probabilistic program in the
next section.

x, y ← 0, 1
while � do

s ← Bernoulli(1/2)
if s = 0 then(

x
y

)

←
(

4
10 (x + xy)

4
10 (13x + 2

3y + xy)

)

else(
x
y

)

←
(

4
10 (x + y + 2

3xy)
4
10 (2y + 2

3xy)

)

end if
end while

Example 9. (Biological Systems [3]). A model for the decision-making process
of swarming bees choosing one nest-site from a selection of two is introduced
in [3] and further studied in [6,30]. Previous works, motivated by reachabil-
ity questions, have computed probability distributions for this model [30]. The
(unsolvable) loop is a discrete-time model with five classes of bees (each repre-
sented by a program variable). The coefficient Δ is the length of the time-step
in the model and the remaining coefficients parameterise the rates of change. All
coefficients here are symbolic (representing any real number).

⎛

⎜
⎜
⎜
⎜
⎝

x
y1
y2
z1
z2

⎞

⎟
⎟
⎟
⎟
⎠

←

⎛

⎜
⎜
⎜
⎜
⎝

Normal(475, 5)
Uniform(350, 400)
Uniform(100, 150)
Normal(35, 1.5)
Normal(35, 1.5)

⎞

⎟
⎟
⎟
⎟
⎠

while � do⎛

⎜
⎜
⎜
⎜
⎝

x
y1
y2
z1
z2

⎞

⎟
⎟
⎟
⎟
⎠

←

⎛

⎜
⎜
⎜
⎜
⎝

x − Δ(β1xy1 + β2xy2)
y1 + Δ(β1xy1 − γy1 + δβ1y1z1 + αβ1y1z2)
y2 + Δ(β2xy2 − γy2 + δβ2y2z2 + αβ2y2z1)
z1 ← z1 + Δ(γy1 − δβ1y1z1 − αβ2y2z1)
z2 ← z2 + Δ(γy2 − δβ2y2z2 − αβ1y1z2)

⎞

⎟
⎟
⎟
⎟
⎠

end while
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We note that the model in [30] uses truncated Normal distributions, as [30]
is limited to finite supports for the program variables, which is not the case with
our work.

In the loop above, each of the variables exhibits non-linear self-dependence,
and so the variables are partitioned into D(P) = {x, y1, y2, z1, x2} and E(P) = ∅.
While the recurrence operator of the loop above is unsolvable, our approach infers
polynomial loop invariants using defective variable reasoning (Sect. 5). Namely,
we generate the following closed-form solutions over expected values of program
variables:

E(x(n) + y1(n) + y2(n) + z1(n) + z2(n)) = 1045,

E((x(n) + y1(n) + y2(n) + z1(n) + z2(n))2) = 3277349/3, and

E((x(n) + y1(n) + y2(n) + z1(n) + z2(n))3) = 1142497455.

One can interpret such invariants in terms of the biological assumptions in the
model. Take, for example, the fact that E(x(n) + y1(n) + y2(n) + z1(n) + z2(n))
is constant. This invariant is in line with the assumption in the model that total
population of the swarm is constant. In fact, our invariants reflect the behaviour
of the system in the original continuous-time model proposed in [3], because our
approach is able to process all coefficients (most importantly Δ) as symbolic
constants.

Example 10. (Probabilistic Transition Systems [31]). Consider the following
probabilistic loop modelling a probabilistic transition system from [31]:

while � do(
a
b

)

←
(

Normal(0, 1)
Normal(0, 1)

)

(
x
y

)

←
(

x + axy
y + bxy

)

end while
While [31] uses martingale theory to synthesise a degree one invariant of

the form aE(xk) + bE(yk) = aE(x0) + bE(y0), our work automatically generates
invariants over higher-order moments involving the defective variables x and y,
as presented in Table 2.

The next example demonstrates an unsolvable loop whose recurrence operator
cannot (yet) be handled by our work.

Example 11 (Trigonometric Updates). As our approach is limited to polynomial
updates of the program variables, the loop below cannot be handled by our work:

while � do(
x
y

)

←
(

cos(x)
sin(x)

)

end while
Note the trigonometric functions are transcendental, from which it follows

that one cannot generally obtain closed-form solutions for the program variables.
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Nevertheless, this program does admit polynomial invariants in the program vari-
ables; for example, x2 + y2 = 1. Although our definition of a defective variables
does not apply here, we could say the variable x here is somehow defective:
while the exact value of sin(x) cannot be computed, it could be approximated
using power series. Extending our work with more general notions of defective
variables is an interesting line for future work.

We conclude this section with the following custom-made benchmarks. We
have tailored these benchmarks to demonstrate the flexibility and applicability of
our method to the current state of the art. Our experimental analysis is delayed
to Sect. 8.

Example 12. (squares+ ).
s, x, y, z ← 0, 2, 1, 0
while � do

s ← Bernoulli(1/2)
z ← z − 1 {1/2} z + 2
x ← 2x + y2 + s + z
y ← 2y − y2 + 2s

end while

Example 13. (prob-squares ).
g ← 1
while � do

g ← Uniform(g, 2g)⎛

⎝
a
b
c

⎞

⎠ ←
⎛

⎝
a2 + 2bc − df + b
df − a2 + 2bd + 2c
g − bc − bd + 1

2a

⎞

⎠

end while

Example 14. (squares-squared ).
while � do⎛

⎜
⎜
⎝

x
y
z
m

⎞

⎟
⎟
⎠ ←

⎛

⎜
⎜
⎝

xyz + x2

2y + z − x2 + 3ymz2
3
2x + 3

2z + 1
2y + 1

2x2

2
3z + 3m − 1

3x2 − 1
3xyz − ymz2

⎞

⎟
⎟
⎠

end while

Example 15. (deg-d ). The benchmarks deg-5, deg-6, deg-7, deg-8, deg-9,
and deg-500 are parameterised by the degree d in the following program.

x, y ← 1, 1
while � do

z ← Normal(0, 1)(
x
y

)

←
(

2xd + z + z2

3xd + z + z2 + z3

)

end while
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8 Experiments

In this section we report on our implementation towards fully automating the
analysis of unsolvable loops, and describe our experimental setting and results.

Implementation. Algorithm 1 together with our method for synthesising invari-
ants involving defective variables is implemented in the Polar tool3. We use
python3 and the sympy package [24] for symbolic manipulations of algebraic
expressions.

Benchmark Selection. While previous works [1,14,21,27–29] consider invariant
synthesis, their techniques are only applicable in a restricted setting: the anal-
ysed loops are, for the most part, solvable; or, for unsolvable loops, the search
for polynomial invariants is template-driven or employs heuristics. In contrast,
the work herein complements and extends the techniques presented for solvable
loops in [1,14,21,27–29]. Indeed, our automated approach turns the problem
of polynomial invariant synthesis into a decidable problem for a larger class of
unsolvable loops.

While solvable loops can clearly be analysed by our work, the main benefit of
our work comes with handling unsolvable loops by translating them into solvable
ones. For this reason, in our experimentation we are not interested in examples
of solvable loops and so only focus on unsolvable loop benchmarks. There is
therefore no sensible baseline that we can compare against, as state-of-the-art
techniques cannot routinely synthesise invariants for unsolvable loops in the
generality we present.

In our work we present a set of 15 examples of unsolvable loops, as listed in
Table 14. Common to all 15 benchmarks from Table 1 is the exhibition of circular
non-linear dependencies within the variable assignments. We display features of
our benchmarks in Table 1 (for example, column 3 of Table 1 counts the number
of defective variables for each benchmark).

Three examples from Table 1 are challenging benchmarks taken from the
invariant generation literature [5,6,30,31]; full automation in analysing these
examples was not yet possible. These examples are listed as non-lin-markov-1,
pts, and bees in Table 1, respectively corresponding to Example 2 (and hence
Example 7), Example 10, and Example 9 from Sect. 7.

The remaining 12 examples of Table 1 are self-constructed benchmarks to
highlight the key ingredients of our work in synthesising invariants associated
with unsolvable recurrence operators.

Experimental Setup. We evaluate our approach in Polar on the examples from
Table 1. All our experiments were performed on a machine with a 1.80 GHz Intel
i7 processor and 16 GB of RAM.

3 https://github.com/probing-lab/polar.
4 each benchmark in Table 1 references, in parentheses, the respective example from

our paper.

https://github.com/probing-lab/polar
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Table 1. Features of the benchmarks. Var = Total number of loop variables; Def =
Number of defective variables; Term = Total number of terms in assignments; Deg

= Maximum degree in assignments; Cand-7 = Number of monomials in candidate
with degree 7; Eqn-7 = Size of the system of equations associated with a candidate of
degree 7; - = Timeout (60 s).

Benchmark Var Def Term Deg Cand-7 Eqn-7

squares (Fig. 1a) 3 2 8 2 35 113

squares+ (Ex. 12) 4 2 12 2 35 204

non-lin-markov-1 (Ex. 2) 2 2 11 2 35 64

non-lin-markov-2 (Ex. 8) 2 2 11 2 35 64

prob-squares (Ex. 13) 4 3 13 2 119 –

squares-and-cube (Fig. 1b) 3 3 4 3 119 337

pts (Ex. 10) 4 2 6 3 35 57

squares-squared (Ex. 14) 4 4 15 4 329 –

bees (Ex. 9) 5 5 21 5 791 –

deg-5 (Ex. 15) 3 2 8 5 35 42

deg-6 (Ex. 15) 3 2 8 6 35 42

deg-7 (Ex. 15) 3 2 8 7 35 42

deg-8 (Ex. 15) 3 2 8 8 35 43

deg-9 (Ex. 15) 3 2 8 9 35 43

deg-500 (Ex. 15) 3 2 8 500 35 43

Evaluation Setting. The landscape of benchmarks in the invariant synthesis lit-
erature for solvable loops can appear complex with: high numbers of variables,
high degrees in polynomial updates, and multiple update options. However, we
do not intend to compete on these metrics for solvable loops. The power of Algo-
rithm 1 lies in its ability to handle ‘unsolvable’ loop programs: those with cyclic
inter-dependencies and non-linear self-dependencies in the loop body. While the
benchmarks of Table 1 may be considered simple, the fact that previous works
cannot systematically handle such simple models crystallises that even simple
loops can be unsolvable, limiting the applicability of state-of-the-art methods,
as illustrated in the example below.

Example 16. Consider the question: does the unsolvable loop program deg-9 in
Table 1 (i.e. Example 15) possess an invariant of degree 3? The program vari-
ables for deg-9 are x, y, and z. The variables x and y are defective. Using Polar,
we derive that the cubic, non-trivial polynomial p(xn, yn, zn) given by

12(ayn+by2
n+cy3

n+dxn+exnyn+fxny2
n)−(3a+24b+117c+2d+17e+26f)x2

n

− (6a − 6b + 315c + 4d − 2e + 88f)x2
nyn + 3(3a − 3b + 144c + 2d − e + 35f)x3

n

yields a polynomial loop invariant of degree 3, where a, b, c, d, e, and f are sym-
bolic constants. Moreover, for n ≥ 1, the expectation of this polynomial (deg-9
is a probabilistic loop) in the nth iteration is given by

E(p(xn, yn, zn)) = −108a + 312b − 1962c − 68d + 52e − 68f.



Solving Invariant Generation for Unsolvable Loops 41

Table 2. The time elapsed to automatically synthesise candidates with closed-forms
(results in seconds).

Candidate degree

Benchmark 1 2 3 4 5 6 7

squares (Fig. 1a) *1.03 1.22 1.07 2.36 5.34 14.05 39.36

squares+ (Ex. 12) *0.88 1.06 0.90 2.14 5.89 13.85 32.51

non-lin-markov-1 (Ex. 2) *0.46 *0.94 *2.25 *3.84 *6.45 *12.29 *21.35

non-lin-markov-2 (Ex. 8) *0.54 *1.06 *2.35 *4.43 *8.02 *14.07 *24.32

prob-squares (Ex. 13) *0.80 0.93 4.29 22.50 – – –

squares-and-cube (Fig. 1b) 0.31 *0.72 *1.40 *3.11 *7.07 *25.74 –

pts (Ex. 10) *0.33 *0.55 *0.93 *1.12 *1.78 *2.63 *3.75

squares-squared (Ex. 14) *0.52 1.75 10.38 – – – –

bees (Ex. 9) *0.73 *4.80 *53.97 – – – –

deg-5 (Ex. 15) *0.43 *0.87 *1.83 *4.50 *9.88 *22.81 *45.58

deg-6 (Ex. 15) *0.41 *0.85 *1.83 *4.39 *10.19 *23.00 *44.29

deg-7 (Ex. 15) *0.42 *0.85 *1.79 *4.72 *10.04 *25.06 *47.27

deg-8 (Ex. 15) *0.43 *0.93 *1.89 *4.38 *10.20 *23.91 *49.10

deg-9 (Ex. 15) *0.43 *0.93 *1.91 *4.49 *10.83 *22.85 *51.97

deg-500 (Ex. 15) *0.43 *0.85 *1.96 *4.55 *9.75 *23.46 *50.04

– = Timeout (60 s); * = Found invariant of the corresponding degree.

Experimental Results. Our experiments using Polar to synthesise invariants are
summarised in Table 2, using the examples of Table 1. Patterns in Table 2 show
that, if time considerations are the limiting factor, then the greatest impact
cannot be attributed to the number of program variables nor the maximum
degree in the program assignments (Table 1). Three of the examples in Table 1
exhibit timeouts (60 s) in the final column. The property common to each of
these examples is the high number of monomial terms in any polynomial candi-
date of degree 7. In turn, this property feeds into a large system of simultaneous
equations, which we solve to test for invariants. Indeed, time elapsed is not so
strongly correlated with either of these program features. As supporting evi-
dence we note the specific attributes of benchmark deg-500 whose assignments
include polynomial updates of large degree and yet returns synthesised invari-
ants with relatively low time elapsed in Table 2. We note the significantly longer
running times associated with the benchmark bees (Example 9). This suggests
that mutual dependencies between program variables in the loop assignment
explain this phenomenon: such inter-relations lead to the construction of larger
systems of equations, which itself feeds into the problem of resolving the recur-
rence equation associated with a candidate.

Experimental Summary. Our experiments illustrate the feasibility of synthesising
invariants using our approach for programs with unsolvable recurrence operators
from various domains such as biological systems, probabilistic loops and classical
programs (see Sect. 5). This further motivates the theoretical characterisation of
unsolvable operators in terms of defective variables (Sect. 4).
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9 Conclusion

We establish a new technique that synthesises invariants for loops with unsolv-
able recurrence operators and show its applicability for deterministic and proba-
bilistic programs. The technique is based on our new characterisation of unsolv-
able loops in terms of effective and defective variables: the presence of defective
variables is equivalent to unsolvability. In order to synthesise invariants, we pro-
vide an algorithm to isolate the defective program variables and a new method
to compute polynomial combinations of defective variables admitting exponen-
tial polynomial closed-forms. The implementation of our approach in the tool
Polar and our experimental evaluation demonstrate the usefulness of our alter-
native characterisation of unsolvable loops and the applicability of our invariant
synthesis technique to systems from various domains.
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Abstract. In spite of decades of static-analysis research behind develop-
ing precise whole-program analyses, languages that use just-in-time (JIT)
compilers suffer from the imprecision of resource-bound analyses local to
the scope of compilation. Recent promising approaches bridge this gap by
splitting program analysis into two phases: a static phase that identifies
interprocedural dependencies across program elements, and a dynamic
phase that resolves those dependencies to generate final analysis results.
Though this approach is capable of generating precise analysis results
without incurring analysis cost in JIT compilers, such “staged analy-
ses” lack a theoretical backing. In particular, it is unclear if one could
transform a general whole-program analysis (that resolves dependencies
across all program elements) to a staged one that involves evaluation of
statically generated partial results later. Similarly, it would be interesting
if one could generate such “partial-result evaluators” in a way that can
also be used to argue about their correctness. In this paper, we propose
a novel model of static+dynamic partial analysis that addresses all these
points, based on the classic theory of partial evaluation.

We begin by shedding light on the enigmatic idea of partial evaluation
as well as the associated notion of Futamura projections to generate spe-
cialized program interpreters. We then describe partial analysis as the
process of evaluating dependencies across program elements with respect
to the statically available parts of a program, resulting into partial results.
Next, we devise a strategy (by deriving a novel notion of AM projections
from Futamura projections) to statically generate specialized evaluators
that can process partial results using dynamic dependencies, at run-
time. Later, we use our proposed model to straightforwardly establish
the correctness and precision properties of the idea of staging, indepen-
dent of the program analysis under consideration. We demonstrate the
applicability of our model by showcasing examples from non-trivial Java
program analyses, implementing the pipeline for one of them, and also
discussing future possibilities to extend the same. We believe that our
contributions in formulating this theory of partial analysis will signifi-
cantly extend the usage of existing partial analyzers, as well as promote
the design of new ones, for and even beyond Java.
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1 Introduction

A lion’s share of research in the programming language community is focused on
devising novel compilation technologies for performance. In order to generate a
performant binary, compilers for various programming languages perform a series
of program analyses and optimizations on the program being compiled. The
quality of the optimizations performed depends on the precision of the underlying
program analyses. The holy grail in the space of precise program analyses is the
ability to analyze the whole program. However, in case of languages such as Java
and C#, where the complete program is available only during run-time (e.g., in
Java Virtual Machines), performing whole-program analysis during just-in-time
(JIT) compilation is prohibitively expensive. On the other hand, owing to the
separate compilation assumption [2], it is possible to “partially analyze” various
parts of the program statically.

Partial analysis is a program analysis technique used in compilation systems
where the whole program is not available for analysis [8,9,18,28]. Tradition-
ally, this implies generating analysis results without the ability to incorporate
the effects of the unavailable parts of the program, which again loses precision.
However, for languages like Java and C# where program translation is spread
across static and JIT compilation, it is a promising idea to “stage” the program
analysis itself across the static and the dynamic phases of compilation. Recent
approaches such as the PYE framework [28] use this idea to statically generate
“dependencies” from various elements of the known program to the unknown
parts of the program, which are then resolved during JIT compilation. As an
example, consider the Java code snippet shown in Fig. 1; say the object(s) allo-
cated at line l are represented using the abstract object Ol. Here, what happens
to the object O3 depends on what happens to the respective first parameters in
methods A.bar and B.bar. Assuming all the code of class A is available stati-
cally whereas that of class B is available only during run-time, we can resolve
the dependencies related to A.bar statically, but for B.bar only during run-time.
The idea behind staging is to generate such dependencies, resolve them as much
as possible statically, and then complete the analysis results by resolving the
residual dependencies during run-time. A point worth noting though is that this
promising approach has stark similarities with the idea of partial evaluation.

Partial evaluation [14] is a well-known program optimization technique that
specializes a given program with respect to its statically available inputs. The
resultant partially evaluated program can later be executed with the dynamic
inputs, to generate the final output. The advantage of performing partial evalua-
tion is that the specialized program often executes faster compared to executing
the original program provided both static and dynamic inputs together. Apart
from specializing a program with its static inputs, partial evaluation has also
been used to specialize interpreters and their generators, based on the notion of
Futamura projections [12]. In this paper, drawing inspirations from the theory
of partial evaluation, we devise a model to stage the process of obtaining the
results of a whole-program analysis, by staging the same into static and dynamic
components, independent of the analysis being performed.
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1 class A {

2 void foo(A a1) {

3 A a2 = new A(); // Object O3

4 a1.bar(a2);

5 }

6 void bar(A p) {...} }

7 class B extends A {

8 void bar(A q) {...}

9 }

Fig. 1. A Java code snippet to demonstrate generation of dependencies.

Observe that staging a whole-program analysis based on prior evaluation of
static dependencies and residual evaluation of dynamic dependencies, as noted
above and as illustrated in Fig. 2, would require a special component (say a
“partial-result evaluator”), which is capable of consuming dynamic inputs and
completing the analysis results. An important question that begs an answer
here is whether and how could one generate such special evaluators that can
“process partial results”. Further, in order to hold the efficiency advantages of
staging, it is important that the generation of such evaluators is itself efficient
and if possible, offloaded to the static compiler. The next question thence is,
can we design a “generator” that efficiently generates partial-result evaluators,
given the standard evaluator for a particular whole-program analysis. Finally,
assuming these components exist, can we assert that the staged analysis would
generate the same result as the corresponding whole-program analysis. In this
paper, we answer all these questions with a strong affirmation by modeling the
staging scheme based on the classic theory of partial evaluation.

We begin by formulating whole-program analysis as the process of computing
and resolving dependencies of various elements on different parts of the program.
Followed by this, we define partial analysis as the process of partially evaluating
those dependencies with respect to the statically available parts of a program,
thus generating partial results for the analysis being performed. We then devise
a strategy (called first AM projection) to “generate” an evaluator that can pro-
cess these partial results by performing residual resolution using the evaluated
values of dynamically available dependencies. Later, to improve the efficiency
of generating such partial-result evaluators for different analyses, we propose a
series of specializations (called second and third AM projections). Finally, illu-
minating the similarities between our model of partial analysis and the theory
of partial evaluation, we prove that the results generated by an analysis staged
using our scheme would be the same as the ones generated by its whole-program
version.

In order to validate the concepts presented in our manuscript, we imple-
mented prototypes of the different components of our staging scheme. Specifi-
cally, we first designed a simple evaluator that could resolve a set of dependencies
and generate the analysis result for a given program element. This evaluator is
written in a way that in case of staged analysis (where only static dependencies
can be resolved initially), it generates a partial result. We next implemented a
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Fig. 2. Generation of partial-result evaluators.

specializer that takes the above evaluator and specializes it with the given par-
tial result, to generate the partial-result evaluator. This partial-result evaluator
can take evaluated values of dynamic dependencies as input and generate the
final analysis result(s). Notably, such partial-result evaluators are independent
of the way dependencies are generated for a particular analysis, agnostic of the
tiered nature of modern managed runtimes, and can be invoked as soon as the
values of dynamic dependencies are available. Our prototype demonstrates this
by using dependencies generated for escape analysis [7,27] of Java programs,
generating partial-result evaluators for abstract objects therein, and invoking
them for dependencies on methods from the Java class library. Further, though
the example analysis is based on method summaries, the idea of staging can be
applied to other models of program analysis as well (as long as the dependencies
can be categorized into static and dynamic components).

Having described partial-result evaluators and their generators in the said
form (which describes standard staging), we observe that certain ways mod-
ern tiered runtimes (such as JVMs) operate raise few interesting questions. For
example: “Can residual dependencies be always resolved?” “What if at certain
execution points all the dynamic inputs are not available?” “In case resolution
cannot proceed, can we generate a more precise value than falling back to the
most conservative solution?” We discuss possible directions to address these
questions, along with drawing connections with few other ways of performing
program analysis, as interesting future extensions to the foundational model of
staged static+dynamic partial analysis proposed in this paper.

Contributions:

– We explain partial evaluation and Futamura projections in context of speed-
ing up the execution of programs and of the generation of program translators,
in a lucid and easy-to-understand manner.

– We formalize the definition of partial analysis and devise a scheme to stage
whole-program analyses into static and dynamic components, along with a
novel notion of AM projections.

– We establish the correctness and precision properties of our staging scheme,
based on results from the theory of partial evaluation.
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– We validate the presented concepts by implementing a prototype that gener-
ates partial-result evaluators independent of the analysis under consideration.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of relevant concepts from an existing staging framework required for further
reading of the paper. In Sect. 3, we describe partial evaluation and Futamura
projections in a readily comprehensible manner. We then present our staging
scheme for whole-program analysis, along with the AM projections for gener-
ating partial-result evaluators, in Sect. 4. We describe the details of our proto-
type implementation to validate the presented concepts in Sect. 5. In Sect. 6, we
highlight few of the challenges posed by contemporary programming-language
runtimes, possible ways to deal with the same, as well as connections of our
staging scheme with few other ways of performing program analysis. Finally, we
discuss related work in Sect. 7, and conclude the paper in Sect. 8.

2 Background: The PYE Framework

To address the problem of imprecision of program analysis in JIT compilers,
Thakur and Nandivada [28] propose a two-step solution called the PYE (Precise
Yet Efficient) framework. PYE uses the concept of partial analysis [9] to generate
partial results for all the statically analyzable parts of a program, and uses those
results during run-time to generate the final result. In order to account for the
unavailability of libraries while analyzing applications (and vice-versa) without
losing precision, PYE generates dependencies across the elements of a program
as conditional values statically, and evaluates them during run-time. We next
describe the generation and evaluation of such conditional values, along with a
representation that fits in with the notations that we use throughout this paper.

2.1 Conditional Values

Given a method m in a program P , a traditional whole-program analysis ψ
generates a summary fm mapping each program element x ∈ m in the domain D
of the analysis to one of the values in the set of dataflow values Val for that
analysis. Thus, fm(x) denotes the analysis result for the element x present in
method m. As an instance, for escape analysis [7], the set D could consist of all
the abstract objects allocated in the method m and the set Val could be {D,E},
denoting DoesNotEscape and Escapes, respectively.

On the other hand, let gm(x) represent the set of conditional values for a
program element x present in method m. A conditional value denotes dependence
on another program element, and is defined in PYE as a 3-length tuple 〈Θ, v, v′〉,
where Θ = 〈u, y〉 represents the dependee element y in method u, and v and v′

are values from the lattice Val of the traditional analysis. A conditional value
〈〈n, y〉, v, v′〉 can be evaluated to obtain v′ if the analysis result fn(y) equals v.

For example, consider the code shown in Fig. 3. If the analysis ψ being per-
formed is escape analysis, then the set gA.foo(O4) of conditional values that deter-
mines the escape status of the abstract object O4 allocated at line 4 is:
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1 class A {

2 void foo(B b) {

3 A a1 = new A(); // Object O3

4 A a2 = new A(); // Object O4

5 a1.bar(a2);

6 L l1 = new L(); // Object O6

7 l1.lib(a2); }

8 void bar(A p1) {

9 // no assignment to p1

10 } }

1 class L {

2 // A library class

3 void lib(A r1) {

4 // A library method

5 ...

6 } }

Fig. 3. A Java code snippet to demonstrate static+JIT analysis. Class L is a library
class not available during the analysis of the application class A.

gA.foo(O4) = {〈〈A.bar, p1〉,D,D〉, 〈〈L.lib, r1〉,D,D〉,
〈〈A.bar, p1〉, E,E〉, 〈〈L.lib, r1〉, E,E〉}

(1)

Here, the set of conditional values indicates that the escape status of O4

depends on the escape statuses of the first parameters of the methods A.bar and
L.lib. The conditional values denoting dependence on class A can be resolved
statically, whereas those depending on the library class L are resolved at run-
time. Note that we are directly using the names of parameters (that is, p1 and r1)
in the conditional values for brevity; in practice they would be placeholders
representing the first parameter of the corresponding method.

2.2 Evaluation of Conditional Values

Given a set gm(x) of conditional values generated for an analysis ψ, PYE eval-
uates them at run-time using an evaluator; we denote the same as CEvalψ (see
Fig. 4). CEvalψ takes gm(x) along with the analysis results for all the dependen-
cies contained therein (INgm(x) in Fig. 4), and generates fm(x) as follows:

fm(x) = � Λ-

T ∈gm(x)
�T � (2)

where T = 〈〈n, y〉, v, v′〉 is resolved as:

�〈〈n, y〉, v, v′〉� = (fn(y) == v) ? v′ : ⊥ (3)

⊥ being the most precise element in the lattice of the analysis ψ.
Using Eqs. 2 and 3, CEvalψ can evaluate the conditional values for each

program element and generate final results for the analysis ψ. Note that when a
dependence in gm(x) cannot be evaluated statically, PYE takes meet simply as
a union of the conditional values present therein.

For example, evaluating T = 〈〈A.bar, p1〉,D,D〉 in gA.foo(O4) amounts to
analyzing the method A.bar (to obtain fA.bar), then looking up the escape status
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Fig. 4. Whole-program analysis.

of the abstract object pointed-to by p1 (i.e. the escape status fA.bar(Op1), if p
points to Op1), and then checking if it equals D; if yes, then T gets evaluated
to D, else to the most precise element of the analysis lattice (which also happens
to be D for escape analysis). Finally, after evaluating each conditional value in
gA.foo(O4), we can use Eq. 2 to compute the meet of the individual evaluated
values, in order to obtain the final analysis result fA.foo(O4).

The approach of offloading complex analyses to static time and finishing the
results during run-time can be used to perform various kinds of program anal-
yses, and has been used in the past for escape analysis to elide synchronization
and points-to analysis to elide null-checks [28], and even to perform dependence
analysis for parallelizing loops [25]. In general, this approach can be used for any
analysis with a finite lattice (to generate a finite number of conditional values),
as discussed in detail in prior work [28].

In this paper, we develop a model of staged static+dynamic partial analyses,
which allows us to straightforwardly prove the correctness and precision of the
idea of staging as discussed above. We start with shedding light on the enig-
matic [23] theory of partial evaluation and Futamura projections in a novel way
(Sect. 3), and then use it to describe our model for partial analysis (Sect. 4).

3 Partial Evaluation and Futamura Projections

Partial evaluation [14] is a program evaluation technique that specializes a pro-
gram with respect to its available inputs. The specialized program can take the
remaining input1 and generate the same output as the original program. The
program that specializes other programs in this manner is called a partial evalu-
ator (traditionally referred to as Mix). This way of specializing a program P with
respect to a statically available input in1 to generate the specialized program
Pin1 that can take the remaining input in2, often speeds up the overall execution
as well. Thus, if the time taken by Mix to specialize P is TMix(P, in1), the time
taken by Pin1 to generate the final output is TPin1 (in2), and the time taken by the
original program P to generate the output in a single run is TP(in1, in2), then
partial evaluation is often advantageous, as:

TMix(P, in1) + TPin1 (in2) < TP(in1, in2)

1 Note that at the machine level, there is an interpreter that actually executes the
program along with its input; we are simply avoiding verbosity here.
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Fig. 5. Partial evaluation of program P using in1.

In context of just-in-time (JIT) compilers, the time spent in performing pro-
gram analysis gets added to the execution time of the program, thus making
whole-program analysis during JIT compilation practically infeasible. Conse-
quently, JIT compilers resort to very imprecise (e.g., intraprocedural) analyses.
Thus, motivated by the possible efficiency advantages of partial evaluation, a
promising way to obtain whole-program analysis results efficiently during JIT
compilation is to perform partial analysis of the statically available program, and
then complete the partial results during JIT compilation. In order to establish
that this way of staging whole-program analysis across static and JIT compila-
tion is correct, in this paper, we formalize a theory of partial analysis based on
the prior theory of partial evaluation.

We now present an intuitive formulation of partial evaluation, along with
the projections proposed by Futamura [12] to describe the generation of various
partial evaluators; we extend this formulation to partial analysis in Sect. 4.

3.1 Partial Evaluation

Consider the partial evaluation scheme shown in Fig. 5. For a given program
P and its available input in1, the partial evaluator Mix generates the residual
program Pin1 . This partially evaluated program, when given the remaining input
in2, yields the same result as running the original program on all of the inputs:

�Pin1�(in2) = �P �(in1, in2)

where �Pin1�(in2) denotes the evaluation of Pin1 with in2 as input, and
�P�(in1, in2) denotes the evaluation of P with in1 and in2 as inputs. The idea
behind partial evaluation is that if the input in2 changes more frequently than
the input in1, then evaluating the partially evaluated program Pin1 on in2 will
be faster than evaluating P on the complete input.

Partial evaluation can also be used to generate specialized versions of higher
levels of abstraction in the program translation ecosystem. For example, an inter-
preter is a program that takes other programs along with their inputs and gen-
erates the output for those programs. “What if we use the idea of partial eval-
uation to specialize an interpreter with respect to a given input program? We
get a faster interpreter for that program!” This specialization was described by
Futamura as the first Futamura projection (FP), as discussed next.
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Fig. 6. Futamura projections in partial evaluation. Note that the three Mixes are the
same specializers; we have added subscripted numbers for brevity in referencing them.

3.2 First Futamura Projection

The first Futamura projection describes how to specialize an interpreter for a
given source program; see Fig. 6 (1st FP). Here, the partial evaluator (Mix(1))
essentially applies the interpreter for a language S to a given source program PS
and generates a specialized interpreter, as illustrated by the equation below:

�Mix(1)�(InterpreterS)(PS) = Specialized InterpreterS for PS

The generated specialized interpreter can directly take the inputs of the pro-
gram for which it was specialized and produce the final output. Observe that
the behavior of the specialized interpreter is similar to how the binary produced
by a compiler (i.e. Compiled Output, see Fig. 6) takes the input of the source
program and generates final output. “Can we use the idea of partial evalua-
tion to generate a higher order program, which when given a source program as
input, generates its compiled version faster?” This is achieved using the second
Futamura projection, as discussed next.

3.3 Second Futamura Projection

The second Futamura projection describes how to specialize the specializer
(Mix(1)) used in first Futamura projection with the interpreter for a given pro-
gramming language S; see Fig. 6 (2nd FP). Here, the specializer (Mix(2)) takes the
specializer itself as one of the inputs along with the interpreter, and generates a
specialized Mix(1) for language S as the output, as shown below:

�Mix(2)�(Mix(1))(InterpreterS) = Specialized Mix(1) for S
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The generated specialized Mix(1) can directly take a program PS in the language
S as input and generate a specialized interpreter for PS. Observe that the behav-
ior of the specialized Mix(1) is similar to how a source program PS written in
a language S is compiled. Hence the output of the second Futamura projection
can also be called a Compiler (see Fig. 6). “Can we again use the idea of partial
evaluation to generate another higher order program, which when given an inter-
preter for programs written in S, efficiently generates a compiler for programs
in S?” This is achieved using the third Futamura projection, as discussed next.

3.4 Third Futamura Projection

The third Futamura projection describes how to specialize the specializer
(Mix(2)) used in second Futamura projection with itself; see Fig. 6 (3rd FP). Here,
the specializer (Mix(3)) takes the specializer itself as both the inputs, and gen-
erates a specialized Mix(2) as the output, as illustrated by the equation below:

�Mix(3)�(Mix(2))(Mix(2)) = Specialized Mix(2)

The generated specialized Mix(2) can directly take an interpreter for a lan-
guage S as input and generate a compiler for programs written in S as the
output. Hence the specialized Mix(2) can also be called a Compiler Generator
for programs written in the language S. Note that it is possible to extend this
idea further and describe a fourth Futamura projection to generate a compiler-
generator generator, and so on.

In a nutshell, the idea of partial evaluation can be used to automatically gen-
erate specialized tools in the program translation ecosystem. Though we could
not find a standard implementation of the specializer Mix, Jones [14] describes
it as a two-phase process: first a division prepass classifies program inputs into
static and dynamic, followed by which the division and the static inputs are
used to compress the program, to the extent possible, statically. Further, note
that though higher levels of Futamura projections do make sense, the literature
finds practical use primarily of the first projection [16], and sometimes the sec-
ond projection [5]. We next highlight how even staged partial analysis is similar
to partial evaluation, and then come up with novel projections that allow one
to stage a whole-program analysis into static and dynamic components.

4 Staged Partial Analysis

As described in Sect. 2, a promising way to avoid incurring the cost of performing
precise (whole-program) analysis during JIT compilation is to first analyze the
available program statically, and then complete the results when the statically
unavailable (or dynamic) dependencies are available (could be done either during
program execution in a VM, or possibly for each version of the unavailable pro-
gram, i.e., libraries, ahead of time). In one way, this implies that the evaluation
of conditional values for a given analysis ψ, as performed by the conditional-
value evaluator CEvalψ, has to be split across static and dynamic components.
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Fig. 7. A reference to the notations used in rest of the sections.

The consequence of this splitting (or staging) is that the static analysis can only
compute partial results. Such a static analysis, which works on part of the whole
program, is called partial analysis, and the corresponding module to perform
partial analysis can be called a partial analyzer. Subsequently, the partial results
generated by the partial analyzer need to be completed by resolving the dynam-
ically available dependencies. This in turn requires a special evaluator that can
take partial results along with the evaluated values of dynamic dependencies, to
generate final analysis results.

As one of the key contributions of this paper, we now present a novel descrip-
tion of the process of performing partial analysis using statically resolved con-
ditional values, followed by a series of specializations to efficiently generate the
dynamic component of the conditional-value evaluator.

4.1 Partial Analysis

Recall (from Fig. 4) that computing the final analysis result (of analysis ψ) for a
program element x in a method m requires supplying the evaluated values of all
the dependencies of x to the conditional-value evaluator CEvalψ. Whereas for
languages like Java, several of these dependencies might not be available stati-
cally. We now define partial analysis in context of evaluating the set of depen-
dencies available statically; see Fig. 7 for a list of the notations used throughout
this section.

Definition 1 (Partial analysis). For a program element x in method m with
a set gm(x) of conditional values, let the set Sx denote the statically available
dependencies of x. Here, while trying to evaluate gm(x), if we supply Sx to the
partial evaluator Mix (see Sect. 3), we get the result of partially evaluating gm(x)
with respect to the dependencies present in Sx. This process can also be seen as
“specializing” the set of conditional values for the statically available inputs. We
formally term this specialization as “partial analysis”, illustrated in Fig. 8.

When we perform partial analysis of the statically available program, using
the schema shown in Fig. 8, we obtain a specialized set of conditional val-
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Fig. 8. Partial analysis: specializing gm(x) using the set Sx of static dependencies to
obtain partial result.

ues ([gm(x)]Sx
), which can be termed as the2 partial result for the given ele-

ment x. For example, in the code shown in Fig. 3, as class L is a library class not
available for partial analysis, the dependencies in gA.foo(O4) related to L.lib are
not available statically (whereas those related to A.bar are available, forming
the set SO4). Thus, the partial result [gA.foo(O4)]SO4

generated after resolving
the statically available dependencies SO4 in Eq. 1, can be computed as:

= � {D,D, 〈〈L.lib, r1〉,D,D〉,D,D, 〈〈L.lib, r1〉, E,E〉}
(∵ fn(y) �= v, so T = ⊥ i.e. D)

= � {D, 〈〈L.lib, r1〉,D,D〉, 〈〈L.lib, r1〉, E,E〉}
(∵ D � D = D)

= � {〈〈L.lib, r1〉,D,D〉, 〈〈L.lib, r1〉, E,E〉}
(∵ D � X = X) (4)

Given such a partial result, we need a special evaluator that can consume the
runtime (dynamic) inputs to generate final analysis results for the element x.
We now present a novel notion of AM projections that generate these special
evaluators that can be used to accomplish the same.

4.2 First AM Projection

As discussed in Sect. 4.1, the output of performing partial analysis for a given
program element x is a partial result (comprising of specialized conditional val-
ues [gm(x)]Sx

). However, in order to be able to perform any optimization or
transformation involving x, we need the final analysis result fm(x). Thus, we
require a new evaluator that can take the partial result [gm(x)]Sx

as input,
resolve the residual dependencies based on the evaluated values of dynamically
available dependencies (say Dx), and generate fm(x). We now describe how can
we generate such a “partial-result evaluator” for any program element x.

Recall the conditional-value evaluator (CEvalψ) from Fig. 4, which, when
given the set gm(x) of conditional values for an element x and the set INgm(x)

of all dependencies of x, generates the final analysis result fm(x) for the anal-
ysis ψ. The first AM projection (see 1st AMP in Fig. 9) specializes CEvalψ with
2 We obtain a result later (Corollary 2) which implies that this is the only possible

partial result for a given set Sx of statically available dependencies.
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Fig. 9. AM projections in partial analysis. Note that Mix(1), Mix(2) and Mix(3) are the
same specializers as used in partial evaluation; also, we have added subscripted numbers
for brevity in referencing them.

respect to the partial result [gm(x)]Sx
. The output is a specialized conditional-

value evaluator that can take the set Dx of dynamically available dependencies
of x to generate the final analysis result fm(x). This process of specializing the
conditional-value evaluator can be summarized as follows:

�Mix(1)�(CEvalψ)([gm(x)]Sx
) = Specialized CEvalψ for [gm(x)]Sx

Note that the specialized conditional-value evaluator obtained above can be
used (see the Dynamic module in Fig. 9) to complete the staging of the whole-
program analysis ψ for the program element x. As this evaluator eventually
evaluates a given partial result, we name the output of the first AM projection
as Partial-Result Evaluator.

As an example, for the object O4 of method A.foo from Fig. 3, consider the
partial result obtained in Eq. 4. Once the analysis result for the library class L is
available, the Partial-Result Evaluator takes DO4 (which is formed by the
analysis result available for L.lib(r1)) and generates the final analysis result
for O4, as follows:
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fA.foo(O4) = � (D,D) (assuming fL.lib(r1) = D, and ∵ ⊥ = D)
= D

Thus, the consequence of the first AM projection is not only the fact that it
is possible to derive a partial-result evaluator, but also that it can be generated
statically. Further, the first AM projection also tells that for a given whole-
program analysis, there also exists a component that can serve as the generator
for such partial-result evaluators (which is the specializer Mix from the theory
of partial evaluation). Note that the first AMP thus parallels the first Futamura
projection; we next show that it is sensible to also extend the latter Futamura
projections in the world of partial analysis.

4.3 Second AM Projection

Observe that the partial-result evaluator generated by the first AM projection is
obtained by specializing the conditional-value evaluator for a single element in
the domain of the analysis being staged. However, program analyses often gen-
erate results for multiple elements in a given program, implying that one may
need to perform this specialization multiple times. To improve the efficiency of
generating such specialized evaluators, we next propose a higher level of special-
ization, as the second AM projection.

The second AM projection (see 2nd AMP in Fig. 9) specializes the specializer
Mix(1) itself with respect to the conditional-value evaluator CEvalψ. The output
is a specialized mix for analysis ψ that takes the specialized set of conditional val-
ues [gm(x)]Sx

for each element x and generates the specialized evaluator CEvalψ

for that x. This process of specializing Mix(1) with CEvalψ can be summarized
as follows:

�Mix(2)�(Mix(1))(CEvalψ) = Specialized Mix(1) for ψ

As the output of the second AM projection can directly be used to generate
the specialized CEvalψ for each program element x, the second AM projection
is a faster way of generating the partial-result evaluator compared to the first.
Hence we name the output of the second AM projection as PREval Generator.
We hypothesize that though this generator would give the same partial-result
evaluator as the first AM projection, one could adopt the second AM projection
in case of time constraints during static compilation.

4.4 Third AM Projection

Observe that the PREval Generator obtained by second AM projection can gen-
erate the partial-result evaluator for any partial result (of the form [gm(x)]Sx

),
for a particular analysis ψ. However, typical compilers perform many differ-
ent program analyses. Consequently, in order to perform multiple analyses in a
staged manner, one may need to perform the specialization of Mix(1) each time
with different CEvalψ, for varying ψ. To improve the efficiency of generating
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such specialized generators, we next propose a higher level of specialization, as
the third AM projection.

The third AM projection (see 3rd AMP in Fig. 9) specializes the specializer
Mix(2) with itself. The output is a specialized mix that can take as input the
CEvalψ for any analysis ψ, and generate the specialized mix for that analysis ψ.
This process of specializing Mix(2) with itself can be summarized as follows:

�Mix(3)�(Mix(2))(Mix(2)) = Specialized Mix(2)

A noteworthy point is that just by providing a conditional-value evaluator
for any analysis ψ, the specialized mix can directly be used to generate the
PREval Generator for that analysis ψ. Hence we name the output of the third
AM projection as PREvalGen Generator.

In a nutshell, the three AM projections describe ways to efficiently gener-
ate the dynamic components required for staged static+dynamic whole-program
analyses. We can summarize the specializations proposed in the three projections
as follows:

1. Partial-Result Evaluator

= �Mix(1)�(CEvalψ, Partial Result) = �PREval Generator�(Partial Result)

2. PREval Generator = �Mix(2)�(Mix(1), CEvalψ) = �PREvalGen Generator�(CEvalψ)

3. PREvalGen Generator = �Mix(3)�(Mix(2), Mix(2))

Thus, provided the conditional-value evaluator CEvalψ for a whole-program
analysis ψ, a PREvalGen Generator can be used to generate a PREval
Generator, which, when given a statically obtained partial result, can gener-
ate the corresponding Partial Result Evaluator, which can further be used to
obtain the final analysis result given the evaluated values of dynamic dependen-
cies. In Sect. 5, we discuss our implementation of these components using the
first AM projection; the higher-order AM projections can be used to generate
partial-result evaluators and their generators statically for multiple analyses.

4.5 Correctness, Precision, and Efficiency of Staging

In the previous subsections, we have seen how can we stage a whole-program
analysis into static and dynamic components, based on ideas taken from the
theory of partial evaluation. We now state and prove (by construction) few
important properties of such a staging scheme, with respect to the correctness
of staging and the precision of the results obtained, and comment on the overall
efficiency of the process.

Lemma 1. If the set of statically available dependencies is empty, then the spe-
cialization performed by the first AM projection for a conditional-value evaluator
can be seen in same light as the specialization performed by the first Futamura
projection for a program interpreter.
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Fig. 10. A complete staging of whole-program analysis.

Proof Sketch. The first AM projection (see Fig. 9) specializes the conditional-
value evaluator CEvalψ with a set [gm(x)]Sx

of conditional values that itself is
specialized with the statically available dependencies (Sx). On the other hand,
if Sx is empty (that is, the program element x does not have any static depen-
dency), then the first AM projection would specialize CEvalψ just with gm(x),
similar to the way the first Futamura projection specializes the interpreter (eval-
uator of programs) with a given source program PS (see Fig. 6).

Corollary 1. The Partial-Result Evaluator specialized just with gm(x) is similar
to the specialized interpreter obtained by the first Futamura projection, as both
need to take the complete static+dynamic input (dependencies) for generating
the final output (analysis result).

Lemma 2. Partial evaluation of a program with a statically available input
implies that the program is specialized to the extent possible (that is, maximally
specialized) with respect to that input.

Proof Sketch. A partial evaluator specializes a program P with respect to some
input in1 by precomputing all expressions that depend on in1, and then folding
P to the extent possible [14], that is, in a loop until fixed point. Thus, the output
of a partial evaluator is maximal in terms of evaluation of the program for the
given set of inputs.

Corollary 2. If the first Futamura projection uses the partially evaluated pro-
gram Pin1 (instead of the original program P) for specialization, then the obtained
interpreter is maximally specialized with respect to Pin1 .

Theorem 1. For a given program element and its statically available dependen-
cies, the partial-result evaluator obtained by the first AM projection is maximal
in terms of the conditional-value evaluation that can be performed statically.

Proof Sketch. Follows from Lemma 1 and Lemma 2, for a given set of statically
available dependencies passed in for generating the partial-result evaluator.
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Theorem 2. For any program element, the analysis results generated by a
whole-program analysis and by the corresponding staged analysis (as summarized
in Fig. 10), are the same.

Proof Sketch. Recall the whole-program analysis schema from Fig. 4. For a given
program element x, its final result fm(x) after performing a whole-program anal-
ysis ψ can be obtained by evaluating the set gm(x) of conditional values with
respect to all the dependencies INgm(x). Now consider the staging of the analysis
ψ as shown in Fig. 10. Here, we have broken down the set INgm(x) of dependencies
into the set Sx of statically available dependencies and the set Dx of dynamically
available dependencies. The static component is a specializer (Mix) that gener-
ates the specialized conditional-value evaluator (Partial-Result Evaluator)
by specializing the whole-program analysis evaluator CEvalψ with respect to the
partial result [gm(x)]Sx

. The generated Partial-Result Evaluator forms the
dynamic component of the staged analysis, and generates fm(x) using Dx. As
established by the theory of partial evaluation, the result obtained by evaluating
a program with respect to all of its inputs is same as the result obtained by
evaluating the specialized program with respect to its dynamic input. It can be
seen by construction that the way Fig. 10 stages a whole-program analysis is
similar to the way partial evaluation stages the evaluation of a program. Hence,
the analysis result generated by our staged analysis would be the same as the
one generated by the whole-program analysis. This equality can be summarized
as follows:

�gm(x)�(INgm(x)) = fm(x) = �[gm(x)]Sx
�(Dx)

Theorem 2 establishes the correctness and precision of the proposed staging
scheme, and Theorem 1 establishes the efficiency (indicating maximal evaluation
during static compilation) achieved by using the staging scheme. Observe that
the proofs became straightforward due to two important illustrations: (i) that
a whole-program analysis could be modeled as the evaluation of dependencies
across program elements; and (ii) that for languages like Java with statically
unavailable program parts, the evaluation of static and dynamic dependencies
could be modeled based on the theory of partial evaluation.

We next describe our experience implementing a specializer for generating
partial-result evaluators from given conditional-value evaluators for the whole
program, similar to the Mix described by Jones in his classic book on partial
evaluation. We approach this problem by describing a language of conditional
values, such that programs in the world of partial analysis become sets of condi-
tional values and program interpretation becomes conditional-value evaluation.

5 Specializers for Partial-Result Evaluation

In this section, similar to a language of programs, we first describe a language
of conditional values that could be used to generate sets of conditional val-
ues (denoting dependence on various kinds of elements) for different program
elements (Sect. 5.1). Next, similar to program interpreters, we design a simple
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Fig. 11. (a) The grammar for our division prepass; (b) extended grammar for
conditional-value evaluation.

evaluator that could resolve those dependencies to generate the final analysis
result for various program elements. We then mirror the process of specializing
a program interpreter by designing a Mix that could specialize conditional-value
evaluators to generate partial-result evaluators (Sect. 5.2). We also compiled and
ran the generated partial-result evaluators, by supplying the statically evaluated
values of Java libraries (computed using the same conditional-value evaluator
discussed above); Sect. 5.3 describes our experience with the same.

Note that though our efforts are independent of the program analysis being
staged, we need a set of conditional values generated for a given program analysis.
In this section, we have chosen a publicly available conditional-value generator
for escape analysis, Stava [27], written in Soot [29]. Stava generates a list of
dependencies for each abstract object (program element), denoting its depen-
dence on other program elements towards computing its escape status: one of
Escapes (E) and DoesNotEscape (D).

5.1 A Grammar for Conditional Values

Based on the kinds of elements on which the analysis result for a given program
element could depend on, Fig. 11 shows a grammar to generate sets of condi-
tional values (denoting those dependencies) for various program elements. Each
program element ProgElem belongs to a Class and a Method, and could be of
one of the five Types: (i) local object in current method; (ii) parameter taken
by current method; (iii) argument passed to another method; (iv) return value
of current method; and (v) field of any other element. Ref is a number, denot-
ing the line number of allocation for LOCAL, parameter and argument number
respectively for PARM and ARG, and simply a filler for the rest. Fields contains a
list of fields (e.g., f1, f2 to denote the element pointed to by X.f1.f2 for any
abstract object X). A conditional value (CV) denotes dependence on a program
element. Essentially, a conditional value <P1 X1 X2> evaluates to X2 if the ele-
ment P1 resolves to X1; see Sect. 2.1). For example, for escape analysis, DepVal
and ResVal could either be D or E. Thus, pairs comprising of program elements
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Fig. 12. Algorithm to perform conditional-value evaluation.

and the conditional values generated for those elements (e.g., by Stava) are the
valid members of the language generated by this grammar. (Note that we had
to make cosmetic changes in Stava to print its output in a form that can be
parsed by our conditional-value grammar.)

5.2 Conditional-Value Evaluators and Specialization

Specialization using the theory of partial evaluation uses an auxiliary “division”
routine to classify program inputs as static and dynamic. Having described a
language of conditional values in the previous section, we next wrote a divi-
sion prepass that classifies each conditional value as static or dynamic (based
on whether it denotes a library dependency while analyzing applications, and
vice-versa). We have implemented the division prepass as a JavaCC [26] visitor
(about 300 lines of code) over the abstract syntax trees generated for the sets
of conditional values prescribing to the grammar described above. We encode
the result of division by prefixing each conditional value with a tag STATIC
or DYNAMIC, resulting into a set of conditional values recognizable using the
extended conditional-value grammar shown in Fig. 11(b). This extended gram-
mar describes the language of conditional values that can be evaluated by our
conditional-value evaluator CEvalΨ .

Figure 12 gives an overview of the computation performed by CEvalΨ . The
evaluator takes as input the set of conditional values gm(x) for a program ele-
ment x belonging to a method m and its dependencies INgm(x), and generates
the partial result [gm(x)]Sx

. First, the evaluator transitively adds all the depen-
dencies of the given element into a list L (lines 2–5). Next, treating the various
dependencies as a graph, the evaluator forms strongly-connected components
(SCCs), denoting sets of equivalent resolved values. In case no element in an
SCC depends on an element from another SCC, all the elements in that SCC
are resolved to the bottom (most precise value) of the lattice of the analysis
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Fig. 13. Schema of the partial-result evaluator emitted for gA.foo(O4).

under consideration (lines 9–10). Finally, for the program element x, the eval-
uator takes a meet as described in Sect. 2.2, generating partial result in case
of dynamic dependencies (line 11). The last two steps (lines 8 to 11) are per-
formed till a fixed point. Our evaluator is also implemented as a JavaCC pass
over the extended conditional-value grammar (from Fig. 11(b)), and spans about
1000 lines of code. Note that the only part of the evaluator that depends on the
analysis for which the conditional-values are generated is the meet operation (to
access its lattice); thus, the evaluator is essentially parametric over the analy-
sis being performed. Hence, for escape analysis (ea), we denote the evaluator
as CEvalea.

Next we have implemented a Mix that takes as input our conditional-value
evaluator and a partial result [gm(x)]Sx

, and specializes the evaluator for the
given partial result. Our Mix works similar to the partial-evaluation Mix pro-
posed by Jones [14], but for Java programs of the kind of CEvalea (we could
not find any existing implementation that we could reuse). Our Mix is imple-
mented in JavaCC (for a grammar that covers the subset of Java required to
parse CEvalea), and spans about 1500 lines of code. The output of our Mix is a
partial-result evaluator for the given partial result.

The fundamental idea behind specializing the evaluator is that its code should
be executed as much as possible for the static dependencies, and the residual
code should take the evaluated values of dynamic dependencies as input to gen-
erate the final analysis-result. Observe that Line 11 in Fig. 12 involves taking
the meet (over the lattice Val) of the resolved dependencies. However, if any
dependence is dynamic, its resolution cannot be performed statically. Hence, in
order to specialize the evaluator for a given partial result, we first check the
kind of dependence (populated by the division prepass), and for each dynamic
dependence, we emit code to read and resolve the same. Next, we emit code to
perform meet over the resolved values obtained therein. Finally, we enclose the
emitted code as the main method of a uniquely named specialized-code class (say
SpecializedCodeN for a unique N), to obtain the corresponding partial-result
evaluator. For example, Fig. 13 shows the schema of the code emitted by our Mix
for the element gA.foo(O4) (see Eq. 4, Sect. 4.1).

Before we could use the partial-result evaluators generated for different pro-
gram elements, we need to obtain the evaluated values of the dynamic dependen-
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Fig. 14. Schema for prototype implementation of staged analysis

cies (libraries in case of Java). We do so by running an offline pass of CEvalea on
the libraries, and obtaining the evaluated values therein. Finally, one can supply
these evaluated values to the specialized codes comprising the partial-result eval-
uators for various program elements, to obtain the final analysis-result. Figure 14
shows the complete scheme of our prototype implementation for generating and
executing partial-result evaluators.

Observe that partial-result evaluation over the evaluated values of dynamic
dependencies, as per our proposed model, can be performed by executing the
specialized code as soon as the dynamic dependencies can be resolved. Thus, we
have the following options:

– Simply place the partial-result evaluators in a JIT compiler.
– As the partial-result evaluators are generated statically for all the program

elements, place them in a VM agnostic to the methods/code-portions that
are JIT compiled.

– For the evaluated dependencies corresponding to each version of the libraries,
invoke the partial-result evaluators ahead-of-time (i.e., statically itself).

The first option can be mapped to the kind of scheme adopted by staging
frameworks such as PYE [28]; however, it would mean we can perform optimiza-
tions for only those elements that belong to methods/regions that are JIT com-
piled (usually very few in tiered runtime systems such as the HotSpot JVM [21]).
On the other hand, the second option could be used to obtain analysis results
in the VM irrespective of the tiered nature and mode of compilation (by imple-
menting corresponding optimization passes). Finally and most interestingly, the
third option makes the process of generating analysis results even independent
of the runtime system, and can also be used to demonstrate the full impact a
staging scheme could make over performing a whole-program analysis.

5.3 Running the Partial-Result Evaluators

In this section, we try to validate the observation staging schemes reduce the
amount of computation one may have to perform at run-time to obtain whole-
program analysis results, significantly. In order to do so, we tried to perform
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a static whole-program escape analysis of a small benchmark moldyn from the
JGF suite [10] (12 application and 3509 referenced library classes), by forcing
Stava to analyze both application and libraries together. We found that for the
whole-program analysis, though Stava generated conditional values for all the
program elements in 4 h, their evaluation (using CEvalea) did not terminate even
in 20 h (on an Intel Xeon E5-2630 2.4 GHz system with 32 cores and 64 GB RAM,
running Cent OS version 7), owing to the large number of residual dependencies
(in the order of tens of thousands).

On the other hand, using the staged scheme (where we evaluate applica-
tion and library dependencies separately), Stava took ∼30 s to generate the
conditional-values for the application code, the division prepass (Step 1 in
Fig. 14) took just a second, the evaluation of statically available dependencies
(Step 2) took ∼3 min, the generation of partial-result evaluators (Step 3) took
about a minute – all performed statically. Correspondingly, for the library classes
referenced to by moldyn, Stava took ∼30 min, division and the evaluation took
∼90 min each – again performed statically. Finally, the execution of partial-result
evaluators to generate final analysis-results, given the partial results for moldyn
and the evaluated values of libraries – that is, the computation that needs to be
performed dynamically – took only ∼35 s.

Thus, we can notice that a staged scheme may not only allow one to obtain
the results of otherwise infeasible whole-program analysis during run-time, but
also do so efficiently, that is, by reducing the actual amount of computation to
be performed during run-time significantly. However, we looked into the list of
dynamic dependencies generated for various program elements and found a scope
to improve this time even further. In particular, we found that multiple program
elements shared several dependencies; we attribute this to the fact that multiple
parts of a Java application might use common library methods (for example,
multiple objects being passed to the method add of java.util.ArrayList). To
leverage this commonality, we modified our Mix to enclose the code generated
for each partial-result evaluator in a separate function, and to concatenate all
those functions in a single PartialResultEvaluator class. To obtain the final
analysis results for all the program elements, we invoke the individual partial-
result-evaluator functions present therein, using the Java reflection API; this
reduced the time required to a mere ∼4 s.

Noting the improvement in the potential time required during run-time using
the staged approach, we conclude that staging partial analyses into static and
dynamic components, backed by a theoretical model presented in our paper, not
only opens up avenues in languages with managed runtimes to perform existing
optimizations more aggressively than present, but can also be used to perform
novel analyses and optimizations that were otherwise practically infeasible.

6 Directions and Connections

Having drawn parallels between the classic theory of partial evaluation and a
promising way to stage program analyses into static and dynamic components,
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we now turn our attention to various recent features and challenges pertaining to
contemporary programming languages. In particular, we address topics of inter-
est that could lead to further work built upon our model of partial analysis for
languages with static and dynamic compilers. We also discuss connections with
few other ways of performing program analysis in managed runtimes. In effect,
we believe this discussion would be useful in driving multiple future directions,
not only for the Java world but also for the wider community interested in.

6.1 Runtime Features: Challenges and Possibilities

In this section, we discuss few challenges posed by modern static+dynamic com-
pilation systems, and discuss the kinds of techniques that could be used to
improve the precision of the analysis results obtained therein.

As described in Sect. 2 (see Eqs. 2 and 3), standard resolution and conditional-
value evaluation assume that all the dependencies can be resolved at run-time
(that is, closed world assumption). However, there could be scenarios because
of the way tiered JIT compilation works in modern JVMs where the results for
few dependencies may not be available at the point of need. For example, if
the program being analyzed uses reflective calls, state-of-the-art static-analysis
frameworks (such as Soot [29]) miss edges in the call-graph for the program, as a
result of which few methods may not get analyzed altogether. On another note,
features such as dynamic classloading [15] in JVMs may bring up classes in a
statically non-deterministic order. For example, in the partial result for element
O4 (see Eq. 4), if the class L is not loaded when the corresponding evaluation is
invoked, the conditional values dependent on L1.lib cannot be resolved. The
only possible sound option in this case would be to take the least precise value
E as the resolved value.

On the other hand, for analyses such as control-flow analysis that have a
richer lattice, it is possible to improve the precision for unresolvable dependen-
cies. Consider the code snippet shown in Fig. 15. In method A.foo, the set of
conditional values representing the possible types of objects that can be pointed-
to by the reference variable z is {〈〈A.foo, b〉, B, Z1〉, 〈〈A.foo, b〉, C, Z2〉}. Under the
existing evaluation scheme, where all the required dependencies are available, the
type of z will get assigned to either Z1 if b’s type is B, or to Z2 if b’s type is
C. However, say in presence of dynamic classloading, if the class C has not been
loaded when the conditional values for z need to be evaluated, then assuming
the least precise value of the lattice (which, for control-flow analysis, is the set of
all types in the program) is highly conservative and may affect many other opti-
mizations such as method inlining and virtual-call resolution. We now discuss a
solution to address this problem.

While performing partial-result evaluation, in case a certain dependency can-
not be resolved, instead of always falling back to the least precise value in the
lattice, we can statically generate some “fallback values” that can be used as the
fallback option during resolution. Observe that the set of possible values that
can be obtained as the analysis result for a given program element x, can be
formed only from the third elements (say resolution values) of the tuples present
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Fig. 15. A Java code snippet to demonstrate control-flow analysis.

in the set of conditional values for x. Thus, we can obtain a fallback value fb(x)
by taking the meet of all such resolution values:

fb(x) = � Λ-

T ∈gm(x)
T [3]

where T [3] gives the third element in each conditional value. As an example,
for the reference variable z in Fig. 15, fb(z) would be the set {Z1, Z2}.

In order to support fallback values, the staging scheme presented in Sect. 4
(see Fig. 10) can be modified as follows. In the static component, for each element
x, apart from the partial result [fm(x)]Sx

, we additionally need to store fb(x).
On the other hand, in the dynamic component, we can modify the partial-result
evaluation as:

fm(x) = � Λ-

T ∈gm(x)
�T �

�〈〈n, y〉, v, v′〉� = (is available(fn(y))) ? ((fn(y) == v) ? v′ : ⊥) : fb(x)

Here, for a given element x, while trying to resolve a conditional value T =
〈〈n, y〉, v, v′〉 ∈ gm(x), we first check if fn(y) is available; if yes, we proceed
with normal resolution, else we use fb(x) as the fallback value. Thus, for the
example shown in Fig. 15, even if the runtime has no information about the
caller of A.foo (that is, no knowledge about the type of the objects pointed-to
by b), using statically computed fb(z), we can resolve the conditional values
for z generated above to obtain the set {Z1, Z2} as the analysis result for z.

Apart from the challenges posed by runtime features discussed above, another
important consideration for static+dynamic analyses is to guarantee/verify that
the static-analysis results correspond to the bytecodes being executed. In case
of a difference, one may need to invalidate the partial-result evaluator for the
corresponding and dependent methods. This can at a simpler level be done by
maintaining a list of affected methods with the statically resolved dependencies,
and be improved by precisely identifying the effect on various program elements.
We believe this to be an interesting future research direction.
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6.2 Drawing Newer Connections

In this section, we first discuss few interesting aspects related to cross-pollination
of ideas between Futamura and AM projections, along with few subtle points
related to generation of conditional values in partial analysis. We then highlight
how our staged analysis scheme can be used along with various other applications
involving static and dynamic analyses.

1. Cross-pollination of Specialization Ideas. We have mentioned previously
that AM projections are similar to yet different from Futamura projections. To
elucidate this point, note that the partial-result evaluator generated by the first
AM projection is a result of specializing the conditional-value evaluator for an
already specialized set of conditional values (see Fig. 9). On the other hand, the
output of the first Futamura projection is a result of specializing the interpreter
for the original source program (see Fig. 6). It is possible to take cue from the
first AM projection and modify the first Futamura projection to specialize the
interpreter too with a partially evaluated program. Doing so would generate a
faster interpreter, as the input program can anyway be specialized with the stat-
ically available input. Similarly, the compiler generated by the second Futamura
projection can also take a specialized program as input to efficiently generate
the specialized interpreter obtained in the first Futamura projection.

As another possibility to explore in the space of specialization, it can be seen
in Sect. 4 (Figs. 4 and 10) that the input taken by our model of whole-program
as well as partial analyses is the set of conditional values, denoting dependencies,
for a given program element. It is possible to visualize the process of generating
these conditional values: from a given program analysis specified as an abstract
interpreter, we can identify the set of statements required to compute the final
analysis result for a particular program element x, as the dependencies of x. This
process of generating conditional values can be made faster: one could model pro-
gram analyses as “conditional-value generators”, and then specialize them with
respect to a given program, similar to the specialization of conditional-value
evaluators done by AM projections. Also note that though this “per element”
modeling is a bit different from the way usual iterative dataflow analyses [20]
are implemented (as aggregate transfer functions over all the variables in the
domain), it fits well with various recently popular ways of writing program anal-
yses, as discussed next.

2. Query- and Feedback-Driven Analyses. In general, whole-program anal-
yses generate results for all the program elements in all the methods of a pro-
gram. On the other hand, one of the growingly popular ways to scale precise
analyses in resource-constrained environments is to compute information only
for elements that are of interest, often specified as a set of queries generated
by various client optimizations [13,24]. These analyses are called “query-driven
analyses”. Staged schemes of the kind proposed in this paper can be integrated
directly with such analyses: First, the client can generate the list of program
elements that are of interest for the query under consideration, based on which
the partial analysis can generate the relevant sets of conditional values. After-
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wards, our staging scheme can be used to specialize the corresponding set of
conditional values and further generate the Partial-Result Evaluator only for
the elements of interest.

For languages that support static+dynamic compilation, one of the ways
to improve the outcomes produced by static analyses is to perform profiling in
the dynamic compiler and give feedback to the static compiler [6,11,30]. As
an instance, Bastani et al. [6] make optimistic assumptions for the unavailable
portions of a program, detect during runtime if an assumption goes wrong, abort
execution if it does, and then refine the static analysis accordingly; this process
is repeated until no assumptions fail. The staged scheme of our kind suits such
analyses particularly well: the feedback from runtime can be used to obtain the
list of affected elements that need to be re-specialized by the static analysis for
subsequent runs of the re-created partial evaluator, thus requiring the (partial)
static analysis to be re-performed only for the affected elements.

7 Related Work

In this section, we discuss relevant related work in four categories: (i) partial eval-
uation; (ii) partial program analysis; (iii) other applications of partial evaluation;
and (iv) staged analysis. To the best of our knowledge, ours is the first scheme
that maps the staging of whole-program analysis across static and dynamic com-
pilation to the theory of partial evaluation.

7.1 Partial Evaluation

Partial evaluation is a well-known technique to specialize programs with stat-
ically available inputs. Jones [14] formalized the theory of partial evaluation
in context of constructing compilers and compiler generators by specializing
subsequent levels of interpreters, using Futamura projections [12]. Perugini and
Williams [23] underlined the difficulty in understanding partial evaluation and
Futamura projections, and devised a diagrammatic approach to visualize the
working of partial evaluation, by modeling program execution using a box-
substitution notation. In this paper, we have also tried to explain the three
Futamura projections, particularly by showing the connections among the out-
puts and inputs of the subsequent projections. Our goal behind this visualization
is to later build a mapping from our proposed model of partial analysis, to gen-
erate partial-result evaluators.

7.2 Partial Program Analysis

The idea of analyzing partial programs was first formalized in a tool called
PPA [9], wherein the goal was to infer types for incomplete Java programs.
In presence of ambiguities, PPA uses heuristics based on the structure of a pro-
gram to generate imprecise but sound results. Similarly, Melo et al. [18] generate
missing type annotations for incomplete C programs, while handling challenges
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imposed by C’s weak type system using “placeholder pre-types”. In presence of
ambiguities, Melo et al. fill the placeholder with an “orphan” type in the lat-
tice of pre-types. Our staged scheme, though performs an analysis of the partial
program to generate partial results statically, is able to generate sound as well
as precise answers based on dynamic inputs, wherein the components needed to
evaluate and complete partial results are generated statically, using novel AM
projections based on the theory of partial evaluation.

There have been prior works [19,22,32] that generate results for incomplete
programs by trying to obtain possible solutions based on examples and then
ranking them for suitability. The limitation of these techniques is that they may
generate unsound results. Our staged scheme, on the other hand, would always
generate sound results, with varying precision based on the dynamic features
supported by a given runtime.

Allen et al. [4] present a scheme to analyze Java libraries in absence of appli-
cation code. They model concrete objects using allocation sites, while approxi-
mating unknown objects using static types, thus generating a combined lattice.
Our approach, though different in the sense that it works for both application
and library code, uses the idea of using static types as fallback values in absence
of dynamic inputs. On the other end of the spectrum, Ali and Lhoták [3] generate
call-graphs to analyze Java application code in absence of libraries, by approxi-
mating library methods as stubs. In comparison, our staging approach, instead
of approximating the libraries, uses their analysis results (obtained offline) to
complete application results during dynamic compilation.

7.3 Other Applications of Partial Evaluation

There have been works that use partial evaluation to speed up different parts
of a program’s execution lifecycle. One such implementation [16] speeds up the
execution of code during JIT compilation by specializing the AST interpreter for
a given language specified in the Truffle [31] framework. This avoids redundancy
in code generation during JIT compilation. Marr and Ducasse [17] compare
the performance of the previous approach with that of tracing JIT compilation
(which optimizes a program by JIT-compiling traces obtained by profiling). On
the other hand, in this paper, we have used the idea of partial evaluation to
speed up the process of obtaining whole-program analysis results (possible during
or just before JIT compilation). Our scheme can be augmented to the Truffle
approach by performing partial analysis of the available program during AST
specialization, and refining the results during JIT compilation.

7.4 Staged Analysis

Staging, though a general idea, has not often found place in static+dynamic
analysis systems. Chug et al. [8] compute and check information-flow properties
for Javascript programs statically, while leaving residual checks that depend on
dynamic inputs for the runtime. Albarghouthi et al. [1] develop specifications for
unknown methods in context of program synthesis. In context of Java, Thakur
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and Nandivada [28] recently proposed the PYE framework, which uses the idea
of conditional values to denote dependencies on dynamic input and resolves them
to generate final results during JIT compilation. In this paper, we have proposed
a general staging framework based on the theory of partial evaluation that can
be used not only to model both the above works, but also to establish and
prove the correctness and precision of the same. Importantly, our base scheme
(Sect. 4) is independent of the language and framework under consideration, and
the extensions for Java runtimes (Sect. 6) can be used to devise corresponding
strategies for other runtimes with novel dynamic features.

8 Conclusion

In this paper, we presented a formal model to stage whole-program analyses
into static and dynamic components. Our staging scheme took inspiration from
the theory of partial evaluation and specialized the evaluators for whole-program
analysis with partial results to generate partial-result evaluators. Similarly, based
on the notion of Futamura projections for partial evaluation, we proposed a novel
notion of AM projections that describe the generation of partial-result evalua-
tors and their generators. The generated partial-result evaluators can also be
placed in managed runtimes to generate final analysis results using the depen-
dencies that become available dynamically. This model allowed us to establish
the correctness and precision of the idea of staging in a straightforward manner.
Moreover, in order to address the challenges presented by the dynamic nature of
modern tiered runtimes, we also discussed possible future directions to extend
the staging scheme further. To the best of our knowledge, ours is the first scheme
that backs the staging of whole-program analysis into static and dynamic com-
ponents, using the established theory of partial evaluation. We envisage that
our formulated theory of partial analysis would be used not only to promote
the design of staged partial analyzers, but to also perform erstwhile infeasible
optimizations, for and beyond Java.
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Abstract. We introduce SecWasm, the first general purpose information-
flow control system for WebAssembly (Wasm), thus extending the safety
guarantees offered by Wasm with guarantees that applications manipu-
late sensitive data in a secure way. SecWasm is a hybrid system enforcing
termination-insensitive noninterference which overcomes the challenges
posed by the uncommon characteristics for machine languages of Wasm
in an elegant and thorough way.

1 Introduction

WebAssembly (Wasm) [22] is gaining popularity as a new standard for near-
native low-level code and is becoming a popular compilation target for languages
like C, C++, and Rust. Designed to enable high-performance web applications,
Wasm is currently supported by all major browsers [48]. Wasm also boasts sup-
port to standalone environments such as Node.js and it has been deployed for
decentralized cloud computing [24], smart contracts [1], and IoT [40,51].

Consider a password meter website PM which needs to communicate with
a third-party website TP to fetch a password dictionary. PM would fetch the
dictionary in the beginning and signal the end of a successful run at the end.
Current Wasm security guarantees are able to prevent direct exfiltration, but
cannot ensure the password is not leaked (through URL parameter encoding or
otherwise) given a malicious developer providing module PM.

More specifically, Wasm security relies on the browser’s same-origin policy
and a memory-safe sandboxed execution environment [2] with separate memory
and code space [22]. Wasm has an unstructured linear memory which can be
grown dynamically. To ensure memory safety, all memory accesses are dynam-
ically checked against the memory bounds, trapping any out-of-bounds access.
Furthermore, Wasm applications have structured control flow, therefore disallow-
ing jumps to arbitrary locations. In this way, Wasm ensures control-flow integrity
(CFI) [3], such that Wasm code can be compiled and validated in a single pass.

While Wasm offers CFI, it remains an open challenge to ensure a secure flow
of information through its applications. A promising technique addressing this
is information-flow control (IFC) [36], which tracks both explicit and implicit
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 74–103, 2022.
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information flows. While first valuable steps have been taken in this direction [19,
41,43,49], prior work is yet to address implicit flows [19,41], provide formal
guarantees [19,43], handle flows via the memory [41], or apply beyond specialized
scenarios of constant-time Wasm for cryptographic algorithms [49].

A general and sound IFC approach to Wasm suitable for general-purpose
applications is pending. Moreover, it is a prerequisite for further progress in IFC
techniques for WebAssembly. Although several IFC systems for other machine
languages have been proposed [5,7,10,11,13,20,21,25,29,30,52], they cannot be
immediately repurposed here. Wasm is not a regular low-level language. Its struc-
tured control flow mechanisms and unstructured linear memory are uncommon.
And when it comes to IFC, they prove to be quite challenging on certain aspects.

The structured control flow allows us to design an IFC system which lever-
ages Wasm’s syntax to compute the control flow regions directly. This in contrast
to IFC approaches for other machine languages which resorted to employing
external tools [5,10,13,25,52] or adding artificial syntactic constructs [13,29,52]
to achieve some structure at the low-level. However, Wasm’s handling of the
operand stack which, to the best of our knowledge, is unique among machine
languages requires some innovation when it comes to defining the security prop-
erties enforced by the IFC system.

Dealing with an unstructured linear memory entails an analysis in itself, not
only on what labeling tactic to apply, but also on what type of IFC enforcement
to design—both quite intermingled. While choosing the type of enforcement may
seem trivial, choosing the right memory labeling approach does not. When it
comes to the former, the reasoning is straightforward. On the one hand, Wasm’s
well-developed type system makes it suitable for static IFC. On the other hand,
managing dynamic flows such as memory accesses statically would lead to a
restrictive and rigid system, tipping the balance in favor of dynamic IFC. Yet, a
purely dynamic IFC approach usually bearing significant execution overhead is
not necessary for Wasm, since the language does not exhibit dynamic features.
Thus, the challenge remains in labeling the memory such that it minimizes the
dynamic checks while still maintaining permissiveness and expressiveness.

In this paper, we propose SecWasm, a hybrid IFC system addressing the
challenges above in an elegant and thorough way. As is common [5,10,13,25,
29,49,52], our focus is on confidentiality, with the security goal of preventing
information from secret inputs to leak to public outputs. However, we envision
our mechanisms to be suitable for tracking some facets of integrity, thanks to
the duality of confidentiality and information-flow integrity [12].

Non-goals. To delimit the scope of the paper, we emphasize the non-goals of
SecWasm, pertaining to handling the sources of non-determinism in WebAssem-
bly: lack of bit pattern for NaN values, resource exhaustion, and imported host
functions [22]. While we acknowledge that non-determinism can lead to illicit
information-flows through side channels (e.g., via the micro-architectural state
of the processor [44], or termination and progress channels [4]), we consider it a
worthwhile subject for future work and not crucial for laying the foundations of
general IFC in Wasm, which is the goal of this paper.

Contributions. In brief, we make the following contributions:
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– We discuss the key aspects of IFC for Wasm, to back up and give an intuition
for the design of SecWasm (Sect. 3).

– We present SecWasm, the first general IFC system for Wasm (Sect. 4).
– We formally prove SecWasm to enforce termination insensitive noninterfer-

ence (Sect. 5).

2 Background on Wasm

This section gives a brief overview of the Wasm specifics required to understand
SecWasm. In particular, we present the basic features and discuss important
aspects such as structured control flow, linear memory, and security characteris-
tics. For more details on Wasm, we refer the reader to the initial publication [22]
or official live documentation [50]. In the following and the rest of the paper, we
focus on Wasm v1.0 [47].

2.1 Basics

We begin by presenting the syntactic features of WebAssembly most relevant for
SecWasm (Fig. 1).

Modules. Wasm programs are organized into modules. A module is composed of
a list of function types, a list of functions, a table identifying function pointers
with functions, a linear memory of raw bytes1, and a list of typed global variables.

A module is instantiated through an embedder, which is a host environment
usually attached to the JavaScript engine in a web browser. When instantiating
a module, the embedder must provide definitions for everything that should be
imported, such as host functions, and an initial linear memory m. The module
can also export Wasm functions the embedder can invoke, and the embedder
can read the linear memory of the module.

Each function func has a type specifying its signature by reference to a
function type defined in the module. Functions may have local variables and
consist of a sequence of instructions comprising the function body. Functions are
not first-class, meaning they cannot be used as arguments to or returned from
other functions, nor assigned to variables. However, functions can call other
functions, including themselves recursively. Functions can be invoked directly
using the call instruction which takes as argument the index of the function
in the functions vector, or indirectly with the call indirect instruction via the
function pointer table tbl mapping integers to functions.

Global variables gbl may be either mutable or immutable and are in scope
to the entire module. Local variables are always mutable and only in scope to
the executing function.

Types. Wasm supports four primitive value types t: 32 and 64-bit integers (i32
and i64) and single and double precision floating-point numbers (f32 and f64).
Complex data types such as arrays or pointers do not exist in Wasm, and any

1 Wasm 1.0 only has support for a single memory per module.
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Fig. 1. Selected Wasm abstract syntax. Non-empty sequences are denoted with expo-
nent +, possibly empty ones with exponent ∗, possibly empty singleton sequences with
exponent 1, and optional arguments with exponent ?.

representation of these types in the source language is compiled down to a primi-
tive type. Function types ft (as well as block types bt) define a sequence of Wasm
values taken as parameters and a sequence of values to return.

Instructions. Wasm bytecode is executed as a stack-machine, where instructions
pop argument values off and push result values onto an operand stack.

Instructions are partitioned into data, mem, ctrl , and admin. Data instruc-
tions either manipulate the operand stack directly (t.const n, drop, select),
the local variables (local.get i, local.set i, local.tee i), or the global variables
(global.get i, global.set i). Memory instructions are used for interaction with
the linear memory. Instructions store and load write to and read from the lin-
ear memory, respectively. memory.size returns the current size of the memory,
and memory.grow extends it dynamically. Control instructions comprise scop-
ing constructs (block), loops (loop), conditionals (if), structured unconditional
(br, br table, return) and conditional jumps (br if), and direct (call) and indi-
rect function calls (call indirect). Finally, nop does nothing, while unreachable
causes an unconditional, uncatchable trap exception. When a trap occurs, the
entire computation is aborted, and no other changes to the state are allowed.
Wasm does not handle the traps, but propagates them to the embedder. Traps
are expressed by the administrative instruction trap. Other admin instruc-
tions express reduction of control instructions. As such, block, loop, and if
reduce to labels, and calls to invoke, which further reduce to frames. Labels
labeln{expr1} expr2 end carry the return arity n of the block, the block’s body
expr2, and the continuation expr1 to execute when a jump occurs within the
block. invoke represents the invocation of a function instance identified by its
address a. Finally, frames framen{frame} expr end carry the return arity n and
body expr of the function and the values of its arguments stored in frame.
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2.2 Structured Control Flow

Unlike other machine languages, the control flow in Wasm is structured and
this guarantees a program cannot jump to arbitrary locations. The structured
control flow is obtained by a combination of nested block constructs and jumping
instructions permitted only from within the blocks, and only as far out as the
nesting depth allows.

Blocks. Blocks are formed by standard control flow constructs if and loop, and
scoping construct block. Each such construct terminates with an end opcode
indicating where the construct’s lexical scope ends.

Branches. Wasm further implements its structured control flow with several
branching instructions: br, br table, and return—unconditional, and br if—con-
ditional. The crux of these branching instructions is that unlike unstructured
control flow, such as goto in C, they can only be executed inside nested blocks.
Branches have label immediates referencing outer blocks by their relative nest-
ing depth. This makes the labels scoped and able to reference only constructs
in which their corresponding branches are nested. Depending on the type of
construct, the effect of taking a branch differs. For a block or if instruction, a
forward jump occurs that resumes execution after the matching end. On the
other hand, a loop has a backward jump that restarts the loop.

Operand Stack Unwinding. In Wasm, the operand stack contains three types of
entries: values t.const n, labels labeln{expr}, and frames framen{frame}, with
the latter two modeled by their respective administrative instructions. As such,
when a block (or call) instruction executes, the top values corresponding to the
block (or function) arguments are temporarily popped, a label (or frame) is
pushed, and the value arguments are pushed back, order preserved.

Branching retains the values on top of the operand stack corresponding to
the return values of the current block (but also to the argument values of the
continuation) and pops all entries off the stack until and including the label
entry corresponding to the continuation. Basically, this amounts to popping a
number of labels off the stack equal to branching immediate +1 and all other
value entries in between.

A return from a function keeps the top values on the stack denoting the
function return values and pops everything off the stack until and including the
first frame, which represents the frame of the current function.

Example. Consider the code in Fig. 2a and assume an initial operand stack con-
taining only value i32.const 0. The evolution of the stack during the execution
of the code is depicted in Fig. 2b. In the following, we will go through each
instruction in the code of Fig. 2a and explain the behavior of the stack. Blocks
are labeled $0 and $1 for easier referencing.

Note the type of block $0 is i32 → i32. This means the block takes one
argument and has only one return value, both of type i32. More specifically,
before entering and leaving the block, the operand stack requires on top a value
of type i32. Block $1 of type i32 → ε only takes an argument of type i32 and has
no return values.
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Fig. 2. Branching example (a) and the evolution of the operand stack during its execu-
tion (b). The stack and index i below denote the operand stack after the execution of
the instruction on line i. Values are depicted as n instead of t.const n. $0 = label1{ε};
$1 = label0{i32.const 0};

When block $0 is entered, value i32.const 0 is popped off the stack, label
label1{i32.const 0} is pushed, then i32.const 0 is pushed back in. The same
behavior arises for instruction 2. i32.eqz pops the top value off the stack and
checks if it equals 0. It does, so it pushes back i32.const 1, otherwise it would
have pushed i32.const 0. br if 0 is a conditional jump which executes if the top
of the operand stack is i32.const 1. It is (step 3), so control is given to the
instruction at the end of block $1. When this happens, the label of block $1
is popped off the stack. Note i32.const 1 was popped off during the execution
of br if 0. Instruction 8 simply pushes i32.const 0 on the operand stack. Since
block $0 needs to return an i32 value, when leaving it on line 9, i32.const 0 is
temporarily popped off, the block label is removed and i32.const 0 is pushed
back in.

2.3 Linear Memory

The main storage for a Wasm program is an unmanaged linear memory repre-
senting a contiguous mutable array of raw bytes [50] which uses the little-endian
byte order [22]. The memory is instantiated with an initial size and initialized
with zeros. It can be grown dynamically with instruction memory.grow and
queried for the current size with memory.size. The memory can be accessed
through load and store instructions, with the addresses being unsigned integers
of type i32. Whenever a memory access occurs, a dynamic check ensures the
address is within the memory bounds. If it is not, a trap occurs.

Writing to and Reading from Memory. Figure 3 depicts instances of memory
access. Initially, linear memory m0 of size memory.size = n contains only zeros.
We store 32-bit integer 10752 on array positions 0 to 3, as the value takes four
bytes, and get a new memory m1. Reading a 32-bit integer from m1 (starting)
at location 1 means converting bytes 2A000000 to 42. Observe bytes from values
stored at adjacent positions in the memory can be interpreted as a new value,
as the raw data in the memory can be used to represent other numbers [50].



80 I. Bastys et al.

Fig. 3. Illustrative memory accesses for reads and writes. Highlighted memory locations
denote the positions in the memory array where the value is written to/read from.

Security Specifications. The linear memory is disjoint from the code space, the
execution stack, and the runtime engine’s data structures. As the memory is
unmanaged, Wasm does not provide garbage collection. Moreover, being the
only unmanaged part of Wasm, the linear memory becomes the only component
of the execution environment prone to corruption by buggy or malicious Wasm
code. Thus, untrusted Wasm code can safely execute in the same address space
as other code.

Unfortunately, this does not do away with buggy programs susceptible to
attacks via the memory. Specifically, certain memory vulnerabilities in C code
can persist when compiled to Wasm [27]. While these vulnerabilities do not allow
the attacker to corrupt the execution environment, meaning they are memory-
safe, they can still lead to insecure information flows that, e.g., may breach
confidentiality; in other words, they are information-flow unsafe.

3 Challenges and Design Choices

Next, we highlight the challenges arising from building an IFC system for Wasm
and give an intuition for the design choices taken when modeling it.

3.1 Attacker Model

As usual when designing an IFC system, we consider a join semi-lattice (L,�)
of security levels �, where data at level �d ∈ L can flow to an observer at level
�o ∈ L if and only if �d � �o.

The attacker is thus able to observe information below their security level A.
In addition, they have the ability to execute a Wasm program, and have access
to the final state of the global variables whose labels � may flow to A (� � A).
The attacker does not have access to the linear memory, nor to the operand
stack after the execution of the Wasm program. However, as customary, in our
noninterference proofs we also show A-equivalence on the operand stacks and
linear memories of two runs to get the appropriate induction invariants.

While these requirements may seem restrictive, they are in line with previ-
ous work [10] and we argue our model allows for a realistic attacker, external
to the system in which the Wasm code is running. Recall the attacker providing
the malicious PM module in the password meter example in the introduction.
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The attacker is able to supply malicious Wasm code, but cannot control the sur-
rounding JavaScript context, is able to see external events (such as web requests)
emanating from the Wasm code, but cannot usurp the entire surrounding exe-
cution context and thus cannot see the whole linear memory at the end of the
execution. As Wasm does not have a notion of web requests or channel commu-
nication with the surrounding execution context, we model external events by
the final value of global variables.

Finally, as already mentioned, we ignore information leaks stemming from
other side channels or from the interaction with the environment.

3.2 Unstructured Linear Memory

When it comes to the linear memory, we point out three properties we want our
IFC enforcement to fulfill, all necessary to achieve a more expressive and per-
missive system. The system should: 1) handle dynamic data structures compiled
down from the high-level language, such as objects and arrays; 2) allow for a
dynamic memory reuse; and 3) provide an IFC-sound memory.

In addition, for the IFC enforcement per se, two aspects need to be considered:
type of enforcement and memory labeling strategy (including granularity and
sensitivity). While tightly bound, we address them separately in the following
paragraphs.

Type of IFC Enforcement. In theory, we could model our system as a static,
dynamic, or hybrid enforcement. In practice, enforcing IFC in Wasm dynamically
could be an overkill since the language does not have dynamic features, e.g., in
the style of JavaScript2. Leveraging Wasm’s type system and building a fully
static IFC enfocement is not an option either because of the unstructured nature
of the memory. Statically, we do not have access to the memory address we are
reading from/writing to, so we cannot propagate memory taints via the type
system. A static enforcement can be indeed forced by either labeling the entire
memory upfront, or by using one memory for every security level in the lattice, as
previously suggested [49]. However, the former approach leads to a rigid system
breaking points 1) and 2), while the latter suffers from several drawbacks. Firstly,
it does not scale well to larger lattices and secondly, objects in the high-level
language with differently labeled fields would have to be split across different
memories. Finally, handling implicit flows in a meaningful way is not obvious.

Thus, the solution we adopt in this paper is hybrid IFC enforcement. More
specifically, we design a mainly static enforcement augmented with dynamic
security checks on memory access instructions. This is consistent with previous
work on IFC for other low-level languages without dynamic features [5,13,25,29,
30,52], which are fully static as they do not handle a linear memory, but rely
entirely on a heap. Hybrid IFC systems have also been discussed for TAL-like
languages [21] and even JavaScript [23,38], the former to increase expressiveness
of previous static enforcements, the latter to reduce the overhead of the dynamic
monitor.
2 Wasm does exhibit some dynamism through importObject, but since we do not

handle imported host functions in this paper, we do not consider it further here.
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Fig. 4. Illustrative examples for memory access rules. Locations a
L

denote bytes of
value a labeled L. Highlighted locations are read from/written to.

Labeling the Linear Memory. Recall Wasm’s linear memory is a contiguous array
of raw bytes. To achieve more flexibility, we opt for a fine-grained approach of label-
ing the memory and assign a label to every memory location. As such, each memory
location l maps in SecWasm to a pair (b, �) of byte b and security level �.

The fine-grained labeling allows for a straightforward handling of arrays and
objects when compiled down to Wasm, as they can occupy a contiguous sequence
of memory locations, instead of non-adjacent ranges of locations (a first step
in satisfying point 1). For the same reason, but also for satisfying point 2),
we pursue a flow-sensitive approach. Flow-insensitivity would again require the
memory to be statically labeled upfront, without possibility of changing its taints.
As mentioned earlier, this is a rigid approach we do not consider further.

Security Considerations. One consequence of these choices is that memory access
instructions become adorned with a security label �. Then t.load � (t.store �)
reads from (writes to) the memory a value of type t and security level �.

Further, to reduce the dynamic overhead, we employ dynamic checks only
when reading from the memory. Checks when writing to the memory are not
needed. First, because the labels in the memory are updated upon a write, and
second, because the security type system ensures the security labels of the value
to be written, of the execution context, and of the address to write at all have
lower sensitivity than the instruction’s label. As such, while writing to mem-
ory will always succeed, given the instruction does not trap due to insufficient
resources, reading from memory needs to additionally ensure the security labels
of all memory locations required to form the value read are below level � of the
instruction. Thus, given memory m0 in Fig. 4, the program in Example 1 will
trap (M �� L), while the one in Example 2 will not (L� M � H). Finally, executing
the program in Example 3 with memory m0 produces memory m1.

Another consequence of our memory labeling strategy is that new mem-
ory locations require a security label as well. (Recall Wasm’s memory can be
extended dynamically with construct memory.grow.) Thus, for security reasons
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the newly created memory locations are labeled with the bottom label L of the
lattice.

Example 4.
1 memory.size
2 global.set 0
3 i32.load H
4 memory.grow
5 memory.size
6 global.set 1

Example 5.
1 memory.size
2 global.set 0
3 i32.const 1
4 i32.load H
5 if (memory.grow)
6 else (i32.const 0)
7 memory.size
8 global.set 1

Moreover, calls to memory.grow can only
take place in public contexts and by a pub-
lic value. Allowing other levels would leak
private information, as depicted in the code
snippets in Example 4 and Example 5. In
both examples, by comparing the global val-
ues stored at positions 0 and 1 in the final
state, the attacker can learn the secret read
on line 3 in Example 4, respectively line 4 in Example 5.

3.3 Structured Control Flow

One of the challenges of extending Wasm with IFC is computing the control flow
regions for handling implicit flows.

Wasm has scoped control flow instructions, similarly to high-level languages,
and branching instructions which extend their lexical scope, similarly to other
low-level languages. Computing the scope extension is what sets SecWasm apart,
as employing external tools or performing additional computations [5,10] does
not seem to be necessary for it. Instead, we benefit from branching instructions
arising only within nested blocks and use their immediates to compute the scope
extension.

Example 6.
1 block $B0
2 expr0
3 block $B1
4 expr1
5 block $B2
6 expr2
7 t.load M
8 br if 1
9 t.load H

10 br if 0
11 expr3
12 end
13 expr4
14 end
15 expr5
16 end
17 expr6

br if 1
t.load H
br if 0
expr3
d

expr4
d

Consider the code snippet in Example 7. It contains three
nested blocks (labeled $B0-$B2 and whose types we omit for
clarity) and two conditional branching instructions inside
block $B2, with br if 1 (line 8) extending $B2’s scope until
the end of block $B1. The first branch (line 8) is conditioned
by the medium-labeled value read on line 7. Then, instruc-
tions on lines 8–13 will be in medium context. However,
since the second branch (line 10) is conditioned by the high-
labeled value read on line 9, the execution of instructions
on lines 10–11 will be in high context. We assume exprn,
with 0 ≤ n ≤ 4, are not branching instruction. Note expr4 is
not highlighted in red, nor expr5 in blue. The reason for this
is that expr4 is executed irrespective of whether expr3 gets
executed or not. Similarly, expr5 is not in a medium context
as it is always executed.

In brief, immediate i of a branching instruction extends the scope of the
current block until the end of the ith-1 block, where counting starts at 0 from
the current block. We further use this information to compute the control flow
regions without resorting to other additional tools.

The pc upgrading and downgrading around the control flow regions is not
surprising, and this is usually dealt with by adopting a stack of security levels [53],
with the top pc being the effective one. We follow a similar tactic and push a pc
entry onto the stack whenever we enter a block. What SecWasm does differently
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Fig. 5. pc stack progression for Example 7. Indices denote code line numbers, white
denotes a low program counter, blue medium, and red high. (Color figure online)

next, is to use a flow-sensitive stack, i.e., a stack whose entry sensitivity can
change during typing (Fig. 5), in contrast to most previous approaches employing
a flow-insensitive one. More specific details on this are discussed in Sect. 4.3.

3.4 A-Equivalences

The final challenge we face is not to ensure the design of SecWasm is sound,
information flow in Wasm is comparatively straight forward, but proving it is
sound. A first step in this direction is coming up with the right definitions to get
the appropriate induction invariants for proving noninterference.

While we are interested in global variables equivalence with respect to the
attacker (Sect. 3.1), we need to show some kind of A-equivalence holds through-
out the program’s execution for other parameters as well, such as memory and
operand stack, even though the attacker does not have access to them.

Memory A-Equivalence. Traditionally, �-equivalence on memories m0 and m1

(denoted m0 ∼� m1) is defined such that for every memory location l, if m0(l) =
(k0, �0) and m1(l) = (k1, �1) and both �0, �1 � �, then k0 = k1 and �0 = �1.

However, this relation is not an equivalence relation, as it is not transitive.
Given memories m1 = {0 	→ (1, L), 1 	→ (1, L), 2 	→ (3, H)}, m2 = {0 	→ (1, L), 1 	→
(1, H), 2 	→ (2, H)}, and m3 = {0 	→ (1, L), 1 	→ (2, L), 2 	→ (1, H)}, m1 ∼L m2 and
m2 ∼L m3, but m1 �∼L m3. Due to this, the classical formulation for confinement
will not be strong enough to hold true, as after typing a program in a high context,
executing it will not necessarily result in �-equivalent memories. Because of the
flow-sensitivity, the program execution in a high context is confined to strictly
making more memory locations secret.

This means we need a stronger relation for memories, an ordered-equivalence
�A which says two memories m0 and m1 are �A-equivalent if m1 has strictly
more high-labeled indices and all low-labeled indices are the same between m0

and m1 (see Definition 6 in Sect. 5).

Operand Stack A-Equivalence. Defining A-equivalence for two unwinding
operand stacks is more involved.

Consider the Wasm code in Example 7 prepending the code in Fig. 2a with
instructions 1–2 for reading value of secret xH. This also corresponds to C
code if (xH) {return 0;} else {return 1;}. Figure 6 depicts the evolution of
the operand stack during the execution of this program for both cases when
xH = 0 and xH �= 0.
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Fig. 6. Evolution of the operand stack for Example 7. The stack and index i below
denote the operand stack after the execution of the instruction on line i. Values are
depicted as n instead of t.const n. $0 = label1{ε}; $1 = label0{i32.const 0}; x is the
value read from memory starting at location ax.

Example 7.
1 i32.const ax

2 i32.load H
3 block (i32 → i32) $0
4 block (i32 → ε) $1
5 i32.eqz
6 br if 0
7 i32.const 1
8 br 1
9 end

10 i32.const 0
11 end

Since we consider x to be high, running the program
with values for xH from the two cases gives us two different
operand stacks which at the end of the execution must be
indistinguishable to an attacker. We say the end of the
execution since instructions 6-11 will be in high context.
(br if 0 sets a high context for instructions 6-9 and br 1
on line 8 extends it until line 11.)

Generally, we show this indistinguishability by first
relating through an equivalence relation ∼A two operand
stacks with the same shape OS1 and OS 2 and second,
by relating through an ordered equivalence �A and a confinement lemma two
operand stacks OS1 and OS ′

1 (OS 2 and OS ′
2, respectively) when entering and

leaving a high-context area. Finally, a triangle lemma proves the two final
operand stacks OS ′

1 and OS ′
2 A-equivalent.

OS 1 �A OS ′
1

∼A ∼A
OS 2 �A OS ′

2

Recall the elements on the operand stack are values,
frames, and labels, and none of which contains security
levels. Before relating the operand stacks in attacker-
equivalence relations, we need to relate them to another
structure containing security levels, and this is a type stack
TS of labeled types t〈�〉. Then, TS � OS (Definition 3 in Sect. 5) says that OS
is in agreement with TS, meaning that if disconsidering frames and labels, then
for every labeled type t〈�〉 in TS there is a corresponding value t.const k on the
same position in OS.

Fig. 7. Operand stack equivalence
relations in SecWasm. White is low,
gray is high, striped is either.

Defining relation ∼A simply means
ensuring the operand stacks satisfy cer-
tain requirements given their correspond-
ing labeled type stacks. Figure 7a illus-
trates this relation. Cells denote values on
the operand stack, and gray cells denote
values whose corresponding labeled type
on the type stack has a high label. Basi-
cally, ∼A says that any two operand stacks
of the same shape (without frames and
labels) and with equal low values (the label
of the corresponding type is low) on the
same positions are attacker-equivalent (Definition 4 in Sect. 5).
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Defining relation �A is particularly challenging, as we need to specify what
happens to the operand stack during the high-context execution. If it unwinds,
how much does it unwind? If it grows, what gets added to it? When a program
executes in a high context, one of three things can happen (and all three things
can happen during different parts of the execution). Firstly, the program can
branch and pop the appropriate number of entries off the stack. Secondly, the
program can pop some number of entries off the stack without branching. Thirdly,
the program can push elements onto the stack. In the first two cases, the bottom
of the stack will remain unchanged between the beginning and the end of the
execution. In the third case, there is still some part at the bottom of the stack
that remains unchanged (this may however be empty) and the top of the stack
will contain only values labeled at or above the high pc-label. Relation �A in
Fig. 7b captures all three cases (Definition 5 in Sect. 5).

3.5 Big-Step Semantics

To conclude this section, we make a final note on a decision related to the
semantic model we take to obtain proof clarity and simplicity.

In this paper, we opt for a big-step operational semantics for (Sec)Wasm, in
contrast to previous work using a small-step operational semantics [22], due to
two principal reasons. Firstly, our goal is to provide an IFC system that is mostly
static and, therefore, we do not find the choice of semantics to be crucial, as long
as it remains faithful to the Wasm specification. Secondly, our IFC system aims
to provide end-to-end noninterference for full program executions. In this setting,
big-step semantics naturally accommodates clean proofs of noninterference for
Wasm’s structured control flow primitives.

4 SecWasm

This section presents the technical details of SecWasm, our information flow-
aware variant of Wasm. Recall we focus on WebAssembly 1.0 [47]. Consequently,
we disregard language extensions in the current version [50]. However, to the
best of our knowledge, the extensions do not fundamentally alter Wasm in a
way that could not be accommodated in SecWasm.

4.1 Syntax

As already discussed in the previous section, SecWasm extends several of Wasm
syntactic constructs with security levels, all highlighted in Fig. 8. We append a
security label � to each value type, and augment all types t in Wasm to labeled
types τ in SecWasm. Further, we annotate function types ft with a security label
� specifying an upper bound on the information that may flow into the execution
of a function. As mentioned in Sect. 3, instructions for reading from/writing
to memory also carry a security label �. We omit alignment immediates for
these instructions as they do not affect the semantics [50]. As seen in Sect. 2,
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Fig. 8. SecWasm’s extensions over Wasm syntax.

administrative instructions are an artifact of small-step semantics. Due to the
big-step semantics paradigm we employ, all administrative operators except for
trap become irrelevant in SecWasm.

As our extensions are only related to information-flow, we do not explicitly
distinguish between SecWasm and Wasm when we discuss about the syntax and
semantics the two systems share. We use SecWasm only when we refer to the
information-flow extensions to Wasm.

4.2 Semantics

Since our IFC enforcement is mostly static, this subsection provides mainly a
glimpse into (Sec)Wasm’s semantic behavior.

Notation. If a is a sequence or stack of items, then we use notation a[i] to denote
the i:th element of the stack (counting from top and starting from 0), a[i :] to
denote all elements from a[i] through the end of a, and a[i : j] to denote all
elements from a[i] to a[j] inclusive (the empty sequence is j < i and a[i : ∞] is
equivalent to a[i :]). Furthermore, we write a[i : j → k∗] to denote the sequence
in a with all data at indices between (inclusive) i and j replaced by the sequence
of values k∗. We use :: as a stack entry separator. Note in SecWasm, we represent
the top of the stack on the left, i.e., a[0] :: a[1 :], unlike in pure Wasm, where it
is denoted on the right.

By en we denote a sequence of length n with all free variables in e replaced
by xi for each i ∈ [0, n − 1].

Following Wasm, we make heavy use of record-like syntactic constructs in
SecWasm. A grammatical category consisting of records is declared, e.g., as
R :: = {key1 n, key2 expr} and if r ∈ R then r = {key1 n, key2 expr} for some
number n and expression expr , and r.key1 = n. Furthermore, we use syntax
r{key1 0} to denote a record that is like r except “field” key1 now has value 0.

Evaluation Judgment. As discussed in Sect. 3, we employ a big-step semantics
paradigm due to its cleaner representation and ease of reasoning. As such, we
have a big-step evaluation judgment !σ, S, expr" ⇓ !σ′, S′, θ" relating an ini-
tial configuration to a final configuration. In the initial configuration, a sequence
of instructions expr is executed in current state S by interacting with the operand
stack σ, leading to the final configuration containing the updated state S′ and
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Fig. 9. SecWasm selected evaluation rules. Security extensions are highlighted .
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operand stack σ′. The essence of this paradigm is the third component θ of a
final configuration. θ evaluates to either a natural number j denoting a branch
out of j contexts (blocks, loops, or conditionals), no-br if there was no jump, or
return if a return instruction executed. θ allows to do away with the administra-
tive instructions in Wasm. More on this in the next paragraph when we discuss
selected evaluation rules.

Metavariable S represents the store or the global state and comprises of
instances for all functions, globals, tables, and memories that have been allocated.
Just like in pure Wasm, operand stack σ contains three types of entries: values,
labels, and frames. In SecWasm, we diverge slightly from Wasm by denoting
branch target labels as Ln instead of labeln{expr}, as in SecWasm we do not
need to keep track of the continuation expression expr . As a simplifying choice,
we also use the syntax σ :: Li−1

n :: σ′ to represent the case where Ln is the i:th
label (counting from top and starting from 0) on the compound stack σ :: Ln :: σ′.
Frames remain as defined in Wasm, framen{frame}, with frame keeping track
of the values for the function’s local variables.

Another point of divergence from Wasm is that in SecWasm there is only one
frame on the operand stack at any given time. The reason for this change is that it
simplifies our formalization. Thus, instead of having an operand stack containing
several frames, in SecWasm every function call creates another (sub-)stack, where
its corresponding frame is on the bottom. This is in line with function behavior in
WebAssembly, as jumps from inside a function are either branching from within
nested blocks, giving control at the end of the corresponding block, or returns,
giving control back to the caller function. This will become more obvious when
discussing rules e-call-*.

Similar to Wasm, abnormal termination of a program results in a trap,
denoted !σ, S, expr" ⇓ trap. When a trap occurs, the computation is aborted
and no further modifications to the state can be made. In SecWasm, the execu-
tion of an instruction traps under the same conditions as in Wasm, but failure
to satisfy the additional security checks also leads to a trap. Thus, SecWasm
introduces additional rules for handling the error cases which result in a trap
due to the IFC-checks. These rules are presented in the technical report [6].

Selected Evaluation Rules. Figure 9 depicts the most important evaluation rules,
while the full set of rules is presented in the technical report [6]. Since we opt for
a mostly static enforcement, note only few semantic rules carry security checks.

The intuition for the memory access rules was given in Sect. 3, so we do
not discuss the rules in detail here. However, recall Examples 1 and 2 and note
premise

⊔
� � �m in rule e-load ensuring all security levels � of memory loca-

tions read from are below the immediate label �m for the load instruction. Due
to this check, in SecWasm the execution of Example 1 will trap, while the exe-
cution of Example 2 will succeed. Further, recall Example 3 and note that rule
e-store updates the security levels of the memory locations written into with
no additional checks.

Before we discuss the rules for achieving structured control flow, few things
are worth mentioning. First, recall that branching can only happen from within



90 I. Bastys et al.

the block constructs block, loop, and if. Second, the end of every such block
is a valid branch target for code executing inside the block, with the exception
of loops where the target can also be at the start of the loop. Finally, recall θ
specifies how far out of a series of nested blocks to jump. We further introduce
the notion of predecessor of θ (pred(θ)) specifying how to update θ when we exit
a block: pred(no-br) = pred(0) = no-br , pred(j + 1) = j, pred(return) = return.

When entering a block of type τn
1 → τm

2 and body expr , label Lm is added
in between the top n values vn

1 of the operand stack corresponding to the block’s
input arguments and the rest of the stack. Exiting a block can happen either by
trapping (rule e-block-trap), by jumping (when a branch/return instruction
is executed inside the block), or by reaching its end without a jump. Rule e-
block distinguishes between the latter two cases by inspecting marker θ. If no
jump occurred (θ = no-br), we remove the label Lm from the operand stack and
return the result σ′ :: σ′′. Otherwise, we return the operand stack as is, since the
stack unwinding has been dealt with already by the jumping instruction (See
below rule e-br-if-jump.) Finally, function pred adjusts θ to account for the
fact that a block has been exited.

Consider again Example 7 when x �= 0 and the instruction on line 8 is about
to be executed. br 1 unconditionally jumps out of the two blocks and gives control
at the end of instruction on line 11. θ is set to 1 after executing line 8 and exiting
block $1 updates it to pred(1) = 0 (rule e-block). Since θ �= no-br , all remaining
instructions in block $0 will be ignored (rule e-seq-jump). Reaching the end of
block $0 updates θ again to pred(0) = no-br . If present, executing all subsequent
instructions would continue according to rule e-seq until the next branching or
function return.

loop and if statements constitute blocks with slightly specialized rules to
reflect their different function. This can also be seen in the semantic behavior
of pure Wasm, where ifs and loops reduce in one step to a block [22]. For this
reason we only present rules e-loop-skip (for leaving a loop) and e-if in the
technical report [6], as they differ only slightly from rule e-block. What differs
is that if statements choose the expression to execute based on the value on
top of the operand stack, while e-loop-skip requires θ to be different than 0,
as θ = 0 restarts the loop (rule e-loop-eval). Note from rule e-loop-eval
another perk of Wasm, namely loop blocks are evaluated at least once.

A conditional branch br if i executes when the value on top of the operand
stack is different than 0 (rule e-br-if-jump). In this case, Wasm requires the top
of the stack to contain at least n other values, as illustrated by the index of the
i:th label Li−1

n on the input stack. Recall the index specifies the number of values
expected by the branch target. Next, the rule drops everything between the top
n + 1 entries on the stack down to and including label Li−1

n and finishes with
θ = i. If the top value of the operand stack is 0, then the conditional branch does
not execute (rule e-br-if-no-jump), and the computation proceeds sequentially,
finishing with θ = no-br . Unconditional branching br i (rule e-br) works in a
similar way as executing conditional branching.
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When a function is called (rules e-call-*), we create an empty operand stack
and push on it a frame instantiated with values vn

1 for the function arguments
and initial values 0 for the function’s local variables. When returning from a
function, we only retain the return values, discarding everything else, including
the frame. Note in Wasm, the frame is popped off when executing a return, but
in SecWasm it is not (rule e-return).

Finally, rules e-seq-* distinguish between the cases when a jump occurred,
i.e., θ �= no-br in rule e-seq-jump, and when the execution proceeds sequentially
in rule e-seq. In the former case, rule e-seq-jump simply ignores the subsequent
instructions until θ becomes no-br . And the block rules ensure θ indeed decreases
to no-br , by computing its predecessor every time a block is exited. Thus, either
the same number of blocks have been exited as the initial value of θ + 1, or all
instructions after a return statement have been ignored.

4.3 Security Type System

As our enforcement is mostly static, SecWasm’s type system is heavily populated
with security checks. Before discussing the type system, we first give an intuition
for the constructs SecWasm uses to track the information flows, and then briefly
discuss the typing judgment.

Tracking Flows—an Intuition. As the bedrock for static IFC in Wasm,
SecWasm’s type system tracks both explicit and implicit information flows. For
tracking explicit flows, we assign a security label to each value in the operand
stack via a type stack st denoting a stack of labeled types. As discussed in
Sect. 3.3, for tracking implicit flows we use a stack of pc labels, with a label
entry for every block context. We then combine the pc stack with the type stack
in a stack-of-stacks γ with entries 〈st , pc〉. Upon entering a block, γ is augmented
with a new pair 〈st , pc〉, with st denoting the input stack for the block, and pc
the initial program counter label for the block’s execution. The security labels in
γ may get upgraded, and after leaving a block, the top two entries are merged.

Typing Judgments. The type system assumes a typing security context C con-
taining e.g., the type of functions and local variables. C is defined as in Wasm,
but where value types t have been adorned with labels to labeled types τ .

Previous presentations of Wasm [22] depict the type system using a judgment
of the form C � expr : tn → tm that only says how expr affects the top elements
on the stack and leaves the rest to a subtyping-like rule. Instead, we use a more
explicit judgment form passing the entire γ around while updating its program
counters: γ,C � expr � γ′. The judgment reads as follows: Assuming input type
stack γ.fst and security context C, expr produces (possibly) updated output type
stack γ′.fst. For γ = 〈st0, pc0〉 :: . . . :: 〈stn, pcn〉, γ.fst denotes the stack formed
by the first elements of each entry in γ, i.e., γ.fst � st0 :: . . . :: stn.

We extend the type system with a simple subtyping judgment for types to
capture when a type is less sensitive than another and write τ � τ ′ whenever the
label of τ can flow to the label of τ ′. We further extend this notion to sequences
of labeled types as st � st ′ if st and st ′ are of the same length and τi � τ ′

i for
τi = st [i] and τ ′

i = st ′[i], respectively.
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Fig. 10. SecWasm type system (Selected rules). Security extensions and static checks

are highlighted .

Selected Typing Rules. In the following, we discuss the most interesting rules
of the type system, depicted in Fig. 10. The full set of rules is presented in the
technical report [6].
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First, note that abuses of non-termination channel such as in snippet
t.load H;br if 0;unreachable are outside the scope of this work, as we fur-
ther focus on enforcing termination-insensitive noninterference. Thus, we add
no restrictions on the program context in rule t-unreachable.

An intuition for the memory access instructions was given in Sect. 3. Here,
we reiterate that static security checks are employed only when writing to the
memory (pc � �a � �v � � in t-store), as the semantics are responsible for
the dynamic security checks when reading. Finally, memory.grow executes in a
public context and only if the amount to extend the memory with is also public.

Typing the block instruction (rule t-block) requires the current type stack
to contain at least n labeled types, corresponding to the block type. Since we
enter a new block, we split the arguments off and push pair 〈τn

1 , pc〉 containing
the n labeled types and the same program counter pc on the stack-of-stacks
〈st , pc〉 :: γ. We also push τm

2 on the label-stack C.labels in context C to denote
the branch target at the end of the block (label(τm

2 ) : C). The sequence of
instructions expr is required to produce m correctly typed output values and
a new stack of stacks 〈st ′, pc′′〉 :: γ′ possibly with higher labels. Finally, on the
output stack-of-stacks, τm

2 is merged with st ′.
Recall if and loop are just special types of blocks. As a consequence, rules

t-if and t-loop only bear minor differences to rule t-block. For the former,
inner expressions expr1 and expr2 are type-checked under a program counter
tainted by the information flow from the condition operand, and for the latter,
the labels of type stacks and program counter need to be in a fixed-point over
the loop.

Example 8.
1 block
2 block
3 i32.const 0
4 local.get yH

5 br if 1
6 end
7 drop
8 i32.const 1
9 end

10 local.set xL

In rule t-br-if, all types on the stack-of-stacks 〈st , pc〉 :: γ
until and including the i:th+1 entry are tainted by label � of
the top element on the input stack deciding whether a branch
will happen, as illustrated in Example 7. (This is represented
by operator lift upgrading all security levels present in its
argument.) Furthermore, we require pc � � � C.labels[i] to
avoid implicit flows. This rule is important because it rejects
leaky programs like the one in Example 8 that copies the truth-
value of local variable yH to local variable xL by skipping all
the way to the end with br if 1.

All other jumping rules entail a similar taint propagation. In rule t-return,
for example, the entire stack-of-stacks is tainted by the function program counter.
Note that premise pc � st in the jumping rules is synthetic and we resort to
using it as it considerably simplifies the proofs.

Rule t-call is standard for function calls in IFC type systems. The input
type stack is required to be a subtype of the input type stack for the caller
function, the function program counter label � needs to be at least as high as
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current callee pc, and the output type stack of the function needs to be a subtype
of the expected output type stack.

t-call-indirect works in almost the same way as rule t-call, with the
difference that indirect calls require a 32-bit integer labeled � on top of the input
stack acting as the function pointer and thus the function also needs to check �
flows to the function program counter �f .

5 Security Properties

This section presents the security properties enforced by SecWasm. All proofs
are manual and presented in the technical report [6], a mechanization thereof
being left for future work.

We begin by stating two well-formedness properties for operand stacks C � σ
and stores C � S, specifying that local and global variables are well-typed in σ
and S, respectively, with respect to the types declared in context C.

Definition 1 (Context-Stack Well-Formedness). Operand stack σ is well-
formed with respect to context C, denoted C � σ, if:

1. For all i in the domain of C.labels there exists some σ0, σ1, and m such that
σ = σ0 :: Li

m :: σ1 and C.labels[i] = τm for some τm.
2. C.return = τm for some m and σ|F [0] = Fm, for the bottom frame Fm and

Fm.locals is well typed with respect to C.locals.

Definition 2 (Context-Store Well-Formedness). Store S is well-formed
with respect to context C, denoted C � S, if:

1. For every function f in S.funcs we have C � f .
2. For every variable in C.globals there is a corresponding well-typed entry in

S.globals.

Next, we state what it means for an operand stack and labeled type stacks
to be in agreement. (Recall Fig. 7a.)

Definition 3 (Operand Stack and Type Stack Agreement). Given
operand stack σ and type stack st, we define σ agreement with st (denoted st � σ)
inductively as:

[] � e

st � σ

t〈�〉 :: st � t.const k :: σ

st � σ

st � L :: σ

st � σ

st � F :: σ
.

Now, we can define what it means for two operand stacks to be equivalent
with respect to the attacker, i.e., relations ∼A and �A, as discussed in Sect. 3.
Recall security label A simply captures the level at or below which the attacker
can read information.
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Definition 4 (Operand Stack and Type Stack Agreement Equivalence).
For two operand stacks σ0 and σ1 and type stacks st0 and st1 such that st i � σi,
we define operand stack equivalence st0 � σ0 ∼C

A st1 � σ1 inductively as:

[] � e ∼C
A [] � e

st0 � σ0 ∼C
A st1 � σ1 �0 � A ∧ �1 � A ⇒ v0 = v1

t〈�0〉 :: st0 � v0 :: σ0 ∼C
A t〈�1〉 :: st1 � v1 :: σ1

st0 � σ0 ∼C
A st1 � σ1 F ∼C

A F ′

st0 � F :: σ0 ∼C
A st1 � F ′ :: σ1

st0 � σ0 ∼C
A st1 � σ1

st0 � L :: σ0 ∼C
A st1 � L :: σ1

.

The two type stacks st0 and st1 must have the same shape, but may differ
in their security labels. This allows us to relate prefixes of stacks before and
after program execution (when security labels may have been upgraded due to
a branch). In other words, this part of the definition does not come into effect
when considering a “traditional” noninterference theorem statement.

Ideally, when proving noninterference one would show that if two configura-
tions, including stacks and memories, are A-equivalent then the output configura-
tions that result after executing the same program on both these configurations
are also A-equivalent. However, this property cannot easily be extended to be
inductive and instead a confinement lemma is required. This lemma relates the
configurations before and after a single execution in a high context. Specifically,
it usually says that when you execute a well-typed program in a high context it
only alters high data. However, this statement is not sufficient in SecWasm, as
we also have to specify what happens to the operand stack during this execution.

And this is how we define ordered equivalence �A, by introducing judgment
γ � σ �C

A γ′ � σ′ stating that stack σ′ is the result of executing a high (w.r.t. the
attacker-label A) program that starts off with σ. To prove σ and σ′ are related
in this way one needs to prove there is some common A-equivalent bottom of
the two stacks (that may be empty) and that all elements on top of this bottom
part of σ′ are labeled high in γ′.

Definition 5 (Operand Stack and Stack-of-Stacks Agreement Ordered
Equivalence).

γ � σt :: σb γ′ � σ′
t :: σ′

b γ.fst = st t :: stb

γ′.fst = st ′
t :: st ′

b stb � st ′
b high(st ′

t) stb � σb ∼C
A st ′

b � σ′
b

γ � σt :: σb �C
A γ′ � σ′

t :: σ′
b

Note the pcs are not used in the ordered equivalence, although they are part
of γ. The reason for this is that in our proofs we only require the structure of
γ.fst given by γ.

Recall from the discussion in Sect. 3 that the classical memory equivalence is
not strong enough for our setting, so we use an ordered-equivalence relation �A
which says that two linear memories m and m ′ are �A-ordered equivalent if
m has strictly more high-labeled indices and all the low-labeled indices are the
same between m and m ′.
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Definition 6 (A-Ordered Memory Equivalence). Two memories m0 and
m1 are A-ordered equivalent (denoted m0 �A m1) iff ∀l. m1(l) = (k, �)∧� � A ⇒
m0(l) = (k, �) and ∀l. m1(l) = (k1, �1) ∧ �1 �� A ⇒ m0(l) = (k0, �0) ∧ �1 �� �0.

Further, we also need to consider what happens to the linear memory, global
and local variables, i.e., the state of the program. Fortunately, the flow-insensitive
nature of the global and local variables means that these will just be A-equivalent
before and after execution.

Definition 7 (A-Ordered Store Equivalence). Two stores S0 and S1 are
A-ordered equivalent given security context C:

S0 �C
A S1 iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0.funcs = S1.funcs

S0.tables = S1.tables

S0.globals ∼C
A S1.globals

S0.mems �C
A S1.mems.

Confinement. Usually, these definitions are sufficient for stating confinement.
Yet, in SecWasm we need to deal with an unwinding stack too. Ideally, con-
finement would be that given γ,C � expr � γ′ where γ[0].snd �� A and
!σ, S, expr" ⇓ !σ′, S′, θ", then γ � σ �C

A γ′ � σ′ and S �C
A S′. However,

this definition implicitly assumes θ = no-br ! For example, if θ = j + 1 then a
branch executed in expr and the stack σ′ is not well-typed with respect to γ′

anymore. We take this dependency of the type of σ′ on θ with the following
definition.

Definition 8 (θ-Variant Typing Contexts).

Δ(C, γ, θ) �

⎧
⎪⎨

⎪⎩

γ if θ = no-br
merge(C, γ, j) if θ = j

〈C.return, γ[0].snd〉 if θ = return,

where merge(C, γ, j) � 〈C.labels[j] :: γ[j+1].fst, γ[0].snd � γ[j+1].snd〉 :: γ[j+2:].

Finally, we introduce an order on θs to capture the fact that if we branch in a
high context we know something about the pc-labels in the output γ. Specifically,
we have no-br < 0 < 1 < . . . < return. We also need to define a translation of θs
to integers with infinity where nat(no-br) = −1, nat(j) = j, and nat(return) = ∞.

We are now ready to state our confinement lemma.

Lemma 1 (Confinement.) For any typing context C, store S0, operand stack
σ0, stack-of-stacks γ0, and expression expr, such that C � S0, C � σ0, and
γ0 � σ0, if !σ0, S0, expr" ⇓ !σ1, S1, θ", γ0, C � expr � γ1, and γ0[0].snd �� A,
then the following statements hold:

1. γ0 � σ0 �C
A Δ(C, γ1, θ) � σ1,
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Fig. 11. Pictorial representation of the confinement lemma. Each box represents an
element 〈st , pc〉 of γ before (left) or after (right) the execution in the high context.
White means pc � A, gray pc �� A.

2. S0 �C
A S1, and

3. γ1[0 : nat(pred(θ))].snd �� A.

The confinement lemma as stated above and proven in the technical report [6],
captures the intuition laid out previously. Furthermore, the different cases one
needs to consider in the proof are illustrated in Fig. 11.

Noninterference. Next we turn our attention to stating and proving nonin-
terference. We would like to state a classical theorem along the lines “if you
start off with two A-equivalent configurations and execute the same program
in both, you end up with two A-equivalent configurations.” However, this is
not a strong enough statement to induct over the evaluation of expressions in
SecWasm because the two different executions may end up branching differently
in a high context. For this reason we need a weaker notion of stack similarity
than the strong equivalence given above.

Definition 9 (Weak Stack Similarity). Stacks σ0 and σ1 with respec-
tive thetas θ0 and θ1 are weakly similar given γ and C (written
WSγ,C(〈σ0, θ0〉, 〈σ1, θ1〉)) iff Δ(γ,C, θ0) � σ0 �C

A Δ(γ,C, θ1) � σ1 or
Δ(γ,C, θ1) � σ1 �C

A Δ(γ,C, θ0)γ �σ0, and if θ0 �= θ1 then γ[0 :
|pred(max(θ0, θ1))|].snd �� A.

This is enough to let us state and prove a sufficiently strong noninterference
statement:

Theorem 1 (Noninterference) If

1. γ,C � expr � γ′,
2. C � S0 and C � S1,
3. C � σ0 and C � σ1,
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4. γ � σ0 ∼C
A γ � σ1,

5. !σ0, S0, expr" ⇓ !σ′
0, S

′
0, θ0" and !σ1, S1, expr" ⇓ !σ′

1, S
′
1, θ1", and

6. S0 ∼C
A S1,

then S′
0 ∼C

A S′
1 and WSγ′,C(〈σ′

0, θ0〉, 〈σ′
1, θ1〉).

Finally, we note this theorem gives us a corollary resembling a traditional
noninterference theorem.

Corollary 1 (Termination Insensitive Noninterference) If

1. 〈st , pc〉, C � expr � 〈C.return, pc′〉,
2. C � S0 and C � S1,
3. C � σ0 and C � σ1,
4. 〈st , pc〉 � σ0 ∼C

A 〈st , pc〉 � σ1,
5. !σ0, S0, expr" ⇓ !σ′

0, S
′
0, θ0" and !σ1, S1, expr" ⇓ !σ′

1, S
′
1, θ1", and

6. S0 ∼C
A S1,

then S′
0 ∼C

A S′
1 and 〈C.return, pc′〉 � σ′

0 ∼C
A 〈C.return, pc′〉 � σ′

1.

This corollary holds because if the program expr terminates without trapping,
then it terminates with either θ = no-br or θ = return and both of these
guarantee that the two output stacks are typed with the same stack type. When
they do, �C

A boils down to ∼C
A.

6 Discussion

Several points we have not addressed in the paper are worth discussing. These are
implementation, overhead, usability, and declassification. Before addressing them
below, we stress that they are extensions to our work and important avenues for
future exploration and not mandatory for foundational IFC in Wasm.

Implementation and Overhead. It is difficult to judge the overhead our frame-
work would entail without having an actual implementation. We have argued
for and justified the hybrid design of SecWasm as a trade-off between achieving
permissiveness and expressiveness, and incurring some runtime overhead. While
the semantics carry only few dynamic checks, the type system is heavily popu-
lated with additional IFC constraints which might slow-down the type-checking
mechanism. However, as in prior work, the concern is not on the static overhead,
but on the dynamic one. As we keep dynamic checks to a minimum, we are
confident future benchmarks will not reveal considerate overheads.

Usability. We expect the use of SecWasm to be straightforward. The developer
would have to manually annotate the function types and the load and store oper-
ations with security labels, and then to verify if any detected illicit information
flows are due to buggy implementations or imported malicious modules (such as
the password meter module PM).
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Declassification. Certain situations require sensitive data to be released, an
operation known as declassification [31]. When designing a declassification mech-
anism, one should aim to have it robust, meaning not allowing public data to
influence what data to be declassified [32].

Sabelfeld and Sands presented four dimensions of declassification: what infor-
mation is released, who is releasing information, where in the system information
is released, and when information can be released [37]. To allow declassification
in a static IFC system for Wasm, Watt et al. allowed functions marked as trusted
to declassify data through a declassification primitive [49]. In order to extend
SecWasm with a declassification construct, the formalization of the security prop-
erties enforced by the current system must be altered, as some information about
the secret data could be learned by a public observer. In this sense, a password
checker is different from a password meter because the latter leaks some infor-
mation about the password. Although we leave it for future work, we believe our
approach can be straightforwardly extended to handle the what dimension from
Sabelfeld and Sands by guaranteeing that the system cannot leak more secrets
than allowed by externally-specified escape hatches.

7 Related Work

IFC for Low-Level Languages. There has been much work on securing (sub-
sets of) Java bytecode [5,7,11,20,25], or on enforcing security in TAL (Typed
Assembly Language) [13,21,29,30,52] which models the RISC architecture, and
even on JavaScript bytecode [10]. These approaches dealt with languages with
unstructured control flow and heap memory, with TAL also employing registers.
Due to lack of structured control flow at the low-level, prior work resorted to
mimicking the block structure of the original high-level languages and computing
dependence regions: linear continuations and continuation stacks [13], static code
labels [29], control regions [5,10,25], type annotations [29,52]. Due to the struc-
tured control flow inherited from Wasm, in SecWasm the language’s constructs
proved sufficient for computing the dependence regions.

Most previous approaches dealt with Java bytecode or TAL, both languages
without dynamic features. Thus, the preferred IFC enforcement was static,
through security type systems [5,13,25,29,52]. More recently, a hybrid system
was suggested for TAL-like languages [21], in an attempt to increase permis-
siveness over previous fully static approaches. Due to being a language heavily-
charged with dynamic features, JavaScript bytecode was instrumented through
a dynamic monitor, although prior static analysis is required for computing
the control flow graphs and immediate post-dominators [10]. Although Wasm
does not exhibit the same dynamism as JavaScript does, the nature of memory
accesses requires a dynamic handling if a more expressive and permissive sys-
tem is desired. Thus, SecWasm is designed to be mainly static and introduces
dynamic checks in key places to increase permissiveness.

Cassel et al. present FlowNotation to find information flow violations in C
programs [15], and De Francesco and Martini use abstract interpretation for
instruction-level information-flow analysis [16]. Both have similar handling of
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the memory as SecWasm. With FlowNotation, each pointer (i.e., heap location)
and its corresponding value are labeled with security policies which are joined
upon dereferencing the pointer, and De Francesco and Martini label each memory
location with a label to represent the maximum security level of the data to be
stored. However, since FlowNotation does not handle pointer arithmetic and the
memory in the system by De Francesco and Martini is a map of variables to
abstract values, neither of those solutions have an unstructured memory as in
SecWasm with partial re-writes of data (such as Example 3, where part of the
32-bit integer value starting at position 0 is overwritten).

Hybrid IFC. While hybrid analyses were not so popular amongst low-level lan-
guages, they have been employed for high-level languages [8,23,26,35,46]. Our
hybrid mechanism draws on the basic principles laid out in prior work, such as
establishing what paths are reachable by dynamic analysis and inferring what
dependencies arise from non-taken branches by static analysis [26,35]. A key con-
tribution of SecWasm is extending these principles to deal with the challenges
of an unstructured linear memory.

Wasm Security. Lehmann et al. [27] prove vulnerabilities with well-known mit-
igations in the original high-level code propagate down to Wasm code. As a
vulnerable program in C/C++ compiled to Wasm can translate the memory
vulnerabilities, Disselkoen et al. introduce MS-Wasm, an extension to Wasm
allowing developers to capture low-level C/C++ memory semantics in Wasm
at compile time [18]. Swivel is a compiler framework to harden Wasm against
Spectre attacks [33]. These works, however, do not focus on information-flow
control.

Different language-based security techniques for Wasm perform taint-
tracking. Szanto et al. propose a Wasm virtual machine in JavaScript [43], Tain-
tAssembly presents a taint-tracking engine for interpreted Wasm implemented
in V8 [19], while Wasabi is an expressive framework for dynamically analyzing
and taint-tracking in Wasm [28]. Lastly, Stiévenart and De Roover [41] use taint-
tracking to create function summaries, i.e., descriptions of where information
from the function parameters and global variables can flow to when a function
is invoked. Compared to these techniques, SecWasm not only tracks explicit and
implicit flows, but also memory accesses.

Vivienne is an open-source tool that performs symbolic analysis and con-
straint solving for analyzing constant-time properties in Wasm programs [45].
Watt et al. introduce CT-Wasm [49], a type-driven extension to Wasm for
constant-time cryptographic applications. To achieve constant-time, CT-Wasm
disallows secret-dependent control instructions, being thus more restrictive than
SecWasm. Furthermore, CT-Wasm introduces a separate memory for storing
secret data, while in SecWasm we annotate individual memory cells with secu-
rity labels, an approach that scales to general lattices.

Gradual Typing. Gradual typing allows programmers to control the combination
of dynamic and static approaches at the programming level [39]. Swamy et al. [42]
presented TS∗ that adds a static static type system over JavaScript and Rastogi
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et al. [34] presented Safe TypeScript to catch any dynamic type errors while not
altering the semantics of type-safe TypeScript code.

Gradual typing has also been used for IFC. Disney and Flanagan described an
IFC type system for λ-calculus that defers cast checks that cannot be determined
statically to the runtime [17]. In HLIO, Buiras et al. used gradual typing to allow
programmers to defer some IFC checks to runtime in Haskell [14]. Bichhawat
et al. investigated the tension between noninterference and gradual guarantees
and defined a simple imperative languages that provides both noninterference
and gradual guarantees [9].

Although there are high-level connections with gradual typing, there are also
important differences. Indeed, gradual typing gives the developer the control of
when to use static and when to use dynamic types. In our approach, the split is
taken care of by the enforcement mechanism.

8 Conclusions

This paper presented SecWasm, the first general-purpose information-flow
enforcement mechanism for Wasm. The synergy of static and dynamic IFC
enforcement in SecWasm is the result of a thorough design analysis that leverages
the already existing Wasm type system, while also ensuring permissiveness for
Wasm’s dynamic features. SecWasm overcomes the challenges imposed by the
combination of uncommon characteristics for machine languages of structured
control flow and linear memory in an elegant way. Finally, SecWasm provably
enforces termination-insensitive noninterference.

In line with other foundational work on hybrid IFC (e.g., [8,23,26,35]), we
leave implementation and experiments with performance overhead as an impor-
tant track for future work.
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Abstract. We present RAND, an input-output relational abstract
domain that expresses relations between values of non-recursive algebraic
data types (ADTs), and numeric relations between their scalar parts.
RAND is parametrised on a user-provided numeric relational domain,
that we lift to pairs of variables and projection paths. It is constructed
as a disjunctive completion of a reduced product of domains for numeric
relations, for equalities, and for cases of variant constructors. Using
RAND, we define a modular, inter-procedural, input-output relational
analysis for a while language with ADTs and function calls. The anal-
ysis computes function summaries, that describe relations between the
inputs of programs and their outputs.

Keywords: Static analysis · Abstract interpretation · Relational
abstract domains · Algebraic data types · Input-output relations ·
Function summaries

1 Introduction

Research in static analysis has successfully developed automatic techniques to
ensure the safety and security of programs, by detecting bugs before a pro-
gram actually runs. In particular, there exists a substantial number of analyses
that target programs with numeric or pointer-based computations and which
can detect frequent bugs that arise from arithmetic overflows or memory safety
issues. Another important class of programs are those manipulating algebraic
data types (ADTs). ADTs form the core of modern programming languages—
such as OCaml, Haskell, Scala, Rust or Swift—that have been adopted by the
software industry. The static analysis of this class of programs has seen impor-
tant progress too, with the development of type systems [38,39] or by leveraging
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tree automata techniques [7] for approximating the tree structures described by
ADTs [18,30,37].

In this paper, we focus on the automatic analysis of programs that perform
numeric operations and manipulate ADTs. So far, few works [16,25,26] have
put emphasis on the analysis of such programs. They provide additional safety
guarantees specifically related to this combination—such as the unreachability
of branches of a pattern matching. Such static analyses can also alleviate the
interactive verification of large, critical programs that compute over ADTs, by
automatically discharging a substantial number of proof obligations [1].

To this end, we first develop a novel relational abstract domain that can
express relations between numeric-algebraic values of a program state (Sect. 3).
We build this abstract domain in a generic way, by taking as a parameter any
relational abstract domain that fulfils an Apron-like interface [24] to handle the
numeric properties. One difficulty in designing this domain is to handle soundly
and precisely the mutually exclusive cases that an algebraic value may take. We
tackle this issue using projection paths that point inside algebraic values, and by
devising a notion of compatibility between paths: two paths are compatible when
they make consistent assumptions over the constructors of variant values. The
resulting abstract domain can describe sets of states of algebraic data structures
with scalar data.

Then, we show how to turn our abstract domain into RAND—the Relational
Algebraic-Numeric Domain—an abstract domain that can express relations
between different states (Sect. 4). For an example process management program
from an idealised operating system (Fig. 1), RAND can express that the input and
output processes p and p’ satisfy the constraint p’.status@Running.count =
p.status@Asleep.count + 1, meaning that the status fields of p and p’ differ
by 1, whenever the process p has a running status, and p’ a sleeping status. This
is indicated by the projections on constructor cases @Running and @Sleeping.
We discuss this example further in the paper (Sect. 2.3).

Using RAND, we define a relational analysis for a while language that fea-
tures non-recursive ADTs (Sect. 5). Our analysis infers relations between the
inputs and the outputs of programs. In particular, we explain how a standard
static analysis for reachable states can be turned into an analysis for input-output
relations. This relational analysis is well suited for designing an inter-procedural
analysis based on function summaries.

Our work offers the following contributions:

– We present a novel abstract domain that expresses relations between val-
ues of non-recursive ADTs (Sect. 3 and 4). Our abstract domain can be
instantiated with any numeric relational domain. This offers the possibil-
ity to choose domains with different precision vs cost balances, and allows to
capture numeric inequalities. This improves upon the correlation domain [1],
that is restricted to information about equality and reachability.

– Our abstract domain uses a form of disjunctive completion (Sect. 3.6), where
we limit the number of disjuncts by merging some of them. Our merging
strategy is guided by observing the different cases of algebraic values.
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– We give a formal justification to the folklore assertion that “a static analysis
can be made relational by duplicating variables”, by showing that a non input-
output relational and an input-output relational analysis actually share the
same structure (Lemma 1) and by showing how any relational domain can
express relations between different stores (Sect. 4.2).

– We formally define a relational analysis (Sect. 5) that infers relations between
inputs and outputs of programs, and propose a modular inter-procedural
extension that is based on function summaries. We illustrate the analyser’s
results on a running example taken from an idealised operating system.

– We provide an OCaml implementation [3] of our analyser, for a while lan-
guage with algebraic types; together with 43 test cases, some of which are
inspired from an operating system code (Sect. 6). We briefly discuss the com-
plexity of our implementation.

2 Syntax and Semantics

Our programming language is an extension of a classic while language with
algebraic data types (products and sums). Sect. 2.1 presents algebraic types,
Sect. 2.2 presents the language and its semantics, and Sect. 2.3 introduces our
running example.

2.1 Algebraic Types and Values

ADTs are pervasively used in functional languages like OCaml, Haskell, Coq, or
F�, and have become a central feature of more recent programming languages,
such as Swift or Rust, just to name a few. We briefly recall the definitions of
algebraic types, and of the structured values that inhabit them.

Definition 1 (Algebraic types and structured values). Algebraic types
and structured values are inductively defined as follows:

τ ∈ Types ::= N | {fi → τi
i∈I} | [Ai → τi

i∈I
]

v ∈ Values ::= n | {fi = vi
i∈I} | A(v)

Here, N is the type of numbers, the (fi)i∈I are field names, the (Ai)i∈I are con-
structor names, and I ranges over finite sets. The compound type {fi → τi

i∈I}
is a record type, in which a type τi is associated to each field fi. The type
[Ai → τi

i∈I
] is a sum type containing values formed with a head constructor that

must be one of the Ai, and whose argument must be of type τi. {fi = vi
i∈I}

denotes a record value where each field fi has value vi for every i ∈ I. A(v)
denotes a variant value, built by applying the constructor A to the value v. Con-
structors expect exactly one argument. Constructors with arities other than 1,
as typically found in functional languages, are encoded by providing a (possibly
empty) record value as argument to constructors. The numeric type N and the
record type with no fields {} are the two base cases for types.
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We use projection paths to refer to a part of a structured value (i.e., to a
value embedded inside another structured value). A path is either the empty
path ε, or the path p.f , that first accesses the value at path p and then accesses
the record field f , or the path p@A, that first accesses the value at path p and
then accesses the argument of variant constructor A.

Definition 2 (Paths). Paths are inductively defined as follows:

p ∈ Paths ::= ε | p.f | p@A

Because paths are simply sequences of atomic paths (.f or @A) we allow their
creation or destruction from either side, and write for example .fp to denote a
path that starts with .f .

The projection of the value v on the path p, written v ⇓val p, is the value
pointed to by p inside v. It is defined as follows:

Definition 3 (Projection of a value on a path).

v ⇓val p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v if p = ε

v′ ⇓val p′ if p = @Ap′ and v = A(v′)

vi ⇓val p′ if p = .fip
′ and v = {fj = vj

j∈I} and i ∈ I

Undef otherwise

Our definition returns Undef when a path does not make sense for some value.

2.2 A Language with Algebraic Data Types

The syntax of the language consists of expressions t, boolean conditions b, and
commands c. Vars denotes the set of variables that may appear in commands.
Expressions include the projection of a variable x ∈ Vars over a path p ∈ Paths,
written x.p. The expression t1 � t2 denotes some arithmetic operations on the
expressions t1 and t2, and t1 �� t2 ranges over arithmetic comparisons.

t ∈ Exp ::= n | A(t) | {fi = ti
i∈I} | x.p | t1 � t2

b ∈ BExp ::= t1 �� t2 | b1 ∧ b2 | b1 ∨ b2 | ¬b
c ∈ Cmd ::= skip | c1 ; c2 | branch c1 or . . . or cn end |

while b do c end | assert b | x := t

We restrict our attention to well-typed commands (that we call programs),
following a standard structural type system [39]. For instance, well-typedness
ensures that arithmetic tests and operations receive arguments of integer type,
and that every projection x.p is consistent with the type of the variable x.

Programs operate on stores, denoted by s, that are finite maps from Vars
to Values. We define the semantics of programs using a standard small-step
semantics that specifies the effects of commands on stores. The relation (c, s)→
(c′, s′) tells that the command c transforms the store s into a store s′, and that
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command c′ is to be executed next. We briefly explain the semantics of each
command, and refer the reader to the extended version [4] for technical details.

The command skip performs no operation, whereas the sequence c1 ; c2 exe-
cutes c1 followed by c2. The branching command branch c1 or . . . or cn end non-
deterministically chooses one of the commands ci and executes it, discarding the
other branches. The command while b do c end executes the command c as long
as the condition b holds, and successfully terminates otherwise.

The command assert(b) tests whether the condition b holds, in which case the
command succeeds, and the execution of the program continues. When b is not
satisfied, assert(b) fails, i.e., the program remains stuck. We can express the con-
ditional construct if b then c1 else c2 as branch assert(b) ; c1 or assert(¬b) ; c2 end.

Finally, the assignment command x := t evaluates t to some value v and
updates the variable x with v. We write s(x �→ v) to denote the store s in which
the variable x is associated to the value v. If there was an entry for x in s already,
then it is replaced with the value v. Otherwise, a new entry is created.

The evaluation �t�exps of an expression t in a store s proceeds by induction
on the structure of t to evaluate sub-expressions, and reads in the store s the
values of variables. �t�exps is either a singleton, which denotes normal execution,
or the empty set, which denotes a failure, such as an invalid projection x.p. For
example, if s(x) = A(v) then �x@B�exps = ∅, because the constructors A and B
are different. The evaluation of booleans �b�bools is standard.

Importantly, records and variants are immutable in our language: it is not
possible to update some field f of a record in-place, for example. Instead, the
programmer must follow the functional idiom, and create a new record value,
that contains a different value for the field f .

We recover the pattern matching construct match twithA1(x1) → c1 | · · · |
An(xn) → cn end as a syntactic sugar for command z := t ; branch x1 :=
z@A1 ; c1 or . . . or xn := z@An ; cn end for a freshly chosen variable z.

2.3 Running Example

Figure 1 shows an example program for which we would like to infer precise input-
output properties. This program features algebraic data types that represent the
meta-data of a process, as usually found in operating system implementations.
Here, a process is a record composed of an identifier, some incoming message that
was sent by another process and finally a piece of data that describes the status
of the process. The message is a record that contains some payload and whether
it needs a reply (and to whom). The process status is either running, in which
case it records how many times the process has been activated, or it is asleep, in
which case it also records how many seconds the process should remain asleep
before waking up again. The function do_ticks(p, n) simulates the action of
n clock ticks on a process p: a clock tick leaves the process p unchanged if p is
already running, or, if it is asleep, decrements the sleeping budget of p. If that
budget is already zero, the clock tick promotes p into a running process.

The important properties of do_ticks(p, n) that we intend to infer auto-
matically are the following:
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type status = [
(∗ Scheduling status ∗)
| Running of { count: int }
(∗ Running: activation times ∗)

| Asleep of { secs: int; count: int }
(∗ Sleeping : remaining seconds, activation times ∗)

]
type msg = { (∗ Messages ∗)
data : int ; (∗ Payload ∗)
reply : [ (∗ Whether to reply or not ∗)
| Reply of int (∗ Who to reply to ∗)
| DontReply of {} (∗ No reply expected ∗)

]
}
type process = { id: int; msg: msg; status: status }
(∗ Process structure ∗)

def do_ticks(process p, int n) : process = {
(∗ Performs n clock ticks on the process p ∗)
int count; int secs; int i
assert (n > 0)
i = 0
while (i < n) do (∗ loop n times, i .e .: perform n clock ticks ∗)
branch (∗ case where p is running ∗)
count = p.status@Running.count

or (∗ case where p is asleep and can sleep longer ∗)
assert (p.status@Asleep.secs > 0)
count = p.status@Asleep.count
secs = p.status@Asleep.secs
p = { id = p.id; msg = p.msg;

status = Asleep { secs = secs - 1; count = count } }
or (∗ case where p is asleep and has no more sleeping budget ∗)
assert (p.status@Asleep.secs = 0)
count = p.status@Asleep.count
p = { id = p.id; msg = p.msg;

status = Running { count = count + 1 } }
end
i = i + 1

end
return p

}

Fig. 1. Example: performing clock ticks on a process’ meta-data.
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1. If p is initially running, then it remains unchanged;
2. If p is initially sleeping, then it might wake up: in this case, its original

sleeping budget was less than n, and count—its number of activations—has
been incremented by one;

3. If p is initially sleeping, then it might remain sleeping: in this case, its sleeping
budget decreased by n, and its number of activations remains the same;

4. The field id, of integer type, of the process p has not changed;
5. The field msg, of record type, of the process p has not changed either.

Sections Sects. 3 to 5 explain in detail how we express and capture these prop-
erties by presenting the structure of the RAND abstract domain. The correlation
abstract domain [1] was also designed to handle programs that manipulate alge-
braic data types, but cannot express, on numbers, properties other than binary
equalities. Using the correlation domain, we could infer all the properties listed
above, except the ones that involve arithmetics: properties 2 and 3.

3 Extending Numeric Domains to Algebraic Types

D (§3.1)

D ↑ NPR (§3.3)
(numeric constraints)

NPR lifting

seq (§3.5)
(structural equalities)

×cc (§3.4)
(constructor constraints)

×

Reduction (§3.6)

D ↑ S

Disjunctive completion (§3.6)

Structural
lifting

RAND(D)

Relational lifting (§4.2)

P(Vars → N)

P(Vars → Values)

P (
(Vars → Values)2

)

Fig. 2. The construction of the RAND abstract domain. The frame-enclosed sets are
the sets the abstract domains concretize to.

In this section, we introduce an abstract domain that is able to express equality
and numeric constraints between parts of structured values. Our construction
is summarised in Fig. 2. It is parametric with respect to a numeric abstract
domain D, so that we can instantiate it on domains with different precision ver-
sus cost trade-offs. We expect the numeric domain D to provide the operations
described in Sect. 3.1, which are a subset of the API offered by Apron [24]. An
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essential ingredient of our construction is the use of extended variables (Sect. 3.2),
i.e., regular program variables equipped with a projection path. Our example
do_ticks on Fig. 1 features extended variables, such as p.status@Asleep.secs.
Using extended variables, we define in Sect. 3.3 a first way to lift numeric domains
to languages with algebraic types: the Numeric Path Relations lifting, or NPR
lifting for short. This first lifting builds on the ideas of [2], but achieves a better
precision. It can express, for example, that a call to do_ticks can only decrease
the value in the field secs of processes (that denotes the number of seconds for
which a process should remain asleep), thanks to the constraint on extended
variables p.status@Asleep.secs ≥ p′.status@Asleep.secs. We improve the
precision of the NPR lifting by combining it with two other domains (Sect. 3.4
and 3.5) in a product domain (Sect. 3.6). A first domain of constructor con-
straints tracks which constructors are used for values of sum types (Sect. 3.4).
Constructor constraints allow us to distinguish between different cases, by stat-
ing which extended variables are valid in each case. For the do_ticks program,
a possible case is when the input process p is sleeping—i.e., p.status@Asleep is
valid—and the output process p’ is running—i.e., p’.status@Running is valid.
Another domain, called structural equalities (Sect. 3.5), uses equality constraints
between extended variables to express equalities that must hold between arbi-
trary parts—of any type—of structured values. With this domain, we can tell
for the do_ticks program that the msg field of processes cannot change, by say-
ing that the extended variables p.msg and p’.msg are equal. Finally, in order
to obtain additional precision when analysing pattern-matching, we use a dis-
junctive completion of the product of these domains (Sect. 3.6): we obtain the
structural lifting of the numeric abstract domain. Each value of the structural
lifting can contain multiple cases, and each case has three components: one that
expresses constructor constraints, one that expresses structural equalities, and
one that expresses numeric constraints. Sect. 3.3 to 3.5 also define abstractions
for assignments and conditionals, that are needed in Sect. 5 to define the analysis
of our language.

3.1 Background: Numeric Abstract Domains

We first review the structure of traditional numeric domains [35] such as inter-
vals, octagons and polyhedra. The domains are parametrised by a set of variables,
and describe sets of numeric stores over those variables, i.e., sets of maps from
variables to numbers.

Given a set of variables V , we expect a numeric abstract domain D(V ) to
provide the operations listed below (which are included in the user interface of
the Apron library [24]) in such a way that the standard soundness properties
of abstract interpretation [9,10] are met: A set of abstract values D(V ) with a
concretisation function γD(V ) ∈ D(V ) → P(V → N), a pre-order on abstract
values 
D(V ), abstract union �D(V ) and intersection �D(V ), and a widening
operator �D(V ). The domain must also offer abstractions for boolean conditions
CondD(V ) ∈ BExp → D(V ) → D(V ) and for assignment AssignD(V ) ∈ V ×
Arith (V ) → D(V ) → D(V ) (where Arith (V ) is the set of arithmetic expressions
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over the variables V ), satisfying the soundness properties:

γD(V )(AssignD(V )(x := t)(d)) ⊇ {s(x �→ v) | s ∈ γD(V )(d) ∧ v ∈ �t�exps }
γD(V )(CondD(V )(b)(d)) ⊇ {s ∈ γD(V )(d) | tt ∈ �b�bools }

We also assume the existence of “variable management” operators for removing,
adding and renaming variables. Operator RemD(V )

V ′ projects an element of D(V )
onto D(V \ V ′). Operator AddD(V )

V ′ embeds an element of D(V ) into the domain
D(V ∪ V ′). Given a bijection r : V1 → V2, the operator RenameD(V1)

r translates
an element of D(V1) into D(V2). These operators satisfy the soundness properties:

γD(V \V ′)(RemD(V )
V ′ (d)) ⊇ {s|(V \V ′) | s ∈ γD(V )(d)}

γD(V ∪V ′)(AddD(V )
V ′ (a)) ⊇ {s : (V ∪ V ′) → N | s|V ∈ γD(V )(a)}

γD(V2)(RenameD(V1)
r (d)) ⊇ {s | s ◦ r ∈ γD(V1)(d)}

3.2 Extended Variables

We call extended variable the pair of a variable and a path. Extended variables
designate some values that are located inside a structured value. We only con-
sider paths that make sense for the given variables, i.e., paths whose projections
on a variable’s type are valid in the following sense:

Definition 4 (Projection of a type on a path). The judgement τ ⇓typ p
defines when a path p is consistent with a type τ , and is inductively defined by:

τ ⇓typ ε

τi ⇓typ p i ∈ I

{fj → τj
j∈I} ⇓typ .fip

τi ⇓typ p i ∈ I

[Aj → τj
j∈I

] ⇓typ @Aip

Typing contexts, written Γ , are mappings from variables to types. We write
E(Γ ) = {x.p | x ∈ domΓ ∧ Γ (x) ⇓typ p} for the set of extended variables x.p
such that p is consistent with the type of x in Γ .

We say that two extended variables x.p1 and x.p2 are incompatible—written
x.p1<>x.p2—if they would force a value (or part of a value) to be in two different
variants of a sum type. Definition 5 formalises this notion of incompatibility,
using the prefix order � on extended variables (x.p � y.q iff x = y and p is a
prefix of q).

Definition 5 (Incompatibility and inconsistency). Two extended vari-
ables x1.p1 and x2.p2 are incompatible, written x1.p1<>x2.p2, if and only if
x1 = x2 and there is a path p and two distinct constructors A1 and A2, such
that x1.p@A1 � x1.p1 and x2.p@A2 � x2.p2. A set of extended variables E
is inconsistent if it contains two or more incompatible extended variables. Two
sets of extended variables are incompatible, written E1<>E2, if their union is
inconsistent.

In Sect. 3.4, we use the fact that inconsistent sets of extended variables denote
empty sets of stores. Such inconsistent sets correspond to unreachable program
points, and can be safely removed from the disjunctive completion of Sect. 3.6.
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Assignment Decomposition. To easily define the abstract transfer functions for
assignment in the next subsections, it is useful to decompose an assignment
command x := t—where t can be a compound expression—into an equivalent
set of parallel assignments of the form x.p := t′, where t′ is either an expression
of numeric type or an extended variable. The idea is to model the effect of the
assignment as a set of parallel assignments on the paths of variable x.

Definition 6. The decomposition of the assignment x := t is defined by:

Decomp (x.p := t) =

⎧
⎪⎨

⎪⎩

⋃
i∈I Decomp (x.p.fi := ti) if t = {fi = ti

i∈I}
Decomp (x.p@A := t′) if t = A(t′)
{x.p := t} if Γ � t : N ∨ t ∈ E

We write Decomp (x := t) as a shorthand for Decomp (x.ε := t).
For the different objects defined in this paper, we write Env (�) for the set of

extended variables that appear in them.

3.3 Numeric Domains over Extended Variables

In this section, extending ideas from [2], we define the Numeric Path Relations
lifting D ↑ NPR as a generic way to lift a domain D that is numeric—i.e.,
that denotes sets of stores that map variables to numbers—to a domain that
denotes sets of stores that map variables to structured values (Definition 1). The
main idea is to use extended variables as the variables of the underlying numeric
domain.

For a typing context Γ , the abstract values of D ↑ NPR(Γ ) are pairs of a set
E of extended variables that are valid in Γ , and a numeric abstract value from
D(E)—i.e., whose variables are the extended variables in E.

Definition 7. D ↑ NPR(Γ ) = {(d,E) | E ∈ P(E(Γ )) ∧ d ∈ D(E)}
In this definition, an abstract numeric value d can refer to any extended variable
x.p declared in E, and does not need to reason on whether x.p is a valid pro-
jection. In practice, though, the complete domain of Sect. 3.6 will only consider
sets E that are consistent. When writing examples in the rest of the paper, we
may omit the set E when it can be deduced from context, for example when E
is exactly the set of extended variables used in d.

Intuitively, an abstract value (d,E) denotes a set of stores that map regular
variables to structured values, such that the paths listed in E point to integer
values, and such that those integers are related by the numeric abstract value d.
Using the projection function for values (Definition 3), it is easy to transform a
store whose indices are variables into a store whose indices are extended variables:

Definition 8 (Projection of a store). The projection of a store s ∈ Vars →
Values on a set of extended variables E ∈ P(E) is a store in E → (Values ∪
{Undef}), written s ⇓sto E, and is defined by: (s ⇓sto E)(x.p) = s(x) ⇓val p.
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The concretisation of an element (d,E) ∈ D ↑ NPR(Γ ) easily follows: it is the
set of well-typed stores whose projections on E satisfy the numeric constraints
d. The typing judgement Γ � s means that s(x) has type Γ (x) for every x.

Definition 9. γD↑NPR(Γ )(d,E) =
{
s | Γ � s ∧ s ⇓sto E ∈ γD(E)(d)

}

We briefly explain how to define the abstract intersection in D ↑ NPR(Γ ).
The intersection of (d1, E1) and (d2, E2) denotes the conjunction of the con-
straints d1 and d2. Therefore, the extended variables that appear in the con-
junction are in E1 ∪ E2. Thus, one must inject d1 and d2 in E1 ∪ E2 using
the AddD(Ei)

Ej
operators, before actually taking their intersection in the numeric

domain:

(d1, E1)�D↑NPR(Γ ) (d2, E2) =
(
AddD(E1)

E2
(d1) �D(E1∪E2) AddD(E2)

E1
(d2), E1 ∪ E2

)

The pre-order, union and widening are defined in a similar way :

(d1, E1) 
D↑NPR(Γ ) (d2, E2) iff E2 ⊆ E1 ∧ RemD(E1)
E1\E2

(d1) 
D(E2) d2

(d,E) �D↑NPR(Γ ) (d′, E′) =
(
AddD(E)

E′ (d) �D(E∪E′) AddD(E′)
E (d′), E ∪ E′

)

(d,E) �D↑NPR(Γ ) (d′, E′) =
(
RemD(E)

E\E′(d) �D(E∩E′) RemD(E′)
E′\E (d′), E ∩ E′

)

(d,E) �D↑NPR(Γ ) (d′, E′) =
(
RemD(E)

E\E′(d) �D(E∩E′) RemD(E′)
E′\E (d′), E ∩ E′

)

Transfer Functions. The transfer function for assignment x := t works by tem-
porarily introducing a new variable x′ (that represents the value of x after assign-
ment). First, it applies the transfer function for assignment on every numeric
assignment in the decomposition of x′ := t (Definition 6). Then, it removes the
references to the paths of x, and finally renames x′ into x. The auxiliary variable
x′ is introduced to avoid clashes between the paths that are valid for x before
the assignment and those that are valid after the assignment.

AssignD↑NPR(Γ )(x := t)(d,E) = RenameD↑NPR(Γ )
[x′ �→x] (RemD↑NPR(Γ )

Ex
(d1, E1))

where

⎧
⎪⎪⎨

⎪⎪⎩

Ex = {y.p ∈ E | y = x}
d1 =

�D(E1)
x′.p:=u∈Decomp(x′:=t),Γ
u:N AssignD(E1)(x′.p := u)(AddD(E)

E0
(d))

E1 = E ∪ E0

E0 = {y.p ∈ Env (Decomp (x′ := t)) | Γ � y.p : N}
The transfer function for conditionals is simpler: negation is eliminated using

De Morgan laws, whereas conjunctions and disjunctions are handled by abstract
intersection and union, respectively. The remaining case is the one of a numeric
test t1 �� t2: it suffices to call the transfer function of domain D for conditionals,
and to extend the extended variables with those that occur in the test.

CondD↑NPR(Γ )(b)(d,E) =(
CondD(E∪Env(b))(b)(AddD(E)

Env(b)(d)), E ∪ Env (b)
)

if b = t1 �� t2
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3.4 Constructor Constraints

We introduce the abstract domain of constructor constraints, that intuitively
describes in which cases the values of a store might be, i.e., which are the
allowed variant constructors of the values of a store. We write cc(Γ ) for the set
of constructor constraints for a typing environment Γ . An element E ∈ cc(Γ ) is a
set of extended variables, that restricts the possible sets of stores to those that are
compatible with every path in E. In other words, if a path in E mentions some
constructor, then the corresponding value in any store of the concretisation must
be built using that constructor. Constructor constraints are a key ingredient of
the disjunctive completion of Sect. 3.6, as they serve as hints for which disjuncts
need to be kept separate, and which should be merged.

An element E ∈ cc(Γ ) is either the bottom value ⊥cc(Γ ), or must be a set of
extended variables that is both consistent and closed under the prefix order �.

Definition 10 (Constructor constraints). The domain of constructor con-
straints is defined by cc(Γ ) = {E ⊆ E(Γ ) | E � -closed and consistent } ∪
{⊥cc(Γ )} and is equipped with the ordering 
cc(Γ ) defined as E1 
cc(Γ ) E2 iff
E1 = ⊥cc(Γ ) or E1 ⊇ E2.

We write closcc(Γ )(E) to denote the prefix-closure of E, i.e., the smallest �-
closed set that contains E. For a given Γ , the domain cc(Γ ) is finite: because
our types are not recursive, the valid paths necessarily have finite lengths.

The concretisation γcc(Γ ) defines the stores denoted by constructor con-
straints.

Definition 11 (Concretisation for constructor constraints).

γcc(Γ )(⊥cc(Γ )) = ∅ γcc(Γ )(E) = {s | Γ � s ∧ ∀x.p ∈ E, s(x) ⇓val p �= Undef}
The concretisation of a set E produces a set of well-typed stores such that the
values in the stores can be projected along the paths in E.

The abstract union and intersection for the cc(Γ ) domain are easily obtained:

⊥cc(Γ ) �cc(Γ )E = E �cc(Γ )⊥cc(Γ ) = E E1 �cc(Γ )E2 = E1 ∩ E2 otherwise

E1 �cc(Γ ) E2 =

{
⊥cc(Γ ) if E1 = ⊥cc(Γ ) or E2 = ⊥cc(Γ ) or E1<>E2

E1 ∪ E2 otherwise

Because the domain is finite, there is no issue with infinite ascending chains, and
we can simply define the widening as the abstract union.

Transfer Functions. We express the abstract transfer function for assignment in
the cc(Γ ) domain in a standard “kill-gen” form as follows:

Assigncc(Γ )(x := t)(E) = (E \ Killcc(Γ )(x)(E)) �cc(Γ ) Gencc(Γ )(x := t)(E)
where Killcc(Γ )(x)(E) = {y.p ∈ E | y = x}
and Gencc(Γ )(x := t)(E) =

closcc(Γ )({y.q ∈ Env (t) | y �= x}∪{x.p | ∃t′, x.p := t′ ∈ Decomp (x := t)})
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The extended variables that must be removed are those that have x as root,
since the new value for x might be modified by the assignment. The newly
added extended variables are those of t that are still live after x is updated,
and the ones that are effectively assigned, as given by the decomposition of the
assignment. We ensure that the added variables remain prefix-closed thanks to
a call to closcc(Γ ).

The transfer function for conditionals is straightforward: it only adds the
extended variables of the boolean expression:

Condcc(Γ )(b)(E) = E �cc(Γ ) closcc(Γ )(Env (b))

3.5 Structural Equalities

The NPR lifting of Sect. 3.3 can only express relations between the numeric
parts of values. It can’t record whether some non-numeric part of a value has not
changed. In our example of Fig. 1, this is the case of the msg field of processes,
that is not modified, and is of record type. We introduce in this section the
domain seq(Γ ), that tracks structural equalities. The domain seq(Γ ) tells which
parts of the values of a store must be identical.

One could argue that any equality between structured values could be
replaced with a conjunction of equalities between the integer fields of those val-
ues, and, consequently, that the seq(Γ ) domain is hardly useful. Such a decom-
position could lead, however, to more verbose abstract values, and could also
introduce extra disjunctions when dealing with values of sum types. Thus, our
choice of handling equality constraints between structured values is beneficial, as
it helps keep our abstract values small in size. The extended version [4] provides
an example of this decomposition of equalities into a conjunction of equalities.

We give here a simplified definition of the domain, where the abstract values
of seq(Γ ) are either the bottom element—denoting the empty set of stores—or
a finite set of pairs of extended variables (x.p, y.q)—denoting a set of stores s
in which the value at path p in s(x) is equal to the one at path q in s(y). In
practice, our implementation uses a map from extended variables to equivalence
class indices, to ensure we remain closed by reflexivity, symmetry and transitivity.

Definition 12 (Domain of structural equalities). The domain of structural
equalities seq(Γ ) = P(E(Γ )×E(Γ ))∪{⊥seq(Γ )} is equipped with the concretisation
function γseq(Γ ) ∈ seq(Γ ) → P(Vars → Values) that is defined as follows:

γseq(Γ )(⊥seq(Γ )) = ∅

γseq(Γ )(C) = {s | Γ � s ∧ ∀(x.p, y.q) ∈ C, s(x) ⇓val p = s(y) ⇓val q �= Undef}
Abstract values in this domain might carry some implicit information. For exam-
ple, if x and y have type {f → N; g → N}, the abstract value {(x, y)} also
implicitly implies that x.f = y.f and x.g = y.g. To avoid losing precision, it
is sometimes necessary to saturate an abstract value by congruence, so that it
contains all the valid equalities that mention a given set of extended variables.
For this purpose, we define the following closure operator.
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Definition 13 (Closure of structural equalities). The closure of a set
of structural equalities C with respect to a set of extended variables E, written
closseq(Γ )

E (C), is the smallest set that is larger than C, that mentions the variables
in E, is closed under symmetry, reflexivity and transitivity, and satisfies the
following congruence property:

(x.p, y.q) ∈ closseq(Γ )
E (C)

(x.pr) ∈ Env
(
closseq(Γ )

E (C)
)

}

⇒ (x.pr, y.qr) ∈ closseq(Γ )
E (C)

The need for a closure operator is not surprising, as it occurs in other relational
domains, like octagons [34]. We use this closure operator to gain precision in the
transfer function for assignment, and in the reduction operator of the product
domain of Sect. 3.6.

Transfer Functions. The transfer function for assignment x := t for the seq(Γ )
domain exploits the decomposition of assignments from Definition 6. It considers
only the assignments of the form x.p := y.q, where the right-hand side is an
extended variable. We express the transfer function in a “kill-gen” form, where
we kill every equality that involves x, and add the new equalities x.p = y.q where
we are careful to avoid any use of x that refers to the state before the assignment.

Assignseq(Γ )(x := t)(C) =
(
C \ Killseq(Γ )(x)(C)

)
∪ Genseq(Γ )(x := t)(C)

where Killseq(Γ )(x)(C) = {(y.p, z.q) ∈ C | y = x ∨ z = x}
and Genseq(Γ )(x := t)(C) =

⋃
x.p:=y.q∈Decomp(x:=t){(x.p, z.r) | z �= x ∧ (y.q, z.r) ∈ closseq(Γ )

{y.q} (C)}

The transfer functions for conditionals can only exploit equality tests between
extended variables: Condseq(Γ )(b)(C) = C �seq(Γ ) {(x.p, y.q)} if b is x.p = y.q.

3.6 Bringing Everything Together: Product Domain and Disjunctive
Completion

In this section, we describe the remaining steps of our construction, that lead to
the structural lifting D ↑ S of the numeric domain D that we have considered. We
combine the domains we have defined in the previous sections—the constructor
constraints (Sect. 3.4), the structural equalities (Sect. 3.5), and the NPR lifting
(Sect. 3.3)—into a reduced product, and then add a disjunctive completion layer
on top of that product. We will ultimately obtain the domain of relations RAND
once we apply the relational lifting defined in Sect. 4.2.

Reduced Product. Our reduced product is based on a reduction operator ρ,
that enables information transfer between the different domains of the product.
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Definition 14 (Reduction operator). The reduction operator ρ for the prod-
uct of constructor constraints, structural equalities and the NPR lifting is defined
as follows:

ρ(E,C,N) =

⎛

⎝
E �cc(Γ ) closcc(Γ )(Env (C ′)),
C ′,
CondD↑NPR(Γ )(

∧
(x.p,y.q)∈C′∧Γ
x.p:N x.p = y.q)(N)

⎞

⎠

where C ′ = closseq(Γ )

closcc(Γ )(Env((E,C,N)))
(C)

The reduction operator ρ transfers the following pieces of information between
the three components of the product:

– Structural equalities are completed with additional constraints, so that all
the extended variables that are used in the constructor constraints and the
numeric constraints are mentioned (this is the role of C ′).

– If some equalities between integers are deduced from the structural equalities,
then they are added to the numeric constraints.

– The extended variables from the structural equalities and the numeric con-
straints are added to the constructor constraints, which may reveal some
inconsistent cases.

Union, intersection and widening for the reduced product domain add variables
to the structural equalities component, use component-wise operations and use
the reduction operator. For widening, reduction is only applied to the right-
hand side argument to avoid interfering with convergence. We invite the reader
to look at the extended version [4] for further details. The transfer functions for
assignment and conditionals use the transfer functions of each component.

Using Disjunctions to Handle Incompatible Cases. Pattern matching
performs a case analysis on the different constructors a value may start with:
these cases are pairwise incompatible. To analyse pattern matching with pre-
cision, we add disjunctions to our abstract domain by means of a disjunctive
completion, so that each pattern matching case has a distinct disjunct. Hence,
for any numeric domain D, we take the disjunctive completion [9] of the reduced
product of constructor constraints, structural equalities and the NPR lifting
of D. We call this the structural lifting of D, written D ↑ S(Γ ), and defined
as D ↑ S(Γ ) = P(cc(Γ ) × seq(Γ ) × D ↑ NPR(Γ )). To control the number of
disjuncts, however, we merge some cases together: merging is performed when
the constructor constraints of two abstract values concretise to the same sets of
stores—i.e., when they impose the same constraints on the constructors used for
variant values. The technical details are provided in the extended version [4].

4 A Collecting Semantics of Relations

The term “relational analysis” is widely used in the literature, and may refer
to two different notions. In a majority of related works, a “relational analysis”
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designates a static analysis that infers relations that hold between variables of a
single program point, i.e., relations in space. In other works, a “relational analy-
sis” denotes a static analysis that infers relations between (variables of) different
states, i.e., relations in time. In the rest of this paper, the term “relational” mostly
refers to to input-output relational analysis, that computes relations between the
input states and the output states of a program.

In this section, we define an input-output relational semantics of programs,
that forms the semantic basis of an input-output relational analysis. Our rela-
tional semantics determines relations that relate the input stores of a program
with its output stores, i.e., the stores that are obtained when there are no more
commands to evaluate.

Definition 15 (Relational semantics). The relational semantics of a com-
mand c is defined as follows: S�c� = {(s1, s2) | (c, s1) →∗ (skip, s2)}.
S�c� is a binary relation that may be employed to derive fully compositional
static analyses, such as CRA [14,28]. Indeed, it enjoys equations (e.g., S�c1 ; c2� =
S�c1�;S�c2�) that help defining the analysis of a compound command from the
independent analyses of its constituents. A drawback of this approach, how-
ever, is its inability to exploit any information about the states that have been
reached so far, which may degrade the precision of an analysis. The follow-
ing piece of code illustrates this issue: assert (x > 1 && y > 1); x := y * x. If
we analyse the assignment x := y * x with no knowledge that the preceding
assertion succeeded, then, using a linear relational domain—e.g., octagons or
polyhedra—we will not obtain any precise information about how the value of x
has changed, as the domain cannot express non-linear relations. The relational
collecting semantics of the next section waives this limitation, as it allows to
exploit the information that has so far been obtained for the current program
point.

4.1 Relational Collecting Semantics

In this section, we build a collecting relational semantics on top of S�c�, that can
exploit the information about the states that have been reached. Let us consider
again the example from the previous paragraph: with the knowledge that the
assertion succeeded, then a linear relational domain will be able to express that x
has strictly increased, for example. Our collecting semantics P�c� is a function
from relations to relations: given some initial relation a that holds between initial
stores si and the stores sb at the current program point (before the execution
of c), P�c�(a) computes a relation between the initial stores si and the final stores
sf that are produced by evaluating the command c from the stores sb. Thus,
P�c� extends the relations in time by composing on the right-hand side with the
behaviour of command c. Our collecting semantics is defined as follows:

Definition 16 (Collecting semantics). P�c�(a) = a;S�c�

P�c� is an abstraction of a semantics of computation traces [8], that collects the
intermediate stores that a program may reach. The collecting semantics P�c�
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enjoys the equations listed in the next lemma, that shows how it decomposes by
following the syntax of commands.

Lemma 1. The following equations hold:

P�skip�(a) = a
P�c1 ; c2�(a) = P�c2�(P�c1�(a))

P�branch c1 or . . . or cn end�(a) =
⋃

1≤i≤n P�ci�(a)
P�while b do c end�(a) = P�assert(¬b)�(lfpfa)

where fa(r) = a ∪ P�c�(P�assert(b)�(r))
P�assert(b)�(a) = {(s1, s2) | (s1, s2) ∈ a ∧ �b�bools2

= {tt}}
P�x := t�(a) = {(s1, s2(x �→ v)) | (s1, s2) ∈ a ∧ v ∈ �t�exps2

}
Lemma 1 will serve as the semantic basis for the analysis that we describe in
Sect. 5.2. The proof of Lemma 1 is available in the extended version [4].

Lemma 1 shows that the syntax-directed decomposition of the relation trans-
former P�c� follows the same structure as the standard set-based collecting
semantics, that collects the set of reachable states. Most transfer functions of
our collecting semantics are the same, but they operate on different objects
(binary relations on stores instead of sets of stores). The two transfer functions
that are specific to this relational semantics are the ones for assertion and for
assignment. We show in Sect. 4.2 how to define those two transfer functions—
that transform relations that relate stores in different program points—using
any relational abstract domain that represents sets of stores for one program
point. Using these two results, we can turn a folklore technique into a formal
claim: transforming a non input-output relational analysis into an input-output
relational one is “as simple as” duplicating variables [5,19].

4.2 Leveraging Relations in Space to Express Relations in Time

In this section we show that any relational domain—i.e., that denotes sets of
stores and can express binary relations between different variables of a single
store—can be lifted to a domain for pairs of stores, that is able to express
relations between input stores and output stores. The main idea is simple: a
pair of stores (s1, s2) ∈ (Vars → Values)2 can be represented as a single store,
provided we can distinguish the variables in s1 from those in s2.

Formally, this is achieved by assuming two bijections prime : Vars → Vars′

and second : Vars → Vars′′ where Vars′ and Vars′′ are disjoint “copies” of Vars,
that intuitively contain the “primed” and “seconded” versions of the variables of
Vars. We write x′ as a shorthand for prime(x), and x′′ for second(x), and use the
same convention as in [14], i.e., we use regular variables for the left-hand sides of
relations—the input stores—and primed variables for the right-hand sides—the
output stores. For any map f , we write f ′ as a shorthand for f ◦ prime−1, and
we write f ∪ g for the union of maps with disjoint domains. This allows us to
represent any pair (s1, s2) of stores as a single store s1∪s′

2. We use this encoding
to transform any relational domain that represents a set of stores into a domain
that represents a binary relation over stores.
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Definition 17 (Relational lifting). Let A be an abstract domain, such that
for any typing context Γ , A(Γ ) is equipped with concretisation function γA(Γ ) ∈
A(Γ ) → P(Vars → Values). For any two typing contexts Γ1 and Γ2, the relational
lifting A ↑ R(Γ1, Γ2) of A and its concretisation function are defined as follows:

A ↑ R(Γ1, Γ2) = A(Γ1 ∪ Γ ′
2)

γA↑R(Γ1,Γ2)(a) = {(s1, s2) | s1 ∪ s′
2 ∈ γA(Γ1∪Γ ′

2)(a)}
The relational lifting expects two typing contexts—one for the input stores, and
one for the output stores. This flexibility will prove useful in Sect. 5.3 to define
the abstract relational composition in order to analyse function calls.

The lifted domain A ↑ R(Γ1, Γ2) is naturally equipped with a pre-order rela-
tion, abstract union, intersection and widening, by reusing those of A(Γ1 ∪ Γ ′

2).
As we remarked in Sect. 4.1, only two pieces are missing to get a relational

input-output analysis: now that we can express relations on stores, the question
remains of how to express the transfer functions for conditionals and assignments.
We show in Fig. 3 how to do so in a generic way, by exploiting the transfer
functions of the underlying domain.

CondA↑R(Γ1,Γ2)(b)(a) = CondA(Γ1∪Γ ′
2)(b′)(a)

AssignA↑R(Γ1,Γ2)(x := t)(a) = Rem
A(Γ )

Γ ′′
2

(
AssignA(Γ )(x′ := t′′)

(
Add

A(Γ1∪Γ ′′
2 )

Γ ′
2

c
)

�A(Γ ) �A(Γ )

y∈dom Γ\{x} Cond
A(Γ )(y′′ = y′)

)

where Γ = Γ1 ∪ Γ ′
2 ∪ Γ ′′

2 and c = Rename
second ◦ prime−1

(a)

Fig. 3. Relational transfer functions for conditionals and assignment.

The transfer function for conditionals CondA↑R(Γ1,Γ2)(b)(a) constrains the
right-hand side of the relation a to satisfy the boolean expression b. This is
achieved by calling the transfer function for conditions of the underlying domain
on b′, to enforce that the variables of b refer to the outputs of a.

The transfer function for assignment AssignA↑R(Γ1,Γ2)(x := t)(a) first
renames the output variables y′ of a into y′′. The variables y′′ belong to the
state that lies just before the assignment. Then, we call the transfer function for
assignment from the underlying domain for the command x′ := t′′. This has the
effect of extending a with relations that express the link between t and the new
variable x. Then, we add the equalities y′′ = y′ for all the variables other than
x, because none of them was modified by the assignment. Finally, we eliminate
the auxiliary variables y′′. This effectively builds a relation between the input
state and the state that is obtained after the assignment.

This concludes our justification of the folklore claim that, “to turn a static
analysis for the sets of final states into an analysis for input-output relations, it
suffices to duplicate variables”. We have built our justification on the following
remarks: 1. Duplicating variables turns a non input-output relational domain—
i.e., a relation between variables of the stores of a single program point—into a
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Function summary for function do_ticks(p, n) returning p’ :
(Constructor constraints : p.status@Running; p’.status@Running ...
with structural equalities : p = p’ ; ...
and numeric constraints : n >= 1 ; ... )
Or (Constructor constraints : p.status@Asleep; p’.status@Running ...
with structural equalities : p.msg = p’.msg
and numeric constraints :

p.id = p’.id; p’.status@Running.count = p.status@Asleep.count + 1;
p.status@Asleep.secs >= 0; n >= p.status@Asleep.secs + 1 )

Or (Constructor constraints : p.status@Asleep; p’.status@Asleep ...
with structural equalities : p.msg = p’.msg
and numeric constraints :

p.id = p’.id; p.status@Asleep.secs >= n; n >= 1;
p.status@Asleep.count = p’.status@Asleep.count;
p’.status@Asleep.secs = p.status@Asleep.secs - n )

Fig. 4. Result of our analysis on the example of Fig. 1. Ellipses mark information that
is also present in other components of the same case and is elided.

domain of binary relations between stores of two different program points. 2. An
input-output relational analysis has the same structure as an analysis for final
states. 3. The transfer functions that are specific to the input-output relational
analysis can be defined in a generic way, using those of the analysis for final
states.

In the rest of this article, we use the relational lifting of the abstract domain
from Sect. 3, that we call RAND—short for Relational Algebraic and Numeric
Domain.

5 Analysis

This section explains how to use the abstract domain built in Sects. 3 and 4,
to analyse the language described in Sect. 2.2. After providing an example that
illustrates what the analysis computes (Sect. 5.1), we first describe an intra-
procedural analysis (Sect. 5.2) and then extend it to support function calls,
yielding a modular, summary-based, inter-procedural analysis (Sect. 5.3).

The inter-procedural version of our analysis does not currently handle recur-
sive or mutually recursive functions, as we chose to focus solely on the topic of
handling algebraic values and arithmetic relations. Nevertheless, we expect that
the analysis of recursive functions can be achieved by performing a widened
fixpoint iteration sequence at the level of function summaries.

5.1 Analysis Result for the do_ticks Function

Before giving the formal description of the analysis, we give an example of the
properties that it can infer. Figure 4 shows the result of running our analyser
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on the example from Sect. 2.3 using polyhedra as a numeric domain. We see
that our disjunctive completion considers three different cases, and contains all
five properties that we wanted to infer automatically. In the first case, both the
input and the output are running processes and the structural equality p = p′

tells us that the process remained unchanged (property 1). In the two other
cases, the structural equality p.msg = p′.msg conveys that the msg field has not
changed (property 5) while numeric constraints indicate that the id field has
not changed (property 4). In the second case, the input process is asleep while
the output process is running. The numeric properties tell us that the wake up
count has increased by one and the sleeping budget of the input process is lower
than argument n (property 2). In the third case, both the input and output
process are asleep. The numeric relations tell us that the initial sleeping budget
was greater than n and has decreased by n; also, the wake up count remains
unchanged (property 3).

5.2 Intra-procedural Analysis

We define a function Analyze that takes a program c and an abstract value a—
representing the relation gathered so far between the input states and the current
state—and returns the abstract value Analyze(c)(a) that over-approximates the
effect of running c after a. This section deals with basic constructs, while Sect. 5.3
explains how we analyse functions.

Definition 18 (Intra-procedural version of the analysis function).

Analyze(assert(b))(a) = CondD↑S↑R(Γ,Γ )(b)(a)
Analyze(x := t)(a) = AssignD↑S↑R(Γ,Γ )(x := t)(a)
Analyze(c1 ; c2)(a) = Analyze(c2) (Analyze(c1)(a))

Analyze(branch c1 or . . . or cn end)(a) =
⊔D↑S↑R(Γ,Γ )

i∈1,...,n Analyze(ci)(a)
Analyze(while b do c end)(a) = CondD↑S↑R(Γ,Γ )(¬b) (limn→∞ an)

where a0 = a and an+1 = an �D↑S↑R(Γ,Γ ) Analyze(assert(b); c)(an)

Assertion and assignment use the transfer functions we built in previous
sections. Sequence and branching follow the structure outlined in Lemma 1.

We analyse loops in a standard way, using a widening-based Kleene iteration,
which ensures that we reach a post-fixpoint in a finite number of iterations. In
practice, our implementation performs a loop unrolling [40, p.131] of the first
iteration, so as to obtain better precision.

The Analyze function is sound, in the sense that it over-approximates the
relational collecting semantics.

Theorem 1 (Soundness w.r.t. the collecting semantics). For any com-
mand c and abstract value a ∈ D ↑ S ↑ R(Γ, Γ ),

P�c�
(
γD↑S↑R(Γ,Γ )(a)

)
⊆ γD↑S↑R(Γ,Γ ) (Analyze(c)(a))
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By instantiating Theorem1 with the abstraction of the identity relation, we
get a soundness result with respect to the relational semantics of commands:

Corollary 1 (Soundness w.r.t. the relational semantics). For any com-
mand c, S�c� ⊆ γD↑S↑R(Γ,Γ )

(
Analyze(c)

(
IdD↑S↑R(Γ,Γ )

))
.

5.3 Analysis of Function Calls

In this section, we add function definitions and function calls to our language, and
extend the intra-procedural analysis of Sect. 5.2 into a modular inter-procedural
analysis, based on function summaries.

Extended Syntax and Semantics for Functions. We extend our language to sup-
port function calls in commands and function declarations:

c ∈ Cmd ::= . . . | x := f(x1, . . . , xn)
d ∈ Decl ::= def f(τ1 x1, . . . , τn xn) : τ = {c ; returnx}
P ∈ Prog ::= d1; . . . ; dn

For simplicity, the command for function calls y := f(x1, . . . , xn) immediately
saves in a variable y the result of calling a function f . This restriction forbids to
call functions within expressions, so that the semantics of expressions and the
transfer function for assignment remain unchanged.

A program is a sequence of function declarations def f(τ1 x1, . . . , τn xn) :
τ = {c ; return r}, that specify for the function f what are its input and output
variables and their types, and defines its body c. A program effectively defines
a map Δ, that associates to every declared function f a quadruplet Δ(f) =
((x1, . . . , xn), c, r, Γ ) that holds the formal parameters xi of f , its body c, its
formal return variable r, and the typing context Γ that specifies the types of its
formal and local variables.

The operational semantics is extended in a standard manner to support func-
tion calls and returns, by augmenting states with a call stack. The new rules are
given in the extended version [4].

Analysing Functions. We have chosen to develop a modular analysis, by
analysing each function only once and computing a function summary, that
summarises a function’s behaviour. This summary is then reused and instanti-
ated each time that function is called. Such a modular analysis allows to better
scale to large code bases [11].

Definition 19 (Function summaries). For a function f defined by Δ(f) =
((x1, . . . , xn), cf , yf , Γf ), we call summary of f the quadruplet given by:

(
(x1, . . . , xn),Analyze(cf )

(
IdD↑S↑R(Γf )

)
, yf , Γf

)
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The second component of the summary of a function f is an abstract value sum-
marising f ’s behaviour by over-approximating the input-output relation between
its formal arguments and its formal return variable. Thus, this abstract value
deals with the variables that are local to the execution of f : no information
about the caller’s environment is recorded in the summary. This abstract value
is obtained by analysing the body of f , starting with the identity relation. This
means that we make no assumption on the actual arguments that will be given
to f , hence we can reuse the same summary in every calling context.

To use a function summary at some call site, we instantiate the summary on
the actual arguments and output variable used at the call site. Our method to
instantiate summaries is based on an abstraction of relational composition, that
sequentially chains together two abstract values that represent binary relations.

Definition 20 (Abstract composition). Let Γ1, Γ2 and Γ3 be typing con-
texts. Let a1 ∈ A ↑ R(Γ1, Γ2) and a2 ∈ A ↑ R(Γ2, Γ3) be two abstract values. The
abstract composition a1 ;A a2 of the abstract values a1 and a2 is defined by:

a1 ;A a2 = Remove
Γ ′′
2

(

Add
Γ ′
3

c1 �A(Γ1∪Γ ′′
2 ∪Γ ′

3) Add
Γ1

c2

)

where c1 = Renamesecond ◦ prime−1 a1 and c2 = Renamesecond a2.

Abstract composition chains the effects of a1 and a2 by introducing auxiliary
names—i.e., variables of the form y′′—for the states that are in the output of a1

and the input of a2, before taking the intersection, and then removing the tem-
porarily introduced variables. The calls to Add are necessary name management
steps, that ensure that the abstract values deal with the same sets of variables.
Abstract composition is a sound approximation of relational composition, as
stated by the following lemma:

Lemma 2 (Soundness of composition). Let a1 ∈ A ↑ R(Γ1, Γ2) and a2 ∈
A ↑ R(Γ2, Γ3) be two abstract values. We have:

γA↑R(Γ1,Γ2)(a1); γA↑R(Γ2,Γ3)(a2) ⊆ γA↑R(Γ1,Γ3)(a1 ;A a2)

Based on abstract composition, we express summary instantiation as follows:

Definition 21 (Summary instantiation). The instantiation of the function
summary Sf = ((x1, . . . , xn), af , yf , Γf ) on the actual parameters (z1, . . . , zn),
the actual return variable y and the caller typing context Γ is defined as follows:

Inst(Sf , (z1, . . . , zn), y, Γ ) = ins ;D↑S af ;D↑S outs
where ins = CondD↑S↑R(Γ,Γf )

(∧
i∈{1,...,n} zi = x′

i

)

and outs = CondD↑S↑R(Γf ,Γ )(yf = y′)

Summary instantiation simply works by composing three abstract values, using
abstract composition. Instantiation first ties each actual parameter to its formal
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parameter by pre-composing the abstract value af for f ’s body with the ins
abstract value, and then ties the formal output to the actual output by post-
composing with the outs value. The values ins and outs are simply expressed as
mere conjunctions of equalities. The first composition deals with the call of the
function, whereas the second composition handles the return.

During a function call y := f(z1, . . . , zn), the instantiation of f ’s summary
deals with which variables might have changed and how, but does not deal with
the fact that only the variable y may have changed: every other variable that
is available before the call remains the same after the call. Thus, the transfer
function for function call augments the instantiation of the function summary Sf

with equalities for the unaltered variables, before extending the so far gathered
relation a with the effect of the call to f :

Analyze(y := f(z1, . . . , zn))(a) =

a ;D↑S
(
Inst(Sf , (z1, . . . , zn), y, Γ )�D↑S↑R(Γ,Γ )

�D↑S↑R(Γ,Γ )

x�=y
CondD↑S↑R(Γ,Γ )(x = x′)

)

The transfer function for function calls is sound:

Lemma 3 (Soundness of function call analysis). For every function defi-
nition Δ(f) = ((x1, . . . , xn), cf , yf , Γf ) in a program, and any function summary
Sf = ((x1, . . . , xn), af , yf , Γf ) such that S�cf � ⊆ γD↑S↑R(Γf ,Γf )(af ), we have:

P�y :=f(z1, . . . , zn)�(γD↑S↑R(Γ,Γ )(a)) ⊆ γD↑S↑R(Γ,Γ )(Analyze(y :=f(z1, . . . , zn))(a))

Lemma 3 ensures that the soundness result for the intra-procedural analysis
(Theorem 1) extends to the language with function calls that we have described
in this section. We give in the extended version [4] a proof of Lemma 3.

6 Implementation, Experimental Results and Complexity

We have implemented our analyser in approximately 5000 lines of OCaml. Our
implementation together with instructions on how to add new test cases and
run the tests cases is packaged and published as a virtual machine artefact [3].
Similarly to our formal development, our analyser is parametrised by an abstract
domain for integers. A command-line option allows to choose among numeric
domains provided by Apron [24], such as intervals, octagons or polyhedra.

We have tested our analyser on a total of 43 programs (summarised on
Table 1), that comprise some complex examples: some sorting algorithms, the
do_ticks function from Sect. 2.3, and 6 functions inspired from the abstract
specification of the seL4 micro-kernel [29]. We now review the results that our
analyser computed for these examples, using polyhedra as numeric domain.

Sorting Integer Arrays. To circumvent the absence of support for arrays in our
language and in our abstract domain, we modelled arrays of fixed length using
tuples, and we defined get and set functions. With this encoding, we wrote
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several sorting algorithms for arrays of integers, for arrays of size 5. The analyser
could not infer that the output array was sorted. Still, it was able to infer that
the sum of the values of the array was preserved by the sorting function.

The do_ticks function. The do_ticks function (Sect. 2.3) is inspired from a pro-
cess scheduler from operating system code. As reported in Sect. 5.1, the analysis
result for do_ticks captures all the properties we expected.

seL4-Inspired Functions. We have extracted from the abstract specification of
the seL4 formally verified micro-kernel [29] several functions, that work both
on ADTs and on scalar values, and translated them in our while language.
Specifically, those functions are related to either thread management, capa-
bility management or scheduling (decode_set_priority, check_prio, mask_cap,
validate_vm_rights, cap_rights_update, timer_tick). Our analyser infers exact
abstractions for all of them, except for timer_tick. This program is slightly dif-
ferent from do_ticks: when a thread’s time budget is over, this budget is reset
to its original value, and the thread is then re-scheduled, which might select a
new current thread. The case constraints of our abstract domain cannot distin-
guish whether the current thread remains the same or not, so a join of those
two cases is performed. This results in some expected information loss on the
thread’s time.

For the mask_cap program, we experimented with two encodings of bitmasks,
using either integers or ADTs to represent booleans. The integer-based encoding
produced a function summary that is compact—only 4 cases—but hard to under-
stand for a human being, whereas the summary produced with the ADT-based
encoding was easy to interpret, but large—it involved 324 disjunctions.

We consider that the precision we obtained on the seL4 examples is satisfying.
Still, the last example illustrates a limitation of our approach. Indeed the function
summaries can significantly grow when the analysed program pattern matches
on many distinct variables. Abstract domains that leverage BDDs have been
successfully used to reduce analysis costs by sharing common results [12,13,21,
41], and could also help in our situation.

Complexity of Our Analysis. Each domain that constitutes RAND, with the
exception of the disjunctive completion layer, features operators and transfer
functions whose complexity is polynomial in program parameters, e.g., the num-
ber of variables, or the maximum depth of the defined types. For the disjunctive
completion, however, the complexity is polynomial in the number of possible
cases, which can itself be exponential in program parameters. The number of
cases is asymptotically bounded by cxfp

, where x is the number of variables in
the program, c is the maximum number of different constructors per sum type,
f is the maximum number of fields in any product type and p is the maximum
depth of the types being defined. While it is possible to write a program that
reaches this bound, we have not found any program, even in seL4, that makes
the number of cases explode.

There are two different scenarios that render our analysis costly: either when
the number of different cases is high—in which case our disjunctive comple-
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Table 1. Test cases used for experimental evaluation. We use the * symbol for families
of similar tests, whose names start identically. The columns indicate whether the tests
involve sum types, numeric operations, while loops or function calls, as well as the
analysis time, and the maximum number of cases per function summary. Analysis
times are given in milliseconds, with the exception of longer durations, that are given
in seconds and printed with a bold face. Measures were performed on an IntelR© CoreTM

i7 @2.30GHz × 16. The accompanying artefact [3] includes instructions to reproduce
the results.

Name Sums Numeric Loops Calls Time Cases

Hand-crafted tests:
do_ticks Yes Yes Yes No 166ms 3

nondeterministic_ bubble_sort Yes Yes Yes Yes 2.1 s 5

selection_sort Yes Yes Yes Yes 10.9 s 25

Inspired from SeL4:
decode_set_priority Yes Yes No Yes 10ms 2

mask_cap_boolean Yes No No Yes 7.4 s 324

mask_cap_int Yes Yes No Yes 1.5 s 4

timer_tick_scheduling Yes Yes Yes Yes 41.2 s 81

Simple tests:
assert* Yes Yes No No 1ms 1

call_inside_loop_* No Yes Yes Yes 15ms 1

drift Yes Yes Yes Yes 24ms 2

exchange No No No No 2ms 1

facto* No Yes Yes No 8ms 1

false_type_collision No No No Yes 3ms 1

fibonacci No Yes Yes Yes 51ms 1

gauss* No Yes Yes No 15ms 1

ghost_equality No No No No <1ms 1

hidden_incompat Yes No No No 2ms 0

id No No No No <1ms 1

if No Yes No No 2ms 1

incompat Yes No No No <1ms 0

indirect_swap Yes No No Yes 3ms 2

long_id Yes No No Yes 5ms 2

modulo No Yes Yes Yes 33ms 2

multiplication_larger No Yes No No 2ms 1

or_constructor Yes No No No < 1ms 0

plus_* Yes Yes No No < ms 1

record_assignment* No Yes No No 2ms 1

reduction No Yes No No 3ms 1

struct_exchange Yes No No No <1ms 1

swap Yes No No No <1ms 2

test_loop No Yes Yes No 3ms 1

two_by_two No Yes Yes No 3ms 1

while_true No No Yes No <1ms 0

widening_convergence No Yes Yes No 49ms 1

xor Yes No No Yes 8ms 3
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tion can be the bottleneck—or when many numeric extended variables are
considered—in which case the underlying numeric domain can be the bottleneck.
A solution for the first scenario could be to adopt a different merging strategy,
so that more cases are merged, at the risk of losing precision. In the second
scenario, the generic aspect of our domain allows to choose between numeric
domains with different precision versus cost trade-offs. In addition, techniques
based on partitioning the set of variables could also be leveraged.

7 Related Work

The idea of exploiting an input-output relational semantics to verify while pro-
grams was developed by Kozen [31]. He introduced Kleene Algebra with Tests,
an extension of relation algebra [44] with co-reflexive relations named tests, that
serves as a foundation for the semantics of imperative programs, their verifi-
cation, and as an effective formal tool for proving the correctness of program
transformations.

A number of static analyses for approximating the input-output relation of
a program have been proposed. Cousot and Cousot [11] used abstract interpre-
tation for designing modular and relational analyses, and argue that compo-
sitionality can improve the scalability of analysers. Compositional Recurrence
Analysis (CRA) [14] is a compositional static analysis that infers numeric rela-
tions between the inputs and the outputs of programs. CRA first builds a reg-
ular expression to describe the set of program paths, that is then interpreted
as an input-output relation in a compositional way, in a second stage. Their
approach is context insensitive, and is similar to the relational semantics of
Definition 15. Whereas we follow the standard iteration-based analysis of loops,
they use a special operator to compute the reflexive transitive closure of a rela-
tion, that is specialised on linear recurrence equations. Interestingly, they discuss
in their benchmarks a variation of their analysis, named CRA+OCT, that “uses
an intra-procedural octagon analysis to gain some contextual information, but
which is otherwise compositional”, and that leads to more precise results than
pure CRA. Although no precise definition is given for CRA+OCT, we believe
that it follows our relational collecting semantics of Definition 16, again with
the exception of the treatment of loops. As we have also observed, exploiting
the information available at loop entries is crucial to obtain sufficiently precise
results. ICRA [28] is an inter-procedural extension of CRA, where function sum-
maries are computed once and for all, independently of their calling contexts—an
approach we have followed too in Sect. 5.3. In contrast to CRA and ICRA, our
analysis can deal with programs that are not purely numeric, and that can han-
dle algebraic data types. We have not found any detailed description of how
the function summaries of CRA and ICRA are instantiated. We are therefore
not able to compare the way we instantiate function summaries (Sect. 5.3) with
CRA or ICRA. In contrast to CRA and ICRA, our analysis does not yet support
recursively defined functions.

The same approach of computing context-insensitive function summaries was
followed in the context of correlation analysis [1]. This analysis infers binary
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equalities between the parts of structured inputs and outputs of programs, using
the correlation abstract domain. We improve on that work because we can also
express numeric relations between parts of structured values, and n-ary equali-
ties. Our domain differs significantly from the correlation domain, in the sense
that correlations are recursively defined so that parts of abstract values relate
parts of structured values, whereas our domain is not a recursive structure, and
instead exploits extended variables to relate the parts of structured values that
are accessible through projection paths. We published a preliminary version of
our approach in [2]. In this previous work, the analysis was not input-output
relational, since it inferred approximations of the final states, as opposed to the
relations between input and output states that the current paper is dealing with.
Moreover, our previous work did not include the domain for structural equalities,
and was thus unable to express concisely n-ary equality relations between parts
of structured values. Finally, no implementation and experimental evaluation
was provided. Our implementation effort helped identify several precision issues
in our previous approach, that motivated the addition of the structural equality
domain (Sect. 3.5) and of the relational lifting (Sect. 4.2).

Several relational analyses were developed for the inter-procedural analysis
of numeric programs [5,23,36,42], and in the context of inter-procedural shape
analysis [20,22,43]. They all feature a form of function summary, that helps
reduce the analysis cost of large programs, by enabling modular analyses. A
domain that supports both shape abstraction and numeric constraints was devel-
oped by [6]. It is defined in a modular fashion, based on the cofibered abstract
domain [45]. As in our construction, theirs also features a disjunctive comple-
tion, but leaves open the question of how to keep the number of disjuncts under
control.

In the context of the static analysis of languages with algebraic data types,
techniques based on tree automata [7] have been developed. Tree automata
are well suited to represent regular sets of trees, and several works propose
to extend their expressive power further. Lattice tree automata [16,17] augment
tree automata with elements of an arbitrary abstract domain at their leaves, and
allow to express non-relational integer constraints on the leaves of trees. More
recently, [25,26] use a combination of tree automata and of a relational domain
whose keys are regular expressions to express relational constraints between the
numeric leaves of trees. They use regular expressions to denote sets of access
paths within those trees, and thus to support structures of unbounded heights.

As a particular case of algebraic values, the analysis of programs with optional
numerical values was handled in [33] by associating to optional variables two
avatars, that respectively model lower- and upper-constraints on that variable.
When the avatars of some variable x induce a contradictory constraint, this
denotes that x is in the None case. It is unclear how this approach generalises
to deeply nested algebraic values.

Controlling the number of disjuncts in a disjunctive completion is admittedly
difficult, as a cost vs precision balance must be found. Since we deal with finite
types only, our number of disjuncts is bounded by the products of the sizes of
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types used in a program. Other works have used silhouettes [32]—abstractions
of the shapes of the abstract values—to control disjunctions. Following [27], our
disjunctions, that are guided by paths in values, can be understood as a form of
control sensitivity. It is worth noticing that our disjuncts do not form a partition
since some disjuncts may overlap—a degree of freedom that is advocated by
[27]. Based on our present work, we will investigate whether we can re-cast our
disjuncts as conjunctions of implications, which could both improve precision
and lead to a more parsimonious representations of abstract values.

8 Conclusion and Future Work

In the context of programs that combine arithmetic operations and algebraic
data types, we have shown how to construct an abstract domain that extends
any abstract domain for numeric relations into an abstract domain for relations
between algebraic values. The main idea is to consider extended variables—i.e.,
a variable, and an access path—as the variables used in the numeric abstract
domain. To reduce the size of abstract values, we add a domain that keeps track
of equalities between non-numeric values. The domains are combined using a
reduced product that propagates equalities. Additional expressiveness and pre-
cision is obtained using an adaptation of disjunctive completion for handling the
different, incompatible cases that an algebraic value can exhibit. This abstract
domain is called RAND—the Relational Algebraic Numeric Domain—and can
be exploited in a static analyser.

We have given a formal justification to the folklore result of static analysis
that “an analysis can be made relational by duplicating variables”, by effectively
turning a non input-output relational analysis into an input-output relational
one. One key observation is that the input-output relational analyser and the
non input-output relational one share the same structure: only a few transfer
functions need to be redefined. The second observation is that any relational
domain can easily be used to express relations between different stores: the nec-
essary transfer functions can be redefined once and for all, in a generic manner.

Finally, we have exploited our abstract domain to design and implement [3] a
static analyser for a while language with algebraic data types and function calls
that exploits the relational feature of RAND to infer function summaries. Sum-
maries express the input-output behaviours of functions, and enable a modular
inter-procedural analysis of programs: every function is analysed exactly once.

Further work will address the challenging problem of handling recursive alge-
braic data types and functional arrays. To that end, we will need to adapt our
language of paths, e.g., by using regular languages, or by extending techniques
based on tree automata [26]. Another direction of research is to analyse recur-
sive programs, which will require the computation of a fixpoint at the level of
function summaries for groups of mutually defined functions.

Finally, we intend to apply our analyser to help the verification of programs,
by mixing automatic techniques based on abstract interpretation with standard
deductive verification tools, such as Why3 [15]. Previous work [1] have indeed
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demonstrated that a large number of proof obligations could be discharged auto-
matically in such a way, and could alleviate the verification of large programs.
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Abstract. Asynchronous programming is widely adopted for building
responsive and efficient software, and modern languages such as C# pro-
vide async/await primitives to simplify the use of asynchrony. In this
paper, we propose an approach for refactoring a sequential program into
an asynchronous program that uses async/await, called asynchroniza-
tion. The refactoring process is parametrized by a set of methods to
replace with asynchronous versions, and it is constrained to avoid intro-
ducing data races. We investigate the delay complexity of enumerating
all data race free asynchronizations, which quantifies the delay between
outputting two consecutive solutions. We show that this is polynomial
time modulo an oracle for solving reachability in sequential programs.
We also describe a pragmatic approach based on an interprocedural data-
flow analysis with polynomial-time delay complexity. The latter approach
has been implemented and evaluated on a number of non-trivial C# pro-
grams extracted from open-source repositories.

1 Introduction

Asynchronous programming is widely adopted for building responsive and effi-
cient software. As an alternative to explicitly registering callbacks with asyn-
chronous calls, C# 5.0 [4] introduced the async/await primitives. These prim-
itives allow the programmer to write code in a familiar sequential style without
explicit callbacks. An asynchronous procedure, marked with async, returns a
task object that the caller uses to “await” it. Awaiting may suspend the exe-
cution of the caller, but does not block the thread it is running on. The code
after await is the continuation called back when the callee result is ready. This
paradigm has become popular across many languages, C++, JavaScript, Python.

The async/await primitives introduce concurrency which is notoriously com-
plex. The code in between a call and a matching await (referring to the same
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 135–159, 2022.
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Fig. 1. Synchronous and asynchronous C# programs (x, y are static variables).

task) may execute before some part of the awaited task or after the awaited
task finished. For instance, on the middle of Fig. 1, the assignment y=1 at line 4
can execute before or after RdFile finishes. The await for ReadToEndAsync in
RdFile (line 13) may suspend RdFile’s execution because ReadToEndAsync did
not finish, and pass the control to Main which executes y=1. If ReadToEndAsync
finishes before this await executes, then the latter has no effect and y=1 gets exe-
cuted after RdFile finishes. The resemblance with sequential code can be espe-
cially deceitful since this non-determinism is opaque. It is common that awaits
are placed immediately after the corresponding call which limits the benefits that
can be obtained from executing steps in the caller and callee concurrently [25].

In this paper, we address the problem of writing efficient asynchronous code
that uses async/await. We propose a procedure for automated synthesis of asyn-
chronous programs equivalent to a given synchronous (sequential) program P .
This can be seen as a way of refactoring synchronous code to asynchronous code.
Solving this problem in its full generality would require checking equivalence
between arbitrary programs, which is known to be hard. Therefore, we consider a
restricted space of asynchronous program candidates defined by substituting syn-
chronous methods in P with asynchronous versions (assumed to be behaviorally
equivalent). The substituted methods are assumed to be leaves of the call-tree
(they do not call any method in P ). Such programs are called asynchronizations
of P . A practical instantiation is replacing IO synchronous calls for reading/writ-
ing files or managing http connections with asynchronous versions.

For instance, the sequential C# program on the left of Fig. 1 contains a Main
that invokes a method RdFile that returns the length of the text in a file. The
file name input to RdFile is an input to Main. The program uses a variable
x to aggregate the lengths of all files accessed by RdFile; this would be more
useful when Main calls RdFile multiple times which we omit for simplicity. Note
that this program passes the assertion at line 7. The time consuming method
ReadToEnd for reading a file is an obvious choice for being replaced with an
equivalent asynchronous version whose name is suffixed with Async. Performing
such tasks asynchronously can lead to significant performance boosts. The pro-
gram on the middle of Fig. 1 is an example of an asynchronization defined by this
substitution. The syntax of async/await imposes that every method that tran-
sitively calls one of the substituted methods, i.e., Main and RdFile, must also be
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declared as asynchronous. Then, every asynchronous call must be followed by an
await that specifies the control location where that task should have completed.
For instance, the await for ReadToEndAsync is placed at line 13 since the next
instruction (at line 14) uses the computed value. Therefore, synthesizing such
refactoring reduces to finding a correct placement of awaits (that implies equiv-
alence) for every call of a method that transitively calls a substituted method
(we do not consider “deeper” refactoring like rewriting conditionals or loops).

We consider an equivalence relation between a synchronous program and an
asynchronization that corresponds to absence of data races in the asynchroniza-
tion. Data race free asynchronizations are called sound. Relying on absence of
data races avoids reasoning about equality of sets of reachable states which is
harder in general, and an established compromise in reasoning about concur-
rency. For instance, the asynchronization in Fig. 1 is sound because the call to
RdFile accessing x finishes before the read of x in Main (line 6). Therefore,
accesses to x are performed in the same order as in the synchronous program.

The asynchronization on the right of Fig. 1 is not the only sound (data-race
free) asynchronization of the program on the left. The await at line 13 can
be moved one statement up (before the read of x) and the resulting program
remains equivalent to the sequential one. In this paper, we investigate the prob-
lem of enumerating all sound asynchronizations of a sequential program P w.r.t.
substituting a set of methods with asynchronous versions. This makes it possi-
ble to deal separately with the problem of choosing the best asynchronization in
terms of performance based on some metric (e.g., performance tests).

Identifying the most efficient asynchronization is difficult and can not be done
syntactically. It is tempting to consider that increasing the distance between calls
and matching awaits so that more of the caller code is executed while waiting for
an asynchronous task to finish increases performance. However, this is not true
in general. We use the programs in Fig. 2 to show that the best await placement
w.r.t. performance depends on execution times of code blocks in between calls
and awaits in a non-trivial manner. Note that estimating these execution times,
especially for IO operations like http connections, can not be done statically.

The programs in Fig. 2 use Thread.Sleep(n) to abstract sequential code
executing in n milliseconds and Task.Delay(n) to abstract an asynchronous call
executing in n milliseconds on a different thread. The functions named Foo differ
only in the position of await t. We show that modifying this position worsens
execution time in each case. For the left program, best performance corresponds
to maximal distance between await t in Foo and the corresponding call. This
allows the IO call to execute in parallel with the caller, as depicted on the bottom-
left of Fig. 2. The executions corresponding to the other two positions of await
t are given just above. For the middle program, placing await t in between the
two code blocks in Foo optimizes performance (note the extra IO call in Main):
the IO call in Foo executes in parallel with the first code block in Foo and the
IO call in Main executes in parallel with the second one. This is depicted on the
bottom-middle of Fig. 2. The execution above shows that placing await t as on
the left (after the two code blocks) leads to worse execution time (placing await
t immediately after the call is also worse). Finally, for the right program, placing
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Fig. 2. Asynchronous C# programs and executions. On the bottom, time durations of
executing code blocks from the same method are aligned horizontally, and time goes
from left to right. Vertical single-line arrows represent method call steps, dashed arrows
represent awaits passing control to the caller, and double-line arrows represent a call
return. Total execution time is marked time=....

await t immediately after the call is best (note that IO executes another code
block before await). The IO call in Main executes in parallel with Foo as shown
on the bottom-right of Fig. 2. The execution above shows the case where await
t is placed in the middle (the await has no effect because IO already finished,
and Foo continues to execute). This leads to worse execution time (placing await
t after the two code blocks is also worse). These differences in execution times
have been confirmed by running the programs on a real machine.

As demonstrated by the examples in Fig. 2, the performance of an asynchro-
nization depends on the execution environment, e.g., the overhead of IO opera-
tions like http connections and disk access (in Fig. 2, we use Thread.Sleep(n)
or Task.Delay(n) to model such overheads). Since modeling the behavior of
an execution environment w.r.t. performance is difficult in general, selecting the
most performant asynchronization using static reasoning is also difficult. As a
way of sidestepping this difficulty, we focus on enumerating all sound asynchro-
nizations that allows to evaluate performance separately in a dynamic manner
using performance tests for instance (for each sound asynchronization).
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In the worst-case, the number of (sound) asynchronizations is exponential in
the number of method calls in the program. Therefore, we focus on the delay
complexity of the problem of enumerating sound asynchronizations, i.e., the com-
plexity of the delay between outputting two consecutive (distinct) solutions,
and show that this is polynomial time modulo an oracle for solving reachabil-
ity (assertion checking) in sequential programs. Note that a trivial enumeration
of all asynchronizations and checking equivalence for each one of them has an
exponential delay complexity modulo an oracle for checking equivalence.

As an intermediate step, we consider the problem of computing maximal
sound asynchronizations that maximize the distance between every call and
its matching await. We show that rather surprisingly, there exists a unique
maximal sound asynchronization. This is not trivial since asynchronizations can
be incomparable w.r.t. distances between calls and awaits (i.e., better for one
await and worse for another, and vice-versa). This holds even if maximality is
relative to a given asynchronization Pa imposing an upper bound on the dis-
tance between awaits and calls. In principle, avoiding data races could reduce to
a choice between moving one await or another closer to the matching call. We
show that this is not necessary because the maximal asynchronization is required
to be equivalent to a sequential program, which executes statements in a fixed
order.

As a more pragmatic approach, we define a procedure for computing sound
asynchronizations which relies on a bottom-up interprocedural data-flow anal-
ysis. The placement of awaits is computed by traversing the call graph bottom
up and using a data-flow analysis that computes read or write accesses made
in the callees. We show that this procedure computes maximal sound asynchro-
nizations of abstracted programs where every Boolean condition is replaced with
a non-deterministic choice. These asynchronizations are sound for the concrete
programs as well. This procedure enables a polynomial-time delay enumeration
of sound asynchronizations of abstracted programs.

We implemented the asynchronization enumeration based on data-flow anal-
ysis in a prototype tool for C# programs. We evaluated this implementation
on a number of non-trivial programs extracted from open source repositories to
show that our techniques have the potential to become the basis of refactoring
tools that allow programmers to improve their usage of async/await primitives.

In summary, this paper makes the following contributions:

– Define the problem of data race-free (sound) asynchronization synthesis for
refactoring sequential code to equivalent asynchronous code (Sect. 3).

– Show that the problem of computing a sound asynchronization that maxi-
mizes the distance between calls and awaits has a unique solution (Sect. 4).

– The delay complexity of sound asynchronization synthesis (Sects. 5–6).
– A pragmatic algorithm for computing sound asynchronizations based on a

data-flow analysis (Sect. 7).
– A prototype implementation of this algorithm and an evaluation of this pro-

totype on a benchmark of non-trivial C# programs (Sect. 8).

Additional formalization and proofs are included in [3].
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Fig. 3. Syntax. 〈m〉, 〈x〉, and 〈r〉 represent method names, program and local variables,
resp. 〈le〉 is an expression over local variables, or ∗ which is non-deterministic choice.

2 Asynchronous Programs

We consider a simple programming language to formalize our approach, shown
in Fig. 3. A program is a set of methods, including a distinguished main, which
are classified as synchronous or asynchronous. Synchronous methods run contin-
uously until completion when they are invoked. Asynchronous methods, marked
using the keyword async, can run only partially and be interrupted when exe-
cuting an await. Only asynchronous methods can use await, and all methods
using await must be defined as asynchronous. We assume that methods are not
(mutually) recursive. A program is called synchronous if it is a set of synchronous
methods.

A method is defined by a name from a set M and a list of statements over a set
PV of program variables, which can be accessed from different methods (ranged
over using x, y, z,. . .), and a set LV of method local variables (ranged over using
r, r1, r2,. . .). Input/return parameters are modeled using program variables.
Each method call returns a unique task identifier from a set T, used to record
control dependencies imposed by awaits (for uniformity, synchronous methods
return a task identifier as well). Our language includes assignments, awaits,
returns, loops, and conditionals. Assignments to a local variable r := x, where
x is a program variable, are called reads of x, and assignments to a program
variable x := le (le is an expression over local variables) are called writes to x.
A base method is a method whose body does not contain method calls.

Fig. 4. An IO method.

Asynchronous Methods. Asynchronous meth-
ods can use awaits to wait for the comple-
tion of a task (invocation) while the control is
passed to their caller. The parameter r of the
await specifies the id of the awaited task. As
a sound abstraction of awaiting the completion
of an IO operation (reading or writing a file,
an http request, etc.), which we do not model
explicitly, we use a variation await ∗. This has
a non-deterministic effect of either continuing to the next statement in the same
method (as if the IO operation already completed), or passing the control to the
caller (as if the IO operation is still pending).

Figure 4 lists our modeling of the IO method ReadToEndAsync used in Fig. 1.
We use program variables to represent system resources such as the file system.
The await for the completion of accesses to such resources is modeled by await
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∗. This enables capturing racing accesses to system resources in asynchronous
executions. Parameters or return values are modeled using program variables.
ReadToEndAsync is modeled using reads/writes of the index/content of the input
stream, and await ∗ models the await for their completion.

We assume that the body of every asynchronous method m satisfies several
well-formedness syntactic constraints, defined on its control-flow graph (CFG).
We recall that each node of the CFG represents a basic block of code (a maximal-
length sequence of branch-free code), and nodes are connected by directed edges
which represent a possible transfer of control between blocks. Thus,

1. every call r := call m′ uses a distinct variable r (to store task identifiers),
2. every CFG block containing an await r is dominated by the CFG block

containing the call r := call . . . (i.e., every CFG path from the entry to the
await has to pass through the call),

3. every CFG path starting from a block containing a call r := call . . . to the
exit has to pass through an await r statement.

The first condition simplifies the technical exposition, while the last two
ensure that r stores a valid task identifier when executing an await r, and that
every asynchronous invocation is awaited before the caller finishes. Languages
like C# or Javascript do not enforce the latter constraint, but it is considered
bad practice due to possible exceptions that may arise in the invoked task and
are not caught. We forbid passing task identifiers as method parameters (which is
possible in C#). A statement await r is said to match a statement r := call m′.

Fig. 5. Examples of programs

In Fig. 5, we give three
examples of programs to
explain in more details the
well-formedness syntactic con-
straints. The program on the
left of Fig. 5 does not sat-
isfy the second condition since
await r can be reached without entering the loop. The program in the center
of Fig. 5 does not satisfy the third condition since we can reach the end of the
method without entering the if branch and thus, without executing await r.
The program on the right of Fig. 5 satisfies both conditions.

Semantics. A program configuration is a tuple (g, stack, pend, cmpl, c-by,w-for)
where g is composed of the valuation of the program variables excluding the
program counter, stack is the call stack, pend is the set of asynchronous tasks,
e.g., continuations predicated on the completion of some method call, cmpl is
the set of completed tasks, c-by represents the relation between a method call
and its caller, and w-for represents the control dependencies imposed by await
statements. The activation frames in the call stack and the asynchronous tasks
are represented using triples (i,m, �) where i ∈ T is a task identifier, m ∈ M

is a method name, and � is a valuation of local variables, including as usual
a dedicated program counter. The set of completed tasks is represented as a
function cmpl : T → {�,⊥} such that cmpl(i) = � when i is completed and
cmpl(i) =⊥, otherwise. We define c-by and w-for as partial functions T ⇀ T
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with the meaning that c-by(i) = j, resp., w-for(i) = j, iff i is called by j, resp., i
is waiting for j. We set w-for(i) = ∗ if the task i was interrupted because of an
await ∗ statement.

The semantics of a program P is defined as a labeled transition system (LTS)
[P ] = (C,Act, ps0,→) where C is the set of program configurations, Act is a
set of transition labels called actions, ps0 is the initial configuration, and →⊆
C × Act × C is the transition relation. Each program statement is interpreted
as a transition in [P ]. The set of actions is defined by (Aid is a set of action
identifiers):

Act ={(aid , i, ev) : aid ∈ Aid, i ∈ T, ev ∈ {rd(x),wr(x), call(j), await(k), return,
cont : j ∈ T, k ∈ T ∪ {∗}, x ∈ PV}}

The transition relation → is defined in Fig. 6. Transition labels are written
on top of →.

Transitions labeled by (aid , i, rd(x)) and (aid , i,wr(x)) represent a read and
a write accesses to the program variable x, respectively, executed by the task
(method call) with identifier i. A transition labeled by (aid , i, call(j)) corresponds
to the fact that task i executes a method call that results in creating a task j.
Task j is added on the top of the stack of currently executing tasks, declared
pending (setting cmpl(j) to ⊥), and c-by is updated to track its caller (c-by(j) =
i). A transition (aid , i, return) represents the return from task i. Task i is removed
from the stack of currently executing tasks, and cmpl(i) is set to � to record the
fact that task i is finished.

A transition (aid , i, await(j)) relates to task i waiting asynchronously for
task j. Its effect depends on whether task j is already completed. If this is
the case (i.e., cmpl[j] = �), task i continues and executes the next statement.
Otherwise, task i executing the await is removed from the stack and added to
the set of pending tasks, and w-for is updated to track the waiting-for rela-
tionship (w-for(i) = j). Similarly, a transition (aid , i, await(∗)) corresponds to
task i waiting asynchronously for the completion of an unspecified task. Non-
deterministically, task i continues to the next statement, or task i is interrupted
and transferred to the set of pending tasks (w-for(i) is set to ∗).

A transition (aid , i, cont) represents the scheduling of the continuation of
task i. There are two cases depending on whether i waited for the completion
of another task j modeled explicitly in the language (i.e., w-for(i) = j), or an
unspecified task (i.e., w-for(i) = ∗). In the first case, the transition is enabled
only when the call stack is empty and j is completed. In the second case, the
transition is always enabled. The latter models the fact that methods implement-
ing IO operations (waiting for unspecified tasks in our language) are executed
in background threads and can interleave with the main thread (that executes
the Main method). Although this may seem restricted because we do not allow
arbitrary interleavings between IO methods and Main, this is actually sound
when focusing on the existence of data races as in our approach. As shown later
in Table 1, any two instructions that follow an await ∗ are not happens-before
related and form a race.
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Fig. 6. Program semantics. For a function f , we use f [a �→ b] to denote a function
g such that g(c) = f(c) for all c �= a and g(a) = b. The function inst returns the
instruction at some given control location while next gives the next instruction to
execute. We use ◦ to denote sequence concatenation and init to denote the initial state
of a method call.

By the definition of →, every action a ∈ Act \ {( , , cont)} corresponds to
executing some statement in the program, which is denoted by S(a).

An execution of P is a sequence ρ = ps0
a1−→ ps1

a2−→ . . . of transitions starting
in the initial configuration ps0 and leading to a configuration ps where the call
stack and the set of pending tasks are empty. C[P ] denotes the set of all program
variable valuations included in configurations that are reached in executions of P .
Since we are only interested in reasoning about the sequence of actions a1 ·a2 · . . .
labeling the transitions of an execution, we will call the latter an execution as
well. The set of executions of a program P is denoted by Ex(P ).

Traces. The trace of execution ρ ∈ Ex(P ) is a tuple tr(ρ) = (ρ,MO,CO,SO,HB)
of strict partial orders between the actions in ρ defined in Table 1. The method
invocation order MO records the order between actions in the same invocation,
and the call order CO is an extension of MO that additionally orders actions
before an invocation with respect to those inside that invocation. The syn-
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chronous happens-before order SO orders the actions in an execution as if all the
invocations were synchronous (even if the execution may contain asynchronous
ones). It is an extension of CO where additionally, every action inside a callee
is ordered before the actions following its invocation in the caller. The (asyn-
chronous) happens-before order HB contains typical control-flow constraints: it
is an extension of CO where every action a inside an asynchronous invocation
is ordered before the corresponding await in the caller, and before the actions
following its invocation in the caller if a precedes the first1 await in MO (an
invocation can be interrupted only when executing an await) or if the callee
does not contain an await (it is synchronous). Tr(P ) is the set of traces of P .

Table 1. Strict partial orders included in a trace. CO, SO, and HB are the smallest
satisfying relations.

a1 <ρ a2 a1 occurs before a2 in ρ and a1 �= a2

a1 ∼ a2 a1 = ( , i, ) and a2 = ( , i, )

(a1, a2) ∈ MO a1 ∼ a2 ∧ a1 <ρ a2

(a1, a2) ∈ CO (a1, a2) ∈ MO ∨ (a1 = ( , i, call(j)) ∧ a2 = ( , j, ))

∨ (∃ a3. (a1, a3) ∈ CO ∧ (a3, a2) ∈ CO)

(a1, a2) ∈ SO (a1, a2) ∈ CO ∨ (∃ a3. (a1, a3) ∈ SO ∧ (a3, a2) ∈ SO)

∨ (a1 = ( , j, ) ∧ a2 = ( , i, ) ∧ ∃ a3 = ( , i, call(j)). a3 <ρ a2)

(a1, a2) ∈ HB (a1, a2) ∈ CO ∨ (∃ a3. (a1, a3) ∈ HB ∧ (a3, a2) ∈ HB)

∨ ( a1 = ( , j, ) ∧ a2 = ( , i, ) ∧ ∃ a3 = ( , i, await(j)). a3 <ρ a2 )

∨ ( a1 = ( , j, await(i′)) is the first await in j ∧
a2 = ( , i, ) ∧ ∃ a3 = ( , i, call(j)). a3 <ρ a2 )

∨ ( a1 = ( , j, ) ∧ � ∃ ( , j, await( )) ∈ ρ ∧
a2 = ( , i, ) ∧ ∃ a3 = ( , i, call(j)). a3 <ρ a2 )

On the right of Fig. 1, we show a trace where two statements (represented
by the corresponding lines numbers) are linked by a dotted arrow if the corre-
sponding actions are related by MO, a dashed arrow if the corresponding actions
are related by CO but not by MO, and a solid arrow if the corresponding actions
are related by the HB but not by CO.

3 Synthesizing Asynchronous Programs

Given a synchronous program P and a subset of base methods L ⊆ P , our goal
is to synthesize all asynchronous programs Pa that are equivalent to P and that
are obtained by substituting every method in L with an equivalent asynchronous
version. The base methods are considered to be models of standard library calls
(e.g., IO operations) and asynchronous versions are defined by inserting await
∗ statements in their body. We use P [L] to emphasize a subset of base methods
L in a program P . Also, we call L a library. A library is called (a)synchronous
when all methods are (a)synchronous.

1 Code in between two awaits can execute before or after the control is returned to
the caller, depending on whether the first awaited task finished or not.
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Asynchronizations of a Synchronous Program. Let P [L] be a synchronous
program, and La a set of asynchronous methods obtained from those in L by
inserting at least one await ∗ statement in their body (and adding the keyword
sync). Each method in La corresponds to a method in L with the same name,
and vice-versa. Pa[La] is called an asynchronization of P [L] with respect to La

if it is a syntactically correct program obtained by replacing the methods in L
with those in La and adding await statements as necessary.

Fig. 7. A program and its asynchronizations.

More precisely, let L∗ ⊆ P
be the set of all methods of
P that transitively call meth-
ods of L. Formally, L∗ is the
smallest set of methods that
includes L and satisfies the
following: if a method m calls
m′ ∈ L∗, then m ∈ L∗. Then,
Pa[La] is an asynchronization
of P [L] w.r.t. La if it is obtained from P as follows:
– Each method in L is replaced with the corresponding method from La.
– All methods in L∗ \ L are declared as asynchronous (because every call to an

asynchronous method is followed by an await and any method using await
must be asynchronous).

– For each invocation r := call m of m ∈ L∗, add await statements await r
satisfying the well-formedness syntactic constraints described in Sect. 2.

Figure 7 lists a synchronous program and its two asynchronizations, where L =
{m1} and L∗ = {m,m1}. Asynchronizations differ only in the await placement.

Asy[P,L, La] is the set of all asynchronizations of P [L] w.r.t. La. The strong
asynchronization strongAsy[P,L, La] is an asynchronization where every await
immediately follows the matching call. It reaches exactly the same set of program
variable valuations as P .
Problem Definition. We investigate the problem of enumerating all asynchro-
nizations of a given program w.r.t. a given asynchronous library, which are sound,
in the sense that they do not admit data races. Two actions a1 and a2 in a trace
τ = (ρ,MO,CO,SO,HB) are concurrent if (a1, a2) 	∈ HB and (a2, a1) 	∈ HB.

An ansynchronous program Pa admits a data race (a1, a2), where (a1, a2) ∈
SO, if a1 and a2 are two concurrent actions of a trace τ ∈ Tr(Pa), and a1 and
a2 are read or write accesses to the same program variable x, and at least one
of them is a write. We write data races as ordered pairs w.r.t. SO to simplify
the definition of the algorithms in the next sections. Also, note that traces of
synchronous programs can not contain concurrent actions, and therefore they
do not admit data races. strongAsy[P,L, La] does not admit data races as well.

Pa[La] is called sound when it does not admit data races. The absence of
data races implies equivalence to the original program, in the sense of reaching
the same set of configurations (program variable valuations).

Definition 1. For a synchronous program P [L] and asynchronous library La,
the asychronization synthesis problem asks to enumerate all sound asynchro-
nizations in Asy[P,L, La].
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4 Enumerating Sound Asynchronizations

We present an algorithm for solving asynchronization synthesis, which relies on a
partial order between asynchronizations that guides the enumeration of possible
solutions. The partial order takes into account the distance between calls and
corresponding awaits. Figure 8 pictures the partial order for asynchronizations
of the program on the left of Fig. 1. Each asynchronization is written as

Fig. 8. The partially-
ordered set of asynchro-
nizations of the program
on the left of Fig. 1.

a vector of distances, the first (second) element is
the number of statements between await t1 (await
t) and the matching call (we count only statements
that appear in the sequential program). The edges
connect comparable elements, smaller elements being
below bigger elements. The asynchronization on the
middle of Fig. 1 corresponds to the vector (1, 1). The
highlighted elements constitute the set of all sound
asynchronizations. The strong asynchronization cor-
responds to the vector (0, 0).

Formally, an await statement sw in a method m
of an asynchronization Pa[La] ∈ Asy[P,L, La] covers a
read/write statement s in P if there exists a path in the CFG of m from the call
statement matching sw to sw that contains s. The set of statements covered by an
await sw is denoted by Cover(sw). We compare asynchronizations in terms of sets
of statements covered by awaits that match the same call from the synchronous
program P [L]. Since asynchronizations are obtained by adding awaits, every call
in asynchronization Pa[La] ∈ Asy[P,L, La] corresponds to a fixed call in P [L].
Therefore, for two asynchronizations Pa, P ′

a ∈ Asy[P,L, La], Pa is smaller than
P ′

a, denoted by Pa ≤ P ′
a, iff for every await sw in Pa, there exists an await

s ′
w in P ′

a that matches the same call as sw, such that Cover(sw) ⊆ Cover(s ′
w).

For example, the two asynchronous programs in Fig. 7 are ordered by ≤ since
Cover(await r1) = {} in the first and Cover(await r1) = {r2 = x} in the second.
Note that the strong asynchronization is smaller than every other asynchro-
nization. Also, note that ≤ has a unique maximal element that is called the
weakest asynchronization and denoted by wkAsy[P,L, La]. In Fig. 8, the weakest
asynchronization corresponds to the vector (2, 1).

In the following, we say moving an await down (resp., up) when moving the
await further away from (resp. closer to) the matching call while preserving well-
formedness conditions in Sect. 2. Further away or closer to means increasing or
decreasing the set of statements that are covered by the await. For instance, if
an await sw in a program Pa is preceded by a while loop, then moving it up
means moving it before the whole loop and not inside the loop body. Otherwise,
the third well-formedness condition would be violated.

Relative Maximality. A crucial property of this partial order is that for every
asynchronization Pa, there exists a unique maximal asynchronization that is
smaller than Pa and that is sound. Formally, an asynchronization P ′

a is called a
maximal asynchronization of P relative to Pa if (1) P ′

a ≤ Pa, P ′
a is sound, and

(2) ∀ P ′′
a ∈ Asy[P,L, La]. P ′′

a is sound and P ′′
a ≤ Pa ⇒ P ′′

a ≤ P ′
a.
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Algorithm 1. An algorithm for enumerating all sound asynchronizations (these
asynchronizations are obtained as a result of the output instruction). MaxRel
returns the maximal asynchronization of P relative to Pa

1: procedure AsySyn(Pa, sw)
2: P ′

a ← MaxRel(Pa);
3: output P ′

a;
4: P ← ImPred(P ′

a, sw);
5: for each (P ′′

a , s ′′
w) ∈ P

6: AsySyn(P ′′
a , s ′′

w);

Lemma 1. Given an asynchronization Pa ∈ Asy[P,L, La], there exists a unique
program P ′

a that is a maximal asynchronization of P relative to Pa.

The asynchronization P ′
a exists because the bottom element of ≤ is sound.

To prove uniqueness, assume by contradiction that there exist two incomparable
maximal asynchronizations P 1

a and P 2
a and select the first await s1w w.r.t. the

control-flow of the sequential program that is placed in different positions in the
two programs. Assume that s1w is closer to its matching call in P 1

a . Then, we
move s1w in P 1

a further away from its matching call to the same position as in
P 2

a . This modification does not introduce data races since P 2
a is data race free.

Thus, the resulting program is data race free, bigger than P 1
a , and smaller than

Pa w.r.t. ≤ contradicting the fact that P 1
a is a maximal asynchronization.

4.1 Enumeration Algorithm

Our algorithm for enumerating all sound asynchronizations is given in Algo-
rithm 1 as a recursive procedure AsySyn that we describe in two phases.

First, ignore the second argument of AsySyn (in blue), which represents an
await statement. For an asynchronization Pa, AsySyn outputs all sound asyn-
chronizations that are smaller than Pa. It uses MaxRel to compute the maximal
asynchronization P ′

a of P relative to Pa, and then, calls itself recursively for all
immediate predecessors of P ′

a. AsySyn outputs all sound asynchronizations of
P when given as input the weakest asynchronization of P .

Fig. 9. Asynchronizations.

Recursive calls on immediate predeces-
sors are necessary because the set of sound
asynchronizations is not downward-closed
w.r.t. ≤. For instance, the asynchroniza-
tion on the right of Fig. 9 is an immediate
predecessor of the sound asynchronization
on the left but it has a data race on x.

The delay complexity of this algo-
rithm remains exponential in general,
since a sound asynchronization may be
outputted multiple times. Asynchroniza-
tions are only partially ordered by ≤ and different chains of recursive calls
starting in different immediate predecessors may end up outputting the same
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solution. For instance, for the asynchronizations in Fig. 8, the asynchronization
(0, 0) will be outputted twice because it is an immediate predecessor of both
(1, 0) and (0, 1).

To avoid this redundancy, we use a refinement of the above that restricts
the set of immediate predecessors available for a (recursive) call of AsySyn.
This is based on a strict total order ≺w between awaits in a program Pa that
follows a topological ordering of its inter-procedural CFG, i.e., if sw occurs before
s ′
w in the body of a method m, then sw ≺w s ′

w, and if sw occurs in a method
m and s ′

w occurs in a method m′ s.t. m (indirectly) calls m′, then sw ≺w s ′
w.

Therefore, AsySyn takes an await statement sw as a second parameter, which
is initially the maximal element w.r.t. ≺w, and it calls itself only on immediate
predecessors of a solution obtained by moving up an await s ′′

w smaller than or
equal to sw w.r.t. ≺w. The recursive call on that predecessor will receive as input
s ′′
w. Formally, this relies on a function ImPred that returns pairs of immediate

predecessors and await statements defined as follows:

ImPred(P ′
a, sw) = {(P ′′

a , s ′′
w) : P ′′

a < P ′
a and ∀P ′′′

a ∈ Asy[P,L, La].P ′′′
a < P ′

a ⇒ P ′′′
a ≤ P ′′

a

and s ′′
w �w sw and P ′′

a ∈ P ′
a ↑ s ′′

w }
(P ′

a ↑ s ′′
w is the set of asynchronizations obtained from P ′

a by changing only
the position of s ′′

w, moving it up w.r.t. the position in P ′
a). For instance, looking

at immediate predecessors of (1, 1) in Fig. 8, (0, 1) is obtained by moving the
first await in ≺w. Therefore, the recursive call on (0, 1) computes the maximal
asynchronization relative to (0, 1), which is (0, 1), and stops (ImPred returns ∅
because the input sw is the minimal element of ≺w, and already immediately
after the call). Its immediate predecessor is explored when recursing on (1, 0).

Algorithm 1 outputs all sound asynchronizations because after having com-
puted a maximal asynchronization P ′

a in a recursive call with parameter sw, any
smaller sound asynchronization is smaller than a predecessor in ImPred(P ′

a, sw).
Also, it can not output the same asynchonization twice. Let P 1

a and P 2
a be

two predecessors in ImPred(P ′
a, sw) obtained by moving up the awaits s1w and

s2w, respectively, and assume that s1w≺ws2w. Then, all solutions computed in the
recursive call on P 1

a will have s2w placed as in P ′
a while all the solutions computed

in the recursive call on P 2
a will have s2w closer to the matching call. Therefore,

the sets of solutions computed in these two recursion branches are distinct.

Theorem 1. AsySyn(wkAsy[P,L, La], sw) where sw is the maximal await in
wkAsy[P,L, La] w.r.t. ≺w outputs all sound asynchronizations of P [L] w.r.t. La.

The delay complexity of Algorithm 1 is polynomial time modulo an oracle
that returns a maximal asynchronization relative to a given one. In the next
section, we show that the latter problem can be reduced in polynomial time to
the reachability problem in sequential programs.

5 Computing Maximal Asynchronizations

In this section, we present an implementation of the procedure MaxRel that
relies on a reachability oracle. In particular, we first describe an approach for
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computing the maximal asynchronization relative to a given asynchronization
Pa, which can be seen as a way of repairing Pa so that it becomes data-race
free. Intuitively, we repeatedly eliminate data races in Pa by moving certain
await statements closer to the matching calls. The data races in Pa (if any) are
enumerated in a certain order that prioritizes data races between actions that
occur first in executions of the original synchronous program. This order allows
to avoid superfluous repair steps.

5.1 Data Race Ordering

An action a representing a read/write access in a trace τ of an asynchronization
Pa of P is synchronously reachable if there is an action a ′ in a trace τ ′ of P that
represents the same statement, i.e., S(a) = S(a ′). It can be proved that any trace
of an asynchronization contains a data race if it contains a data race between
two synchronously reachable actions (see Appendix C in [3]). In the following,
we focus on data races between actions that are synchronously reachable.

We define an order between such data races based on the order between
actions in executions of the original synchronous program P . This order relates
data races in possibly different executions or asynchronizations of P , which is
possible because each action in a data race corresponds to a statement in P .

For two read/write statements s and s ′, s ≺ s ′ denotes the fact that there
is an execution of P in which the first time s is executed occurs before the
first time s ′ is executed. For two actions a and a ′ in an execution/trace of an
asynchronization, generated by two read/write statements s = S(a) and s ′ =
S(a′), a ≺SO a ′ holds if s ≺ s ′ and either s ′ 	≺ s or s ′ is reachable from s in the
interprocedural2 control-flow graph of P without taking any back edge3. For a
deterministic synchronous program (admitting a single execution), a ≺SO a ′ iff
S(a) ≺ S(a′). For non-deterministic programs, when S(a) and S(a′) are contained
in a loop body, it is possible that S(a) ≺ S(a′) and S(a′) ≺ S(a). In this case, we
use the control-flow order to break the tie between a and a ′.

The order between data races corresponds to the colexicographic order
induced by ≺SO. This is a partial order since actions may originate from dif-
ferent control-flow paths and are incomparable w.r.t. ≺SO.

Definition 2 (Data Race Order). Given two races (a1, a2) and (a3, a4) admit-
ted by (possibly different) asynchronizations of a synchronous program P , we have
that (a1, a2) ≺SO (a3, a4) iff a2 ≺SO a4, or a2 = a4 and a1 ≺SO a3.

Repairing a minimal data race (a1, a2) w.r.t. ≺SO removes any other data race
(a1, a4) with (a2, a4) ∈ HB (note that we cannot have (a4, a2) 	∈ HB since a2 ≺SO

a4). The repair will enforce that (a1, a2) ∈ HB which implies that (a1, a4) ∈ HB.

2 The interprocedural graph is the union of the control-flow graphs of each method
along with edges from call sites to entry nodes, and from exit nodes to return sites.

3 A back edge points to a block that has already been met during a depth-first traversal
of the control-flow graph, and corresponds to loops.
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5.2 Repairing Data Races

Repairing a data race (a1, a2) reduces to modifying the position of a certain
await. We consider only repairs where awaits are moved up (closer to the match-
ing call). The “completeness” of this set of repairs follows from the particular
order in which we enumerate data races.

Fig. 10. A data race repair.

Let s1 and s2 be the statements gener-
ating a1 and a2. In general, there exists a
method m that (transitively) calls another
asynchronous method m1 that contains
s1 and before awaiting for m1 it (tran-
sitively) calls a method m2 that executes
s2. This is pictured in Fig. 10. It is also
possible that m itself contains s2 (see the
program on the right of Fig. 7). The repair
consists in moving the await for m1 before
the call to m2 since this implies that s1 will always execute before s2 (and the
corresponding actions are related by happens-before).

Formally, any two racing actions have a common ancestor in the call order
CO which is a call action. The least common ancestor of a1 and a2 in CO among
call actions is denoted by LCACO(a1, a2). In Fig. 10, it corresponds to the call
statement sc. More precisely, LCACO(a1, a2) is a call action ac = ( , i, call(j)) s.t.
(ac, a1) ∈ CO, (ac, a2) ∈ CO, and for each other call action a ′

c, if (ac, a ′
c) ∈ CO

then (a ′
c, a1) 	∈ CO. This call action represents an asynchronous call for which

the matching await sw must move to repair the data race. The await should
be moved before the last statement in the same method generating an action
which precedes a2 in the reflexive closure of call order (statement s in Fig. 10).
This way every statement that follows sc in call order will be executed before s
and before any statement which succeeds s in call order, including s2. Note that
moving the await sw anywhere after s will not affect the concurrency between
a1 and a2.

The pair (sc, s) is called the root cause of the data race (a1, a2). We denote
by RDR(Pa, sc, s) the maximal asynchronization P ′

a smaller than Pa w.r.t. ≤, s.t.
no await statement matching sc occurs after s on a CFG path.

5.3 A Procedure for Computing Maximal Asynchronizations

Given an asynchronization Pa, the procedure MaxRel in Algorithm 2 computes
the maximal asynchronization relative to Pa by repairing data races iteratively
until the program becomes data race free. The sub-procedure RCMinDR(P ′

a)
computes the root cause of a minimal data race (a1, a2) of P ′

a w.r.t. ≺SO such
that the two actions are synchronously reachable. If P ′

a is data race free, then
RCMinDR(P ′

a) returns ⊥. The following theorem states the correctness of
MaxRel.

Theorem 2. Given an asynchronization Pa ∈ Asy[P,L, La], MaxRel(Pa)
returns the maximal asynchronization of P relative to Pa.
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Algorithm 2. The procedure MaxRel to find the maximal asynchronization
of P relative to Pa.
1: procedure MaxRel(Pa)
2: P ′

a ← Pa

3: root ← RCMinDR(P ′
a)

4: while root �= ⊥
5: P ′

a ← RDR(P ′
a, root)

6: root ← RCMinDR(P ′
a)

7: return P ′
a

MaxRel(Pa) repairs a number of data races which is linear in the size of
the input. Indeed, each repair results in moving an await closer to the matching
call and before at least one more statement from the original program P .

The problem of computing root causes of minimal data races is reducible to
reachability (assertion checking) in sequential programs. This reduction builds on
a program instrumentation for checking if there exists a data race that involves
two given statements (s1, s2) that are reachable in an executions of P . This
instrumentation is used in an iterative process where pairs of statements are
enumerated according to the colexicographic order induced by ≺. For lack of
space, we present only the main ideas of the instrumentation (see Appendix
D in [3]). The instrumentation simulates executions of an asynchronization Pa

using non-deterministic synchronous code where methods may be only partially
executed (modeling await interruptions). Immediately after executing s1, the
current invocation t1 is interrupted (by executing a return added by the instru-
mentation). The active invocations that transitively called t1 are also interrupted
when reaching an await for an invocation in this call chain (the other invocations
are executed until completion as in the synchronous semantics). When reaching
s2, if s1 has already been executed and at least one invocation has been inter-
rupted, which means that s1 is concurrent with s2, then the instrumentation
stops with an assertion violation. The instrumentation also computes the root
cause of the data race using additional variables for tracking call dependencies.

6 Asymptotic Complexity of Asynchronization Synthesis

We state the complexity of the asynchronization synthesis problem. Algorithm 1
shows that the delay complexity of this problem is polynomial-time in the
number of statements in input program modulo the complexity of computing
a maximal asynchronization, which Algorithm 2 shows to be polynomial-time
reducible to reachability in sequential programs. Since the reachability prob-
lem is PSPACE-complete for finite-state sequential programs [16], we get the
following:
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Theorem 3. The output complexity4 and delay complexity of the asynchroniza-
tion synthesis problem is polynomial time modulo an oracle for reachability in
sequential programs, and PSPACE for finite-state programs.

This result is optimal, i.e., checking whether there exists a sound asynchro-
nization which is different from the trivial strong synchronization is PSPACE-
hard (follows from a reduction from the reachability problem). See Appendices D
and E in [3] for the detailed formal proofs.

7 Asynchronization Synthesis Using Data-Flow Analysis

In this section, we present a refinement of Algorithm 2 that relies on a bottom-
up inter-procedural data flow analysis. The analysis is used to compute maximal
asynchronizations for abstractions of programs where every Boolean condition
(in if-then-else or while statements) is replaced with the non-deterministic choice
∗, and used as an implementation of MaxRel in Algorithm 1.

For a program P , we define an abstraction P# where every conditional if
〈le〉 {S1} else {S2} is rewritten to if ∗ {S1} else {S2}, and every while 〈le〉
{S} is rewritten to if ∗ {S}. Besides adding the non-deterministic choice ∗,
loops are unrolled exactly once. Every asynchronization Pa of P corresponds to
an abstraction P#

a obtained by applying exactly the same rewriting. P# is a
sound abstraction of P in terms of sound asynchronizations it admits. Unrolling
loops once is sound because every asynchronous call in a loop iteration should
be awaited for in the same iteration (see the syntactic constraints in Sect. 2).

Theorem 4. If P#
a is a sound asynchronization of P# w.r.t. La, then Pa is a

sound asynchronization of P w.r.t. La.

The procedure for computing maximal asynchronizations of P# relative to
a given asynchronization P#

a traverses methods of P#
a in a bottom-up fash-

ion, detects data races using summaries of read/write accesses computed using
a straightforward data-flow analysis, and repairs data races using the schema
presented in Sect. 5.2. Applying this procedure to a real programming language
requires an alias analysis to detect statements that may access the same memory
location (this is trivial in our language which is used to simplify the exposition).

We consider an enumeration of methods called bottom-up order, which is the
reverse of a topological ordering of the call graph5. For each method m, let R(m)
be the set of program variables that m can read, which is defined as the union
of R(m′) for every method m′ called by m and the set of program variables
read in statements in the body of m. The set of variables W(m) that m can
write is defined in a similar manner. We define RW-var(m) = (R(m),W(m)).
We extend the notation RW-var to statements as follows: RW-var(〈r〉 := 〈x〉) =
({x}, ∅), RW-var(〈x〉 := 〈le〉) = (∅, {x}), RW-var(r := call m) = RW-var(m),
4 Note that all asynchronizations can be enumerated with polynomial space.
5 The nodes of the call graph are methods and there is an edge from a method m1 to

a method m2 if m1 contains a call statement that calls m2.
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and RW-var(s) = (∅, ∅), for any other type of statement s. Also, let CRW-var(m)
be the set of read or write accesses that m can do and that can be concurrent
with accesses that a caller of m can do after calling m. These correspond to
read/write statements that follow an await in m, or to accesses in CRW-var(m′)
for a method m′ called by m. These sets of accesses can be computed using the
following data-flow analysis: for all methods m ∈ P#

a in bottom-up order, and
for each statement s in the body of m from begin to end,

– if s is a call to m′ and s is not reachable from an await in the CFG of m
• CRW-var(m) ← CRW-var(m) ∪ CRW-var(m′)

– if s is reachable from an await statement in the CFG of m
• CRW-var(m) ← CRW-var(m) ∪ RW-var(s)

We use (R1,W1) �� (R2,W2) to denote the fact that W1 ∩ (R2 ∪ W2) 	= ∅ or
W2 ∩ (R1 ∪W1) 	= ∅ (i.e., a conflict between read/write accesses). We define the
procedure MaxRel# that given an asynchronization P#

a works as follows:

– for all methods m ∈ P#
a in bottom-up order, and for each statement s in the

body of m from begin to end,
• if s occurs between r := call m′ and await r (for some m′), and

RW-var(s) �� CRW-var(m′), then P#
a ← RDR(P#

a , r := call m′, s)
– return P#

a

Theorem 5. The procedure MaxRel#(P#
a ) returns a maximal asynchroniza-

tion relative to P#
a .

Since MaxRel# is based on a single bottom-up traversal of the call graph
of the input asynchronization P#

a we get the following result.

Theorem 6. The delay complexity of the asynchronization synthesis problem
restricted to abstracted programs P# is polynomial time.

8 Experimental Evaluation

We present an empirical evaluation of our asynchronization synthesis approach,
where maximal asynchronizations are computed using the data-flow analysis
in Sect. 7. Our benchmark consists mostly of asynchronous C# programs from
open-source GitHub projects. We evaluate the effectiveness in reproducing the
original program as an asynchronization of a program where asynchronous calls
are reverted to synchronous calls, along with other sound asynchronizations.

Implementation. We developed a prototype tool that uses the Roslyn .NET
compiler platform [27] to construct CFGs for methods in a C# program. This
prototype supports C# programs written in static single assignment (SSA) form
that include basic conditional/looping constructs and async/await as concur-
rency primitives. Note that object fields are interpreted as program variables
in the terminology of Sect. 2 (data races concern accesses to object fields). It
assumes that alias information is provided apriori; these constraints can be
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removed in the future with more engineering effort. In general, our synthesis
procedure is compatible with any sound alias analysis. The precision of this
analysis impacts only the set (number) of asynchronizations outputted by the
procedure (a more precise analysis may lead to more sound asynchronizations).

The tool takes as input a possibly asynchronous program, and a mapping
between synchronous and asynchronous variations of base methods in this pro-
gram. It reverts every asynchronous call to a synchronous call, and it enumerates
sound asynchronizations of the obtained program (using Algorithm 1).

Benchmark. Our evaluation uses a benchmark listed in Table 2, which con-
tains 5 synthetic examples (variations of the program in Fig. 1), 9 programs
extracted from open-source C# GitHub projects (their name is a prefix of the
repository name), and 2 programs inspired by questions on stackoverflow.com
about async/await in C# (their name ends in Stackoverflow). Overall, there
are 13 base methods involved in computing asynchronizations of these pro-
grams (having both synchronous and asynchronous versions), coming from 5 C#

Table 2. Empirical results. Syntactic characteristics of input programs: lines of code
(loc), number of methods (m), number of method calls (c), number of asynchronous
calls (ac), number of awaits that could be placed at least one statement away from the
matching call (await#). Data concerning the enumeration of asynchronizations: number
of awaits that were placed at least one statement away from the matching call (await),
number of races discovered and repaired (races), number of statements that the awaits
in the maximal asynchronization are covering more than in the input program (cover),
number of computed asynchronizations (async), and running time (t).

Program loc m c ac await# await races cover async t(s)

SyntheticBenchmark-1 77 3 6 5 4 4 5 0 9 1.4

SyntheticBenchmark-2 115 4 12 10 6 3 3 0 8 1.4

SyntheticBenchmark-3 168 6 16 13 9 7 4 0 128 1.5

SyntheticBenchmark-4 171 6 17 14 10 8 5 0 256 1.9

SyntheticBenchmark-5 170 6 17 14 10 8 9 0 272 2

Azure-Remote 520 10 14 5 0 0 0 0 1 2.2

Azure-Webjobs 190 6 14 6 1 1 0 1 3 1.6

FritzDectCore 141 7 11 8 1 1 0 1 2 1.6

MultiPlatform 53 2 6 4 2 2 0 2 4 1.1

NetRpc 887 13 18 11 4 1 3 0 3 2

Scoreboards 43 3 3 3 0 0 0 0 1 1.5

VBForums-Viewer 275 7 10 7 3 2 1 1 6 1.8

Voat 178 3 5 5 2 1 1 1 3 1.2

WordpressRESTClient 133 3 10 8 4 2 1 0 4 1.7

ReadFile-Stackoverflow 47 2 3 3 1 0 1 0 1 1.5

UI-Stackoverflow 50 3 4 4 3 3 3 0 12 1.5
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libraries (System.IO, System.Net, Windows.Storage, Microsoft.WindowsAzure.-
Storage, and Microsoft.Azure.Devices). They are modeled as described in Sect. 2.

Evaluation. The last five columns of Table 2 list data concerning the application
of our tool. The column async lists the number of outputted sound asynchro-
nizations. In general, the number of asynchronizations depends on the number
of invocations (column ac) and the size of the code blocks between an invocation
and the instruction using its return value (column await# gives the number of
non-empty blocks). The number of sound asynchronizations depends roughly, on
how many of these code blocks are racing with the method body. These asyn-
chronizations contain awaits that are at a non-zero distance from the matching
call (non-zero values in column await) and for many Github programs, this dis-
tance is bigger than in the original program (non-zero values in column cover).
This shows that we are able to increase the distances between awaits and their
matching calls for those programs. The distance between awaits and matching
calls in maximal asynchronizations of non synthetic benchmarks is 1.27 state-
ments on average. A statement representing a method call is counted as one
independently of the method’s body size. With a single level of inlining, the
number of statements becomes 2.82 on average. However, these statements are
again, mostly IO calls (access to network or disk) or library calls (string/bytes
formatting methods) whose execution time is not negligible. The running times
for the last three synthetic benchmarks show that our procedure is scalable when
programs have a large number of sound asynchronizations.

With few exceptions, each program admits multiple sound asynchronizations
(values in column async bigger than one), which makes the focus on the delay
complexity relevant. This leaves the possibility of making a choice based on
other criteria, e.g., performance metrics. As shown by the examples in Fig. 2,
their performance can be derived only dynamically (by executing them). These
results show that our techniques have the potential of becoming the basis of a
refactoring tool allowing programmers to improve their usage of the async/await
primitives. The artifact is available at [2].

9 Related Work

There are many works on synthesizing or repairing concurrent programs in the
standard multi-threading model, e.g., automatic parallelization in compilers [1,
7,19], or synchronization synthesis [6,10–12,18,24,30,31]. We focus on the use
of async/await which poses specific challenges not covered in these works.

Our semantics without await ∗ instructions is equivalent to the semantics
defined in [4,28]. But, to simplify the exposition, we consider a more restricted
programming language. For the modeling of asynchronous IO operations, we
follow [4] with the restriction that the code following an await ∗ is executed
atomically. This is sound when focusing on data-race freedom because even if
executed atomically, any two instructions from different asynchronous IO oper-
ations (following await ∗) are not happens-before related.
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Program Refactoring. Program refactoring tools have been proposed for con-
verting C# programs using explicit callbacks into async/await programs [25] or
Android programs using AsyncTask into programs that use IntentService [22].
The C# tool [25], which is the closest to our work, makes it possible to repair
misusage of async/await that might result in deadlocks. This tool cannot mod-
ify procedure calls to be asynchronous as in our work. A static analysis based
technique for refactoring JavaScript programs is proposed in [17]. As opposed
to our work, this refactoring technique is unsound in general. It requires that
programmers review the refactoring for correctness, which is error-prone. Also,
in comparison to [17], we carry a formal study of the more general problem of
finding all sound asynchronizations and investigate its complexity.

Data Race Detection. Many works study dynamic data race detection using
happens-before and lock-set analysis, or timing-based detection [14,20,21,26,29].
They could be used to approximate our reduction from data race checking to
reachability in sequential programs. Some works [5,13,23] propose static anal-
yses for finding data races. [5] designs a compositional data race detector for
multi-threaded Java programs, based on an inter-procedural analysis assuming
that any two public methods can execute in parallel. Similar to [28], they pre-
compute method summaries to extract potential racy accesses. These approaches
are similar to the analysis in Sect. 7, but they concern a different programming
model.

Analyzing Asynchronous Programs. Several works propose program anal-
yses for various classes of asynchronous programs. [8,15] give complexity results
for the reachability problem, and [28] proposes a static analysis for deadlock
detection in C# programs that use both asynchronous and synchronous wait
primitives. [9] investigates the problem of checking whether Java UI asyn-
chronous programs have the same set of behaviors as sequential programs where
roughly, asynchronous tasks are executed synchronously.

10 Conclusion

We proposed a framework for refactoring sequential programs to equivalent asyn-
chronous programs based on async/await. We determined precise complexity
bounds for the problem of computing all sound asynchronizations. This problem
makes it possible to compute a sound asynchronization that maximizes perfor-
mance by separating concerns – enumerate sound asynchronizations and evaluate
performance separately. On the practical side, we have introduced an approxi-
mated synthesis procedure based on data-flow analysis that we implemented and
evaluated on a benchmark of non-trivial C# programs.

The asynchronous programs rely exclusively on async/await and are
deadlock-free by definition. Deadlocks can occur in a mix of async/await with
“explicit” multi-threading that includes blocking wait primitives. Extending our
approach for such programs is an interesting direction for future work.
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Abstract. Software-verification tools sometimes produce incorrect an-
swers, which can be a false alarm or a wrong claim of correctness. To
increase the reliability of verification results,manyverifiersnowaccompany
their answers by witnesses in an interoperable standard format. There
exist witness validators that can examine the witnesses and potentially
confirm the verification results. This case study analyzes the quality of
existing witness validators for C programs using the witnesses produced by
a wide variety of 40 verification tools that participated in SV-COMP 2022.
In particular, we show that many witness validators sometimes confirm
witnesses that are invalid. To remedy this situation, we suggest some
advances in witness validation, including a regular comparative evaluation
of validators. Our suggestions were recently adopted by the SV-COMP
community for the next edition of the competition.

Keywords: Software verification ·Programanalysis ·Software validation ·
Software bugs · Verification witnesses · Evaluation · Benchmarking

1 Introduction

There are now many tools for verification of computer programs, but as far as
we know, none of them claims to always produce correct results. The results of
the Competition on Software Verification (SV-COMP) show that out of the 57
verifiers participating in the main category called Overall in the last five years
(there were 10, 13, 11, 10, and 13 participants in this category in years 2018–2022,
respectively), only four provide no incorrect results, namely Ultimate Kojak in
2018,CPA-Seq andSymbiotic in 2019, andGoblint in 2022.Moreover, commu-
nication with industrial developers reveals that even a relatively small portion of
incorrect results can devaluate credibility of a verification tool. As a solution, many
verifiers now accompany their verification results by some evidence in the form of
verification witnesses. These verification witnesses can be independently analyzed
and potentially confirmed by witness validators. Industrial developers can use
witness validation to triage the verification results: the results with unconfirmed
witnesses are ignored and attention is focused on the confirmed ones.

Independent validation of verificationwitnesses is possible thanks to amachine-
readable exchange format for witnesses. The first such format [11] was introduced
in 2015. It supported only violation witnesses (also called counterexamples)
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produced when a verifier reports that a given program violates a considered
safety specification. The authors of this format also extended the verification
tools CPAchecker and Ultimate Automizer to support validation of these
witnesses. In 2016, the format was extended to accommodate also witnesses
for the cases when a verifier decides that a given program satisfies a given
specification [9]. Such witnesses are called correctness witnesses, and they should
contain some hints for the proof of program correctness. In the same year, the two
mentioned tools were extended to support validation of correctness witnesses as
well. In 2018, a new (execution-based) approach for checking of violation witnesses
was introduced and implemented in tools CPA-witness2test and FShell-

witness2test [12]. Another two witness validators called MetaVal [14] and
NitWit [21] were introduced in 2020, followed by validators Dartgnan [19] and
Symbiotic-Witch [1] introduced in 2022. The evolution of the witness format
and validators is driven by the SV-COMP community. Since SV-COMP 2021,
the competition rewards with points only the verification results with witnesses
confirmed by at least one witness validator (with the exception of several categories
for which witness confirmation is not required for correctness witnesses due to
unavailability of suitable witness validators).

The witness format [10,11] is based on GraphML. Each witness contains
information about the corresponding verification task (in particular, the program
and the specification) and the verification result it witnesses. The main part of the
witness resembles an automaton decorated with additional information. Hence, we
talk about witness automata. A violation witness automaton represents a set of
program paths and it is valid if at least one of these paths is feasible and violates
the considered specification. Figure 1 provides an example of a C program that
violates the specification that function reach_error is never called, and three
different violation witnesses. In general, a violation witness automaton describes
a set of program paths by specifying passed program locations (depicted by line
numbers on edges), called functions, takenbranches, constraints on variable values,
etc. Each violation witness automaton has to contain at least one error state
representing a specification violation (depicted in red). Further, it can also contain
sink states (depicted in blue) saying that the represented paths violating the
specification are elsewhere. A witness can represent a single program path by
specifying all program inputs (as in Fig. 1b), it can say nothing about input values
and prescribe taken branches (as in Fig. 1c), or it can combine some branching
information with restrictions on input values (as in Fig. 1d).

A correctness witness automaton represents program invariants and it is
valid if all these invariants hold and the corresponding program satisfies the
considered specification. Ideally, a correctness witness contains a minimal set
of invariants implying that the program satisfies the specification. Figure 2
shows a fixed version of the C program (see the rectangle), which can be proven
correct, and the correctness witness shows invariants (depicted in green) that
help to re-establish the proof of correctness.

The examples of witnesses are adopted from literature [10] which provides
their detailed description: in Sect. 4.2, Examples 7 and 8 explain the violation
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Fig. 1. Example C program with a bug (a) and violation witnesses for it: with test
values (b), with branching information (c) and with intervals (d); taken from [10]
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Fig. 2. Corrected C program (a) and a correctness witness for it (b); the only difference
to Fig. 1a is the corrected type in line 9 (highlighted); taken from [10]

witnesses (pages 21–27), and in Sect. 4.3., Example 9 explains the correctness
witness (pages 31–33). The witness format admits also trivial witnesses that
provide no useful information. A trivial violation witness represents all program
paths and a trivial correctness witness provides no invariant. Validation of a
trivial witness is as hard as the original verification task.

Overview and Outline. A witness validator is given a witness and the corre-
sponding verification task, and it aims at confirming the verification result by prov-
ing that the witness is valid.1 On one side, the addition of the witness-validation
step to the verificationprocess increases the reliability of the confirmed verification
results. On the other side, the reliability of witness validators is not challenged
or even properly studied. As validators are often implemented using the same
techniques as their corresponding verifiers (and by the same development teams),
it is reasonable to expect that they also sometimes produce incorrect results.

In Sect. 2, we focus on the first goal of this paper, namely to evaluate
the performance and reliability of current witness validators for C programs.2

There are currently 8 such validators which can be divided into several cate-
gories according to their approach.

1 Note that the current SV-COMP rules use the term invalid for witnesses that are not
syntactically correct. In our case study, we ignore such witnesses as they can be filtered out
by WitnessLint (https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint).

2 There are only very few validators that support other languages. We know only about
GWit [18] and Wit4Java [20] for Java programs.

https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint
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– CPAchecker [11], MetaVal [14], and Ultimate Automizer [11] create
a product of a witness automaton and the original program and analyze
it. A violation witness is confirmed if the product exhibits the specification
violation described by the witness. A correctness witness is confirmed if
the product satisfies the specification and the invariants in the witness are
valid (cf. [16], Sect. 4.3).

– CPA-witness2test[12],CProver-witness2test(originallycalledFShell-

witness2test) [12], and NitWit [21] can handle only violation witnesses.
They derive a single test from a given witness automaton and execute it. The
witness is confirmed if the execution violates the considered specification.

– Symbiotic-Witch [1] can process also only violation witnesses. It performs
symbolic execution of the given program and tracks the corresponding set
of states in the witness automaton. A witness is confirmed if the symbolic
execution violates the considered specification and the tracked set contains
an error state of the witness automaton.

– Dartgnan [19] is a bounded model checker for parallel programs, which has
been extended with the ability to analyze violation witnesses. It transforms
the violation witness and the program into an SMT query, and it confirms
the witness if the query is satisfiable.

We evaluate the validators on witnesses produced in SV-COMP 2022. As
various validators support different specifications and program features, they
are applicable only to witnesses created for verification tasks of selected SV-
COMP categories. Verification tasks with C programs are currently divided into
6 main categories, which can be roughly characterized as follows.

– ReachSafety contains sequential programs that should be checked for unreach-
ability of a given error function.

– MemSafety consists of sequential programs that should be checked to contain
no invalid dereference, no invalid deallocation, and no memory leaks.

– ConcurrencySafety contains parallel programs that should be checked for
unreachability of a given error function.

– NoOverflows collects sequential programs that should contain no overflow of
a signed integer.

– Termination consists of sequential programs that should be checked to have
no infinite execution.

– SoftwareSystems collects more complex programs that are usually a part of
real software projects and they should be checked for specifications described
in ReachSafety, MemSafety, or NoOverflows.

The applicability of the considered validators to violation and correctness
witnesses of individual SV-COMP categories is summarized in Table 1. Please
note that even if the table indicates that a certain validator is applicable to
violation or correctness witnesses of a certain category, it does not mean that the
validator can handle all such witnesses of this category (for example, a validator
may not support a specific feature of some programs).

Verification tasks in SV-COMP are labelled with expected verification re-
sults. We consider the labelling with expected results as highly reliable due
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Table 1. Applicability of validators to violation and correctness witnesses from
individual SV-COMP categories; some validator names are abbreviated
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ReachSafety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MemSafety ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ConcurrencySafety ✓ ✓

NoOverflows ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Termination ✓ ✓ ✓

SoftwareSystems ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

to the following penalty mechanism of SV-COMP and competitiveness of its
community. In SV-COMP, if a verifier produces an incorrect result (i.e., the
opposite to the expected one), it immediately gets many penalty points. If the
authors of the verifier are confident that the result is correct, they can (and often
do) challenge the expected result. The verification task is then discussed and
potentially relabelled.3 Unfortunately, there is no set of witnesses labelled as
valid or invalid, and we cannot safely assume that all witnesses accompanying
correct verification results are valid. In fact, there are known cases of correct
verification results accompanied by invalid witnesses. For example, this is the
case of some violation witnesses produced by Symbiotic 9 for some MemSafety
benchmarks [17]. However,when a verifier produces an incorrect verification result,
the corresponding witness has to be invalid. In our experiments, we apply the
existing witness validators on all relevant witnesses of both correct and incorrect
verification results computed in SV-COMP2022.

Section 3 is devoted to the second goal of this paper: to initiate qualita-
tive improvement of witness validators. In particular, we suggest extending the
semantics of possible validator outcomes and we propose a formula for evaluat-
ing validators. Our suggestions have been recently accepted by the SV-COMP
community and a new competition track for witness validators has been an-
nounced starting from SV-COMP2023.

Related Work. Existing papers on witness validators typically present only
the confirmation rates of considered validators on the set of witnesses accom-
panying correct verification results, which are implicitly assumed to be valid

3 For example, see Merge Request 1336 of the SV-Benchmarks repository.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1336
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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witnesses [10,14,19,21]. Evaluation of validators on invalid witnesses accompa-
nying incorrect verification results has been previously done only twice: in 2015
for a limited set of invalid violation witnesses and the initial versions of witness
validators CPAchecker and Ultimate Automizer [11] and in 2018 for a
larger set of invalid violation witnesses and initial versions of witness validators
CPA-witness2test and CProver-witness2test and then-current versions of
CPAchecker and Ultimate Automizer [12]. In contrast, we consider invalid
verification witnesses for both violation and correctness results and all 8 currently
available witness validators in their versions used in SV-COMP2022.

More information about witnesses and their validation in the context of SV-
COMP can be found in regular competition reports [5,6]. There is also a study [4]
on violation and correctness witnesses produced in SV-COMP 2019.

2 Evaluation

We would like to investigate the state of the art of witness validation. There-
fore, we take a large set of 158 848 known syntactically correct witnesses from
SV-COMP2022 and validate all those witnesses using all available witness val-
idators for C programs and report the results.

Execution Environment. We executed all experiments on a cluster with 167
machines, each with a CPU of type Intel Xeon E3-1230 v5, 3.4GHz, with 8 pro-
cessing units (virtual cores), 33GB RAM, operating system Ubuntu 20.04 (Linux
5.4.0-94-generic). Each validation run (execution of one validator on one verifi-
cation task and witness) was limited to 2 processing units, 7 GB memory, and
900 s of CPU time for correctness validators and 90 s of CPU time for violation
validators. We chose this configuration because it was used in SV-COMP2022. In
order to ensure reliable measurement and control of the computing resources and
isolation of processes, we used the benchmarking framework BenchExec [13].

Evaluated Validators. In this evaluation,we consider all eightwitness validators
for C programs that participated in SV-COMP2022. Table 1 lists the validators
and the categories for which they can validate witnesses.

Data Set and Benchmark. The witnesses and the verification tasks (program
and specification) are taken from the data set of SV-COMP2022 at Zenodo [8].
SV-COMP organizes the verification tasks with C programs into six categories.We
take all witnesses produced for these tasks by all participating verification tools.
Then we remove the witnesses for which WitnessLint produced an exception.
Exceptions are typically caused by syntax problems or too large witness files.

We classify each violation witness for a correct program as invalid (because
the competition classified the result of the verifier as false alarm), and we classify
each correctness witness for a buggy program as invalid (because the competition
classified the result of the verifier aswrong claimof correctness).All otherwitnesses
are classified as valid∗, because they do not contradict the expected result. We use
the term valid∗ with asterisk because there are witnesses that do not contradict
the expected result but are still invalid (e.g., there can be a violation witness

https://github.com/sosy-lab/sv-witnesses/tree/svcomp22/lint
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Table 2. Validation of violation witnesses by eight violation validators; the numbers
are hyperlinked to the tables generated by BenchExec
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MemSafety

valid∗
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invalid 2804 0 0 26 – 2 – 0 0

ConcurrencySafety

valid∗
4746 2700 – – 1464 – – – –

invalid 1293 40 – – 0 – – – –

NoOverflows

valid∗
2808 2334 887 1436 – 1982 – 2609 2468

invalid 167 0 0 0 – 0 – 0 0

Termination

valid∗
3652 2580 – – – 598 – – 960

invalid 56 21 – – – 0 – – 0

SoftwareSystems

valid∗
2102 621 6 33 – 0 0 179 26

invalid 5903 5 0 27 – 0 0 51 4

representing no feasible path violating the considered specification, even if such a
path exists). However, there is currently no reliable way to automatically identify
invalid witnesses that do not contradict the expected result. Tables 2 and 3 report
in column ‘Witnesses’ the number of valid∗ and invalid witnesses for each category.

Results. We report the results of our validation experiments in two tables.
The results on violation witnesses are presented in Table 2 and the results on
correctness witnesses in Table 3. For each category and validator, row ‘valid∗’
reports the number of valid∗ witnesses confirmed by the validator, and row
‘invalid’ reports the number of invalid witnesses erroneously confirmed by the
validator. Due to the source of invalid witnesses described above, each erroneous
confirmation of an invalid witness here means that the validator either confirmed
a violation witness, but the program does not violate the specification, or it
confirmed a correctness witness, but the program does violate the specification.
In the following we highlight a few observations revealed by the results.

https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_dartagnan-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_dartagnan-validate-violation-witnesses_ConcurrencySafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_Termination.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpa-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_fshell-witness2test-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_nitwit-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_symbiotic-witch-validate-violation-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-violation-witnesses_SoftwareSystems.table.html


168 Dirk Beyer and Jan Strejček

Table 3. Validation of correctness witnesses by three correctness validators; the
numbers are hyperlinked to the tables generated by BenchExec

Category Witnesses CPAchecker MetaVal UAutomizer

ReachSafety

valid∗
31 013 17 312 19 655 19 632

invalid 894 0 315 3

MemSafety

valid∗
16 948 – 227 14 384

invalid 326 – 0 0

ConcurrencySafety

valid∗
3177 – – –

invalid 389 – – –

NoOverflows

valid∗
2089 1718 1608 1713

invalid 300 0 36 0

Termination

valid∗
4502 – – –

invalid 14 – – –

SoftwareSystems

valid∗
25 819 6771 20 624 19 343

invalid 888 0 403 0

Soundness of validators. There is only one validator, namely Dartgnan, that
does not confirm any invalid violation witness. The validator participated only in
category ConcurrencySafety as it is specialized in parallel programs (Table 2).
CPAchecker does not confirm any invalid correctness witness (Table 3).

There seems to be a particularly difficult category. The category SoftwareSystems
has a large number of invalid violation witnesses (Table 2, ‘Witnesses’ column).
This means that in this category, many verification runs report a false alarm
for a correct program, accompanied by an invalid violation witness. The vi-
olation witnesses in this category seem to be difficult for validation, as only
CPAchecker confirmed more than 10 % of valid∗ violation witnesses. Moreover,
all validators that confirmed at least ten valid∗ violation witnesses confirmed
also some invalid violation witnesses.

Our evaluation revealed technical problems. The validator MetaVal does
not confirm any violation witness (Table 2) in categories ReachSafety and
SoftwareSystems and confirms a large number of invalid correctness witnesses
(Table 3) in these categories. The reason for those incorrect validation results
is that the validator was not adapted to a new rule of SV-COMP that was
introduced for SV-COMP2021: All verification tasks in those categories were
changed to using a new logic to encode invalid function calls. Other specifi-
cations are not affected by this change.

https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_ReachSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_MemSafety.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_NoOverflows.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_cpachecker-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_metaval-validate-correctness-witnesses_SoftwareSystems.table.html
https://sv-comp.sosy-lab.org/2022/results/validators/table_uautomizer-validate-correctness-witnesses_SoftwareSystems.table.html
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Summary. Most of the invalid witnesses that were incorrectly confirmed were due
to bugs in validators. The conclusion is that the quality of validators should be
increased by establishing means to stimulate the inspection and quality control
of validation tools. A competition track for validators suggested in the following
section could help drawing the attention of developers to inspecting results of
validators. Currently, SV-COMP uses validators for confirmation of verification
results, but does not evaluate the quality of their results.

Threats to Validity. Regarding internal validity, the main threat to our results is
that we rely on the expected results for verification tasks. If those were incorrectly
specified, our classification of validator results would also be incorrect. But the
verification tasks in the benchmark collection that we use are actively maintained
by the community and the participating teams inspected the results of their
verifiers. The 33 actively participating teams in SV-COMP 2022 have approved
the results of their verifiers before the results were published.

For executing the experiments, we used the publicly-available benchmarking
framework BenchExec [13], which gives us access to the modern features of
the Linux kernel for controling the resources and for isolating executions. This
framework is used by several competitions and is actively maintained. For job
distribution on the cluster we use VerifierCloud, which is also used by several
competitions and research groups for their lab work. It is unlikely that a bug
in the benchmarking infrastructure causes wrong results.

Regarding external validity, our results are specific to witness validators for the
programming language C, because this is the only language for which a large set of
verification and validation tools exist. The first two validators [18,20] for Java were
introduced for SV-COMP 2022. Further, our results are specific to validators that
participated in SV-COMP and to the verification tasks from the SV-Benchmarks
collection. We are not aware of any validators besides those participating in the
competition, and we are not aware of a benchmark that is better suited for the
evaluation than what is used by the competition. Therefore, we assume that our
results are still significant because SV-COMP is comprehensive.

3 Suggestions for Advances in Witness Validation

Extended Semantics of Validator Outcomes. Possible validator answers
recognized by SV-COMP are the same as possible answers of verifiers, which are

– false, meaning that the given program violates the given specification and a
violation witness was generated,

– true, meaning that the given program satisfies the given specification and a
correctness witness was generated, and

– unknown, meaning that the verifier was unable to decide.

The interpretation of a witness-validator answer depends on the kind of the
analyzed witness. A violation witness is confirmed if a validator outputs false.
All other answers (including true and unknown) mean that the witness is not con-
firmed by this validator. Similarly, a correctness witness is confirmed if a validator
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outputs true and all other answers mean that the validator did not confirm the
witness. In other words, even if a validator has the confidence to say that some
witness is invalid, the competition rules give it the same semantics as unknown. As
a consequence, there is no difference between witnesses that are not confirmed due
to insufficient power of validators and those that were refuted by some validators.

We suggest to explicitly state the semantics of a validator output as follows.
On violation witnesses, a validator should produce

– false to confirm that there exists a program execution represented by the
witness such that it violates the considered specification,

– true to refute the witness as there is no program execution represented by
the witness that violates the considered specification, or

– unknown to indicate that it is unable to decide.

On correctness witnesses, a validator produces

– false to refute the witness as there exists some execution violating the
considered specification or some invariant given in the witness,

– true to confirm the witness as the validator can prove that the program
satisfies the considered specification with help of the invariants given in the
witness and that all invariants given in the witness are valid, or

– unknown to indicate that it is unable to decide.

Evaluation of Validators. One can find many areas of computer science (e.g.,
SMT solving), where some kind of competition or regular evaluation led to a
rapid improvement of the state of the art. With this motivation, we suggest to
extend SV-COMP with a comparative evaluation of witness validators, and we
propose the following scoring schema for this evaluation.

Assume that we are given a witness validator, a set of valid∗ witnesses, and
a set of invalid witnesses. Our scoring schema is inspired by the established
scoring schema for evaluating verifiers in SV-COMP. The community agreed that
showing that a system satisfies a given specification deserves more credit than
showing that the specification is violated. Hence, SV-COMP rewards correct (and
confirmed) answers truewith 2 points and correct (and confirmed) answers false
with 1 point. The penalty factor for incorrect answers is −16, which means that
incorrect true yields −32 points and incorrect false −16 points.

The proposed scoring schema for validators is depicted in Fig. 3. We first
describe the scores for invalid violation witnesses (the right side of the figure).
Refutation of an invalid witness is rewarded with 2 points as it means to decide
that all program paths represented by the witness satisfy the specification, which
is an analogy to showing that a program satisfies its specification. Refutation
of an invalid correctness witness is rewarded with 1 point as it corresponds to
finding a violation of the specification or some invariant given in the witness.
Confirmation of an invalid witness yields the penalty p for a violation witness and
2p for a correctness witness, where p is the penalty factor (with p < 0). Points and
penalties for invalid witnesses are accumulated in pinvalid. The proposed scores for
valid∗ witnesses (the left side of the figure) reflect the fact that these witnesses
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Fig. 3. Proposed scoring schema for evaluation of validators (with p < 0)

are only assumed to be valid and some of them can be actually invalid. Hence,
we suggest to reward only confirmation of valid∗ witnesses: 2 points for each
confirmed correctness witness and 1 point for each confirmed violation witness.
Points for valid∗ witnesses are accumulated in pvalid∗ .

One can observe in Tables 2 and 3 that the number of incorrect witnesses
is typically one or two orders of magnitude lower than the number of valid∗

witnesses and this disbalance is assumed to increase if verifiers produce less
incorrect verification results. Further, the pinvalid deserves a higher impact than
pvalid∗ as we do not really know whether valid∗ witnesses are indeed valid. Hence,
we propose to compute the score as the sum

score =
pvalid∗

|valid∗|
+ q ·

pinvalid

|invalid|

where the points in pvalid∗ and pinvalid are normalized by the cardinality of the
corresponding witness sets and pinvalid is given a higher weight using the factor q.

We suggest to compute the validator scores separately for witnesses of each
category. The overall score of a validator can be computed by the normalization
used in SV-COMP to compute the overall scores of verifiers (see [3], page 597).

Our proposal of a comparative evaluation of witness validators based on the
scoring schema above was presented and discussed at the SV-COMP community
meeting on April 7, 2022.The community decided to establish a witness-validation
track from SV-COMP 2023 onwards. The community further decided to use the
suggested scoring schema and set the parameters to p = −16 and q = 2.
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4 Conclusion

Verification tools are complicated software systems, which naturally contain con-
ceptual and programming mistakes. Therefore, it is imperative to apply validators
to ensure that a verification engineer is not bothered with incorrect verification
results. Our case study investigates the correctness of witness validators, in partic-
ular, how many invalid witnesses are confirmed by validators. The results indicate
that there is room for improvement of the validators. We initiated the extension
of SV-COMP by a comparative evaluation of witness validators that will utilize
the full set of validator answers and use the presented scoring schema for ranking
validators. If there is an incentive, then there will be improvement, as is shown
by the enormous success of competitions in the field of formal methods [2].

Data-Availability Statement. Our experiments are based on publicly available
data sets from SV-COMP2022, where a large number of verification tasks [7] was
executed and a large number of verification witnesses [8] was produced. The wit-
ness format is maintained in a GitHub repository: https://github.com/sosy-lab/sv-
witnesses/tree/svcomp22/. Our experimental results are available on a supplementary
web page (https://sv-comp.sosy-lab.org/2022/results/validators/) as tables produced
by BenchExec [13] (also linked to from Tables 2 and 3). The log output is available
by clicking on the status of a result in the tables. All experimental results (raw data,
tables) and scripts are available in our reproduction package [15].
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1 Introduction

The current spread of software-driven computing devices and the fact that
our daily activities and lives are dependent on them makes program verifica-
tion extremely important to prevent crashes that may involve millions of users
(see, for example, [2,10,12,18,23]). Formal methods and static analysis tech-
niques [19,21] are a useful tool to verify program properties before deployment
and to gain confidence on programs behaviour without running the actual code.
Unfortunately the founding fathers of Computer Science had well established
the limits of such approaches, by showing that all interesting problems about
Turing equivalent programming languages are undecidable, like program termi-
nation and extensional equivalence [20,22], so that the pretension of devising
universal analysis procedures that works fine for any program is deemed to fail.
Intensional analysis is more subtle, because it takes into account how a program
is written and not just what a program computes.

Abstract Interpretation [5,7,16,21] is an intensional, sound-by-construction
static analysis method whose precision depends very much on the way in which
the program is coded. The basic idea of Abstract Interpretation is to execute the
program over an abstract domain that over-approximate the concrete program
semantics. In this sense, each set of concrete stores is approximated by its least
superset available in the abstract domain. For example, if one is interested in sign
analysis, the abstract domain can be the finite set {H, Ză0, Zě0, Z} such that
the empty set is approximated by H, any set of negative values, like {´4, ´2},
is approximated by Ză0, any set of non-negative values by Zě0 and any other
(non-empty) set by Z. The symbolic execution of the program on the abstract
domain is performed by a so-called abstract interpreter that may loose precision
because it operates on abstract elements only. The abstract interpreter is sound-
by-construction in the sense that it is guaranteed to return an over-approximation
of the concrete result. Completeness of the abstract interpreter would ensure that
the abstract result is the least representative available in the abstract domain of
the concrete result, that is the abstract result is as much precise as possible. Recent
work has shown that only trivial abstract domains can be complete for all pro-
grams of a Turing equivalent language [3,14]. However, if the abstract analysis
is complete for all primitives appearing in a program then we can conclude that,
for that particular program, the analysis is also complete-by-construction. Con-
sequently, if we consider the sublanguage consisting of all programs composed by
complete primitives, then Abstract Interpretation gives us an analysis framework
that is sound-and-complete by construction.

Contribution. In this paper, we investigate the connections between completeness
in Abstract Interpretation and decidability of program termination and (exten-
sional) equivalence. The idea is to fix some constraints over the abstract domain
that guarantees the decidability of relevant properties for any program for which
the analysis is complete-by-construction. The notion we put forward is that of
bounded abstract domain (see Definition 13), where the termination of the abstract
interpreter is always guaranteed. Note that, in the general case, termination of the
abstract interpreter does not imply termination of the concrete program.
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As a first result we show that for programs that are complete-by-construction
on a bounded abstract domain termination is decidable. This is obtained by
showing that each such program can be rewritten in an equivalent form by
unrolling each loop a finite number of times, possibly ending up in a trivial loop.
Since the equivalent form can only contain trivial loops, which are immediate to
detect, it follows that program termination is decidable.

As a second main result, we show a convenient way of attacking pro-
gram equivalence for programs that are complete-by-construction on a bounded
abstract domain. This can be done by unrolling each program as specified above
and by then rewriting the code in a so-called reduced select normal form (see
Definition 32) that is essentially a series of nested if-then-else structures whose
basic commands are assignments and trivial loops. Finally, we give a procedure
to decide whether two programs in reduced select normal form are equivalent
or not by reducing the problem to the validity of a set of guarded statements
defined using the primitives appearing in the programs only.

To support the applicability of our approach we prove how abstract domains
defined on Boolean abstractions complete for the same functions can be com-
posed to obtain new bounded domains complete for the same functions and for
any guard expressible in one of the original domain. By composing different
domains each one complete for a different guard of the program we may end up
in designing a new abstract domain complete for any guard appearing in the
program.

Structure of the Paper: In Sect. 2 we introduce the notation and recall the basic
concepts of Abstract Interpretation. The notion of bounded abstract domain is
introduced in Sect. 3, together with some results on their composition. In Sect. 4
we prove that any program whose analysis is complete on a bounded domain
can be transformed in an equivalent one for which termination is decidable. We
conclude Sect. 4 by discussing the applicability of the approach when Boolean
abstractions are used. Section 5 shows that equivalence between complete pro-
grams on abstract bounded domain is decidable. Finally, Sect. 6 draws some
conclusions and discusses future work. All technical proofs are collected in the
Appendix for reviewers’ convenience.

2 Background

2.1 Notation

We let N be the set of natural numbers, Z the set of integers and B the set of
Booleans and write X YY for the union of X and Y , X XY for their intersection,
XzY for their difference, X ˆ Y for their cartesian product, and Xn for the
cartesian product of X with itself n times. The powerset of X is denoted by
PpXq. Set inclusion is denoted as X Ď Y and strict inclusion as X ⊂ Y .

The identity function over a set X is written idX : X Ñ X and we omit the
subscript when it is clear from the context. The composition of two functions
f : X Ñ Y and g : Y Ñ Z is denoted by g ˝ f : X Ñ Z or more concisely by gf .
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We also define the iterated application of a function f : X Ñ X as f0 def“ idX and
fn def“ f ˝ fn´1. Abusing the notation, we extend function application to denote
its lifting to sets of elements fpXq def“ {fpxq | x P X}. Tuples will be denoted by
x̃ “ xx1, . . . , xny P Xn, however, by overloading the notation x̃ will also denote
the set {x1, . . . , xn} when no ambiguity arises, moreover, let x̃′ P Xm we denote
as x̃ `̀ x̃′ the concatenation xx1, . . . , xn, x′

1, . . . , x
′
my. X̃ X Y indicates the tuple

xX1 X Y, . . . , Xn X Y y when each Xi is a set itself.
We formally define a partitioning of a set U where each partition does not

need to be nonempty.

Definition 1 (Partitioning). Given n P N, we say that P “ {P1, . . . , Pn} is a
partitioning of a set U iff U “ Ťn

i“1 Pi and Pi X Pj “ H for i �“ j.

We will refer to complete lattices as C “ xC, ĺC , _C , ^C , JC , KCy where
_C , ^C are the lub and glb respectively and JC , KC are the top and bottom
elements. When clear from the context the subscripts will be omitted. We define
an order on functions f, g : C Ñ D between lattices, denoted by f ĺ g, iff for
all c P C it holds that fpcq ĺD gpcq.

We say that a function f between posets is monotone if it is order preserving.
The function f is called additive if it is lub preserving and co-additive if it
preserves glbs. Moreover, we say that a mapping f : X Ñ X on a poset is
extensive (or reductive) iff for all x it holds that x ĺ fpxq (resp. fpxq ĺ x). We
also denote with lfp (f) the least fixpoint of f (w.r.t. ĺ) when it exists.

2.2 Abstract Interpretation

Abstract interpretation [7] is based on the notion of Galois connections/inser-
tions. We recall the basic concepts here, but see [5–7,9] for further details.

Given two complete lattices C and A, a pair of functions α : C Ñ A and
γ : A Ñ C forms a Galois connection (GC) iff for all a P A, c P C:

αpcq ĺA a ⇐⇒ c ĺC γpaq
holds. The two domains C and A are called the concrete and the abstract domain,
respectively. α is the abstraction map while γ is the concretization map.

The elements of the abstract domain are usually denoted by using the sym-
bol 7, as S7. As some relevant properties: γα is extensive and αγ is reductive,
both α and γ are monotone, and α is additive, while γ is co-additive.

Definition 2 (Galois Insertion). A Galois connection where αγ “ idA is
called a Galois Insertion (GI), in this case α is onto and γ is one-to-one.

An abstract domain A is said to be strict when γpKAq “ K. In a GI the
property γpS7q “ K ⇐⇒ S7 “ KA also holds. From now on we consider GIs on
strict abstract domains (unless otherwise specified).

Some elements of the concrete domain can be approximated without any loss
of informations: we call them expressible values.
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Definition 3 (Expressible Value). We say that a concrete element c P C is
expressible in A when γαpcq “ c. When instead c ă γαpcq we say that c is strictly
approximated in A.

Also functions need to be approximated on abstract domains.

Definition 4 (Correct Approximation). Given a concrete function f : C Ñ
C, we say that f 7 : A Ñ A is a correct approximation of f iff αf ĺ f 7α.

It is known that if f 7 is a correct approximation of f then we also have fixpoint
correctness when least fixpoints exist, i.e., αplfp (f)q ĺ lfp

(
f 7) holds.

Between all abstract functions that approximate a concrete one we can define
the most precise one.

Definition 5 (Best Correct Approximation). We define the best correct
approximation (BCA) of a concrete function f as fA def“ αfγ.

Such function is called best correct approximation because it holds fA ĺ f 7 for
any other correct approximation f 7 of f .

Definition 6 (Complete approximation). A correct approximation f 7 is
complete iff αf “ f 7α holds.

Analogously to soundness, completeness transfers to fixpoints, meaning that if
f 7 is complete for f then fixpoint completeness αplfp (f)q “ lfp

(
f 7) holds.

An abstract domain is said to be complete for f if there exists a complete
approximation for f in that domain. A known result is that a complete abstrac-
tion exists iff αf “ αfγα, or equivalently γαf “ γfAα.

We use C
Apfq to indicate that f admits a complete approximation in A (the

abstraction domain will be omitted when clear from the context), this notation
naturally extends to sets of functions F in the sense that we write C

ApF q when
all the functions in F admit a complete approximation in A.

Abstract domains can be finite or infinite with some desiderable properties
that ensure the termination of the abstract semantics computation.

Definition 7 (ACC Poset). A poset is ACC (satisfies the Ascending Chain
condition) if it has no infinite strictly increasing chain.

Any analysis through abstract interpretation over an ACC domain is guaranteed
to terminate, since by definition it follows that any fixpoint computation will
converge in a finite number of steps.

2.3 Programs

Syntax. We consider the usual definitions for Boolean and integer expressions,
where, for simplicity we omit expressions that can generate runtime errors, like
division by zero. At the level of the concrete collecting semantics, runtime errors
could be handled either with the introduction of distinguished elements in the
domain or by using the bottom element (the empty set of results). In the former
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case, runtime errors are distinguished from divergence and must be propagated
ad hoc in the semantic definitions, while in the latter case they are just handled
as absence of result. We let:

AExp � a ::“ v P Z | x P Var | a ` a | a ´ a | a ˚ a | a ˜ k

BExp � b ::“ tt | ff | a “ a | a ą a | b ^ b | �b.

where Var is a denumerable set of program variables and k P Z is different from
0. We will introduce some syntax sugar whenever required to keep the notation
short by writing e.g. x ď y instead of �px ą yq or px_yq instead of �p�x^�yq.

Moreover, we define the syntactic substitution of all the occurrences of a
variable x with an expression a′ inside the expression a, denoted by a[a′{x], as:

v[a′{x] def“ v, y[a′{x] def“
{

a′ if y “ x

y otherwise

pa1 op a2q[a′{x] def“ a1[a′{x] op a2[a′{x], for op P {`, ´, ˚}
pa ˜ kq[a′{x] def“ a[a′{x] ˜ k.

Such definition extends naturally to Boolean expressions in BExp.
Given any subset of arithmetic expressions A Ď AExp and of Boolean expres-

sions B Ď BExp, we define two sets of programs: ImppA,Bq the set of imperative
programs on A and B, and Imp´pA,Bq a set of programs using only trivial loops
of the form while tt do skip, for which we use the shorthand wK.

The set of programs ImppA,Bq and Imp´pA,Bq are generated by the follow-
ing grammars, where a P A and b P B:

Imp � c ::“ skip | x :“ a | c; c | if b then c else c | while b do c

Imp´ � c ::“ skip | x :“ a | c; c | if b then c else c | wK

The two sets A and B will be omitted when clear by the context.

Concrete Semantics. In order to define the semantics of an imperative program,
we consider a store σ P Σ as a function from V Ď Var to integers, that is,
Σ

def“ V Ñ Z. We define the semantics for integer expressions �¨� : AExpˆΣ Ñ Z

as:

�v�σ
def“ v �x�σ

def“ σpxq
�a1 ` a2�σ

def“ �a1�σ ⊕ �a2�σ �a1 ´ a2�σ
def“ �a1�σ � �a2�σ

�a1 ˚ a2�σ
def“ �a1�σ f �a2�σ �a ˜ k�σ

def“ �a�σ c k

where ⊕,�, f and c are the usual mathematical operations. Analogously we
define the semantic of Boolean expressions �¨� : BExp ˆ Σ Ñ B corresponding
to the usual comparison and logical operators “, ą, ^, �.
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We define the concrete collecting semantics by extending the previous seman-
tics to sets of stores. Let S

def“ PpΣq, �¨� : AExpˆS Ñ PpZq and �¨� : BExpˆS Ñ
S where �a�S

def“ {�a�σ | σ P S} and �b�S
def“ {σ P S | �b�σ “ tt}. The concrete

collecting semantics for programs in Imp (and Imp´) is defined as follows:

�x :“ a�S
def“ {σ[x 	Ñ �a�σ] | σ P S}

�skip�S
def“ S

�c1; c2�S
def“ �c2��c1�S

�if b then c1 else c2�S
def“ �c1��b�S Y �c2���b�S

�while b do c�S
def“ ��b�lfp

(
Γ b,c
S

)

where Γ b,c
S

def“ λX.S Y �c��b�X. We also denote with b the set �b�Σ of all stores
satisfying b. By this convention, abusing the notation, �b�S “ b X S.

Abstract Semantics. By considering A as an abstract domain for S, we can define
the abstract collecting semantics as follows. For integer and Boolean expressions,
consider the best correct approximations �a�7

A
def“ �a�A and �b�7

A
def“ �b�A. The

semantics for Imp and Imp´ is defined as follows:

�x :“ a�7
AS7 def“ α�x :“ a�γS7

�skip�7
AS7 def“ S7

�c1; c2�
7
AS7 def“ �c2�

7
A�c1�

7
AS7

�if b then c1 else c2�
7
AS7 def“ �c1�

7
A�b�7

AS7 _A �c2�
7
A��b�7

AS7

�while b do c�7
AS7 def“ ��b�7

Alfp
(
A

b,c
S7

)

where A
b,c
S7

def“ λX7.S7 _A �c�7
A�b�7

AX7. For our following applications we need to
observe the following straightforward property, which is a consequence of [14].

Lemma 8. If all assignments in A and all guards in B are complete on A, then
any program in ImppA,Bq (and in Imp´pA,Bq) is complete on A.

Note that for any X P S,X7 P A, we have �wK�X “ H and �wK�7
AX7 “ K.

The concrete semantics is additive and, moreover, when A and B are sets
of respectively complete assignments and guards, then for any c P Imp´pA,Bq,
�c�7

A is also additive.
In the paper we will exploit Boolean abstraction domains [1]. They are defined

by mapping concrete elements into sets of bitvectors as follows (we use σ � p for
a given predicate p and a concrete state σ to denote that p holds in σ):

Definition 9 (Boolean abstraction). Given a set of Boolean predicates
P “ {p1, . . . , pn} defined over concrete states, we define the associated Boolean
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abstraction on the abstract domain BoolpPq def“ xPp{0, 1}nq, Ď, Y, X, {0, 1}n, ∅y
via the following abstraction/concretization maps, where 1 ¨ pi def“ pi and 0 ¨ pi def“
�pi:

αPpSq def“ {xv1, . . . , vny | S X {σ | σ � v1 ¨ p1 ^ ¨ ¨ ¨ ^ vn ¨ pn} �“ ∅}
γPpS7q def“ {

σ
∣
∣ Dxv1, . . . , vny P S7 . σ � v1 ¨ p1 ^ ¨ ¨ ¨ ^ vn ¨ pn

}

2.4 Conditions for Completeness of Guards

The only abstract domains that are complete for all programs in any Turing com-
plete programming language are the trivial ones1 (see [3,14]). In [14] the authors
further observed that the completeness of (the semantic functions associated
with) assignments and Boolean guards occurring in a program is a sufficient
condition to guarantee the completeness of the whole program (see Lemma 8
above). While the completeness of assignments has been extensively studied
(e.g., the completeness conditions for assignments in major numerical domains
such as intervals, congruences, octagons and affine relations have been fully set-
tled [14,16], while the case of Boolean guards is more troublesome and has been
studied in [4], from which we report below the main results we exploit here.
Formally, completeness of guards is defined as follows:

Definition 10 (Complete Guard). We say that a guard b is complete (in
short Cpbq) to indicate that the filtering functions for both b and �b are complete,
that is, letting Fb

def“ {λX P S . b X X,λX P S . �b X X}, then Cpbq ⇐⇒ CpFbq.
Both b and �b being expressible is a necessary condition for Cpbq to hold.

Moreover:

Theorem 11 (cf. [4]). If b and �b are expressible in A, then:

Cpbq ⇐⇒ @S P S . ( αpS X bq “ αpSq ^A αpbq ^ αpS X �bq “ αpSq ^A αp�bq )

⇐⇒ @S7
1, S

7
2 P A .

(
S7
1 ĺ αpbq ^ S7

2 ĺ αp�bq “⇒ γpS7
1 _A S7

2q “ γpS7
1q Y γpS7

2q
)

Theorem 11 offers a convenient way to check guard completeness: it is necessary
and sufficient to check that the join of every two points under b and �b respec-
tively is expressible in the domain. Theorem11 also gives a way to compute
the completeness closure w.r.t. to a guards b, by enforcing the presence in the
abstract domain of the elements b and �b together with the (concrete) join of
every two (abstract) points under b and �b.

3 Bounded Domains

We first introduce the notion of bounded (abstract) domain in order to char-
acterize the class of programs that we will manipulate in order to remove any
nontrivial loop.
1 Namely, the identical abstraction, making abstract and concrete semantics the same,

and the top abstraction, making all programs equivalent by abstract semantics.
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Definition 12 (k-ACC Poset). A poset is k-ACC iff all ascending chain
lengths are bound by a value k P N.

Definition 13 (Bounded domain). A poset is said to be bounded if there
exists some value k for which it is k-ACC.

Whenever a complete abstract interpretation can be conducted on a bounded
domain, then we can exploit the parameter k which gives us an upper bound to
the number of iterations required to compute any abstract fixpoint.

Focusing on the chain of iterates produced when computing lfp
(
A

b,c
S7

)
we

observe that if our abstract domain is bounded, then it is (k+1)-ACC for some
k, thus it holds that the produced chain contains no more than k ` 1 distinct
values, meaning that the fixpoint computation converges in no more than k ` 1
steps, that is lfp (A) “ A

pkqpKAq.
An interesting result about complete abstractions is the following:

Lemma 14. Let A be a strict domain for which �c1� and �c2� are complete. If
�c1�

7
A “ �c2�

7
A it holds that:

�c1�S “ K ⇐⇒ �c2�S “ K
We present two well-known abstract domains Sign and Mod3 in Fig. 1 which

are both bounded and will be used in the upcoming examples.

Fig. 1. Abstract domains

Note that we use the symbol ”3, or ” when no ambiguity arises, to identify
modulo 3 congruences.

The abstraction function for the Sign domain is defined by mapping each set
X of concrete values based on the sign of its elements, let us define an auxiliary
function sgnpxq : Z Ñ {Ză0, Z“0, Zą0} which maps concrete values based on
their sign (and zero in Z“0), the abstraction map is then defined as:

αSignpSq def“
ł

xPS
sgnpxq
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The concretization map is then defined intuitively over Ză0 as

γSignpZă0q def“ {x P Z | x ă 0}

and following a similar approach for all the other abstract values.
Both the abstract and the concretization maps for the Mod3 domain are

defined in a similar fashion, by mapping every concrete value based on its mod-
ulo 3 reminder as classically defined.

Multiplication is a complete operation in both domains, while addition and
difference are complete in Mod3 only.

We now show that Boolean abstractions give rise to bounded domains which
can be composed via predicate union while preserving functional completeness.

Lemma 15. Let P def“ {p1, . . . , pn}, Q def“ {q1, . . . , qm} be sets of predicates, and
let P

def“ BoolpPq and Q
def“ BoolpQq be the Boolean abstraction domains built

over the two predicate sets, respectively, and let f : Σ Ñ Σ be a complete function
over both P and Q. Then, the Boolean abstraction domain D

def“ BoolpP Y Qq
built over the set of predicates P Y Q is such that:

1. D is bounded
2. The predicate filter for every predicate in P Y Q is complete
3. f is complete over D

We also note that the class of bounded domains is closed under reduced
product [8, Section 10.1] (which also preserves completeness for functions which
are complete on both domains). Moreover, computing the completeness closure
w.r.t. to guards as per Theorem 11 preserves boundedness, too.

It is worth noting that using Cartesian predicate abstraction [1] instead of
Boolean abstraction would not offer the same guarantees about completeness
for predicate filters. Indeed Lemma 15 requires the presence of the disjunction of
predicate filters, which is in general missing in the Cartesian predicate abstrac-
tion.

4 Program Termination

In this section we explore the connections between complete abstractions in
bounded domains and program termination on a given input. Formally, given
a command c P ImppA,Bq and an input set S, the termination problem corre-
sponds to deciding whether �c�S “ K or not, i.e., we want to establish if there
is some input in S where c terminates or not.2 We show that the bound on the
length of any ascending chain in the abstract domain can be used to infer the
largest number of times each loop must be unrolled. This allows us to define
a program transformation that replaces each loop with its bounded unrolling

2 Note that this is different from establishing termination for all input in S, which
should be addressed separately.
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while preserving the concrete collecting semantics. While the original program
belongs to ImppA,Bq, the transformed program will belong to Imp´pA,Bq, that
is the only loops have the form wK, which is the only source of divergence. As
a main result, termination is thus decidable for any complete program (and any
input).

The first observation is that in any pk ` 1q-ACC domain and for any
ImppA,Bq program while b do c we have that, for all S7,

�while b do c�7
AS7 “ �if pk´1q

b,c �7
AS7 (1)

where if pk´1q
b,c is the Imp´pA,Bq command inductively defined as:

if p0q
b,c

def“ if b then wK else skip

if pn`1q
b,c

def“ if b then
(
c; if pnq

b,c

)
else skip

To see this, we exploit the equality

A
pk`1qpKAq “

(
kł

i“0

p�c�7
A�b�7

AqpiqS7
)

_A KA (2)

which can be immediately proved by induction on k. Then, the equality (1) can
be proved as follows:

�while b do c�7
AS7 “ ��b�7

Alfp (A) “ {Hypothesis}
��b�7

AA
pkqpKAq “ {Equation 2}

��b�7
A

((
k´1ł

i“0

p�c�7
A�b�7

AqpiqS7
)

_A KA

)

“ {Additivity of ��b�7
A}

(
k´1ł

i“0

��b�7
Ap�c�7

A�b�7
AqpiqS7

)

_A ��b�7
AKA “ {Definition of �skip�7

A, ��b�7
A}

(
k´1ł

i“0

�skip�7
A��b�7

Ap�c�7
A�b�7

AqpiqS7
)

_A KA “ {By induction on k}

�if pk´1q
b,c �7

AS7

This process of “unrolling” while loops introduces a sequence of nested
if -else commands of depth k; unrolling a while loop having d ´ 1 nested loops
inside produces a program having a total of kd if -else commands. Equation 1
proves that the transformed program will exhibit an equivalent behaviour as the
original one on the abstract domain A (for any abstract input).

Next we exploit the notion of complete abstraction. Assuming that the set A
contains only complete assignments and B only complete guards on the abstract
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domain A, we have that every program in ImppA,Bq is complete as well as its
transformed version in Imp´pA,Bq, because the transformation does not intro-
duce any new guard or assignment (see Lemma 8). By Lemma 14 and Eq. (1), we
conclude that, from a divergence perspective, the while command is equivalent
to its transformed version in if -else form, that is, the concrete semantics of the
first one diverges if and only the concrete semantics of the second does.

Theorem 16 (Termination). Let A contain only complete assignments and
B only complete guards on the abstract domain A. For any guard b P B and any
command c P ImppA,Bq we have

�while b do c�S “ K ⇐⇒ �if pk´1q
b,c �S “ K (3)

In fact, a much stronger result can be obtained, namely that the concrete
collecting semantics of the program and its transformation coincide.

Theorem 17 (Unrolling). Let A contains only complete assignments and B
only complete guards on the abstract domain A. For any guard b P B and any
command c P ImppA,Bq we have

�while b do c� “ �if pk´1q
b,c � (4)

Proof. By applying k ´ 1 expansions

�while b do c� “ �if b then pc;while b do cq else skip�

we get an equivalent command which is identical to if pnq
b,c except for the if p0q

b,c

element which is replaced by while b do c. Moreover, by Eq. (3), we obtain the
thesis. 
�

This result lets us conclude that:

Corollary 18. For any complete program c P ImppA,Bq on a bounded strict
abstract domain there exists an Imp´pA,Bq program which is equivalent under
the concrete semantics.

The above procedure also gives us a constructive way to obtain such an
equivalent program that will also be complete.

4.1 Deciding Program Termination

We now use our results to solve the program termination problem, which consists
of, given a program c and an input σ, determining if �c�{σ} “ H.

Let us consider the command c′ P Imp´ obtained by the previous transforma-
tion of c. The result builds on the fact that for any Imp´ program, termination
is decidable since it can only involve trivial loops wK, i.e., we can safely state
that any nonterminating computation will reach some wK in a finite number of
steps.
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In fact, for any input, we can safely execute the semantics of the equivalent
Imp´ program c′ and as soon as we enter any loop we can safely conclude that
the program diverges on such input.

On the other hand, executing c′ on any terminating input will never enter
any loop, since that would lead to divergence. Observing that the number of
executed steps in absence of any loop is bounded by the program length (since
no program line can be executed more than once) concludes that termination
will be decided in a finite number of steps.

Putting it all together:

Theorem 19 (Deciding termination). Let c P ImppA,Bq be any program
which admits a complete approximation in a bounded strict abstract domain,
then program termination of c is decidable for any input σ.

This gives some interesting insight in characterizing the expressiveness of the
class of programs for which such an analysis is effective, since classical results
such as Rice’s Theorem and the undecidability of the halting problem state that
program termination is, in general, undecidable. This result can also be applied in
a different way: given a program c for which we want to investigate termination,
we aim at finding a bounded abstract domain in which all of the guards and
assignments appearing in c are complete. By exhibiting such a domain we are
able to conclude that termination is decidable for c.

We now show an example to give an idea of the manipulations occurring
during the proposed program transformation.

Example 20. Consider the program w1 defined as follows:

w1
def“ while px �”3 0q do px :“ 2 ˚ xq

where x �”3 0 is a shorthand for �px ´ 3 ˚ px ˜ 3q “ 0q. The program w1

does not contain any other while loops inside its body and admits a complete
approximation in the domain Mod3 , which is 4-ACC thus we conclude that
termination is decidable on w1, and its equivalent form is:

�w1� “ �if p2q
px�”30q,px:“2˚xq�

that is, if p2q
px�”30q,px:“2˚xq “

i f x �”3 0 then
x := 2 ∗ x ;
i f x �”3 0 then

x := 2 ∗ x ;
i f x �”3 0 then

while true do skip
else skip

else skip
else skip
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For example, it is now immediate to check that if initially x “ 1, then we
multiply x by 2 twice and we reach the innermost if with x “ 4, thus entering
the trivial non-terminating loop. Similarly, for x “ 5 we reach the innermost if
with x “ 20 and detect divergence.

4.2 Exploiting Boolean Abstractions

The decidability result presented in Theorem19 (but the same considerations will
also hold for Theorem35) can be applied whenever we can prove the existence
of a bounded domain satisfying the required hypotheses. Lemma 15 suggests a
strong approach to proving the existence of such a domain. The idea is to tailor
some boolean abstraction domain to each fragment of the program, possibly
using different guards, but complete w.r.t. the same kinds of assignments, and
then derive the existence of a complete bounded abstract domain for the whole
program from Lemma 15.

As a notable example, we observe that domains built over congruences modulo
some given number, like Mod3 , are complete w.r.t. sum, difference and product.
They are also complete w.r.t. all the guards testing the remainder of the division
modulo the given number. As they are all boolean abstractions, it follows that
both termination and program equivalence are decidable for programs in which
all guards test for congruences, and assignments apply arithmetic operations.

5 Program Equivalence

In this section we address the problem of checking program equivalence, which
can formally be stated as follows: given two programs c1, c2 P ImppA,Bq we
want to decide whether �c1� “ �c2� or not. Thanks to the results in Sect. 4, we
define here a program transformation that produces a so-called reduced select
normal form, such that program equivalence reduces to decide the validity of a
set of guarded statements. The technique presented here applies to deterministic
programs as the ones in Imp. Its extension to more general analysis frameworks
where nondeterministic languages are also considered may not be trivial and
needs further investigation.

First, we introduce an intermediate syntax defining a select command which
constitutes a generalization of if -else as a n-way conditional.

Definition 21 (select). Given two vectors b̃ P BExpn, c̃ P (Imp´)n such that b̃
forms a partitioning of Σ, we call n the branching factor of the select construct
with a semantics defined as:

�selectpb̃ : c̃q�S def“
nď

i“1

�ci��bi�S

This can be seen as a generalized multi-way if command, like Dijkstra’s guarded
statements, and can be expressed as a sequence of nested if -else by following a
nested structure of the form if b1 then c1 else pif b2 then c2 else . . . q. Since b̃



Deciding Program Properties via Complete Abstractions 189

forms a partitioning of Σ, the order in which the various disjoint cases are nested
is not important: semantic equivalence holds under any arbitrary permutation
applied to the entries of both b̃ and c̃. We note that as a special case:

�if b then c1 else c2� “ �selectpxb, �by : xc1, c2yq�.
By this observation we can define a new auxiliary grammar:

Select � c ::“ skip | x :“ a | c; c | selectpb̃ : c̃q | wK

In the following we refer to skip, wK and assignments as basic commands. We will
also use the notation SelectpA,Bq to explicitly indicate the sets of expressions
and guards used to construct the Select commands, as we did for Imp and Imp´.
We will show that every Imp´ program can be translated in an equivalent Select
one (and every Select program can be translated into an Imp´ one by applying
the above definition of select as nested if statements).

The program transformation is defined in two phases: first we transform the
Imp´ program in a so-called select normal form (see Definition 29) that consists
of at most one select statement and then we compress series of assignments
into a single one (called reduced select normal form, see Definition 32). The
transformation to select normal form requires the ability to invert the order
in which assignments and guards are applied, so to move all guards upfront.
The next section on backward computation introduces the main concepts and
notation exploited in the reduction to normal form. Finally, in Sect. 5.4 it is
explained how to compare two programs in reduced select normal forms.

5.1 Backward Computation

In order to manipulate the program structure obtained in the previous section
we are going to introduce a concept of inverse semantics for Imp´ commands,
which is a function mapping a command c and a set of states S to all possible
states for which the execution of the semantics of c may lead to some state in
S, also called the weakest liberal precondition [11].

Definition 22 (Inverse Concrete Semantics). We define X “ �c�´1S as
the largest set X such that �c�X Ď S, this can be computed as:

�x :“ a�´1S
def“ {

σ′ ∣
∣ σ P S, σ′ P �a�´1σpxq}

�skip�´1S
def“ S

�c1; c2�´1S
def“ �c1�

´1�c2�
´1S

�if b then c1 else c2�
´1S

def“ �b��c1�
´1S Y ��b��c2�

´1S

�wK�´1S
def“ Σ

where �a�´1pxq “ {σ | �a�σ “ x}.
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In general �¨�´1 is not the inverse function (in the mathematical sense) of the
concrete semantics, this can be observed for example as:

�if x “ 0 then px :“ x ` 1q else px :“ x ` 2q�{0} “ {1}
but �if x “ 0 then px :“ x ` 1q else px :“ x ` 2q�´1{1} “ {0, ´1} �“ {0}

This is due to the fact that we can loose some information related to the previous
state at each conditional branching. We also note that the function �a�´1 in the
definition maps each post-value to a set of possible pre-states, this is needed in
cases such as that of constant assignment, since we loose any information about
the previous value of x after we assign a constant value to it:

�x :“ 0�´1{0} “ J
Moreover, let us notice that the inverse semantics could give us a set of values
smaller (in cardinality) than the input, as for:

�x :“ 0�´1{1} “ K
In general, it holds for all Imp´ commands c that �c�´1 is additive, implying that
it is also monotone, that �c�´1�c� is extensive and dually �c��c�´1 is reductive.

We now observe that, in general, �c��c�´1S �“ S whenever there exists some
x P S such that x is not reachable through �c� from any input, then x �P �c��c�´1S,
for example:

�x :“ 0��x :“ 0�´1{0, 1} “ �x :“ 0�J “ {0}.

The following result follows from the literature.

Lemma 23 (Adjointness). For any c P Imp´ and X,S Ď Σ it holds

X Ď �c�´1S ⇐⇒ �c�X Ď S

We now show an important result that arises whenever we apply �c�´1 to
sets which constitute a partitioning. In our case we will apply this result to the
partitioning {b, �b} whenever b is a valid guard.

Lemma 24. For any c P Imp´ and any partitioning P “ {P1, . . . , Pn} of Σ it
holds that:

Σ “
nď

i“1

�c�´1Pi

Lemma 25. For any Imp´ command c and any partitioning P “ {P1, . . . , Pn}
of Σ it holds that:

�c�{σ} “ K ⇐⇒ σ P (
�c�´1Pi X �c�´1Pj

)
for any i �“ j

We now introduce b´c def“ �c�´1b as a shorthand which we will use in the
upcoming sections.

Another key result which can be obtained by using the inverse semantics
enables us to swap the order of a command execution and a filtering as follows:
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Lemma 26. For any guard b and command c:

�b��c�S “ �c�
(
�c�´1b X S

)

that is, in a more succinct notation: �b��c�S “ �c��b´c�S.

We now address the problem of guaranteeing that the process of applying
the inverse semantics of c to any guard b produces some b´c which is contained
in our language Imp´pA,Bq. In the upcoming sections we will show that the
only commands for which we will need to apply Lemma26 are those where c
is a basic command. Of these three cases, skip is trivial and does not need
any manipulation, since �b��skip� “ �skip��b� “ �b�, and the same holds for
�b��wK� “ �wK��b� “ �wK�.

The case for assignment can be resolved by applying the following property.

Theorem 27. For any a P AExp and b P BExp it holds:

�b��x :“ a� “ �x :“ a��b[a{x]�

The previous theorem together with the previous observations allow us to
conclude the main result of this section.

Corollary 28. If the set of guards B is closed under syntactical substitution,
in the sense that for any a P A and b P B we have b[a{x] P B, then for any
c P Imp´ and b P B, there exists some b′ P B such that �b��c� “ �c��b′�.

5.2 Select Normal Form

Next, we define select normal form and prove that any Select command can be
put in such format by a semantic-preserving transformation.

Definition 29 (Select normal form, SNF). We say that a program c P Select
is in normal form (in short, SNF) if either:

– c is wK;
– c is a sequential composition of skips and assignments;
– c is in the form selectpb̃ : c̃q and every ci is wK or a sequential composition

of skips and assignments.

We also use c̃; c as a shorthand for the vector xpc1; cq, . . . , pcn; cqy obtained by
post-composing c to every command ci in a sequential way, and the same goes
for c; c̃ using pre-composition. We now introduce some rewriting rules involving
select which are helpful in manipulating Select programs:

Post-composition with Arbitrary c: The case �selectpb̃ : c̃q; c� can be rewritten
as �selectpb̃ : c̃; cq�, post-composing c to every ci sequentially; the equality holds
in a straightforward way by expanding the definition and applying additivity.

Pre-composition with wK and skip: These two cases are trivial, since:

�skip; selectpb̃ : c̃q� “ �selectpb̃ : c̃q�
�wK; selectpb̃ : c̃q� “ �wK�
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Pre-composition with an Assignment: In the case �x :“ a; selectpb̃ : c̃q� we
can safely observe that x :“ a is always terminating, thus by expanding the
definitions:

�x :“ a; selectpb̃ : c̃q�S “
nď

i“1

�ci��bi��x :“ a�S “
nď

i“1

�ci��x :“ a��b´x:“a
i �S

where the fact that the set of states on which x :“ a diverges is empty ensures
that b̃´x:“a def“ �x :“ a�´1b̃ “ xb´x:“a

1 , . . . , b´x:“a
n y forms a partitioning by means

of Lemmas 24 and 25, thus �x :“ a; selectpb̃ : c̃q� “ �selectpb̃´x:“a : c; c̃q�.
Nested select Commands: Let us consider the case selectpb̃ : c̃q where some
ci “ selectpb̃′ : c̃′q, with |b̃| “ n and |b̃′| “ m, we take i “ 1 (without loss of
generality, since the semantics is preserved under permutation of the indexes)
and by expanding the definition we get:

�selectpb̃ : c̃q�S “ �selectpb̃′ : c̃′q��b1�S Y
nď

i“2

�ci��bi�S

and expanding the isolated term: �selectpb̃′ : c̃′q��b1�S “ Ťm
j“1�c

′
j��b

′
j��b1�S.

Since b̃′ is a partitioning of Σ, then b̃′ X b1 is a partitioning of b1, thus
b̃′′ “ xb′

1 X b1, . . . , b
′
m X b1, b2, . . . , bny is a partitioning of Σ and defining c̃′′ “

xc′
1, . . . , c

′
m, c2, . . . , cny gives the equality �selectpb̃ : c̃q� “ �selectpb̃′′ : c̃′′q�

which has one less select command and |b̃′′| “ n ` m ´ 1.

Sequence of select Commands: We now consider the case where for some
b̃, b̃′, c̃, c̃′ s.t. |b̃| “ n and |b̃′| “ m we have a sequential composition of selectpb̃ : c̃q
and selectpb̃′ : c̃′q. We first give an intuitive reasoning for this case: we can
expand this term by applying the post-composition rule and we get a new com-
mand of the form selectpb̃ : pc̃; selectpb̃′ : c̃′qqq and by (recursively) apply-
ing these rules we can obtain a new command such that �selectpb̃′′

i : c̃′′
i q� “

�ci; selectpb̃′ : c̃′q� for each i “ 1 . . . n, thus allowing us to apply the rule for
nested selects to each of the n branches, successfully producing a single select
command.

We now consider the case where selectpb̃ : c̃q is in normal form, in order to
get an explicit formula to rewrite these terms we observe that:

�selectpb̃ : c̃q; selectpb̃′ : c̃′q�S “
mď

j“1

�c′
j��b

′
j�

nď

i“1

�ci��bi�S

which by additivity of �¨� can be rewritten as
Ťm

j“1

Ťn
i“1�c

′
j��b

′
j��ci��bi�S.

Since we are in normal form, then the vector c̃ does not contain any select
command and each of its entries is either wK or a composition of assignments
and skips.

We now consider the case where ci “ wK and we notice that the corre-
sponding terms are

Ťm
j“1�c

′
j��b

′
j��wK��bi�S “ Ťm

j“1�wK��bi�S “ �wK��bi�S by
definition of wK.
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When considering any other ci �“ cj , then ci converges for any input since it
consist of a composition of assignments and skips, thus the corresponding term
can be rewritten as

mď

j“1

�c′
j��b

′
j��ci��bi�S “

mď

j“1

�c′
j��ci��b

′´ci
j ��bi�S

Since ci is always terminating, by Lemmas 24–25 the sets b′´ci
j form a partitioning

of Σ. Thus we conclude that the sets b′´ci
j X bi form a partitioning of bi.

The assumption we made on selectpb̃ : c̃q being in normal form can always
be achieved, since by these rules we can always rewrite in normal form the
innermost select constructs first and proceed our way merging them with the
outer ones (a more detailed proof of how we can reduce every Select program to
normal form is given in Lemma 30). We thus conclude that every composition of
two select commands can be substituted with a single select command having
a branching factor less or equal than nm (equality holds when no wK appear).

Successive applications of the above rewriting rules give us an effective way
to reduce every Select program to a normal form, in fact:

Lemma 30. Every Select command c can be reduced in normal form using the
above rules.

We note that the reduction procedure is guaranteed to terminate, therefore
giving an effective procedure to obtain a SNF. We also introduce some auxiliary
rules which are not necessary in order to reach a normal form but which could
help in simplifying some program structures:

Select Branch Pruning: If we have a command of the form selectpb̃ : c̃q such
that there exists bi for which �bi� “ �ff�, then we can drop the corresponding
branch by removing both bi and ci from b̃ and c̃.

Select Branch Merging: If we have a command of the form selectpb̃ : c̃q such
that there exist two indexes i �“ j and �ci� “ �cj� we can safely merge the
two branches by removing bj and cj from b̃ and c̃ respectively and updating
bi “ bi _ bj .

Select Removal: This rule is dual to the select introduction one: every command
of the form selectpxby : xcyq (thus having branching factor 1) can be rewritten by
removing the select construct as �c�; this follows directly observing that since
{b} forms a partitioning then �b� “ �tt� and by expanding the definition.

Newly Introduced Guards: We now examine the new guards which are introduced
by the aforementioned manipulations, let a P A be an arithmetic expression and
b, b1, b2 P B be guards in the program we are rewriting, then the newly introduced
guards will be of the forms:

b[a{x]: If we are applying either the rule for pre-composition with an assignment
or that for a sequence of select commands;
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b1 ^ b2: If we are applying the rule for nested select commands.
b1 _ b2: If we are applying the select branch merging rule, this guard can be

rewritten as �p�b1 ^ �b2q by means of De Morgan.
tt: If we are applying the select introduction rule.

We now observe that main rules (that is, the non-auxiliary ones) only intro-
duce new guards in the form of b[a{x] or b1 ^ b2 and we observe that:

Lemma 31. If Cpb1q, Cpb2q, then the filtering function for b1 ^ b2 is also com-
plete:

This lets us conclude that, under the hypothesis:

Cpaq ^ Cpbq “⇒ Cpb[a{x]q (5)

the rewriting process we defined to reduce every Select program into normal
form produces new guards by preserving completeness of their filtering functions.
Moreover, if B is closed under syntactical substitution for every a P A to x
and forms a Boolean algebra (i.e. is closed under ^, _ and �), then for every
c P SelectpA,Bq its rewritten normal form c′ is such that c′ P SelectpA,Bq.

5.3 Normal Form Scaling in Combined Domains

In order to discuss how the normal form may scale when different abstract
domains are combined, we consider the following program p, whose conditions
of termination are not easy to detect.

while x �”2 0 :
x := 5 ∗ x
while x �”3 0 :

x := 2 ∗ x + 1

We can observe that each assignment is complete w.r.t. modulo k congruences
and this allows us to build a complete bounded domain following the approach
of Lemma 15. Given the guards in the program p, the idea is to consider the
sets of predicates M2

def“ {“x ”2 1”} and M3
def“ {“x ”3 1”, “x ”3 2”} so that

the predicates in M2 ensure completeness of the outer while-guard and those
in M3 ensure completeness for the inner while-guard. Note that the Boolean
domain BoolpM3q has 16 elements (it is a powerset of four 2-bitvectors) but
only 8 elements are relevant, because the 2-bitvector associated with “x ”3 1”
and “x ”3 2” corresponds to false. In fact BoolpM3q is equivalent to Mod3 and
its ascending chains have at most 4 elements. For similar reasons, the resulting
bounded abstract domain BoolpM2 Y M3q is 7 ´ ACC, since it is defined as the
powerset over the set of 3-bitvectors corresponding to value assignments for each
of the predicates in M2 and M3.

The result of this paper assures us that we can detect the inputs for which p
terminates by investigating its SNF form obtained considering k “ 7. However,
computing the SNF form of p leads to select form with a quite high branching
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factor. Even if we are interested in characterizing the diverging executions only,
the computed SNF will contain several thousands of diverging branches (assum-
ing that the select branch pruning rule is never applied). Also the size of the
guards corresponding to such branches will grow rapidly due to the subsequent
syntactical substitutions. For example, for program p there will be one diverging
branch whose guard is semantically equivalent to “x ”2 1 ^ x ”3 0”, but its
syntactical expression is more complex. This poses a challenge to gaining useful
insight on the program behavior by analyzing the SNF.

We can observe, however, that even if the different branches of the SNF con-
tain syntactically different guards, the number of such guards that are semanti-
cally distinct ones is limited by the number of elements in the abstract domain
(which in the case of the example is at most 32). This allows us to conclude
that many guards appearing in the SNF will be semantically equivalent. More-
over, since the guards in any select command are mutually exclusive, we can
be sure that all such redundant guards are indeed semantically equivalent to
false. Of course, the problem to detect such false guards must be entrusted to a
SMT solver that should support an effective SNF reduction tool implementation.
This would allows us to maintain a concise select structure during the rewriting
process.

5.4 Deciding Program Equivalence

The problem of deciding semantic equivalence is defined as, given two programs
c1 and c2, determining whether �c1� “ �c2�, that is, the two diverge on the same
set of inputs and for every converging input, they give the same result.

We now present the main idea to solving program equivalence for programs
containing a single variable x. This approach can be straightforwardly gener-
alized to multiple variables by extending our language with a notion of multi-
assignments (i.e. every assignment is defined by a tuple of variable-expression
pairs and its semantics executes every variable assignment at the same time),
but we prefer to keep the notation simpler for the sake of exposition.

The notion of a reduced normal form is as follows.

Definition 32 (Reduced select normal form (RSNF)). We say that a pro-
gram c P Select is in reduced select normal form (in short RSNF) if either:

– c is a basic command (that is either wK, skip or an assignment);
– c has the form selectpb̃ : c̃q where every ci is a basic command.

We first observe that Select programs in this form do not allow for arbitrary
sequences of assignments and skip to occur either inside (or outside) any select
branch, but every sequence c “ c1; c2; . . . ; c3 of said commands can always be
reduced into either one single skip or one single assignment as follows:

– If for every i it holds ci “ skip, then �c� “ �skip�
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– Otherwise, we remove every ci for which ci “ skip and merge the remaining
assignments observing that:

�x :“ a1;x :“ a2� “ �x :“ a2[a1{x]� (6)

which follows directly from the definition.

We also note that the process of merging two complete assignments preserves
completeness.

Lemma 33. Cp�x :“ a1�q ^ Cp�x :“ a2�q “⇒ Cp�x :“ a2[a1{x]�q.
These observations let us conclude that any SNF program can be easily

transformed into RSNF by collapsing every sequence of assignments (and skips)
into one single command, and the procedure is guaranteed to terminate.

More in detail, given any program c P SelectpA,Bq we can compute its SNF
c′ P SelectpA,B˚q where B˚ is the closure of B under ^ and substitution b[a{x]
for a P A, then we can rewrite c′ as some RSNF c′′ P SelectpA˚, B˚q where A˚ is
the closure of A under substitution a[a′{x].

When considering two RSNF programs, proving their semantic equivalence
can be done by observing that (RSNF programs not containing any select con-
struct can be checked as if they contained a single branch):

Lemma 34. Given two RSNF programs c “ selectpb̃ : c̃q and c′ “ selectpb̃′ :
c̃′q such that |b̃| “ n and |b̃′| “ m, then semantic equivalence between c and c′

holds iff every formula in the set E “ Ťn
i“1

Ťm
j“1 Epi, jq is valid, where Epi, jq is

defined according to:

– If ci “ c′
j “ wK, then Epi, jq “ H

– If ci �“ c′
j and wK P {ci, cj} then Epi, jq “ {�pbi ^ b′

jq}
– If ci “ c′

j “ skip, then Epi, jq “ H
– If {ci, cj} “ {skip, x :“ a} then Epi, jq “ {bi ^ b′

j “⇒ a “ x}
– If {ci, cj} “ {x :“ a, x :“ a′} then Epi, jq “ {bi ^ b′

j “⇒ a “ a′}
We can now make use of our previous results to conclude that:

Theorem 35. Let c1 P ImppA1, B1q, c2 P ImppA2, B2q be any two single-
variable programs admitting complete approximation in some (possibly different)
bounded strict abstract domains, then the problem of deciding semantic equiva-
lence between c1 and c2 can be reduced to that of determining the validity of a
set of formulas built by using only Boolean and arithmetic expressions contained
in the closures (by substitution) A1̊, A2̊, B1̊ and B2̊.

Proof. By applying the program transformation defined in Sect. 4, both c1 and
c2 can be reduced to some c′

1 P Imp´pA1, B1q, c′
2 P Imp´pA2, B2q. Those two

programs can then be expressed as Select commands and reduced to SNF by
means of Lemma 30 and further reduced to RSNF as discussed in 5.4. Applying
Lemma 34 completes the proof. 
�
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In a similar way to what we proposed for Theorem 19 we can apply the
result given in Theorem 35 whenever we want to investigate the decidability
of semantic equivalence between programs: if we are able to exhibit a domain
for each program in which all the guards and assignments are complete, then
we have successfully proven that their equivalence is reducible to checking a set
of guarded statements, which can be done, e.g., by exploiting SMT solvers like
Z3 [17].

Example. We consider the following Imp program:

w
def“ x :“ ´1 ˚ x;while x ă 0 do x :“ 2 ˚ x

In order to reduce w to RSNF we first transform w is SNF. In fact, since it is
complete in Sign we can find an equivalent Imp´ which can be translated into
a select program as:

x := ´1 ∗ x ;
select (
x < 0 : x := 2 ∗ x ;

select (
x < 0 : x := 2 ∗ x ;

select (
x < 0 : wK ,
x ě 0 : skip )

x ě 0 : skip )
x ě 0 : skip )

we can now reduce this program to RSNF and obtain:

select (
x ą 0 : wK ,
x ď 0 : x :“ ´1∗x )

Now, by taking another equivalent program such as:

i f x �“ 0 then
x := x + 1 ;
i f x ă 1 then

x := ´1 ∗ x + 1 ;
else

while x ď 0 do
x := x ´ 2 ;

else skip

which gets reduced to the following RSNF:

select (
�( x ď 0 ) : wK ,
x “ 0 : skip ,
x ă 0 : x :“ ´1∗(x+1)+1 )
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we can reduce the problem of determining their semantic equivalence to that of
proving the validity of the following set of guarded statements:

E “

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�ppx ą 0q ^ px “ 0qq
�ppx ą 0q ^ px ă 0qq
�ppx ď 0q ^ �px ď 0qq
px ď 0q ^ px “ 0q “⇒ p´1 ˚ xq “ x
px ď 0q ^ px ă 0q “⇒ p´1 ˚ xq “ p´1 ˚ px ` 1q ` 1q

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Since they are all tautologies, the two programs are equivalent.
The same considerations of Sect. 4.2 about the applicability of the method

based on Boolean abstractions for deciding termination are straightforwardly
extended to the case of program equivalence.

6 Conclusions

We have investigated the relationship between completeness in Abstract Inter-
pretation and expressiveness of programs, showing that several important prop-
erties become decidable for the class of complete programs in certain domains.
In particular, we have given a notion of bounded domain and we have studied
classes of programs that are parametric on sets of guards and assignments whose
abstract semantics is complete on such domains.

In order to study the expressiveness of this class, we have considered two well-
known problems: program termination and semantic equivalence, which are of
course not decidable in the general case. Our findings seem interesting: as a first
result we have shown that under the above hypotheses the termination problem
becomes decidable for complete programs. This, of course, severely limits the
expressiveness of our class of programs. Then, we defined an intermediate Select
syntax and a notion of inverse semantics in order to derive a set of rewriting rules
for Select programs. Applying such rules gives an effective way to express every
program from our target class in a canonical form that highlights the program
semantics. By further program transformations to the so-called reduced select
normal form we are also able to rephrase the problem of deciding semantic
equivalence to that of proving the validity of a set of formulas constructed using
the original guards and assignments (along with their composition as needed by
normalization), giving an effective procedure to solve the semantic equivalence
problem. We have developed a proof-of-concept Haskell implementation that
has been used to check the program transformations reported in the examples.
The tool takes an input program and the bound k of the abstract domain and
transforms it in (reduced) select normal form. Note that completeness has to
be checked beforehand, as the tool just assumes the existence of the bounded
abstract domain.

We have also investigated the applicability of our approach by proposing
a method to compose Boolean abstractions, each one designed for being com-
plete for all functions and for some guards appearing in the program. The pro-
posed approach is structural, in the sense that it builds on the functions and
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guards used in programs, for which suitable complete bounded domains must
be detected. Here the main limitation is therefore the completeness require-
ment: although abstract domains can always be refined to achieve completeness
for a given set of functions [13], it is often the case that this process leads to
the whole (unbounded) concrete domain. On the other hand, once a library of
bounded domains is available, Boolean abstractions could be used to compose
them and make the technique applicable to larger sets of programs.

The process described in this work focused on an imperative language with
standard single-variable assignments, and reduction to normal form has been
defined for single-variable programs only. Considering a more general notion of
multi-assignments x̃ :“ ã (i.e. where multiple variables are assigned simultane-
ously to corresponding expressions) gives a direct generalization of our approach
to programs with more than one variable (observing that every assignment is a
trivial case of multi-assignment). The select normal form we used can be seen as
a star-free fragment of Kleene Algebra with Test (KAT) [15]. In this sense, it is
worth pushing the analogy even further and consider the full KAT instead of Imp
as a reference language, finding suitable conditions under which star expressions
can be equivalently iterated only a bounded number of times.

We think that further studies could be conducted on several aspects, such as
investigating whether weakening the constraint over boundedness of the domain
(that is, when considering ACC domains with finite but not bounded chains)
makes program termination undecidable.
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Abstract. Invariant inference algorithms such as interpolation-based
inference and IC3/PDR show that it is feasible, in practice, to find induc-
tive invariants for many interesting systems, but non-trivial upper bounds
on the computational complexity of such algorithms are scarce, and limited
to simple syntactic forms of invariants. In this paper we achieve invariant
inference algorithms, in the domain of propositional transition systems,
with provable upper bounds on the number of SAT calls. We do this by
building on the monotone theory, developed by Bshouty for exact learning
Boolean formulas. We prove results for two invariant inference frameworks:
(i) model-based interpolation, where we show an algorithm that, under cer-
tain conditions about reachability, efficiently infers invariants when they
have both short CNF and DNF representations (transcending previous
results about monotone invariants); and (ii) abstract interpretation in a
domain based on the monotone theory that was previously studied in rela-
tion to property-directed reachability, where we propose an efficient imple-
mentation of the best abstract transformer, leading to overall complexity
bounds on the number of SAT calls. These results build on a novel proce-
dure for computing least monotone overapproximations.

1 Introduction

In a fruitful, recent trend, many that aspire to innovate in verification seek advice
from research in machine learning [e.g. 11–13,18,21,22,24,36–38]. The topic of
this paper is the application of the monotone theory, developed by Bshouty in
exact concept learning, to improve theoretical complexity results for inductive
invariant inference.

One of the modi operandi for automatically proving that a system is safe—
that it cannot reach a state it should not—is an inductive invariant, which is
an assertion that (i) holds for the initial states, (ii) does not hold in any bad
state, and (iii) is closed under transitions of the system. These properties are
reminiscent of a data classifier, separating good from bad points, prompting the
adaptation of algorithms from classical classification to invariant inference [e.g.
11,13,18,19,35–38]. In this paper we focus on inductive invariants for proposi-
tional transition systems, which are customary in hardware verification and also
applicable to software systems through predicate abstraction [17,20].

The monotone theory by Bshouty [5] is a celebrated achievement in learning
theory (most notably in exact learning with queries [1]) that is the foundation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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for learning Boolean formulas with complex syntactic structures. At its core,
the monotone theory studies the monotonization Mb(ϕ) of a formula ϕ w.r.t. a
valuation b, which is the smallest b-monotone formula that overapproximates ϕ.
(This concept is explained in Sect. 3.) In Bshouty’s work, several monotoniza-
tions are used to efficiently reconstruct ϕ.

Recently, the monotone theory has been applied to theoretical studies
of invariant inference in the context of two prominent SAT-based inference
approaches. In this paper, we solve open problems in each, using a new effi-
cient algorithm to compute monotonizations.
Efficient Interpolation-Based Inference. The study [13] of interpolation-
based invariant inference—a hugely influential approach pioneered by McMil-
lan [26]—identified the fence condition as a property of systems and invariants
under which the success of a model-based inference algorithm [3,6] is guaran-
teed. (We explain the fence condition in Sect. 5.1.) Under this condition, the
number of SAT calls (specifically, bounded model checking queries) of the origi-
nal model-based interpolation algorithm was shown to be polynomial in the DNF
size (the number of terms in the smallest DNF representation) of the invariant,
but only when the invariant is monotone (containing no negated variables) [13].
Based on the monotone theory, the authors of [13] further introduced an algo-
rithm that, under the same fence condition, could efficiently infer invariants that
were almost monotone (containing O(1) terms with negated variables). However,
their techniques could not extend to mimic the pinnacle result of Bshouty’s
paper: the CDNF algorithm [5], which can learn formulas in a number of queries
that is polynomial in their DNF size, their CNF size (the number of clauses in
their smallest CNF representation), and the number of variables. It was unclear
whether an analogous result is possible in invariant inference without strength-
ening the fence condition, e.g. to assume that the fence condition holds both
forwards and backwards (see Sect. 7).

We solve this question, and introduce an algorithm that can infer an invariant
in a number of SAT queries (specifically, bounded model checking queries) that is
polynomial in the invariant’s DNF size, CNF size, and the number of variables,
under the assumption that the invariant satisfies the fence condition, without fur-
ther restrictions (Therorm 5). In particular, this implies that invariants that are
representable by a small decision tree can be inferred efficiently. The basic idea is to
learn an invariant I as a conjunction of monotonizations Mσ(I) where σ are cho-
sen as counterexamples to induction. The challenge is that I is unknown, and the
relativelyweak assumption on the transition system of the fence condition does not
allow the use of several operations (e.g. membership queries) that learning algo-
rithms rely on to efficiently generate such a representation.
Efficient Abstract Interpretation. The study of IC3/PDR [4,9] revealed that
part of the overapproximation this sophisticated algorithm performs is captured
by an abstract interpretation procedure, in an abstract domain founded on the
monotone theory [14]. In this procedure, dubbed Λ-PDR, each iteration involves
several monotonizations of the set of states reachable in one step from the value
of the previous iteration. Upper bounds on the number of iterations in Λ-PDR
were investigated to shed light on the number of frames of PDR [14]. However, it
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was unclear whether the abstract domain itself can be implemented in an efficient
manner, and whether efficient complexity bounds on the number of SAT queries
(and not just the number of iterations) in Λ-PDR can be obtained.

We solve this question, and show that Λ-PDR can be implemented to yield
an overall upper bound on the number of SAT calls which is polynomial in the
same quantity that was previously used to bound the number of iterations in
Λ-PDR (Theorem 7). This is surprising because, until now, there was no way to
compute monotonizations of the post-image of the previous iteration that did
not suffer from the fact that the exact post-image of a set of states may be much
more complex to represent than its abstraction.
Super-efficient Monotonization. Bshouty [5] provided an algorithm to com-
pute the monotonization Mb(ϕ), but the complexity of this algorithm depends
on the DNF size of the original formula ϕ. Our aforementioned results build on
a new algorithm for the same task, whose complexity depends on the DNF size
of the monotonization Mb(ϕ) (Theorem 2), which may be much smaller (and
never larger). This enables our efficient interpolation-based inference algorithm
and our efficient implementation of abstract interpretation, although each result
requires additional technical sophistication: For our efficient model-based inter-
polation result, the key idea is that the monotonization of an invariant satisfying
the fence condition can be computed through the monotonization of the set of
states reachable in at most s steps, and our new monotonization algorithm allows
to do this efficiently even when the latter set is complex to represent exactly.
For our efficient abstract interpretation result, the key idea is that the DNF size
of an abstract iterate is bounded by a quantity related to monotonizations of
the transition relation, and our new monotonization algorithm allows to com-
pute it efficiently w.r.t the same quantity even though the DNF size of the exact
post-image of the previous iterate may be larger.

Overall, we make the following contributions:

– We introduce a new efficient algorithm to compute monotonizations, whose
complexity in terms of the number of SAT queries is proportional to the DNF
size of its output (Sect. 4).

– We prove that an invariant that satisfies the fence condition can be inferred in
a number of SAT (bounded model checking) queries that is polynomial in its
CNF size, its DNF size, and the number of variables; in particular, invariants
represented by small decision trees can be efficiently inferred (Sect. 5).

– We prove an efficient complexity upper bound for the number of SAT queries
performed by abstract interpretation in a domain based on the monotone
theory (Sect. 6).

Section 2 sets preliminary notation and Sect. 3 provides background on the
monotone theory. Section 7 discusses related work and Sect. 8 concludes.

2 Preliminaries

We work with propositional transition systems defined over a vocabulary Σ =
{p1, . . . , pn} of n Boolean variables. We identify a formula with the set of its
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valuations, and at times also identify a set of valuations with an arbitrary formula
that represents it which is chosen arbitrarily (one always exists in propositional
logic). ϕ =⇒ ψ denotes the validity of the formula ϕ → ψ. States, Transition

Systems, Inductive Invariants. A state is a valuation to Σ. If x is a state,
x[p] is the value (true/false or 1/0) that x assigns to the variable p ∈ Σ. A
transition system is a triple (Init, δ,Bad) where Init,Bad are formulas over Σ
denoting the set of initial and bad states respectively, and the transition relation
δ is a formula over Σ ⊎ Σ′, where Σ′ = {x′ | x ∈ Σ} is a copy of the vocabulary
used to describe the post-state of a transition. If Σ̃, Σ̃′ are distinct copies of
Σ, δ[Σ̃, Σ̃′] denotes the substitution in δ of each p ∈ Σ by its corresponding
in Σ̃ and likewise for Σ′, Σ̃′. Given a set of states S, the post-image of S is
δ(S) = {σ′ | ∃σ ∈ S. (σ, σ′) |= δ}. A transition system is safe if all the states that
are reachable from Init via any number of steps of δ satisfy ¬Bad. An inductive
invariant is a formula I over Σ such that (i) Init =⇒ I, (ii) I ∧δ =⇒ I ′, and (iii)
I =⇒ ¬Bad, where I ′ denotes the result of substituting each x ∈ Σ for x′ ∈ Σ′

in I.
In the context of propositional logic, a transition system is safe iff it has an

inductive invariant.

Use of SAT in Invariant Inference. Given a candidate, the requirements
for being an inductive invariant can be verified using SAT; we refer to the SAT
query that checks requirement ii by the name inductiveness check. When an
inductiveness checks fails, a SAT solver returns a counterexample to induction,
which is a transition (σ, σ′) with σ |= I but σ′ 6|= I. Another important check
in invariant inference algorithms that can be implemented using SAT is bounded
model checking (BMC) [2], which asks whether a set of states described by a
formula ψ is forwards unreachable in a bounded number s ∈ N of steps; we write

this as the check δs(Init) ∩ ψ
?
= ∅. Using SAT it is also possible to obtain a

counterexample σ ∈ δs(Init) ∩ ψ if it exists.
We measure the complexity of a SAT-based inference algorithm by the num-

ber of SAT calls it performs (including inductiveness checks, BMC, and other
SAT calls), and the number of other steps, when each SAT call is considered one
step (an oracle call).

Literals, Cubes, Clauses, CNF, DNF. A literal ℓ is a variable p or its nega-
tion ¬p. A clause c is a disjunction of literals. The empty clause is false. A
formula is in conjunctive normal norm (CNF) if it is a conjunction of clauses. A
cube or term d is a conjunction of a consistent set of literals; at times, we also
refer directly to the set and write ℓ ∈ d. The empty cube is true. A formula is
in disjunctive normal form (DNF) if it is a disjunction of terms. The domain,
dom(d), of a cube d is the set of variables that appear in it (positively or nega-
tively). Given a state σ, we use the state and the (full) cube that consists of all
the literals that are satisfied in σ interchangeably. |ϕ|dnf is the minimal number
of terms in any DNF representation of ϕ. |ϕ|cnf is the minimal number of clauses
in any CNF representation of ϕ.
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3 Background: The Monotone Theory

This section provides necessary definitions and results from the monotone the-
ory by Bshouty [5] as used in this paper. Our presentation is based on [13,14]
(lemmas that are stated here slightly differently are proved in the extended ver-
sion [15]).

Boolean functions which are monotone are special in many ways; one is that
they are easier to learn [e.g. 1,41]. Syntactically, a monotone function can be
written in DNF so that all variables appear positively. This is easily generalized
to b-monotone formulas, where each variable appears only at one polarity spec-
ified by b (Definition 2). The monotone theory aims to handle functions that
are not monotone through the conjunction of b-monotone formulas. Section 3.1
considers the (over)approximation of a formula by a b-monotone formula, the
“monotonization” of a formula; Sect. 3.2 studies the conjunction of several such
monotonizations through the monotone hull operator.

3.1 Least b-Monotone Overapproximations

Definition 1 (b-Monotone Order). Let b be a cube. We define a partial
order over states where v ≤b x when x, v agree on all variables not present
in b, and x disagrees with b on all variables on which also v disagrees with b:
∀p ∈ Σ. x[p] 6= v[p] implies p ∈ dom(b) ∧ v[p] = b[p].

Intuitively, v ≤b x when x can be obtained from v by flipping bits to the opposite
of their value in b.

Definition 2 (b-Monotonicity). A formula ψ is b-monotone for a cube b if
∀v ≤b x. v |= ψ implies x |= ψ.

That is, if v satisfies ψ, so do all the states that are farther away from b than
v. For example, if ψ is 000-monotone and 100 |= ψ, then because 100 ≤000 111
(starting in 100 and moving away from 000 can reach 111), also 111 |= ψ. In
contrast, 100 6≤000 011 (the same process cannot flip the 1 bit that already
disagrees with 000), so 011 does not necessarily belong to ψ. (000-monotonicity
corresponds to the usual notion of monotone formulas.)

Definition 3 (Least b-Monotone Overapproximation). For a formula ϕ
and a cube b, the least b-monotone overapproximation of ϕ is a formula Mb(ϕ)
defined by

x |= Mb(ϕ) iff ∃v. v ≤b x ∧ v |= ϕ.

For example, if 100 |= ϕ, then 100 |= M000(ϕ) because M000(ϕ) is an overap-
proximation, and hence 111 |= M000(ϕ) because it is 000-monotone, as above.
Here, thanks to minimality, 011 does not belong to M000(ϕ), unless 000, 001,
010, or 011 belong to ϕ.

The minimality property of Mb(ϕ) is formalized as follows:
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Lemma 1. Mb(ϕ) (Definition 3) is the least b-monotone formula ψ (Definition
2) s.t. ϕ =⇒ ψ (i.e., for every other b-monotone formula ψ, if ϕ =⇒ ψ then
Mb(ϕ) =⇒ ψ).

An immediate but useful fact is that Mb(·) is a monotone operator:

Lemma 2. If ϕ1 =⇒ ϕ2 then Mb(ϕ1) =⇒ Mb(ϕ2).

Syntactic Intuition. Ordinary monotone formulas are 0-monotone; for general
b, a formula ψ in DNF is b-monotone if interchanging p, ¬p whenever b[p] = true
results in a formula that is monotone DNF per the standard definition.1 When
ϕ is not b-monotone, the monotonization Mb(ϕ) is the “closest thing”, in the
sense that it is the smallest b-monotone ψ s.t. ϕ =⇒ ψ. As we shall see, Mb(ϕ)
can be efficiently obtained from ϕ by deleting literals. The syntactic viewpoint
is key for our results in Sect. 4 and Sect. 5.
Geometric Intuition. Geometrically, ψ is b-monotone if v |= ψ =⇒ x |= ψ
for every states v, x s.t. v ≤b x; the partial order ≤b indicates that x is “farther
away” from b in the Hamming cube than v from b, namely, that there is a shortest
path w.r.t. Hamming distance from b to x (or from πb(x)—the projection of x
onto b—to x, when b is not a full cube) that goes through v. A formula ψ is
b-monotone when it is closed under this operation, of getting farther from b. In
this way, Mb(ϕ) corresponds to the set of states x to which there is a shortest
path from b that intersects ϕ.2 The geometric viewpoint is key for our results
in Sect. 4 and for the abstract domain in Sect. 6.
Disjunctive Form. The monotone overapproximation can be obtained from a
DNF representation of the original formula, a fact that is useful for algorithms
that compute the monotone overapproximation. Starting with a DNF represen-
tation of ϕ, we can derive a DNF representation of Mb(ϕ) by dropping in each
term the literals that agree with b. Intuitively, if ℓ agrees with b, the “constraint”
that σ |= ℓ is dropped from Mb(t) because if σ |= Mb(t) then flipping the value
of ℓ in σ results in a state σ̃ such that σ ≤b σ̃ and hence also σ̃ |= Mb(t).

Lemma 3. Let ϕ = t1 ∨ . . . ∨ tm in DNF. Then the monotonization Mb(ϕ) ≡
Mb(t1) ∨ . . . ∨ Mb(tm) where Mb(ti) ≡ ti \ b =

∧

{ℓ ∈ ti ∧ ℓ 6∈ b}.

This fact has several useful corollaries. First, for the important special case of a
state (full cube) v, the monotonization Mb(v) is the conjunction of all literals
that hold in v except those that are present in b, written

cubeb(v)
def
= Mb(v) =

∧

{p | v[p] = true, p 6∈ b}∧
∧

{¬pi | v[p] = false, ¬p 6∈ b}.

1 When b is a full cube, another way to say this is that ψ is b-monotone if it is
monotone in the ordinary sense under the translation [42] specified by b.

2 This is reminiscent of visibility in Euclidean geometry [e.g. 29]: picturing b as a
guard, the source of visibility, then Mb(ϕ) is the set of states that are visible in ¬ϕ,
that is, the set of states σ s.t. the “line segment” [b, σ] is contained in ¬ϕ. Here [b, σ]
is the Hamming interval [e.g. 42] between b, σ, the union of all the multiple shortest
paths between the states (each path corresponds to a different permutation of the
variables on which the states disagree).
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In particular, if v |= ϕ then cubeb(v) =⇒ Mb(ϕ) (follows from Lemma 3 thinking
about the representation v ∨ ϕ). A similar property holds under the weaker
premise that v is known to belong to the monotonization:

Lemma 4. If v |= Mb(ϕ) then cubeb(v) =⇒ Mb(ϕ).

Another corollary is that the DNF size cannot increase from ϕ to Mb(ϕ):

Lemma 5. |Mb(ϕ)|dnf ≤ |ϕ|dnf.

3.2 Monotone Hull

We now define the monotone hull, which is a conjunction of b-monotone overap-
proximations over all the b’s from a fixed set of states B.

Definition 4 (Monotone Hull). The monotone hull of a formula ϕ w.r.t. a
set of states B is MHullB(ϕ) =

∧

b∈B Mb(ϕ).

The monotone hull can be simplified to use a succinct DNF representation
of the basis B instead of a conjunction over all states.

Lemma 6. If B ≡ b1 ∨ . . . ∨ bm where b1, . . . , bm are cubes, then MHullB(ϕ) ≡
Mb1(ϕ) ∧ . . . ∧ Mbm

(ϕ).

Note that when B = b is a single cube, MHullb(ϕ) = Mb(ϕ).
Similarly to Mb(ϕ), the monotone hull is an overapproxmation:

Lemma 7. ϕ =⇒ MHullB(ϕ).

In general, MHullB(ϕ) is not equivalent to ϕ. However, we can always choose
B so that MHullB(ϕ) ≡ ϕ. A set B that suffices for this is called a basis:

Definition 5 (Monotone Basis). A monotone basis is a set of states B. It
is a basis for a formula ϕ if ϕ ≡ MHullB(ϕ).

Conversely, given a set B, we are interested in the set of formulas for which
B forms a basis:

Definition 6 (Monotone Span). MSpan(B) = {MHullB(ϕ) | ϕ over Σ}, the
set of formulas for which B is a monotone basis.

The following theorem provides a syntactic characterization of MSpan(B), as the
set of all formulas that can be written in CNF using clauses that exclude states
from the basis. The connection between CNF and the monotone basis is useful
in Sect. 5 where a monotone basis is constructed automatically, and in Sect. 6
where it is used to define an abstract domain.

Theorem 1 ([5]). ϕ ∈ MSpan(B) iff there exist clauses c1, . . . , cs such that
ϕ ≡ c1 ∧ . . . ∧ cs and for every 1 ≤ i ≤ s there exists bj ∈ B such that bj 6|= ci.
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In particular, a basis B for ϕ can be constructed by writing a CNF representation
of ϕ and choosing for B a state bj 6|= cj for each clause cj .
Exact Learning Using the Monotone Theory. The monotone theory was
first developed by Bshouty for the purpose of exact learning formulas that are
not monotone. Essentially, the idea is to reconstruct the formula ϕ by finding
a monotone basis B = {b1, . . . , bt} for it, and constructing MHullB(ϕ) while
using equivalence and membership queries. The CDNF Algorithm [5] achieves
efficient learning in terms of the DNF & CNF size of the target formula, and
its code is shown in the extended version [15]. Our CDNF invariant inference
algorithm (Sect. 5) is inspired by it, although it departs from it in significant
ways (see Remark 3).

4 Super-Efficient Monotonization

In this section we develop an efficient procedure to compute Mb(ϕ), which is a
technical enabler of the results in following sections. The algorithm, presented
in Algorithm 1, satisfies the following:

Theorem 2. Let ϕ be a formula and b a cube. The algorithm Monotonize

(ϕ, b) computes Mb(ϕ) in O(n2|Mb(ϕ)|dnf) SAT queries and time.

(Throughout this paper, n denotes the number of propositional variables |Σ|.)
What distinguishes Theorem 2 is that the complexity bound depends on the

DNF size of the output, the monotonization Mb(ϕ), and not on the size of the
input ϕ, in contrast to the algorithm by Bshouty [5] (see Remark 1).

Algorithm 1. Super-Efficient Monotonization

1: procedure Monotonize(ϕ, b)
2: H ← false

3: while sat(ϕ ∧ ¬H) do

4: let σr |= ϕ ∧ ¬H
5: v ← generalize(ϕ, b, σr)
6: H ← H ∨ cubeb(v)

7: return H

8:
9:

10:
11:

12: procedure generalize(ϕ, b, σr)
13: v ← σr; walked ← true

14: while walked do

15: walked ← false

16: for j = 1, . . . , n do

17: if b[pj ] = v[pj ] then

18: continue

19: x ← v[pj 7→ b[pj ]]
20: if sat(ϕ∧ x, πb(x) ) then

21: v ← x; walked ← true

22: return v

Starting from the candidate H = false, the algorithm iteratively samples—
through satisfying models of a SAT query—states that belong in ϕ but not
yet included in H . Every such state σr generates a new term in H . Since H
is supposed to be b-monotone, the minimal term to include is cubeb(σr). To be
efficient, the algorithm generalizes each example, trying to flip bits to find an
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example v that also should be included in Mb(ϕ) and is closer in Hamming
distance to b, which would result in a smaller term cubeb(v), thereby including
more states in each iteration and converging faster. The criterion for v is that
a bit cannot be flipped if this would result in a state x where the Hamming
interval x, πb(x) does not intersect ϕ. Here, πb(x), the projection [e.g. 42] of x
onto the (possibly partial) cube b is the state s.t.

πb(x) =

{

b[p] p ∈ dom(b)

x[p] otherwise
,

and the Hamming interval σ1, σ2 between two states σ1, σ2 is the smallest cube
that contains both—the conjunction of the literals where these agree. In sum,
x, πb(x) is the conjunction of the literals where x, b agree and the literals of x
over variables that are not present in b. As we will show, x, πb(x) intersecting
with ϕ is an indicator for x belonging to the monotonization of ϕ.

The use of SAT queries in the algorithm does not necessarily assume that ϕ
is given explicitly, and indeed in Sect. 5 we apply this algorithm with an implicit
representation of ϕ (using additional copies of the vocabulary).

The rest of this section proves Theorem 2. First, the result v of generalization
is so that when we disjoin the term cubeb(v), we do not “overshoot” to include
states that do not belong to the true monotonization:

Lemma 8. If σr |= ϕ, then generalize(ϕ, b, σr) returns v s.t. cubeb(v) =⇒
Mb(ϕ).

Proof. v is chosen s.t. v, πb(v) ∩ϕ 6= ∅—note that this holds trivially in the initial
choice of v which is σr |= ϕ. Let σ̃ |= ϕ s.t. σ̃ |= v, πb(v) . The latter means
that σ̃ ≤b v, because v, πb(v) consists of all the literals in v except for those that
disagree with b, so σ agrees with v whenever v, b agree. In more detail, σ̃ agrees
with v on all p 6∈ dom(b) (because πb(v)[p] = v[p] on such variables), and for
p ∈ dom(p), if σ̃[p] 6= v[p], if v, b agree on p then likewise σ̃ agrees with them
(because then v[p] = πb(v)[p] and p is retained in the conjunction that forms the
Hamming interval), which satisfies Definition 2. As also σ̃ |= ϕ, this implies that
v |= Mb(ϕ) per Definition 3. Hence cubeb(v) =⇒ Mb(ϕ), by Lemma 4. ⊓⊔

This shows that it is reasonable to disjoin the term cubeb(v) to H in the hope
of eventually obtaining H = Mb(ϕ). The following lemma argues that the algo-
rithm continues to sample states until it converges to the true monotonization.

Lemma 9. Monotonize(ϕ, b) terminates and returns Mb(ϕ).

Proof. First we show that when it terminates, the result is correct. Always H ⊆
Mb(ϕ), because in each iteration we disjoin to H a formula that satisfies the
same property, by Lemma 8. The algorithm terminates when ϕ ⊆ H , and H is
always a b-monotone formula (by Lemma 3 the monotonization of H is H itself,
which is b-monotone as in Lemma 1). From the minimality of Mb(ϕ) (Lemma
1), necessarily also Mb(ϕ) ⊆ H .
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To show termination it suffices to show that H strictly increases in each
iteration (because the number of non-equivalent propositional formulas is finite).
To see this, note that generalize(ϕ, b, σr) returns v s.t. v ≤b σr, since the
procedure starts with σr and only flips literals to agree with b. This implies that
σr |= cubeb(v), so after the iteration σr |= H whereas previously σr 6|= H . ⊓⊔

The novelty of the algorithm is its efficiency, which we now turn to estab-
lish. The crucial point is the generalization is able to produce, term by term, a
minimal representation of Mb(ϕ). To this end, we first show that cubeb(v) that
the algorithm computes in lines 5 to 6 is a prime implicant of Mb(ϕ). Recall
that a term t is an implicant of a formula ψ if t =⇒ ψ, and it is prime if this no
longer holds after dropping a literal, that is, for every ℓ ∈ t (as a set of literals),
(∧ (t \ {ℓ})) 6=⇒ ψ. It is non-trivial if t 6≡ false (not an empty set of literals).

Lemma 10. If σr |= ϕ, then generalize(ϕ, b, σr) returns v s.t. cubeb(v) is a
non-trivial prime implicant of Mb(ϕ).

Proof. Lemma 8 shows that it is an implicant. It is non-trivial because σr is a
model of it, as shown as part of the proof of Lemma 9. Suppose that cubeb(v)
is not prime. Then there a literal over some variable p that can be dropped.
It is present in cubeb(v), which means that p ∈ dom(b) and v[p] 6= b[p]. Then
the cube obtained from dropping the literal can be written as cubeb(x) where
x = v[p 7→ ¬v[p]]. If this cube is an implicant of Mb(ϕ), then, because x |=
cubeb(x), in particular x |= Mb(ϕ). By Definition 3, there is σ̃ |= ϕ such that
σ̃ ≤b x. But the latter implies that σ̃ ∈ x, πb(x) , because, by Definition 2,
for every p 6∈ dom(b), σ̃[p] = x[p] = πb(x)[p] and for every p ∈ dom(b) where
x, πb(x) agree also σ̃, b agree (because πb(x)[p] = b[p]). Thus x, πb(x) ∩ ϕ 6= ∅,
in contradiction to the choice of v, according to the check in line 20. ⊓⊔

Thanks to the fact that Mb(ϕ) is b-monotone, through one of the basic prop-
erties of monotone functions that dates back to Quine [30], a prime implicant
reproduces a term from the (unique) minimal representation of Mb(ϕ). We use
this to show that the monotonization is computed in few iterations:

Lemma 11. The number of iterations of the loop in line 3 of Monotonize(ϕ, b)
is at most |Mb(ϕ)|dnf.

Proof. Lemma 10 shows that in each iteration we disjoin a prime implicant. It is
a property of monotone functions that they have a unique DNF representations
with irredundant, which consists of the disjunction of all non-trivial prime impli-
cants [30], and this extends to b-monotone functions (through a simple renaming
of variables to make the function monotone). Thus the non-trivial prime impli-
cant we disjoin is a term of the minimal DNF representation of Mb(ϕ). Each
additional σr produces a new term, as shown in Lemma 9. ⊓⊔

We are now ready to prove that the algorithm overall is efficient.
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Proof of Theorem 2. By Lemma 11 the number of iterations of the loop in line 3
is bounded by |Mb(ϕ)|dnf . Each iteration calls generalize, which performs at
most n iterations of the loop in line 14 because the same variable is never flipped
twice. Each iteration of this loop performs n SAT queries in line 20. Note that
the cube x, πb(x) is straightforward to compute in linear time. ⊓⊔

Remark 1. Bshouty [5] used an algorithm for computing Mb(ϕ) whose complex-
ity is bounded by the DNF input size |ϕ|dnf , whereas Algorithm 1’s complexity is
bounded by the DNF output size, |Mb(ϕ)|dnf , which is never worse (Lemma 5),
and sometimes significantly smaller. When considered as learning algorithms, the
improved complexity of Algorithm 1 comes at the expense of the need for richer
queries: Bshouty’s algorithm is similar to Algorithm 1 (using an equivalence
query in line 3 that produces a positive example—see the extended version [15]),
except that the condition in line 20 is replaced by checking whether x |= ϕ.
This is a membership query to ϕ, whereas our check amounts to a disjointness
query [1].

5 Efficient Inference of CDNF Invariants

Algorithm 2 . Dual of model-based
interpolation-based inference [3,6]

1: procedure Dual-MB-ITP(Init,δ,Bad,s)
2: if δs(Init) ∩ Bad 6= ∅ then

3: unsafe

4: ϕ ← ¬Bad

5: while ϕ not inductive do

6: let σ, σ′ |= ϕ ∧ δ ∧ ¬ϕ′

7: if δs(Init) ∩ {σ} 6= ∅ then

8: restart with larger s

9: take minimal clause c ⊆ ¬σ s.t.
δs(Init) =⇒ c

10: ϕ ← ϕ ∧ c

11: return ϕ

Algorithm 3 . Interpolation-based
inference of CDNF invariants

1: procedure CDNF-ITP(Init,δ,Bad,s)
2: if δs(Init) ∩ Bad 6= ∅ then

3: unsafe

4: ϕ ← ¬Bad

5: while ϕ not inductive do

6: let σ, σ′ |= ϕ ∧ δ ∧ ¬ϕ′

7: if δs(Init) ∩ {σ} 6= ∅ then

8: restart with larger s

9: H ← Monotonize(δs(Init), σ)

10: ϕ ← ϕ ∧H

11: return I

In this section we build on the algorithm of Sect. 4 to devise a new model-
based interpolation-based algorithm that can efficiently infer invariants that have
poly-size CNF and DNF representations (dubbed “CDNF invariants”). We start
with background on the theoretical condition that guarantees the success of the
original model-based algorithm for simpler forms of invariants.

5.1 Background: Interpolation with the Fence Condition

The essence of interpolation-based invariant inference (ITP) is to generalize a
proof of bounded unreachability—i.e., bounded model checking [2]—into a proof
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of unbounded reachability, that is, a part of the inductive invariant. The reader
is more likely to be familiar with the structure of the original algorithm by
McMillan [26], which uses bounded unreachability to the bad states, where in
each iteration the algorithm adds states to the candidate by disjoining a for-
mula from which it is impossible to reach a bad state in s steps. However, for
our purposes here, it is more convenient to consider the dual version, which
uses bounded unreachability from the initial states, where in each iteration the
algorithm excludes states from the candidate by conjoining a formula which
does not exclude any state that the system can reach in s steps from an initial
state (i.e., the candidate ϕ is updated by ϕ ← ϕ ∧ H where H is a formula s.t.
δs(Init) ⊆ H).

The original interpolation-based algorithm by McMillan uses a procedure
that relies on the internals of the SAT solver [26]. Complexity bounds on
interpolation-based algorithms analyze later approaches that exercise control
on how interpolants are generated, and do this in a model-based fashion [3,6]
inspired by IC3/PDR [4,9]. The dual version is presented in Algorithm 2. After
starting the candidate ϕ as ¬Bad, each iteration checks for a counterexample to
induction (line 6), whose pre-state σ is excluded from ϕ at the end of the iteration
(line 10). Many states are excluded in each iteration beyond the counterexample,
by conjoining to the candidate a minimal clause that excludes σ but retains all
the states that are reachable in the system in s steps (line 9—this involves up
to n queries of s-BMC, each time dropping a literal and checking whether the
clause is still valid). If the counterexample cannot be blocked, because it is in
fact reachable in s steps, this is an indication that s needs to be larger (line 7)
to find a proof or a safety violation. The algorithm detects that the transition
system is unsafe in line 3 when s is enough to find an execution from Init to Bad
with at most s transitions. (Our analysis of the algorithms in the paper focuses
on the safe case, the complexity of finding an invariant.)

A condition that guarantees that s is large enough for Algorithm 2 to suc-
cessfully find an inductive invariant, called the fence condition, was recently put
forward [13], involving the Hamming-geometric boundary of the invariant.

Definition 7 (Boundary). Let I be a set of states. Then the (inner) boundary
of I, denoted ∂+(I), is the set of states σ+ |= I s.t. there is a state σ− that
differs from σ in exactly one variable, and σ+ |= I, σ− 6|= I.

Definition 8 (Fence Condition). Let I be an inductive invariant for a tran-
sition system (Init, δ,Bad) and s ∈ N. Then I is s-forwards fenced if ∂+(I) ⊆
δs(Init).

Example 1. Let I be the set of all states where at least two bits are 0 and at
least two bits are 1. Then ∂+(I) is the set where exactly two bits are 0 (and at
least two bits are 1) or exactly two bits are 1 (and at least two bits are 0). Note
that I \ ∂+(I) contains many (most) states—those where three or more bits are
0 and three or more bits are 1. The fence condition requires only from the states
in ∂+(I) to be reachable in s steps.
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The fence condition guarantees that throughout the algorithm’s execution, ϕ
contains the fenced invariant, giving rise to the following correctness property:

Theorem 3 ([13]). If there exists an s-forwards fenced invariant for
(Init, δ,Bad), then Dual-MB-ITP(Init, δ,Bad, s) successfully finds an invariant.

The idea is that the property that I =⇒ ϕ is maintained because the fence
condition ensures that it suffices to verify that the clause that generalize

computes, starting from a state σ |= ϕ that is outside of I, does not exclude
a state from δs(Init) to guarantee that it also does not exclude a state from
I. (Note that the fence condition does not provide a way to know whether an
arbitrary state belongs to I.).

The fence condition ensures the algorithm’s success, but not that it is
efficient—the number of iterations until convergence may be large, even when
there is a fenced inductive invariant that has a short representation in CNF.
(Note that in Algorithm 2, ϕ is always in CNF.) This was ameliorated in [13] by
the assumption that the invariant is monotone:

Theorem 4 ([13]). If I is an s-forwards fenced inductive invariant for
(Init, δ,Bad) and I is monotone (can be written in CNF/DNF with all variables
un-negated), then Dual-MB-ITP(Init, δ,Bad, s) successfully finds an inductive
invariant in O(|I|cnf) inductiveness checks, and O (n · |I|cnf) checks of s-BMC
and time.3

However, when I is not monotone, it is possible for the algorithm to require
an exponential number of iterations even though |I|cnf is small (and in fact, even
though every representation of I without redundant clauses is small).

The challenge that we address in this section is to create an invariant inference
algorithm that efficiently infers inductive invariants that are not monotone, while
relying only on the fence condition.

5.2 CDNF Inference with the Fence Condition

We now present our new invariant inference algorithm (Algorithm 3), that is
guaranteed to run in time polynomial in n, |I|cnf , |I|dnf of a fenced invariant I:

Theorem 5. Let I be a forwards s-fenced inductive invariant for (Init, δ,Bad).
Then CDNF-ITP(Init, δ,Bad, s) finds an inductive invariant in at most |I|cnf ·
|I|dnf · n2 of s-BMC checks, |I|cnf inductiveness checks, and O(|I|cnf · |I|dnf · n2)
time.

Example 2. I from Example 1 has poly-size representations in both CNF and
DNF. We write:

3 A similar result applies when the invariant is unate, that is, can be written in
CNF/DNF so that every variable is either always negated or always un-negated.
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DNF : there is a choice of four bits with two 0’s and two 1’s,

I ≡
∨

1≤i1 6=i2 6=i3 6=i4≤n

(xi1 = 0 ∧ xi2 = 0 ∧ xi3 = 1 ∧ xi4 = 1).

CNF : it is impossible that n − 1 bits or more are 1, likewise for 0,

I ≡





n
∧

i=1

∨

j 6=i

xj = 0



 ∧





n
∧

i=1

∨

j 6=i

xj = 1



 .

The CNF formula has 2n clauses, and the DNF has
(

n
4

)

= Θ(n4) terms. Theorem
5 shows that such I satisfying the fence condition can be inferred in a number of
queries and time that is polynomial in n. Note that these formulas fall outside
the classes that previous results can handle efficiently (see Sect. 7) as they are
not monotone nor almost-monotone (the number of terms/clauses with negated
variables is not constant).

As noted by Bshouty [5], the class of formulas with short DNF and CNF
includes the formulas that can be expressed by a small decision tree: a binary
tree in which every internal node is labeled by a variable and a leaf by true/false,
and σ satisfies the formula if the path defined by starting from the root, turning
left when the σ assigns false to the variable labeling the node and right otherwise,
reaches a leaf true. The size of a decision tree is the number of leaves in the tree.
We conclude that (see the proof in the extended version [15]):

Corollary 1. Let I be a forwards s-fenced inductive invariant for (Init, δ,Bad),
that can be expressed as a decision tree of size m. Then CDNF-ITP

(Init, δ,Bad, s) finds an inductive invariant in at most m2 · n2 of s-BMC checks,
m inductiveness checks, and O(m2 · n2) time.

The algorithm CDNF-ITP which attains Theorem 5 is presented in Algo-
rithm 3. Its overall structure is similar to Algorithm 2, except the formula used to
block a counterexample is the monotonization of the s-reachable states. Specif-
ically, starting from the candidate ϕ = true (line 4, the algorithm iteratively
samples counterexamples to induction (line 6) and blocks the pre-state σ from
ϕ by conjoining Mσ(δs(Init)), computed by invoking Algorithm 1. The SAT
queries of the form sat(ϕ ∧ θ) that Algorithm 1 performs (see Sect. 4) have

ϕ = δs(Init), and they amount to the BMC checks of whether δs(Init) ∩ θ
?
= ∅.

It is important for the efficiency result that Algorithm 3 uses Algorithm 1 as
a subprocedure. Using Bshouty’s procedure (see Remark 1) would yield a bound
of n · |δs(Init)|dnf checks of s-BMC, and it is likely that δs(Init) is complex to
capture in a formula when s is significant (as common for sets defined by exact
reachability, such as the set of the reachable states).

We now proceed to prove the correctness and efficiency of the algorithm
(Theorem 5). Throughout, assume that I is an inductive invariant for
(Init, δ,Bad). I will be s-forwards fenced; we state this explicitly in the premise
of lemmas where this assumption is used. The idea behind the correctness and
efficiency of Algorithm 3 is that Mσ(I) is a stronger formula than the clauses
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that are produced in Algorithm 2, causing the candidate to converge down to
the invariant in fewer iterations, while never excluding states that belong to I
(because I ⊆ Mσ(I), as used in Lemma 14). As we will show (in Lemma 15),
this strategy results in a number of iterations that is bounded by the CNF size
of I (without further assumptions on the syntactic structure of I). The trick,
however, is to show (in Lemma 13) that what the algorithm computes in line
9 is indeed Mσ(I), even though I is unknown. The crucial observation is that
under the fence condition, the monotonization of the s-reachable states matches
the monotonization of the invariant (even though these are different sets!). Note
that this holds for any invariant that satisfies the fence condition. To prove this
we need to recall a fact about the monotonization of the boundary of a set:

Lemma 12 ( [14]). Let I, S be sets of states s.t. ∂+(I) ⊆ S and σ a state s.t.
σ 6|= I. Then I ⊆ Mσ(S).

The idea is that for every x ∈ I, there is a state on the boundary v ∈ ∂+(I) s.t.
v ≤σ x (where a shortest path between x, b crosses I), and because also v ∈ S
we would have that x ∈ Mσ(S).

We proceed to relate the monotonizations of δs(Init), I:

Lemma 13. If I is forwards s-fenced for (Init, δ,Bad), and σ 6|= I, then we have
that Mσ(δs(Init)) = Mσ(I).

Proof. Since I is an inductive invariant, δs(Init) ⊆ I, so Mσ(δs(Init)) ⊆ Ms(I)
from Lemma 2. For the other direction we use Lemma 12: by the fence condition,
∂+(I) ⊆ δs(Init) and hence, as σ 6|= I, we obtain I ⊆ Mσ(δs(Init)). By Lemma
1, this implies that Mσ(I) ⊆ Mσ(δs(Init)). ⊓⊔

We use this to characterize the candidate invariant the algorithm constructs:

Lemma 14. If I is forwards s-fenced for (Init, δ,Bad), then in each step of
CDNF-ITP(Init, δ,Bad, k), ϕ = MHullCi

(I)∧¬Bad, where Ci is the set of coun-
terexamples σ the algorithm has observed so far. In particular, I ⊆ ϕ.

Proof. First, I ⊆ ϕ holds from the rest of the lemma because I ⊆ ¬Bad (it is
an inductive invariant), and I ⊆ MHullCi

(I) by Lemma 7. The proof of ϕ =
MHullCi

(I) ∧ ¬Bad is by induction on iterations of the loop in line 5. Initially,
C = ∅ and indeed ϕ = ¬Bad. In each iteration, I ⊆ ϕ using the argument
above and the induction hypothesis. Hence, the counterexample to induction
of line 6 has σ 6|= I (otherwise σ′ |= I because I is an inductive invariant, and
this would imply also σ |= ϕ, in contradiction). Then Lemma 9 ensures that
H = Mσ(δs(Init)). Lemma 13 shows that this is Mσ(I), as required. ⊓⊔

Essentially, the algorithm gradually learns a monotone basis (Definition 5) for
I from the counterexamples to induction, and constructs I via the monotone
hull w.r.t. this basis. The next lemma shows that the size of the basis that the
algorithm finds is bounded by |I|cnf .
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Lemma 15. If I is forwards s-fenced for (Init, δ,Bad), then CDNF-

ITP(Init, δ,Bad, k) successfully finds an inductive invariant. Further, the num-
ber of iterations of the loop in line 5 is at most |I|cnf.

Proof. Since σ 6|= I, also it is not a model of the monotonization w.r.t. to itself,
σ 6|= Mσ(I) (because the only state x ≤σ σ is x = σ—see Definitions 1 and
3). This shows, using Lemma 14, that at least one state is excluded from the
candidate ϕ in each iteration. By the same lemma always I =⇒ ϕ, and the
algorithm terminates when ϕ is inductive, so this shows that the algorithm
successfully converges to an inductive invariant.

To see that this occurs in at most |I|cnf iterations, consider a minimal CNF
representation of I, I = c1∧ . . .∧c|I|

cnf
. We argue that in each iteration produces

at least one new clause from that representation, in the sense that for some i,
ϕ ∧Mσb

(I) =⇒ ci whereas previously ϕ 6=⇒ ci. Let ci be the clause that σ 6|= ci

(recall e.g. that σ 6|= ϕ and I ⊆ ϕ). Then Mσ(I) ⊆ ci, since ci is σ-monotone
(Mσ(ci) = ci, using Lemma 3, because all the literals disagree with σ) and
I ⊆ ci, and Mσ(I) is the smallest such (Lemma 1). Thus when we conjoin
H = Mσ(I) to ϕ we conjoin at least one new ci that was not present in a CNF
representation of ϕ; this can happen at most |I|cnf times. ⊓⊔

Overall:

Proof of Theorem 5. The algorithm’s success in finding an invariant is established
in Lemma 15. As for efficiency, by Lemma 15, there are at most |I|cnf iterations
of the loop in CDNF-ITP, each performs a single inductiveness query, and calls
Monotonize. By Theorem 2 each such call performs at most O(n2|Mσ(I)|dnf)
s-BMC queries. The claim follows because |Mσ(I)|dnf ≤ |I|dnf (Lemma 5). ⊓⊔

Remark 2 (Backwards fence condition). Our main theorem in this section, The-
orem 5, also has a dual version that applies to a fence condition concerning back-
wards reachability. I is s-backwards fenced if every state in the outer boundary

∂−(I)
def
= ∂+(¬I) can reach a state in Bad in at most s steps [13]. The dual

of Theorem 5 is that there is an algorithm that achieves the same complexity
bound under the assumption that I is s-backwards fenced (instead of s-forwards
fenced). The dual-CDNF algorithm is obtained by running our CDNF algorithm
on the dual transition system (Bad, δ−1, Init) (see e.g. [ [12], Appendix A]) and
negate the invariant; notice that the CDNF class is closed under negation. This
algorithm also achieves the same bound for decision trees as in Corollary 1, under
the backwards fence assumption.

Remark 3 (Comparison to Bshouty’s CDNF algorithm). Our CDNF algorithm,
Algorithm 3, is inspired by Bshouty’s CDNF algorithm [5], but diverges from it
in several ways. The reason is the different queries available in each setting. (The
code for Bshouty’s CDNF algorithm is provided in the extended version [15].)
Structurally, while the candidate in both algorithms is gradually constructed to
be MHullCi

(I) =
∧

σ∈Ci
Mσ(I) (I being the unknown invariant/formula, and Ci
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the set of negative examples so far), Algorithm 3 constructs each monotoniza-
tion separately, one by one, whereas Bshouty’s algorithm increases all mono-
tonizations simultaneously. Bshouty’s design follows from having the source of
examples—both positive and negative—equivalence queries, checking whether
the candidate matches I. A membership query is necessary to decide whether
the differentiating example is positive or negative for I in order to decide whether
to add disjuncts to the existing monotonizations or to add a new monotoniza-
tion, respectively. This procedure is problematic in invariant inference, because
we cannot in general decide, for a counterexample (σ, σ′) showing that our candi-
date is not inductive, whether σ 6|= I (negative) or σ′ |= I (positive) [12,18]. The
solution in previous work [13] was to assume that the invariant satisfies both the
forwards and backwards fence condition (see Remark 2). Under this assumption
it is possible to decide whether σ |= I for an arbitrary state σ. However, this con-
dition is much stronger than a one-sided version of the fence condition. Instead,
in our inference algorithm, the candidate is ensured to be an overapproximation
of the true I, so each counterexample to induction in line 6 yields a negative
example. Positive examples are obtained in line 4 from δs(Init) ⊆ I; there is no
obvious counterpart to that in exact learning, because in that setting we have no
a-priori knowledge of some set S that underapproximates I, let alone one where
we know—as the fence condition guarantees through Lemma 12—that covering
S in the monotonization is enough to cover I.

6 Efficient Implementation of Abstract Interpretation

In this section we build on the algorithm of Sect. 4 to prove a complexity upper
bound on abstract interpretation in the domain based on the monotone theory
(Theorem 7). We begin with background on this domain.

6.1 Background: Abstract Interpretation in the Monotone Theory

Recall that given a set of states B, the monotone span (Definition 6) of B,
MSpan(B), is the set of formulas ϕ s.t. MHullB(ϕ) ≡ ϕ, or, equivalently, the set
of formulas that can be written as conjunctions of clauses that exclude states
from B (Theorem 1). The abstract domain M[B] = 〈MSpan(B), =⇒, ⊔B, false〉,
introduced in [14], is a join-semilattice over the monotone span of B, ordered by
logical implication, with bottom element false. The lub ⊔B exists because the
domain is finite and closed under conjunction (follows from Theorem 1). A Galois

connection (2States[Σ], ⊆) −−−−→←−−−−
αB

γ
(MSpan(B), =⇒) with the concrete domain is

obtained through the concretization γ(ϕ) = {σ | σ |= ϕ} and the abstraction
αB(ψ) = MHullB(ψ) [14].4

4
M[B] is parametrized by a choice of a monotone basis B. When B is large, the

abstraction is more precise; it is precise enough to prove safety when there exists
an inductive invariant that can be expressed in CNF such that each clause excludes
at least one state from B (through Theorem 1). The fewer states B includes, the
more extrapolation is performed in each abstraction step. However, since B also



218 Y. M. Y. Feldman and S. Shoham

Algorithm 4. Kleene Iterations in M[B]

1: procedure AI-M[B](Init, δ, Bad)
2: i ← 0
3: ξ−1 ← false

4: ξ0 ← MHullB(Init)
5: while ξi 6=⇒ ξi−1 do

6: ξi+1 = MHullB(δ(ξi) ∪ Init)
7: i ← i+ 1

8: return ξi

Given a transition system (Init, δ), iterations of abstract interpretation with
the abstract transformer are given by ξ0 = αB(Init), ξi+1 = αB (δ(γ(ξi)) ∪ Init).
Substituting γ, αB yields the iterations as shown in Algorithm 4.

Each iterate in Algorithm 4 involves a monotone hull (lines 4 and 6), which
is a conjunction of monotonizations. Using Algorithm 1 this can be computed
efficiently. We follow on this idea to prove efficient complexity upper bounds
on Algorithm 4.

6.2 Complexity Upper Bound

To obtain a complexity upper bound on Algorithm 4 we need to bound the time
needed to compute each ξi as well as the number of ξi’s. A bound for the latter
is provided by [14]:

Theorem 6 ([14]). Let (Init, δ,Bad) be a transition system. Then the algorithm
AI-M[B](Init, δ,Bad) converges in iteration number at most

ζ
def
=

m
∏

i=1

(

∣

∣MRef(B )∧b′

i
(δ)

∣

∣

dnf
+ |Mbi

(Init)|dnf

)

,

where B can be written in DNF as b1 ∨ . . . ∨ bm, the cube B consists of the
literals that appear in all b1, . . . , bm (i.e., B =

⋂m

i=1 bi as sets of literals), and
the reflection of a cube d = ℓ1 ∧ . . . ∧ ℓr is Ref(d) = ¬ℓ1 ∧ . . . ∧ ¬ℓr.

We fix a DNF representation of B = b1 ∨ . . . ∨ bm. For brevity, we use ζ to refer
to the bound in Theorem 6. When ζ is small, it reflects the benefit of using
abstract interpretation in MSpan(B) over exact reachability (even though ζ is
not always a tight bound) [14]. An example of ζ for a simple system appears
in Example 3.

changes the available inductive invariants, the overall convergence might actually be
faster with a larger (less extrapolating) B. Understanding how to choose B is an
important direction for future work. (In [14], B was obtained from the states that
reach a bad state in a fixed number of steps, mimicking PDR’s scheme for generating
proof obligations.).
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In this section we prove that it is possible to implement Algorithm 4 so
that its overall complexity is polynomial in the same quantity ζ, the number of
variables n, and the number m of terms in the representation of B:

Theorem 7. Algorithm 4 can be implemented to terminate in O(n2ζ + (n +
m)ζ2) SAT queries and time.

Example 3. Let n be an odd number. Consider a transition system over x =
x1, . . . , xn, where Init is x = 00 . . . 00 and the transition relation chooses
an even number of variables that are 0 from the initial state and turns
them into 1. If we take B to be the singleton set containing the state
x = 11 . . . 11 (hence, B is a cube and m = 1), then Lemma 3 yields that
Mx=00...00∧x′=11...11(δ) =

∨n

i=1 (x′
i = 0) (see the extended version [15] for

details) so ζ = |Mx=00...00∧x′=11...11(δ)|dnf = O(n). Theorem 7 shows that an
implementation of abstract interpretation in M[B] for this system terminates in
O(n3) SAT queries and time. This is significant because a naive implementation
of Algorithm 4 would start, for the first iteration of line 6, by computing the
exact post-image δ(Init); in our example this is the set of states where the parity
of x is 0, which cannot be represented in polynomial-size DNF nor CNF [e.g.
8]. Our implementation is able to compute the abstraction of the post-image
without constructing the post-image and avoids the blowup in complexity. [14]
contains other examples with small ζ.

At this point, the direct approach to implement Algorithm 4 is to perform
MHullB(ϕ) in lines 4 and 6 through

∧m

j=1 Monotonize(ϕ, bj), invoking Algo-
rithm 1 on ϕ. Indeed, this achieves a bound that is only slightly worse than The-
orem 7 (see Remark 4). In what follows we provide an implementation that both
explicates the connection to ζ, and achieves exactly the bound of Theorem 7.

Algorithm 5. Efficient Kleene Iterations in M[B]

1: procedure AI-M[B](Init, δ, Bad)
2: i ← 0
3: ξ−1 ← false

4: ξ0 ←
∧m

j=1
Monotonize(Init, bj)

5: for j = 1..m do

6: δ
]

j ← Monotonize(δ ∨ Init′,Ref(B ) ∧ b′j)

7: while ξi 6=⇒ ξi−1 do

8: ξi+1 =
∨

{
(

t1
∣

∣

Σ′

)

∧ . . . ∧
(

tm
∣

∣

Σ′

)

∣

∣

∣
tj a term of δ

]

j , ∃σj ∈ ξi. σj |=
(

tj
∣

∣

Σ

)

}

9: i ← i+ 1

10: return ξi

Our implementation is displayed in Algorithm 5. The first iterate is computed
as described above by invoking Algorithm 1 on Init (line 4). The SAT queries
performed by Algorithm 1 are in this case straightforward, with ϕ = Init.
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To compute the next iterates, we first compute monotnizations of the concrete
transformer, δ ∨ Init′ (line 6). This is a two-vocabulary formula, and accordingly
the monotonizations are w.r.t. two-vocabulary cubes. The monotonizations are
computed in DNF form and stored in δ

]

j . The next iterate ξi+1 is formed from
the δ

]

j ’s by taking all the combinations of terms from δ
]

1 , . . . , δ
]

m whose pre-state
part is satisfied by at least one state in ξi, and forming the conjunction of the
post-state parts: for a term t = ℓ1 ∨ . . . ∨ ℓi1 ∨ ℓ′

i1+1 ∨ . . . ∨ ℓ′
i2

over Σ ⊎ Σ′, the

restriction t
∣

∣

Σ
= ℓ1 ∨ . . . ∨ ℓi1 and t

∣

∣

Σ′
= ℓ′

i1+1 ∨ . . . ∨ ℓ′
i2

.
The intuition is that in the original algorithm, given a set of states ξi, we find

the set of states in ξi+1 by taking the result of the transformer δ ∨ Init′ on the
specific ξi, then, for the monotonization of the result, adding also the states that
are required by the bj-monotone order, and this we do for every disjunct bj in
B, letting ξi+1 be the conjunction of the said monotonizations. Here, instead, we
monotonize δ ∨ Init′ itself w.r.t. every bj , such that for every pre-state we have
ready the monotonization of the corresponding post-state. We then form ξi+1

by picking and conjoining the right monotonizations—the ones whose pre-state
is in the previous frame. (The monotonization of the pre-state w.r.t. Ref(B ) is
useful for decreasing ζ, and hence the obtained bound, without altering ξi+1; the
latter stems from the fact that the input ξi is also the result of such a procedure,
so the presence of a pre-state in ξi indicates the presence all the states in its
monotone hull w.r.t. Ref(B ) in ξi.)

The invocation of Algorithm 1 in line 6 is on a double-vocabulary formula;
still, the SAT queries to be performed in the invocation of Algorithm 1 are simple
SAT queries about two-vocabulary formulas (and a counterexample is a pair of
states).

It is important for the efficiency result that Algorithm 3 uses Algorithm
1 as a subprocedure. Using Bshouty’s procedure (see Remark 1) would yield
a bound in terms of the DNF size of the original transition relation, which
could be significantly larger, especially in cases where the abstract interpretation
procedure terminates faster than exact forward reachability [14].

The rest of this section proves that Algorithm 5 realizes Theorem 7. To show
that it correctly implements Algorithm 4, we need the following fact about Algo-
rithm 4:

Lemma 16 ([14]). In Algorithm 4, σ′ |= ξi+1 iff there exist σ1, . . . , σm |= ξi

s.t.

(σ1, σ
′) |= MRef(B )∧b′

1
(δ ∨ Init′) ∧ . . . ∧ (σm, σ′) |= MRef(B )∧b′

m
(δ ∨ Init′). (1)

We use this to show the correctness of Algorithm 5:

Lemma 17. ξi in Algorithm 5 is logically equivalent to ξi in Algorithm 4.

Proof. By induction over i. The correctness of ξ0 follows from the correctness
of Algorithm 1 (Theorem 2). For the same reasons, δ

]

j of Algorithm 5 is equivalent
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to MRef(B )∧b′

j
(δ ∨ Init′). Now for some DNF manipulation: for every σ′,

∃σ1, . . . , σm.(σ1, σ
′) |= δ

]

1 ∧ . . . ∧ (σm, σ′) |= δ
]

m

⇐⇒ ∃σ1, . . . , σm. ∃t1 term of δ
]

1 , . . . , ∃tm term of δ
]

m.

(σ1, σ
′) |= t1 ∧ . . . ∧ (σm, σ′) |= tm

⇐⇒ ∃σ1, . . . , σm. ∃t1 term of δ
]

1 , . . . , ∃tm term of δ
]

m.

σ1 |=
(

t1
∣

∣

Σ

)

∧ σ′ |=
(

t1
∣

∣

Σ′

)

∧ . . . ∧ σ1 |=
(

tm
∣

∣

Σ

)

∧ σ′ |=
(

tm
∣

∣

Σ′

)

⇐⇒ ∃σ1, ∃t1 term of δ
]

1 . σ1 |=
(

tm
∣

∣

Σ

)

∧ σ′ |=
(

tm
∣

∣

Σ′

)

∧ . . . ∧

∃σm, ∃tm term of δ
]

m. σm |=
(

tm
∣

∣

Σ

)

∧ σ′ |=
(

tm
∣

∣

Σ′

)

.

Hence, ∃σ1, . . . , σm ∈ ξi of Algorithm 5 that with σ′ satisfy Eq. 1 iff σ′ ∈ ξi+1

of Algorithm 5. Lemma 16 and the induction hypothesis complete the proof. ⊓⊔

We can now proceed to prove the complexity bound for Algorithm 5.

Lemma 18. Algorithm 5 terminates in O(n2ζ + (n + m)ζ2) SAT queries and
time.

Proof. By Theorem 2, each invocation of Algorithm 1 in line 4 takes
O

(

n2 · |Mbi
(Init)|dnf

)

= O(n2ζ) queries and time. Similarly, each invocation
in line 6 takes

O
(

(2n)2 ·
∣

∣MRef(B )∧b′

i
(δ ∨ Init′)

∣

∣

dnf

)

queries and time. This quantity is O(n2ζ), because by Lemma 3

∣

∣MRef(B )∧b′

i
(δ ∨ Init′)

∣

∣

dnf
≤

∣

∣MRef(B )∧b′

i
(δ)

∣

∣

dnf
+

∣

∣MRef(B )∧b′

i
(Init′)

∣

∣

dnf

=
∣

∣MRef(B )∧b′

i
(δ)

∣

∣

dnf
+ |Mbi

(Init)|dnf .

In each iteration, the number of combinations of terms in line 8 is at most
∏m

i=1

∣

∣MRef(B )∧b′

i
(δ ∨ Init′)

∣

∣

dnf
. For each of the m terms in the combination, we

split the term to Σ, Σ′ parts in time linear term size which is at most n, and
perform a SAT check for whether the term intersects ξi. Overall this step involves
O (m · ζ) queries and O ((n + m) · ζ) time. This is the cost of each iteration; the
number of iterations is bounded by ζ by Theorem 6. The claim follows. ⊓⊔

The proof of Theorem 7 follows from Lemmas 17 and 18.

Remark 4. Lemmas 17 and 18 have the consequence that in Algorithm 4,
|ξi|dnf ≤ ζ (interestingly, this is true in particular for the resulting inductive
invariant). This is a proof that the direct implementation of the monotone hull
by m calls to Algorithm 1 amounts to O(n2mζ) SAT queries in each itera-
tion, and O(n2mζ2) time thanks to Theorem 6. Though asymptotically inferior,
this implementation approach may be more efficient than Algorithm 5 when
|ξi|dnf ≪ ζ.



222 Y. M. Y. Feldman and S. Shoham

7 Related Work

Complexity Bounds for Ivariant Inference. Conjunctive/disjunctive
invariants can be inferred in a linear number of SAT calls [16,25]. On the other
hand, inferring CNF/DNF invariants for general transition systems is NP-hard
with access to a SAT solver [25], even when the invariants are restricted to
monotone formulas [12]. Complexity results for model-based interpolation-based
invariant inference (stemming from the analysis of the algorithm by [3,6]) were
presented in [13], based on the (backwards) fence condition, which tames reacha-
bility enough to efficiently infer monotone and almost-monotone DNF invariants,
or monotone and almost-monotone CNF invariants under the (forwards) fence
condition with the dual algorithms. Our algorithm (Algorithm 5) can achieve the
same bounds if, similar to [13], the monotone basis (set of counterexamples) is
fixed in advance. (This alteration is needed because some short monotone DNF
formulas have large CNF size [27].) Our algorithm is more versatile because it
applies to CDNF formulas which are not monotone or almost-monotone, and
alleviates the need to know a monotone basis in advance. A CDNF complexity
bound similar to ours was obtained in [13] under the much stronger assump-
tion that both the backwards and the forwards fence condition hold simulta-
neously (see Remark 2). Property-directed reachability algorithms [4,9] were
shown efficient on several parametrized examples [14,34] and the very special
case of maximal transition systems for monotone invariants [12]. We show (Sect.
6) that abstract interpretation in the monotone theory, studied under the name
Λ-PDR [14] in relation to standard PDR, is efficient in broader circumstances,
when the DNF size of certain monotonizations of the transition relation are
small, using the same quantity ζ that in previous work [14] was established as
an upper bound on the number of iterations (without an overall complexity
result).
Monotone Theory in Invariant Inference. The monotone theory has been
employed in previous works on invariant inference. The aforementioned previous
results on inference under the fence condition [13] also employ the monotone the-
ory, and are based on one-to-one translations of Bshouty’s algorithms to invariant
inference, replacing equivalence queries by inductiveness checks and member-
ship queries by bounded model checking. For Bshouty’s CDNF algorithm this
only works under the stronger two-sided fence condition, which is why our algo-
rithm differs significantly (see Remark 3). The one-sided fence condition suffices
for the translation of Bshouty’s Λ-algorithm, which is suitable when a mono-
tone basis is known in advance, e.g. for almost-monotone invariants, whereas
the CDNF algorithm learns a monotone basis on-the-fly. Another translation of
Bshouty’s algorithm to invariant inference is by Jung et al. [23], who combine
the CDNF algorithm of Bshouty [5] with predicate abstraction and templates to
infer quantified invariants. They overcome the problem of membership queries
in the original algorithm (see Remark 3) heuristically, using under- and over-
approximations and sometimes random guesses, which could lead to the need to
restart. The monotone theory is also used in a non-algorithmic way in [14] to
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analyze overapproximation in IC3/PDR through abstract interpretation in the
monotone theory, to which we prove a complexity upper bound.
Inferring Decision Tree Invariants. In machine learning, decision trees are
a popular representation of hypotheses and target concepts. Garg et al. [19] adapt
an algorithm by Quinlan [31] to infer invariants (later, general Horn clauses [11])
in the form of decision trees over numerical and Boolean attributes, which is
guaranteed to converge, but not necessarily efficiently overall (even though the
algorithm efficiently generates the candidates, the number of candidates could
be large). Similarly to our algorithm, the translation of the CDNF algorithm to
invariant inference in [13] is applicable also to Boolean decision trees, but, as
previously mentioned, requires the stronger two-sided fence condition, whereas
our result is the first to do so under the (one-sided) fence condition.
Complexity of Abstract Interpretation. The efficiency of the abstract trans-
formers is crucial to the overall success of abstract interpretation, which is often
at odds with the domain accuracy; a famous example is the octagon abstract
domain [28], whose motivation is the prohibitive cost of the expressive poly-
hedra domain [7]. We provide a way to compute abstract transformers in the
monotone span domain that is efficient in terms of the DNF size of the result
(see also Remark 4). The computation of the abstract transformer in Algorithm
5 is inspired by works in symbolic abstraction [32,40] about finding represen-
tations of the best abstract transformer, rather than computing it anew per
input [10,33,39].

8 Conclusion

This work has accomplished invariant inference algorithms with efficient com-
plexity guarantees in two settings—model-based interpolation and property-
directed reachability—resolving open problems where the missing component (as
it turns out) was a new way to compute monotone overapproximations. A com-
mon theme is the use of rich syntactic forms of the formulas that the algorithms
maintain: in our model-based interpolation algorithm, the candidate invariant
is a conjunction of DNFs, even though the target invariant has both short CNF
and DNF representations. In our efficient implementation of abstract interpreta-
tion, each iterate is again a conjunction of DNFs, although the natural definition
(Theorem 1, and as inspired by PDR) is with CNF formulas. We hope that these
ideas could inspire new interpolation-based and property-directed reachability
algorithms that would benefit in practice from richer hypotheses and techniques
from the monotone theory.
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1 Introduction

Modularity is indispensable for scaling automatic verification, such as software
model checking. Reasoning modularly about a program involves abstracting the
behavior of its functions in the form of a summary. For programs manipulating
memory inferring summaries can be especially challenging. The reason is that
summaries need to express the frame of the function, i.e., how the function
modifies memory in any execution.

We focus on automated modular program verification using Constrained
Horn Clauses (CHCs). In this setting, program verification is reduced to sat-
isfiability of a set of logical rules (or clauses) [6], where unknown predicates
represent summaries and inductive invariants. Satisfiability of CHCs is in gen-
eral undecidable but, in practice, it is solved using so-called CHC solvers (e.g.,
HoIce [8], and Spacer [16]). CHC solvers automatically synthesize inductive
invariants and, in the case of modular verification, function summaries.

In CHCs, memory side-effects are encoded by first purifying program state-
ments to make such side-effects explicit, and then, encoding memory content by
(unbounded) logical arrays. Each summary predicate relates arrays representing
input and output memory contents. While this encoding is simple to implement,
it is challenging to solve because it requires the CHC solver to discover function
frames, that are typically expressed using quantified formulas. Although reason-
ing with quantified formulas is supported by some CHC solvers (e.g., [12]), it
remains very challenging and is best to be avoided whenever possible.

Quantifiers are needed to restrict arrays at an unbounded number of indices.
This is required to express how the execution of a function affects the state
of memory. A key observation is that modeling the finite parts of a function’s
memory does not require the full power of arrays. The memory that is finitely
accessed can be modeled using only scalar variables, avoiding the need for quan-
tifiers. In this paper, we present a fully automatic CHC encoding of C programs
that alleviates the problem of quantified frames based on this observation.

First, we introduce a new static analysis to compute: (a) which memory
regions used in a function are accessed only finitely by it, (b) how many bytes
are accessed per region, and (c) what are all the access paths for the finitely
accessed memory. Our analysis is based on an existing alias analysis that ensures
the soundness of our approach. Second, we model bounded memory, i.e., finite
associative arrays, within SMT. For this, we propose a new SMT theory of
finite maps. Finite maps modify the theory of arrays to account for a fixed
number of key-value pairs. We show that the theory of finite maps is reducible to
underlying SMT theories, and extend the reduction to CHCs (i.e., reduce CHCs
with finite maps, to CHCs without). Finally, we extend the CHC encoding of
SeaHorn to use finite maps for finite memory regions passed to functions. The
key difficulty is in the handling of call sites since they must explicitly express
the frame conditions.

We implemented our encoding using SeaHorn and evaluated it on Linux
Drivers from SV-COMP. We show that the new encoding improves the original,
array-based, one of SeaHorn. However, we also noticed that arrays sometimes
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provide a beneficial abstraction. Therefore, we relax our encoding to allow mixing
arrays and finite maps for best performance.

2 Related Work

The frame problem is a well-known problem in artificial intelligence [20] and
program analysis. In this section, we discuss the related work in the areas of
deductive verification and model checking.

Deductive Verification. Including the footprint of a function in its spec-
ification to deal with the frame problem is a common solution in deductive
verification. This is done explicitly or implicitly. An example of explicit foot-
prints is dynamic frames [15] and the reads and modifies annotations in
Dafny [19]. Examples of implicit footprints are implicit dynamic frames [26],
permissions [22], and Separation Logic [25]. Explicit approaches describe the
heap using additional assertions in the base logic, while implicit approaches
embed heap information in the assertions by extending the logic. These have
been proven difficult to integrate into SMT-based software model checkers, due
to the difficulty of using SMT solvers to reason about both heap shape and con-
tent (Piskac et al. [23]). Our approach can be seen as computing the footprint
explicitly but partitioning it into bounded and unbounded. The footprint is com-
puted automatically, similar in spirit to how procedure specifications are inferred
in tools such as Infer [7]. Most significantly, our approach is tightly integrated
with automatic invariant inference over the content of the heap.

Inlining-Based Model Checking. Tools based on bounded model checking
(e.g., CBMC [9], LLBMC [21], and SMACK [24]) inline all procedures, which
avoids the frame problem. Inlining is also implemented by unbounded tools such
as UFO [2], SeaHorn [10], CPAChecker [5], and UAutomizer [13].

Summary-Based Model Checking. Unbounded model checkers such as
CPAChecker, Whale [1], and UAutomizer use inter-procedural model checking
techniques to compute procedure summaries. The technique proposed by Beyer
and Friedberger [3] lifts the idea of Block-Abstraction Memoization (BAM) from
basic blocks to procedure boundaries. Procedures can be analyzed by using any
of the intra-procedural model checking algorithms available in CPAChecker. The
technique then generates summaries and stores them in a cache for future reuse.
Whale computes summaries by exploiting sequence interpolants generated from
underapproximations (i.e., finite traces) of functions. Finally, UAutomizer relies
on Nested Interpolants [14] to produce summaries but they depend on the calling
context so they might be harder to reuse. Most importantly, none of these tech-
niques tackle the problem of frame inference. Note also that this paper does not
propose a new inter-procedural model-checking algorithm. Instead, our goal is to
improve the encoding of verification conditions to reduce the need for quantifiers
in CHC solvers.
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Modeling Memory in SMT-Based Model Checking. Most existing soft-
ware model checkers use some form of purification. In all cases, memory is modeled
as either arrays [10] or lambdas [21]. Sometimes a finite abstraction of memory is
used (see e.g., Blast [4]) modeling precisely only a few levels of pointer deference
(e.g., *p and **p). In contrast, our modeling is precise – we use finite footprint
wherever possible and arrays only if necessary. While the need for a finite map
theory for program reasoning has been identified before [17], we propose a theory
of finite maps that is more suitable for encoding finite memory in CHCs.

3 Motivating Example

We illustrate our approach with an example. We begin with purification. Figure 1a
shows the definition of a data structure Swith a field x in a C-like language and two
functions over S: init_x, which stores the value 0 in the field x, and read_x, which
returns the value of the field. In its purified version (Fig. 1b), memory operations
are made explicit with a structure of type Memory (a special array) that represents
an unbounded sequence of bytes. The signature of every function is extended to
include a Memory parameter, and memory reads and writes are operations over it.
Given a variable MEM of type Memory, and assuming that field x is at offset 0, s->x
= v is encoded as MEM[s] = v, and s->x as MEM[s].

Consider the program defined by Figs. 1a and 1c. In Fig. 1c, the main proce-
dure allocates two structures p and q of type S on lines 3 and 4. Line 6 models
that the pointers p and q must be disjoint. Let us assume that after the execu-
tion of some arbitrary code the pointer analysis infers that p and q might alias
(line 7). On line 10, some values are stored at p->x and q->x. Figure 1d shows the
purified version of Fig. 1c. Note that memory allocations do not change the state
of MEM. In this example, the property to be verified is assert(read_x(q, &MEM)
== 20) (line 13). The semantics of the program together with this property is
encoded by the following CHCs1:

r = m[s] → read_x (s, r, m) (CHC 1)
m2 = m1[s ← 0] → init_x (s, m1, m2) (CHC 2)

p + 4 < q ∧ m1 = m[p ← 10] ∧ m2 = m1[q ← 20] ∧ (B3a)
init_x (p, m2, m3) ∧ read_x (q, r, m3) → r = 20 (CHC 3)

The summaries computed for read_x and init_x need to be precise enough
to prove the satisfiability of CHC 3. For read_x, referring to the content of
one memory location is enough: λs, r,m. r = m[s]. Since m3 is an argument of
init_x, its summary needs to express how m3 is related to m2, i.e., how memory
is updated:

λp,m2,m3. m3[p] = 0 ∧ ∀i �= p. m3[i] = m2[i]

1 We use the syntax a[i] and a′ = a[i ← v] to denote, respectively, an array select at
index i and an array store at index i with value v.
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�

1 typedef struct S { int x; } S;
2 void init_x(S *s) {
3 s->x = 0;
4 }
5 int read_x(S *s) {
6 return s->x;
7 }

� �

(a)

�

1 typedef struct S { int x; } S;
2 void init_x(S *s, Memory *MEM) {
3 (*MEM)[s] = 0;
4 }
5 int read_x(S *s, Memory *MEM) {
6 return (*MEM)[s];
7 }

� �

(b) Purified functions from Fig. 1a
�

1 void main() {
2
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 p->x = 10; q->x = 20;
11
12 init_x(p);
13 assert(read_x(q) == 20);
14 }

� �

(c)

�

1 void main() {
2 Memory MEM;
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 MEM[p] = 10; MEM[q] = 20;
11
12 init_x(p, &MEM);
13 assert(read_x(q, &MEM) == 20);
14 }

� �

(d) Purified program from Fig. 1c
�

1 void main() {
2
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 p->x = 10; q->x = 20;
11
12 S tmp;
13 tmp.x = p->x;
14 init_x(&tmp);
15 p->x = tmp.x;
16 assert(read_x(q) == 20);
17 }

� �

(e)

�

1 void main() {
2 Memory MEM;
3 S* p = malloc(sizeof(S));
4 S* q = malloc(sizeof(S));
5 // Model part of malloc semantics
6 assume(p + sizeof(S) < q);
7 // Code makes the analyzer think
8 // that p and q alias
9

10 MEM[p] = 10; MEM[q] = 20;
11
12 S tmp; Memory AUX;
13 AUX[&tmp] = MEM[p];
14 init_x(&tmp, &AUX);
15 MEM[p] = AUX[&tmp];
16 assert(read_x(q, &MEM) == 20);
17 }

� �

(f) Purified program from Fig. 1e

Fig. 1. Some functions (left) and their purified versions (right)

The first conjunct expresses the memory location that is modified by init_x,
and the second expresses the frame, using a quantified formula.

We now show how a manual transformation in the C program eases the veri-
fication task by eliminating the need of inferring quantified summaries. Consider
the program defined by Figs. 1a and 1e. The main function differs from Fig. 1c
in that a new structure tmp is passed to init_x. The content of p->x is stored
in tmp.x before calling init_x, and tmp.x is copied back to p->x right after the
call returns. After purification (Fig. 1f), before the call, the memory contents
accessed by the callee (MEM[p]) are copied into a new memory AUX, because the
content tmp and p is known to be stored in different memory regions. After the
call, the contents are copied back from AUX into MEM. It is not hard to see that
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the programs in Figs. 1d and 1f are equivalent. However, the latter is much easier
to verify. The program in Figs. 1b and 1f is encoded by CHCs {1, 2} and:

B3a ∧ aux1 = aux [tmp ← m2[p]] ∧ (L4a)
init_x (tmp, aux1, aux2) ∧ m3 = m2[p ← aux2[tmp]] ∧ (L4b)

read_x (q, r, m3) → r = 20 (CHC 4)

The difference between CHC 3 and CHC 4 is in the literals before and after the
predicate call to init_x. In CHC 4, the array contents accessed by init_x are
copied to a different array aux in L4a. The predicate init_x takes aux and tmp
arguments instead of mi, and finally, the values of aux are copied back to m. Note
that CHCs {1, 2, 3} and {1, 2, 4} are equisatisfiable. However, the key advantage
of CHCs {1, 2, 4} is that the relation between m2 and m3 is explicit in CHC 4.
Since aux arrays are not relevant to the property, the behavior of init_x can be
abstracted with the trivial summary “true”, which is not quantified.

This example showed how a manual transformation in the C program eases
the verification task by eliminating the need of inferring quantified summaries. In
the rest of the paper, we show how to encode automatically in the CHCs the idea
behind this example, without any user intervention. This requires: (1) finding
the finite memory footprint of a function (i.e., the candidates to be copied to an
auxiliary variable) and (2) identifying the memory locations that are accessed,
to copy their content to/from auxiliary memory objects.

Remarks. In this example, using auxiliary arrays to represent the finite memory
accessed in init_x was enough to avoid a quantified summary. An alterna-
tive approach is to use partial array equalities from the extensional theory of
arrays [28]. This, however, still uses arrays, and, therefore, does not eliminate
the need for quantifiers. A more concise logic to represent finite memory is the
theory of finite maps. In Sect. 5, we describe the theory of finite maps and how
to extend CHCs with finite maps.

4 Static Analysis of Memory Footprints

The C memory model interprets a pointer as a pair (id, o) where id is an identifier
that uniquely defines a memory object and o defines the byte in the object being
pointed to. The number of objects is unbounded. Points-to analysis typically
abstracts the unbounded set of concrete memory objects as a finite set of abstract
objects (also called memory regions). A points-to analysis is sound if whenever a
pointer p does not point to an abstract object, then there is no actual execution
in which p points to any concrete object represented by the abstract object.

We rely on the Data Structure Analysis (DSA) of [11,18] which provides a
unification-based, context- and field-sensitive points-to analysis, that supports
pointer arithmetic. In DSA, a pointer can only point to one abstract object due
to its unification-based nature [27]. The analysis results are presented in the
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Fig. 2. Points-to graph of a function foo(S *p1, S *p2, S *p3).

form of DSA graphs. A DSA graph is a triple (C,E, σ), where C is a finite set
of abstract cells. Each cell is a pair of a memory region identifier and a byte
offset; E ⊆ C × C is a set of edges between cells, denoting points-to relations;
and environment σ : Var �→ C maps pointer variables to cells.

As part of the DSA analysis, a summary graph is built for each function. A
summary graph contains all the memory objects accessed by the function and
its callees, and their points-to relationships, i.e., its memory footprint. These
graphs, called henceforth DSA graphs, are computed ignoring how and where the
function is called, assuming that there is no aliasing between input parameters.

Example 1 (DSA graph). Figure 2 shows a DSA graph generated from a func-
tion foo with parameters p1, p2, and p3. Each of the cells encodes an offset in
the memory region that may be accessed during a concrete execution. For exam-
ple, the memory object N1 has 2 cells f0 and f4 (naming the offsets). This means
that at some point of the execution of foo (or its callees), p1->f0 and p1->f4 may
be accessed (read or written). The cells of N2 are representing that p1->f0->f0
and p1->f0->f4 may be accessed. Since DSA graphs are over-approximations of
the concrete memory used during any execution, the absence of a cell in the graph
implies that a memory location is never accessed. For example, p1->f0->f0->f4
is never accessed because there is not a field f4 in N3.

The goal is to determine which memory objects are bounded to make them
explicit in the encoding. First, we define the paths in a DSA graph.

Definition 1 (A Path in the DSA Graph). Let g = (C,E, σ) be a graph.
A sequence of cells [c1, c2, . . . , ck] is a path in g iff for every ci, ci+1, 1 ≤ i < k:

∃x, y, n · (ci, (n, x)) ∈ E ∧ (ci+1 = (n, y)) ∈ C.

This is the standard definition of a path in a graph, modified to capture that
when a memory object with id n is reachable by some path, all its fields (i.e., all
the cells that have the same id n) are reachable as well. In Fig. 2, p1 points to
cell (N1, f0) but both fields, f0 and f4, are reachable. An access path is a base
variable followed by a finite sequence of field accesses. That is, an access path
is a pair (var , acc), where var is a variable of the function, and acc is either a
sequence with a single cell or a path between two cells. E.g., the access path of
the expression p1->f0->f0 is (p1, [(N2, f0), (N1, f0)])2.
2 For conciseness and presentation purposes, we use [x1, . . . , xn] to refer to
cons(x1, (. . . cons(xn, nil))) and write the paths reversed.
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One way to determine if a cell represents a finite number of concrete memory
locations is by computing the set of paths in the DSA graph. Intuitively, a cell
that is reachable by n paths represents at most n distinct memory locations. The
following definition describes a cell being finitely accessed in terms of its paths.

Definition 2 (Finitely Accessed Cell). Let g be a graph with cells C and
C ′ ⊆ C. A cell c ∈ C is finitely accessed from C ′ if the number of paths from
c′ ∈ C ′ to c is finite.

This definition is based on paths starting from arbitrary cells in the graph.
However, in practice, we are interested only in the cells pointed by the parameters
of the function, because only those are reachable by callers. Finding the cells in
a summary graph that meet the property of Definition 2 allows identifying the
finitely accessed memory regions of a function assuming no aliasing relationships
before the function call. However, cells that are distinct in the callee maybe the
same in the caller. For example, in a call of the form foo(s1,s1,s3), objects
N1 and N4, shown to be distinct in the summary graph of Fig. 2, are actually
the same since the same pointer s1 is passed as the first and second parameter
of foo. Therefore, these aliasing relationships must be considered to produce a
sound encoding. In the following, given the graph g of a function f the predicate
aliascall(c, c′) is true if c and c′ (cells in g), may be the same in a call to f . The
predicate aliascall induces an equivalence relation over the cells in the graph,
where two cells are related if they are the same at the function call.

Definition 3 (Finitely Accessed Equivalence Class). Let g be a graph with
cells C, C ′ ⊆ C, and aliascall the aliasing relation of the cells. The equivalence
class of c ∈ C is finitely accessed from C ′ iff all the elements in the equivalence
class are finitely accessed. That is, ∀d ∈ C such that aliascall(c, d), d is finitely
accessed from C ′.

Definition 3 lifts Definition 2 to the equivalence classes defined by aliascall .
The following example illustrates the concepts in Definitions 1, 2, and 3.

Example 2 (Bounded memory objects). Consider again the graph in Fig. 2 and
a predicate aliascall that is true iff the cells in the graph have the same color.
For example, aliascall((N1, f0), (N4, f0)) and aliascall((N1, f4), (N4, f4)) are
facts. First, we determine which cells are finitely accessed (Def. 2). Memory
objects that have self-loops are not finitely accessed, as they have an unbounded
number of access paths. For example, the cell (N6, f0) has access paths p3->f0,
p3->f4->f0, p3->f4->f4->f0,. . . For the same reason, cells that are reachable
from memory objects with self-loops are also unbounded. For example, cell (N7,
f0) can be accessed by p3->f0->f0, p3->f4->f0->f0, p3->f4->f4->f0->f0,. . .
Thus, N6 and N7 encode unbounded memory accesses. For the remaining
objects, N1 to N5, all the cells in the same equivalence class need to be finitely
accessed. Consider all the cells in green: N1, N4, and N5. All three objects are
finitely accessed, so the equivalence classes of (N1, f0) and (N1, f4) are finitely
accessed. N2 is finitely accessed but its cells are in the same equivalence class as
the cells in N7 (red). Since N7 is not finitely accessed, the classes of the cells of
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compFiniteAPs(g = (C, E, σ), alias, fparams)

1: C ′ := {σ(p) | p ∈ fparams)
2: U := exploreGraph(g,C ′)
3: APs := ∅
4: for all p ∈ fparams do
5: ap0 = nil

6: recCompAPs(σ(p), g, U, alias, p, ap0,APs)

7: return APs

recCompAPs(c, g, U, alias, p, ap,APs)

8: if c ∈ U then return
9: if not aliasesUbnd(c, U, alias) then

10: for all fc ∈ Fields(c, g) do
11: APs := APs ∪ {(p, cons(fc, ap))}
12: for all lc ∈ Links(c, g) do
13: ap′ = cons(c, ap)
14: recCompAPs(lc, g, U, alias, p, ap′,APs)

aliasesUbnd(c, U, alias)

15: return ∃c′ ∈ U.alias(c, c′)

exploreGraph(g = (C, E, σ),C ′)
16: for all c ∈ C do
17: color [c] := white

18: U := ∅
19: for all c ∈ C ′ do
20: exploreCell(c, g, color , U)
21: return U ;

exploreCell(c, g, color , U)
22: color [c] := grey;
23: for all d ∈ Links(c, g) do
24: if color [d ] = grey then
25: propagateUbnd(d, g, color , U)
26: else if color [d ] = white then
27: exploreCell(d, g, color , U)

28: color [c] := black;

propagateUbnd(c, g, color , U)

29: U := U ∪ {c}
30: color [c] := black

31: for all d ∈ Links(c, g) do
32: if not (color [d ] = black

33: and d ∈ U) then
34: propagateUbnd(d, g, color , U)

Fig. 3. Algorithm to find finite memory objects and all their access paths.

N2 are not finitely accessed. Last, even if the classes of the cells of N2 are not
finitely accessed, N3 is finitely accessed because its parents are finitely accessed.

We have shown intuitively how to determine if cells are reachable only by a
finite number of paths. Figure 3 shows the proposed algorithm to find the finite
memory objects used by a function and their access paths. Access paths are
used later to encode the memory passed to a function at a call. The entry point
is compFiniteAPs(g, alias, fparams) which takes a DSA graph g, a relation of
its cells alias, and the function parameters fparams. First, the set of cells, C ′,
pointed by fparams is computed, which is the starting point for traversing the
graph. The algorithm is split into two steps. The function exploreGraph computes
the set of cells that have an unbounded number of paths in g. Second, recCom-
pAPs computes all access paths to cells that belong to equivalence classes that
are finitely accessed through paths starting from C ′.

Function exploreGraph(g,C ′) is similar to standard cycle-detection algo-
rithms. However, when a cycle is detected in a memory object, all the cells
that are reached from that object are also stored as unbounded. In this func-
tion, color is a map from cells to exploration status, denoted with a color: white,
grey, or black, respectively, not explored, exploring, and explored. U is the set
of cells with an unbounded number of paths. Given a cell c = (n, o) and a graph
g, Links(c, g) denotes the set of cells that are reachable from any cell in the same
region n, i.e., all the ci such that there is an edge of the form (n,_) → ci in g.
First, all the cells in g are marked as unexplored. Then, starting from every cell
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in C ′, the cell is marked as grey (exploring), and all the reachable cells in one
step (given by Links) are explored. If the cell is currently being explored (grey),
a cycle has been encountered and propagateUbnd is used to mark them. If the cell
has not been explored yet, it is explored. Once all the links of the cell have been
explored, the cell is marked as explored (black). The function propagateUbnd
marks as explored and stores in U the cell c and all cells reachable from c.

After exploration, recCompAPs(c, g, U, alias, p, ap,APs) computes the set of
access paths to cells in equivalence classes that represent bounded memory. The
argument c is the cell to be processed, g is the graph, U is the set of cells in
g that represent unbounded memory, alias determines the equivalence classes,
i.e., which cells need to be considered together, p is the base variable of the
access path, and ap is the path followed in the graph to access c. In the recursion,
loops in the graph are avoided by checking U before exploring a cell. Equivalence
classes are considered in aliasesUbnd, which determines if a cell belongs to the
same class as an unbounded cell. Fields(c, g) denotes the set of cells in the same
region as c. That is, Fields((n, o), g) = {c′ | c′ = (n,_) in the cells of g}. If c
does not alias with unbounded cells, all the fields are stored in APs, together
with how they were reached in ap (line 11 in Fig. 3). Last, the Links of the cell
are explored, adding c to the path in the recursive call (line 14).

Example 3 (Access paths to cells encoding finite memory). Given the graph of
Fig. 2 the following access paths to cells with finite access paths are found:

Class of (N1, f0): {(p1, [(N1, f0)]), (p2, [(N4, f0)]), (p2, [(N5, f0), (N4, f4)])}
Class of (N1, f4): {(p1, [(N1, f4)]), (p2, [(N4, f4)]), (p2, [(N5, f4), (N4, f4)])}
Class of (N3, f0): {(p1, [(N3, f0), (N2, f0), (N1, f0)]}

Remark. The correctness of our approach relies on the fact that DSA graphs
over-approximate both the length and the number of access paths in the concrete
memory graph. This follows from the fact that DSA graphs simulate all possible
concrete memory graphs [11].

5 Theory of Finite Maps

We model the contents of finitely accessed memory through finite maps. This
resembles an SMT-LIB unbounded array in that the map can have arbitrary
keys, and a finite sequence, in that the number of entries is fixed. While the
need for such a structure for program reasoning has been identified before [17],
no theory is provided in the SMT-LIB standard. In this section, we propose a
theory of finite maps that is suitable for encoding finite memory footprints. Our
key contribution is a reduction procedure from CHCs defined over finite maps
and integers to CHCs only over integers.

A finite map is composed of a set of key-value pairs. Its sort is defined by
the sort of the keys, the sort of the values, and the size of the finite map, i.e.,
the maximum number of key-value pairs that it can store. For simplicity of pre-
sentation, we restrict ourselves to a finite map of size 2 but our implementation
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Fig. 4. Reduction rules.

Fig. 5. Additional rules for optimization.

supports finite maps of arbitrary size. Similarly, we assume that finite maps are
of the form [k0 �→ v0|k1 �→ v1]3. We define two operations over finite maps: get,
denoted by get(fm, k), which stands for the value of map fm for key k, and
set, denoted by set(fm, k, v), which stands for the map obtained after writing v
at key k in fm. These operations are well-formed whenever the key used in the
operation is in the range of the map. That is, it matches a key of an already
stored key-value pair or the map contains a key-value pair that has not been
initialized yet, and thus, has no key assigned. We always ensure that expres-
sions are well-formed by construction, thus, we do not provide a well-formedness
check. For well-formed formulas, these operations satisfy the usual array axioms:

– congruence: k = l =⇒ get(fm, k) = get(fm, l)
– get-over-set (1): k = l =⇒ get(set(fm, k, v), l) = v
– get-over-set (2): k �= l =⇒ get(set(fm, k, v), l) = get(fm, l)

Reduction Procedure. Applying the rules in Fig. 4 exhaustively to a formula
with finite maps results in an equisatisfiable formula without finite maps. No
assumptions are made about how the keys within the map are related. The
function toLmd transforms a finite map into a lambda term: toLmd([k0 �→v0|k1 �→
v1]) = λx.(ite(x = k0 , v0 , v1 )). We do not support extensionality because it is
not needed in our encoding.

Optimizations. Figure 5 defines rules for optimization for the cases in which
information about the keys is available. The application of these rules can be
used to update finite maps “in-place” during a sequence of set operations, which
can avoid an exponential blow-up caused by introducing ite terms.

CHCs over Finite Maps. In general, a Constrained Horn Clause (CHC) is a
first-order formula of the form ∀V · (φ∧∧

pi(Xi
1, . . . , X

i
ni
) =⇒ h(Xh

1 , . . . , Xh
n)),

where V are all the free variables, φ is a constraint in some background the-
ory, pi are ni-ary predicates, and pi(Xi

1, . . . , X
i
ni
) applications of predicates to

3 A finite map variable can always be expressed in this form using the size in its sort.
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first-order terms. The antecedent of the implication is called the body and the
consequent is called the head.

CHCs over finite maps extend general CHCs by allowing finite maps to appear
in both the constraint φ and in arguments to the predicates, and extending the
background theory with finite maps. To reduce CHCs with finite maps to CHCs
without them, we apply the rules from Fig. 4 and Fig. 5 exhaustively to remove
fnite maps from φ. To eliminate finite maps from arguments, we expand each
finite map argument to the scalars defining its keys and values. For example, if
F = [k0 �→E0|k1 �→E1] with two key-value pairs, then all predicate applications
p(. . . , F, . . .), in bodies and heads, are expanded into p(. . . , k0, E0, k1, E1, . . .).

6 A CHC Encoding with Finite Maps

In this section, we show how to extend the CHC encoding within SeaHorn
to model memory using finite maps. Roughly, SeaHorn takes as input a C
program with assertions (expressing the properties of interest) and produces a
set of CHCs. Each CHC captures the semantics of one or multiple basic blocks
(sequence of instructions) [6]. Loops are modeled by recursive CHCs and function
calls are encoded as predicate calls in the body of a CHC, representing the effects
of the call. In general, a CHC is of the form:

locn(s, a0) ∧ fun(s, a0, a1) ∧ φ(s, a1, a2) =⇒ locm(s, a2) (CHCA)

where every variable represents a vector of variables and is implicitly universally
quantified. The symbols locn, locm, and fun are predicate names. This clause
models how location locm in the program may be reached from location locn.
The literal fun(s, a0, a1) captures that there is a function call between the two
locations, and φ encodes the semantics of all program statements other than
function calls. s is a vector of scalar variables, and each ai are array vectors
that model the state of memory at the different locations. a0 models the state at
location n. It is passed to predicate fun, since it may modify memory, producing
the next state a1. The semantics of the remaining statements of the program,
from locn to locm, is modeled by the constraint φ(s, a1, a2), with a2 the state of
the memory at locm, in the consequent of the clause. The number of variables in
ai is the number of disjoint memory regions discovered by the pointer analysis.

When encoding bounded memory regions as finite maps the cells that were
identified to be bounded are represented using finite map terms, instead of arrays.
In general, a clause with finite maps in our proposed encoding is of the form:

locn(s, b0, f0) ∧ fun(s, b′
0, fin , b′

1, fout) ∧ φA(b0, fout , b1) ∧
∧φFM (f0, fout , f1) ∧ φ(s, b1, b2, f1, f2) =⇒ locm(s, b2, f2)

(CHCFM )

where s is the same as in CHCA; each bi is a subset of their respective ai in CHCA

(the cells encoded using arrays); b′
0 and b′

1 are, respectively, subsets of b0 and b1,
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EncFunCall(g, alias, params)
1: APs := compFiniteAPs(g, alias, params)
2: φ := true
3: sorts := infer-sorts(APs, alias)
4: for all (var , ap) ∈ APs do
5: match ap with cons(c, ap′) →
6: k := encodeAP(ap′, var , sorts)
7: v := encodeAP(ap, var , sorts)
8: cr = alias-rep(alias, c)
9: Ps in [cr ] := Ps in [cr ] ∪ {(in(k), in(v)}

10: Psout [cr ] := Psout [cr ] ∪ {(out(k), mk-var())}
11: for all (cr ,Ps ) ∈ Ps in do
12: Args in [cr ] := mk-fm(Ps )

13: for all (cr ,Ps ) ∈ Psout do
14: Argsout [cr ] := mk-fm(Ps )
15: φ′ := in(cellToE (cr , sorts[cr ]))
16: for all (k , v) ∈ Psout do
17: φ′ := mk-write(φ′, k , v)

18: φ := φ ∧ mk-eq(out(cellToE (cr , sorts[cr ])), φ
′)

19: return (Args in ,Argsout , φ)

encodeAP(ap, var , sorts)
20: match ap with
21: nil → return varToE (var)
22: cons((n, o), ap′) →
23: MS := cellToE ((n, o), sorts [(n, o)])
24: idx ′ := encodeAP(ap′, var , sorts)
25: idx := mk-add(idx ′, o)
26: return mk-read(MS , k)
mk-read(mem, k)
27: match sort(mem) with
28: Array → return mem[k ]
29: FiniteMap → return get(mem, k)

mk-write(mem, k , v)
30: match sort(mem) with
31: Array → return mem[k ← v]
32: FiniteMap → return set(mem, k , v)

Fig. 6. Algorithm to encode the finite memory at a function call.

for the cells encoded using arrays in the function call fun; fi are vectors of finite
maps representing a subset of ai; and fin , fout finite maps used as parameters
in the function call. The constraint φA(b0, fout , b1) describes how the values
in the output finite maps fout are related to the arrays b1 in the caller. Such
constraints are generated if a memory cell is inferred to be unbounded in the
caller and bounded in the callee. The constraint φFM (f0, fout , f1) describes how
the values in the output finite maps are related to the finite maps f1 in the caller.
Such constraints are generated if a memory cell is inferred to be bounded both
in the caller and in the callee but the caller may access more memory locations
than the callee, and thus they have a different size.

Extending the Encoding. We present the parts of the CHC encoding related
to memory. Memory accesses are modeled either with arrays or finite maps. The
function cellToE (c, sort) takes a memory cell c and its sort and returns a logical
variable of that sort. The sort is determined by the algorithm described in Fig. 3
(Sect. 4). If c is finitely accessed, its sort is a finite map of size the number of
access paths to it, otherwise, it is an array.

Without function calls, for every memory operation, its associated memory
cell c is obtained from the pointer analysis. Then, cellToE is used to encode c
as an array or finite map. The remaining operands are encoded by the function
varToE , which takes a program variable and returns a logical variable (pointers
are encoded as integers). The functions mk-read and mk-write, defined in Fig. 6,
produce the array or finite map term for the corresponding memory operation.

Function calls require additional constraints. Namely, the formulas φA and
φFM in CHCFM , and the finite maps that represent the memory used by the
function. Figure 6 shows how to encode a function call. EncFunCall takes as input
the graph g of the called function, and the aliasing (alias) and the param-
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eters (params) at the call site. It returns a triple (Args in ,Argsout , φ), with
Args in ,Argsout mappings from equivalence classes of cells to the correspond-
ing finite map used to encode all the cells in the class (i.e., respectively, fin
and fout in CHCFM ), and φ that expresses φA ∧ φFM in CHCFM . For simplic-
ity, Args in and Argsout are defined only for cells belonging to finitely accessed
equivalence classes. The remaining cells are encoded as arrays.

Functions of the form mk-E build a logical expression of sort E. The functions
mk-eq and mk-add are self-explanatory. mk-var returns a fresh integer variable.
mk-fm builds a finite map out of a set of pairs of key-values. The function alias-
rep(alias, c) returns the representative of the class of c induced by alias.

The algorithm proceeds as follows. First, all the access paths are computed
on line 1 (described in Fig. 3). Based on these, on line 3, the sorts of the finite
maps are inferred. The loop on lines 4–10 processes all access paths. On lines 6-
7, the sequence of dereferences corresponding to the access path is encoded as
key-value pair of logical expression. The value is the whole sequence and the key
is the sequence except the last dereference. The algorithm produces input and
output finite maps representing memory before and after the call (lines 12-14).
The functions in and out rename logical terms on the set of input and output
variables. Finally, lines 15-18 build φA and φFM described in CHCFM .

In function encodeAP, if the access path (AP) is empty, the logical expression
of the pointer var is returned using varToE . If not, first, the formula of the
rest of the AP is computed, which is the index of the current level of the AP.
MS is the logical expression for the cell of the current level of the AP. For
example, if cellToE maps cells (N3, f0), (N2, f0), and (N1, f0) respectively to
a3, a2, and a1, an expression of the form p1->f0->f0->f0 with the access path
(p1, [(N3, f0), (N2, f0), (N1, f0)]) of Ex. 3 is encoded as: a3[a2[a1[p1]]].

The program defined by Figs. 1a and 1c encoded with finite maps is:

v = get([s 
→vin], s) → read_x (s, v, [s 
→vin]) (CHC 5)
true → init_x (s, [s 
→vin], set([s 
→vin], s, 0)) (CHC 6)

B3a ∧ init_x (p, [p 
→m2[p]], [p 
→vout]) ∧ (L7a)
m3 = m2[p ← get([p 
→vout], p)] ∧ read_x (q, r, [q 
→m3[q]]) → r = 20 (CHC 7)

Up to literal L7a, the same constraints as in CHC 3 are produced. The argu-
ments in L7a are generated on lines 12 and 14 of the algorithm. The last line
of CHC 7 captures how the output finite map and the memory at the call m3
are related (lines 15–18). After applying the rules in Sect. 5 to remove finite map
expressions we obtain:

v = vin → read_x(s, v, s, vin) (CHC 5 without finite maps)
true → init_x(s, s, vin, s, 0) (CHC 6 without finite maps)

B3a ∧ init_x(p, p,m2[p], p, vout) ∧ (L7a without finite maps)
m3 = m2[p ← vout] ∧ read_x(q, r, q,m3[q]) → r = 20 (CHC 7 without finite maps)
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Table 1. SeaHorn (mod, fmap-mod), and UAuto on micro-benchmarks.
SeaHorn UAuto

mod fmap-mod
Time (s) Time (s) Time (s) Quantified

bench1 1 1 8 Yes
bench2 – 1 20 Yes
bench3 – 1 18 Yes
bench4 – 1 120 Yes
bench5 – 1 – –
bench6 – 8 – –

7 Experimental Evaluation

We have implemented our new technique to encode bounded memory regions
as finite maps using the CHC-based model-checker SeaHorn. The implemen-
tation is available in https://github.com/seahorn/seahorn/releases/tag/fmaps-
sas22. We have evaluated it on two different sets of benchmarks.

Evaluation on Microbenchmarks. To evaluate our technique we handcrafted
a set of benchmark problems.4 This is a set of small but challenging benchmarks
for modular, SMT-based model-checking. These examples can be easily verified
by inlining the functions, however, as we can see later, inlining does not scale for
larger programs. This means that if any of the patterns in these examples are
present in some program, it will not be possible to verify it when inlining is not
feasible. Table 1 shows the result of our evaluation. We compare SeaHorn with
two different modular encodings: modeling memory only with arrays (mod) and
our proposed technique, modeling memory with arrays and finite maps (fmap-
mod). SeaHorn, regardless the encoding, can only produce quantifier-free sum-
maries. As a result, it diverges in the cases where only quantified summaries
exist. We also compare with UAutomizer [13] (UAuto), which can also produce
(quantified) function summaries5. Table 1 shows whether the summaries discov-
ered by UAuto are quantified. The symbol ‘–’ denotes that tool did not produce
an answer in 5min.

Evaluation on SV-COMP Programs. We have also evaluated our approach
on a selection of 745 Linux device drivers from SVCOMP 20196, after discarding

4 Available at https://zenodo.org/record/4505518.
5 In this evaluation, we used the online version of UAuto because it is the one that

computes function summaries.
6 Available at https://zenodo.org/record/4498784.

https://github.com/seahorn/seahorn/releases/tag/fmaps-sas22
https://github.com/seahorn/seahorn/releases/tag/fmaps-sas22
https://zenodo.org/record/4505518
https://zenodo.org/record/4498784
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Table 2. Instances solved out of 745 within 900 s and 8GB of memory.
UAuto CPA SeaHorn (mono)

false 2 17 41
true 94 226 218

all the benchmarks that were trivially proven by the SeaHorn front-end or
produced some crash. These programs are large and use a variety of language
features including pointers and aliasing. All experiments were run on Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz with 48 cores and 251GB of RAM on
Ubuntu 18.04.

Although SeaHorn is actively maintained, it does not participate in
SVCOMP. Hence, we first compare SeaHornwith participants of SVCOMP 2021
which also focus on discovering safe inductive invariants. Table 2 shows a compar-
ison with UAutomizer [13] (UAuto) and CPAChecker [5] (CPA). We compare
with their most recent versions7, customized to analyze Linux device drivers. For
SeaHorn, we use monolithic encoding using arrays to model memory. The rows
true and false show how many instances were proven and disproven (i.e., the prop-
erty holds or is violated), respectively, without exhausting resources. In the rest,
solved instances are those for which the verifier produced an answer. From this
comparison, we can safely conclude that SeaHorn is competitive with UAuto
and CPA on our benchmarks.

Tables 3, 4 and 5 show the main results of this paper by comparing our new
encoding (fmap-mod) with two baseline encodings already available in SeaHorn:
one monolithic encoding with multiple arrays (mono) where all functions have
been inlined8 and one modular encoding with multiple arrays (mod) without
special treatment of statically-known finite memory. Since we are more interested
in the comparison with mod, the column mod shows the best result after 5 runs
on each program.

During our evaluation, we found out that representing all finite memory
with finite maps can be expensive. We hypothesize that the correctness of some
Linux device drivers does not depend much on memory (especially after the
optimizations performed by the SeaHorn frontend). In those cases, the solver
can avoid reasoning about most of the array expressions. However, our encoding
with finite maps eagerly adds constraints about memory, regardless of whether
they are relevant to prove the program correct or not.

For this reason, we limit the size of the finite maps (the number of key-value
pairs), denoted by sX in Tables 3, 4 and 5, where each finite map of size X is
encoded using 2X scalar variables, two per key-value pair. Moreover, when no

7 Available at https://github.com/ultimate-pa/ultimate/releases/tag/v0.2.1 and
https://cpachecker.sosy-lab.org/CPAchecker-2.0-unix.zip, respectively.

8 Recursive functions are not relevant to prove the properties so that they are
abstracted by functions without side-effects that return non-deterministic values.

https://github.com/ultimate-pa/ultimate/releases/tag/v0.2.1
https://cpachecker.sosy-lab.org/CPAchecker-2.0-unix.zip
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Table 3. Instances solved by SeaHorn encoding as mono, mod, and fmap-mod.
mono mod fmap-mod

s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 41 107 94 91 93 89 91 90 90 90 90 87 110
true 218 278 265 268 262 270 263 263 265 256 261 262 297
Total 259 385 359 359 355 359 354 353 355 346 351 349 405

Table 4. Instances solved by SeaHorn with fmap-mod not solved by mono.
s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 61 59 59 56 59 58 58 59 59 57 73
true 85 91 82 89 82 84 88 79 82 83 110
Total 146 150 141 145 141 142 146 138 141 140 183

Table 5. Instances solved by SeaHorn with fmap-mod not solved by mod.
s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 2 1 2 2 4 1 1 1 2 1 5
true 6 11 11 8 11 13 8 15 13 14 24
Total 8 12 13 10 15 14 9 16 15 15 29

relations about the keys are known, all cases need to be considered. In the worst
case, for a finite map of size Y , an ite term of depth Y − 1 is created for get
operations, and Y ite terms of depth Y −1 (one per key-value pair) are needed in
predicate calls (see the reduction rules in Sect. 5). Therefore, we also limit this,
denoted by aY in Tables 3, 4 and 5, informally meaning “encoding with finite
maps only the memory objects pointed by at most Y pointer variables in the
program”. In these tables, the column best is equivalent to running in parallel
all finite map configurations in a portfolio and stopping when the first one is
solved. This is more resource intensive than other configurations. However, since
the optimal finite map configuration for each program cannot be known a priori,
it is a best effort to verify as many programs as possible.

Table 3 contains the number of solved instances per encoding (columns). The
row total is the number of benchmarks solved by each configuration with the
available resources. Tables 4 and 5 show how many instances the CHCs with
finite maps (fmap-mod) were solved that, respectively, for mono and mod it was
not possible to solve, split by false and true. For example, in Table 5, s3-a2 (finite
maps of size 3 and at most 2 keys may alias) solves 4 false and 11 true instances
that cannot be solved by mod. The best configuration of finite maps proves 183
benchmarks that mono could not, and 29 that mod could not. However, fmap-
mod could not solve all the instances that mod solved. Table 6 shows the number
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Table 6. Instances solved by SeaHorn with mod (best out of 5 runs) not solved
by each configuration of fmap-mod.

s1-a1 s2-a1 s2-a2 s3-a1 s3-a2 s3-a3 s5-a1 s5-a2 s5-a3 s5-a5 best

false 15 17 16 18 20 18 18 18 19 21 2
true 19 21 27 16 26 28 21 37 30 30 5
Total 34 38 43 36 46 46 39 55 49 51 7

of instances that were solved only by (the best out of five runs of) mod and not
by each fmap-mod configuration (one run), represented in each of the columns.
There were 7 instances proven by mod that no fmap-mod configuration proved
(shown in the best column of Table 6). Lastly, were 35 mono instances that no
mod or fmap-mod configuration proved.

We found that out of all the true instances solved by mod, 23% required arrays
in the summaries. When encoding memory with fmap-mod configurations, only
9% of the summaries required arrays on average.

Finally, we do not report the time of the encoding phase because it is neg-
ligible compared with the time spent solving. SeaHorn already performs a
whole-program pointer analysis so the overhead of our new encoding (Sect. 6)
and the finite maps reduction (Sect. 5) is very low.

8 Conclusions

We presented a new CHC encoding that enables automatic modular proofs for
programs with pointers without using quantified summaries. The main idea is
to encode explicitly the finite parts of the frame of a function when they can
be statically determined. We presented an algorithm to infer statically the size
of the memory used by a function. To represent bounded memory succinctly,
we proposed a new theory of finite maps, adapted to CHCs, and a reduction
procedure to simpler theories supported by any SMT solver. We then extended
a CHC encoding to represent finite memory using finite maps. We implemented
our new technique in SeaHorn and evaluated it on Linux device drivers. Our
results are encouraging and show that our new encoding can prove new programs
that a previous encoding cannot. However, our evaluation also shows that a
priori knowledge about the program and its properties can help to choose the
most effective encoding of CHCs. We consider this problem an interesting future
work.
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Abstract. Jones-optimality determines whether a specializer improves
program performances. Reinterpreting this concept in terms of the preci-
sion of an abstract interpreter means to determine whether specializing
a source program is able to improve the precision of a given static anal-
ysis. In the opposite direction, a specializer failing optimality (disop-
timal) would decrease the precision of the analysis when applied to
the specialized code. In this paper, we exploit this reinterpretation of
Jones-optimality relatively to the precision of an abstract interpreter
with the aim of systematically deriving obfuscated code. In line with
the idea behind Futamura’s projections, we factorize the construction of
the obfuscated code by separating specialization and interpretation. An
interpreter specializer is then systematically made disoptimal by means
of language transduction. The result is a language agnostic code obfus-
cator which is able to foil any given static analyzer.

Keywords: Abstract interpretation · Code obfuscation · Program
interpretation · Jones-optimality

1 Introduction

Code obfuscation relies upon the idea of making security inseparable from code: a
program, or parts of it, are transformed in order to make them hard to understand
or analyze [10]. This technology is increasingly relevant in software security,
providing an effective way for facing the problem of code protection against
reverse engineering. This contributes to comprehensive digital asset protection,
with applications in DRM systems, IPP systems, tamper resistant applications,
watermarking and fingerprinting, and white-box cryptography [8,9].

Obfuscation [2] exploits, by a suitably designed program transformation, the
intensional nature of program analysis [4,24], namely the fact that the precision
of a program analysis algorithm depends upon the way the program is written
and on how data structures are used. The attack scenario here considers the
protection of a program—the asset, from an attacker which is implemented by
a program analysis algorithm—the so called hostile observer.

In this paper, we consider program analysis as implemented by an abstract
interpreter [13]. This is general enough to include most effective sound program
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
G. Singh and C. Urban (Eds.): SAS 2022, LNCS 13790, pp. 247–271, 2022.
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analysis algorithms. The abstraction here plays the role of constraining the inter-
preter (i.e., a Universal Turing Machine) within the boundaries of expressivity as
given by the chosen abstract domain. On the one hand, this realizes a case prin-
ciple in computer security, where the security of a system (e.g., an encryption
protocol) is always proved relatively to a constrained attacker, (e.g., by compu-
tational complexity). On the other, because any effective attack on code cannot
avoid some form of automation of program analysis, this model can fruitfully
represent a relevant part of the action of code attack by reverse engineering.

It is known that, by transforming a code we can improve or reduce the pre-
cision of any analyzer. It is in general impossible to design a compiler that
automatically removes from any program all the false alarms produced by a non
straightforward abstract interpreter [4]. However it is instead always possible
to inject arbitrary many false alarms by compilation. One of such obfuscating
compilers can be simply designed by specializing a suitably designed (called dis-
torted) interpreter [20]. The key observation relies upon the semantic equivalence
between the source code and an interpreter specialized on this code. In this case,
[26]: (1) The transformed program (resulting from the specialization process)
inherits the programming style of the interpreter; (2) The transformed program
inherits the semantics of the original program. The reason for (1) is that the
transformed program is the result of the specialization of the code of the inter-
preter. The reason for (2) is that even though the transformed program may
be a disguised form of the source code P, a correct interpreter must faithfully
execute the operations that P specifies. It is therefore always possible to act on
the intensional properties of programs, and hence on the precision of program
analysis, by specializing a suitably designed interpreter [20].

Paper Contribution. In this paper we go deeper into building obfuscating com-
pilers by considering the role of the specializer and its interplay with the given
interpreter in the action of producing obfuscated code. The notion of Jones opti-
mality [25,27] helps to give us the compass for understanding the role of program
specialization in code obfuscation. Jones optimality was originally introduced to
prove whether by compilation it is possible to improve program performance
by removing the so called interpretational overhead [27]. We reinterpret Jones
optimality in the light of the accuracy of an abstract interpreter. In particular,
we show that obfuscating programs by specializing interpreters can be seen as a
peculiar, and non-standard, case of Jones-(dis)optimality [25,27], where, instead
of considering performances, we consider precision. We introduce a new notion of
optimality (Sect. 5) stating that a specializer is optimal w.r.t. an abstract inter-
preter if the abstract interpreter is complete (viz. precise [22]) for the resulting
program obtained by specializing the concrete interpreter with the source code.
Of course, optimal specializers removing all false alarms cannot exist for all
programs and non straightforward abstract interpreters, otherwise by the sec-
ond Futamura projection such compiler would exist [4]. However the degree of
optimality of the specializer shows how the specializer is able to remove the
imprecision injected by a distorted interpreter. In the case of code flattening,
the code obtained by specializing a vanilla interpreter with the source code
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produces a truly flattened code whenever the program counter is forced to be
a dynamic structure [20]. This inhibits a simple specializer to reconstruct the
source structure, hence forcing its disoptimal behavior.

On this basis, we derive a constructive technique for building obfuscating
compilers which are driven by the property to hide. The distortion phase is built
by means of suitable transducers (Sect. 3) that syntactically act on code in order
to make a fixed abstract interpreter incomplete for the property to hide. The
core structure of our property-driven obfuscating compilers (Sect. 6) is language
and property independent. The main conceptual innovation is in the correspon-
dence between a modified version of Jones optimality, where concrete execution
time is replaced by the precision of the abstract interpreter, and the process of
protecting a program from the analysis obtained by that abstract interpreter. In
order to formally characterize this correspondence we need to rethink program
interpretation by separating the syntactic parsing from the semantic interpreta-
tion ( Sect. 4). This allows us to perform the distortion process on the syntactic
phase only, without changing the semantic interpretation of code, hence further
separating distortion from interpretation.

Related Works. The most related work is [20], based on the seminal paper [19],
where obfuscation was formalized by means of completeness and interpreter spe-
cialization. Giacobazzi et al. [20] provide precisely the theoretical bases for obfus-
cating programs by interpreter specialization, in order to force intensional prop-
erties affecting the precision of a given static analysis. With respect to [20], we
focus the attention on what we want to protect rather than on what the attacker
can observe/analyze. Moreover, Giacobazzi et al. [20] did not provide any sys-
tematic approach for deriving the distorted interpreters. Our aim is to fill the
gap between the identification of the property to make obscure and the process
for building the distorted interpreter to specialize for obscuring the property.

Dalla Preda and Mastroeni [16] exploit the relation between obfuscation and
completeness to design property-driven obfuscation strategies as program trans-
formations revealing (preserving) some fixed semantic property while concealing
a property to protect. In this work, it is also shown that the obfuscation app-
roach based on distorted interpreters [20] is precisely a technique for revealing
the I/O program semantics while concealing a given property to protect. The
problem with this work is that it still does not provide a constructive method
for obfuscating programs, but only a theoretical framework for designing obfus-
cation strategies. Finally, Giacobazzi et al. [21] exploit the relation between
completeness and obfuscation for “measuring” obfuscation potency, namely the
obfuscator capability of hiding properties.

2 Background

2.1 The Language L and Control Flow Graphs

Following [5,30] (see also [37]) we consider the language L of regular commands
in Fig. 1 (where + denotes non-deterministic choice and ∗ is the Kleene closure),
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Fig. 1. Syntax of L

which is general enough to cover deterministic imperative languages. We com-
plete the Bruni et al. grammar [5] with an expressions grammar, and we make
some syntactic change in order to simplify the parsing and interpretation pro-
cesses. In particular, we use ; not for composing statements (composition is made
by concatenation of statements) but for delimiting the end of a statement. We
use delimiters +〈 and 〉+ for determining the action range of +, we use ∗〈 and 〉∗
for the range of ∗, and we use { and } for delimiting programs. Let L denote
also the set of programs in the language and V ar(P) the set of all the variables
in P ∈ L.

Programs will be graphically represented by means of their control flow
graphs (CFG for short). The definition is quite standard [33], but we recall it
here in order to fix the notation we use. The CFG of P ∈ L is the labeled directed
graph whose nodes are program points LabP and whose edge labels are in the lan-
guage Lsp � l ::= x := e | skip | b. In order to build the CFG, in the following,
we will use labeled programs in L, namely code in L where program points are
labeled with values in a set of labels Lab. The labels are not in the syntax since
they can be considered as program annotations added by a labeling function.
Formally, let P = {C} ∈ L its CFG is Cfg(C) def= Edges(q0Cq1) ⊆ LabC×Lsp×LabC,
where Edges(q0Cq1) is inductively defined on the structure of C (we ignore the
initial and final brackets).

Edges(q0skip; q1) = {〈q0, skip, q1〉}
Edges(q0x := e; q1) = {〈q0, x := e, q1〉}

Edges(q0
+〈q1C1

q2 + q3C2
q4〉+; q5) = Edges(q1C1

q2) ∪ Edges(q3C2
q4)∪

{〈q0, true, q1〉,〈q0, true, q3〉,〈q2, true, q5〉,〈q4, true, q5〉}
Edges(q0

∗〈q1Cq2〉∗ ; q3) = Edges(q1Cq2) ∪
{〈q0, true, q1〉, 〈q2, true, q0〉, 〈q0, true, q3〉}

Edges(q0C1
q1C2

q2) = Edges(q0C1
q1) ∪ Edges(q1C2

q2)

The nodes can be restricted to those involved in edges, i.e., Nodes(Cfg(C)) =
{q | ∃〈q, l, q′〉 ∈ Cfg(C) or 〈q′, l, q〉 ∈ Cfg(C), l ∈ Lsp}. In Fig. 2 we have, on the
right, an example of CFG extracted from a simple program and on the left we
have a simplified version, where all the true transitions are omitted and states
are relabeled.
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Fig. 2. Example of CFG construction.

2.2 The Language Semantics

Denotations are memories, i.e., partial functions m : V ar −→ V∪{$} ∈ M where
V is a domain of values, e.g., V def= Z ∪ {true, false} and $ denotes an uninstanti-
ated value. A memory assigns values in V only to a finite set of variables, i.e., it
is a variable finite memory [4]. We abuse notation by denoting as M precisely the
set of such memories. We define var(m) def= {x ∈ V ar | m(x) �= $} and for M ⊆ M,
we define var(M) =

⋃
m∈M var(m). As usual we will often represent a memory

m ∈ M as a tuple [x1/v1, . . . , xn/vn] of its defined variable/value pairs, i.e., such
that m(y) = $ if y /∈ {x1, . . . , xn} and m(y) = vi if y = xi for all i ∈ [1, n]. Mem-
ory update is written m[x �→ v] and it associates with x the value v, while all
the other associations remain the same. The concrete semantics of the program
can be computed by a fine-grain small-step execution deriving the set of all the
possible executions of programs. In the following, �P� ∈ ℘(M∗) denotes the set
of the (terminating) program computations modeled as finite traces of memories
[12], while (|e|)m denotes the concrete evaluation of e ∈ Exp in the memory m.

The Collecting Semantics. The collecting big-step semantics of programs in
L (denoted by the subscript C) is defined as the additive lift of the standard
I/O semantics and it is inductively defined on program’s syntax. We first define
the collecting semantics for a ∈ AExp, �a�C : ℘(M) −→ ℘(V), as additive lift to
sets of memories: �a�CM

def= {(|a|)m | m ∈ M}. Similarly, for boolean expressions
b ∈ BExp, �b�C : ℘(M) −→ ℘(M) is defined as �b�CM

def= {m ∈ M | (|b|)m = true}.
The semantics of P = {C} is �P�C = �C�C : ℘(M) −→ ℘(M) defined inductively as
follows [4]1 where �C�1CM

def= �C�CM and ∀n > 1. �C�n+1
C M

def= �C�CM◦�C�n
CM:

�skip; �CM; def= M

�x := e; �CM
def= M[x �→ �e�CM] def=

{
m[x �→ (|e|)m]

∣
∣m ∈ M

}

�+〈C1 + C2〉+; �CM
def= �C1�CM ∪ �C2�CM

�∗〈C〉∗ ; �CM
def=

⋃ {
�C�n

CM
∣
∣n ∈ N

}

�C1C2�CM
def= �C2�C(�C1�CM)

1 We avoid labels and initial and final brackets being not used in the semantics.
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Note that the collecting semantics of any non terminating program P is �P�C = ∅.
In this case, if ∅ denotes the undefined memory, then λM ⊆ M. �P�CM is the
collection of memories computed by P.

In the following we will use also the notion of store, allowing us to locally
denote collecting updates by associating, with each program point the collection
of memories reached at each point. This allows to define a collecting small-step
semantics abstracting �P� [1,12]. Let us define, S def= Lab → ℘(M)∪{$} such that
for any s ∈ S there exists a finite set of program labels q ∈ Lab such that s(q) �= $,
in particular, given a program P we have that SP = LabP → ℘(M) ∪ {$} (when
not necessary or when clear from the context, we will avoid the subscript P). In
the following, we will denote by sq the set of memories associated with q ∈ Lab,
i.e., s(q) ∈ ℘(M). For the sake of readability, we will also use the following update
notation: s[q �→ M](q′) def= M if q = q′, s(q′) otherwise. Moreover, we will denote
by s∅ the store mapping each program point to the emptyset, i.e., ∀q. s∅(q) = ∅.

The Abstract Semantics. The abstract semantics of programs is an abstrac-
tion of the concrete small-step semantics [12–14], also called trace semantics.
An abstract domain is a set of properties, here modeled as upper closure oper-
ators (uco for short), i.e., a monotone, extensive and idempotent operator on
℘(M) [14]. If A ∈ uco(℘(M∗)) is an abstraction of program traces, then we can
denote by �P�

A ⊇ A(�P�) the fix-point computation (inductively defined on the
language L) as the A observation of �P�. In static analysis, it is quite common
to define the semantic abstraction in terms of an abstraction of variable values
V. In general, if a program has n variables, then concrete values for the pro-
gram are n-tuples of values. Hence, abstract domains must be parametric on the
number n of variables of the program to analyze, i.e., we have to consider, as
abstract domains, families of abstractions {ρn ∈ uco(℘(Vn))}n∈N [4,15]. For the
sake of readability, in the following we simply denote this family of abstraction
as ρ, ignoring the technical aspect that it changes with the number of variables
of the program to analyze, and we denote the corresponding abstract seman-
tics as �P�

ρ. Given a value abstraction ρ, we can define a memory abstraction,
abstracting sets of memories in M in abstract memories in Mρ. Define the memory
abstraction as the tuple Aρ = 〈ρ,Mρ, αρ, γρ〉, where we define αρ : ℘(M) → Mρ

(αρ(M) def= λ〈x1, . . . , xn〉.ρ({〈v1, . . . , vn〉 | [x1/v1, . . . , xn/vn] ∈ M})), while the
concretization is the function γρ : Mρ → ℘(M) (defined on abstract collecting
memories as γρ(M) def= {[x1/v1, . . . , xn/vn] | 〈v1, . . . , vn〉 ∈ M(x1, . . . , xn)}).

In order to define the abstract semantics, we define the semantics of expres-
sions �e�ρ computing abstract operations in ρ, and then we define the abstract
semantics of basic instructions: Let {xi}i∈I be the set of defined variables ranging
over i in the set of indexes I = [1, n].

�xi := e�ρM
def
= λ〈x1, . . . , xn〉.

{
〈v1, . . . , vi, . . . , vn〉

∣∣∣∣∃v ∈ V.〈v1, . . . , v, . . . , vn〉 ∈
M(x1, . . . , xn), vi ∈ �e�ρM

}
def
= M[xi �→ �e�ρM]

�skip�ρM
def
= M
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In the assignment, we consider all the tupleswhere the potential relation among
all the variables different from xi remains unaltered, while xi may have any value
in �e�ρM. The abstract semantics, of a program P = {C} ∈ L, is simply denoted
as �P�

ρ = �C�ρ : Mρ −→ Mρ and it is inductively defined on the syntax of com-
mands (loops, conditionals and compositions) as the composition of the abstract
semantics of their components [4]. It is well known that abstract interpretation is
not compositional, namely the composition of two best correct approximation (bca
for short) semantics is not the bca semantics of the composition. This is indeed the
main source of imprecision in program analysis. Note that, also for abstract seman-
tics we can use (abstract) stores Sρ for defining abstract collecting rules where we
associate with program points abstract memories in Mρ.

Program Specialization. Program specialization is a source-to-source pro-
gram transformation also known as partial evaluation [26]. A specializer is a
program spec such that for P ∈ L with “static” input s ∈ D and “dynamic”
input d ∈ D S[P](s, d) = S[S[spec](P, s)]d where S[·] denotes generic semantics
associating I/O meaning to programs independently from the language, hence
distinguishing the I/O semantics from the collecting semantics �·�C. A special-
izer executes P in two stages: (1) P is specialized to its static input s yielding a
“residual program” spec(P, s) def= S[spec](P, s), (2) spec(P, s) can be run on P’s
dynamic input d [26].

A trivial specializer spec is easy to build by “freezing” the static input s
(Kleene’s s-m-n Theorem of the 1930s s did specialization in this way.) A num-
ber of practical program specializers exist. Published partial evaluation systems
include Tempo, Ecce, Logen, Unmix, Similix and PGG [11,28,29,32,34].

3 Symbolic Finite State Machines

In this section, we define a generic notion of symbolic machine and symbolic
transducer by generalizing the symbolic automata and transducers defined in
the literature [17,35]. The idea consists in generalizing the symbolic approach
(admitting potentially infinite alphabets) also to finite state machines/trans-
ducers equivalent to Turing Machines, namely with more than one stack and/or
with writable input tape, while simplifying the notation, for instance by avoid-
ing to introduce a further notion of interpretation for symbols. The following
machines are non deterministic with ε transitions, where as usual ε is a special
symbol used for executing transitions without reading symbols.

3.1 Finite State Machines

By finite state machines we mean any state machine with a finite number of states
that reads an input sequence of symbols. Each symbol allows the execution of
a transition, and final states decide which input sequences are accepted by the
machine, accepted when the input reading leads to a final state. The notion is
recalled only because we provide a unique parametric definition for automata
and Turing machines.
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Definition 1 (Finite state machines (FSM)). A FSM is the tuple M =
〈Q, qι, qf, Σ, Γ, S, δ〉 where

– Q is a finite set of states (qι ∈ Q initial state, qf ∈ Q final/accepting state)2;
– Σ and Γ are finite input and stack alphabets, respectively;
– S ⊆ {Stackn}∪{Input} is a set of tapes which may contain n ≥ 0 Stacks (if

n = 0 there are no stacks), i.e., LIFO tapes, and one Input tape, a writable
and readable input tape where we can stop or move left/right3;

– δ : Q × Σ × Γn → ℘(Q) × {R,L,H}{0,1} × (Γ ∗)n is the transition function.
The transition q → q′ labeled with ((s,M), {ti → γi}i∈[1,n]) (read s ∈ Σ in the
state q with the top (popped) elements of the stacks {ti}i∈[1,n], reach q′, push
{γi}i∈[1,n] on the n stacks, and move M ∈ {R,L,H})4 iff 〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, s, {ti}i∈[1,n]).

In order to make such a machine symbolic, we simply consider infinite alphabets
(both for input and stack) and a recursive enumerable set of decidable predicates
on the alphabet symbols. In this way, transitions are labeled with predicates
allowing all the symbols satisfying the property to be read in the transition (on
the input tape or on the stack).

Definition 2 (Symbolic finite state machines (SFSM)). A SFSM is the
tuple 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 where

– Q is a finite set of states (qι ∈ Q initial state, qf ∈ Q final/accepting state);
– Σ and Γ are infinite input and stack alphabets, respectively;
– ΨΣ ⊆ ℘(Σ) and ΨΓ ⊆ ℘(Γ ) are recursive enumerable sets of predicates on Σ

and Γ (closed under logic connectives)5;
– S ⊆ {Stackn} ∪ {Input} (n ≥ 0 number of stacks);
– δ : Q × ΨΣ × (ΨΓ )n → ℘(Q) × {R,L,H}{0,1} × (Γ ∗)n, where we have the

transition q → q′ labeled with ((s,M), {ti → γi}i∈[1,n]) iff ∃ΦΣ ∈ ΨΣ,
{Φi

Γ }i∈[1,n] ⊆ ΨΓ , γ ∈ Γn and M ∈ {R,L,H} such that 〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, ΦΣ, {Φi

Γ }i∈[1,n]), with s ∈ ΦΣ and ∀i ∈ [1, n]. ti ∈ Φi
Γ .

3.2 Finite State Transducers

Finite state transducers are finite state machine providing an output sequence
of symbols for each transition. The standard generalized notion is the following.

2 Being the machine non deterministic with ε-transition, w.l.g., we can suppose to
have only one final state.

3 Every FSM has a (only) readable input tape, where it is possible only to move right
after each step, a finite state pushdown automaton is an automaton with also one
stack, in any other cases we have a Turing Machine.

4 Where R stands for move-right, L for move-left, and H for halt, and {R, L, H}0

means there is no writable input tape.
5 We avoid the interpretation function [17] simply by denoting directly the predicates

extensionally, as the sets of the elements satisfying the predicate.
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Definition 3 (Finite state transducers (FST)). A finite state trans-
ducer is a FSM with an output language, i.e., a tuple 〈Q, qι, qf, Σ, Γ, S, δ̃, Ω〉,
where 〈Q, qι, qf, Σ, Γ, S, δ〉 is a FSM, Ω is a finite output alphabet, and
the transition function δ̃ : Q × Σ × Γn → ℘(Q) × {R,L,H}{0,1} ×
(Γ ∗)n × Ω∗ is δ extended by returning also an output string ω ∈ Ω∗

for each input symbol read, i.e., ∀(q, s, {ti}i∈[1,n]) ∈ Q × Σ × Γn. ∃ω ∈
Ω∗. δ̃(q, s, {ti}i∈[1,n])

def= 〈δ(q, s, {ti}i∈[1,n]), ω〉.
In this case, we have the transition q → q′ labeled with ((s/ω,M), {ti → γi}i∈[1,n])
(read s ∈ Σ in the state q with the top (popped) elements of the i-th stack ti ∈
Γ (i ∈ [1, n]) and reach state q′, push γi ∈ Γ ∗ on the i-th stack (i ∈ [1, n]),
move M and provide in output the sequence ω ∈ Ω) iff ∃〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, s, {ti}i∈[1,n]), and therefore 〈q′,M, {γi}i∈[1,n], ω〉 ∈ δ̃(q, s, {ti}i∈[1,n]).

In the symbolic extension, following the Veanes et al. [35], we simply consider a
function that for each input symbol read, provides a sequence of output symbols.

Definition 4 (Symbolic finite state transducers (SFST)).A symbolic finite
state transducers is a SFSM with an output language, i.e., it is defined as a tuple
〈Q, qι, qf, ΨΣ , ΨΓ , S, δ̃, Ω, f〉, where 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 is a SFSM, Ω is an infi-
nite output alphabet, f : Σ → Ω∗, and the transition function δ̃ is defined as 〈δ, f〉.
In this case, we have the transition q → q′ labeled with ((s/f(s),M), {ti →
γi}i∈[1,n]) (read s ∈ Σ in the state q with the top (popped) elements of the
i-th stack ti ∈ Γ (i ∈ [1, n]) and reach state q′, push γi ∈ Γ ∗ (i ∈ [1, n]),
move M and provide in output the symbols f(s) ∈ Ω∗) iff ∃〈q′,M, {γi}i∈[1,n]〉 ∈
δ(q, ΦΣ, {Φi

Γ }i∈[1,n]) and s ∈ ΦΣ, ∀i ∈ [1, n]. ti ∈ Φi
Γ .

When dealing with symbolic transducers we can characterize the correspond-
ing transduction function.

Definition 5 (Transduction). [35] The transduction of a symbolic transducer
T is the function TT : Σ∗ → ℘(Ω∗) where TT(σ) def=

{
γ ∈ Ω∗ ∣

∣ qι
σ/γ−→qf

}
6.

Note that a symbolic machine M = 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ〉 can be always trans-
formed in the transducer TM

def= 〈Q, qι, qf, ΨΣ , ΨΓ , S, δ̃, Σ, id〉, where the output
language is precisely the input one.

We can compose transducers T1 and T2 by composing their transductions [35]
TT1 and TT2 as:

TT1 � TT2

def= λσ.
⋃

γ∈TT1
(σ)

TT2(γ)

3.3 Example: Parser as Symbolic Pushdown Automaton

Being the language generated by a context free grammar, the parser can be
modeled as a symbolic pushdown (non deterministic) automaton. In particular,
it is the automaton pars

def= 〈Q, qι, qf, ΨΣ , ΨΓ , {Stack}, δ〉, where

6 If σ = s0 · s1 · · · sn then q0
σ/γ−→q means that q0

s0/f(s0)−→ q1
s1/f(s1)−→ · · ·sn/f(sn)−→ q, and

γ
def
= f(s0) · f(s1) · · · f(sn) ∈ Ω∗ where · stands for string concatenation.
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Fig. 3. Parser

– Q
def= {qi}i∈[1,3] ∪ {qι, qf};

– Σ
def=

{
x := e

∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {
b

∣
∣b ∈ BExp

} ∪ {skip,∗〈, 〉∗ ,+〈, 〉+,
+, ; , {, }};

– ΨΣ
def= {x := Exp,BExp} ∪ { {s} ∣

∣ s ∈ {∗〈, 〉∗ ,+〈, 〉+,+, ; , skip, {, }} }
;

– Γ
def= {+, ∗, •} and ΨΓ =

{ {t} ∣
∣ t ∈ Γ

}
7;

– δ : Q×ΨΣ ×Γ → Q×Γ ∗ is graphically defined in Fig. 3, where each transition
is labeled with (s ∈ φ, t → γ), meaning that φ is a predicate on Σ and s ∈ φ,
while from the stack we pop t ∈ Γ ∪ {ε} (t = ε means that we don’t pop
anything from the stack) and we push γ ∈ Γ ∗8.

This parser simply checks brackets balance, where + (∗) is pushed whenever a
bracket is opened, and the same symbol is popped when it is closed. We can
terminate only if the stack is empty (when on the top there is •).

4 Program (Re)Interpretation

As usual the interpretation of programs is specified in two phases: The pars-
ing phase of programs, where programs are viewed as sequences of statements,
and the semantic interpretation phase, i.e., the corresponding transformation of
memories/stores. The first phase is modeled as symbolic Turing Machine read-
ing in input the sequence of symbols corresponding to the program syntax, and
providing in output the precise sequences of single statements (skip and assign-
ments) to execute and of guards to evaluate. This resulting set of sequences corre-
sponds indeed to the CFG of the program, and on this structure we can perform
the semantic interpretation phase, whose rule definitions are indeed indepen-
dent from the sequence of statements/guards to execute/evaluate. Indeed, such
semantic interpretation phase may be defined on concrete memories, on collect-
ing memories of even on abstract memories, without affecting the computation
of the previous interpretation phase.

7 In this case the stack is not really symbolic.
8 For the sake of readability we write s for singleton predicates {s} and the empty

updates of the stack, i.e., ε → ε, are not depicted.
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Fig. 4. Execution sequence extractor

4.1 First Phase: The Execution Sequence Extractor

The parsing of the input program, aiming also at extracting the sequence of
executed statements and evaluated guards, is modeled as a symbolic Turing
machine equipped with a stack. It should be clear that the input language is the
language of the parser pars, that is indeed embedded in the interpreter. Hence
the first component is cfgEx

def= 〈Q, qι, qf, ΨΣ , ΨΓ , {Stack, Input}, δ̃, Ω, f〉
– Q

def= {qi}i∈[1,9] ∪ {qι, qf};
– Σ

def=
{

x := e
∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {
b

∣
∣b ∈ BExp

} ∪ {skip,∗〈, 〉∗ ,+〈, 〉+,+,

; } and ΨΣ
def= {x := Exp,BExp} ∪ { {s} ∣

∣ s ∈ {∗〈, 〉∗ ,+〈, 〉+,+, ; , skip, {, }}} }
;

– Γ
def= {+, ∗, •} and ΨΓ =

{ {s} ∣
∣ s ∈ Γ

}
;

– Ω
def= Lsp =

{
b

∣
∣b ∈ BExp

} ∪ {
x := e

∣
∣ e ∈ Exp, x ∈ V ar

} ∪ {skip};
– δ : Q×ΨΣ ×Γ → Q×{R,L,H}×Γ ∗×Ω graphically defined in Fig. 4 together

with f : Σ → Ω, where each transition is labeled, as described before, with
((s ∈ φ/f(s),M), t → γ).

In particular, q2 handles the single statement execution or the guard evaluation.
q3 handles the non deterministic choice. In particular it moves to q1 for executing
the statement on the left of + (and when it finds the symbol + it skips, in q4, what
remains up to the closed parenthesis 〉+). q3 moves to q4 if it wants to execute
the statements on the right of +. In this case it skips all the statements up to +
again in q4. We use the stack for recognizing nested +. State q7 handles loops,
in particular it moves to q1 for executing the body (the statements between ∗〈
and 〉∗). In this case when we read 〉∗ it moves to q6 for returning back at the
beginning of the loop. q7 moves to q8 for skipping the loop, by looking for 〉∗ and
continuing the execution.

In this way, if the input is a legal program, then it is accepted and the output
sequences are the sequences of statements to execute and of guards to evaluate.
We can observe that if we keep also the graph structure of the output (intuitively,
ignoring ε-transitions and collapsing states recognizing the same language), then
we obtain a graph equivalent to the CFG of the program.

Definition 6 (Partial interpreter evaluation). The partial interpreter eval-
uation is the sequence/trace of statements/expressions to actually execute for
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Fig. 5. Examples of interpretation

a given program. Formally, given P ∈ L and the execution sequence extractor
cfgEx, 〈Q, qι, qf, ΨΣ , ΨΓ {Stack, Input}, δ̃, Ω, f〉 (P ∈ Σ∗), the partial evaluation
of P is TcfgEx(P).

Let us denote cfgEx[P] the automaton recognizing the output language
TcfgEx(P) of cfgEx transduction of the input sequence P. Then we can observe that
cfgEx[P] corresponds to the CFG (seen as SFSM) of P, i.e., cfgEx[P] ≈ Cfg(P)
(up to label renaming and minimization). Note that cfgEx[P] is a FSM (no more
symbolic), (the one of the statements in P) of the infinite Σ. Let us show this
correspondence on some examples.

Example 1. Consider the program P1,

{+〈x > 0;∗〈x > 0;x := x − 1; 〉∗ ;¬x > 0;x := −2; + ¬x > 0;x := x + 1; 〉+; }

In the picture we depict the whole path of interpretation by means of
the given interpreter: We obtain so far the automaton cfgEx[P1] generated
by the transduction of the interpreter on P1. Each transition is labeled with
((s/o,M), t → γ) meaning that we read s in input and we pop t from the stack,
while we move M we output ω and we push γ on the stack.

If we transitively collect the transitions with output ε and we collapse states
recognizing the same language, while keeping the branch and the final states, we
obtain the graph on the left of Fig. 5, which corresponds to the CFG of P1.

Consider now the program P2

{∗〈x > 0;x := x − 1;∗〈x < 0;x := x + 1; 〉∗ ;¬x < 0〉∗ ;¬x > 0;x := 0; }

the graph in the center of Fig. 5 corresponds to the automaton cfgEx[P2], where
the labels are the output symbols. Finally, consider the program P3

{+〈x > 0;x := x − 1; + +〈x < 0;x := x + 1; + ¬x < 0;x := 2; 〉+;x := 0; 〉+; }

The graph on the right of Fig. 5 corresponds to cfgEx[P3], where the labels are
the output symbols.
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Table 1. CollRsp: The collecting interpretation rules for Lsp.

〈〈q0, skip, q1〉, s〉 → s 〈〈q0, x := e, q1〉, s〉 → s[q1 �→ sq0 [x �→ �e�C sq0 ] ∪ sq1 ]

�b�C sq0 	= ∅

〈〈q0, b, q1〉, s〉 → s[q1 �→ �b�C sq0 ∪ sq1 ]

4.2 Second Phase: The Semantic Interpretation

The semantic interpretation is just an interpretation function depending on the
domain of denotations, and defined for each element of Lsp, the output sym-
bols to interpret. In general, given a graph G, with initial state qι whose labels
are in the language Lsp, and given a semantic rule system SemRsp defining the
small-step semantics for Lsp, namely determining how semantic denotations in
D (e.g., stores in S) are transformed by the execution of elements in Lsp, we can
interpret its paths on denotations D by using the following function on set of
graph configurations CG def= (Q × D) ∪ D, let C ⊆ CG, d, d′ ∈ D and qi ∈ Q

f G

SemRsp
(q0, d)

def=
{{d} (fix-point) if �〈q0, l, q1〉 ∈ G{ 〈q1, d′〉 ∣

∣∃l. 〈〈q0, l, q1〉, d〉 → d′ ∈ SemRsp

}
Otherwise

f G

SemRsp
(C) def=

⋃ {
f G

SemRsp
(c)

∣
∣ c ∈ C � D

}
∪

{⋃̇ {
d
∣
∣d ∈ C ∩ D

}}

where
⋃̇

denotes the least upper bound on D. Then, we can compute the fix-point
interpretation of the graph G, starting from an initial denotation dι as the least
fix-point9 of the extensive version of f G

SemRsp
, i.e., f

G

SemRsp

def= λC. f G

SemRsp
(C)∪C, defined

in terms of the semantic rule system SemRsp. This fix-point computes the set of
all the reachable configurations, hence in order to extract the final/terminating
ones, we have simply to consider, in this fix-point, only the configurations in D.

S[G] def= λdι. (lfp{〈qι, dι〉} f
G

SemRsp
) ∩ D

For instance, in order to define a collecting small-step semantics we have to define
a collecting rule system CollRsp interpreting Lsp (Table 1) on stores S, where,
given the set of initial memories M, the initial store is sM ∈ S, sM(q) def= s∅[qι �→
M], also denoted [qι �→ M], Note that, the interpretation of ε is simply like
interpreting true, and for this reason it is simply ignored.

Then the graph G collecting semantic interpretation is the following, where
being interested only in the memories reached at the end of the program execu-
tion, we consider only the store memories at the final point qf.

∀M ∈ ℘(M). �G�CM
def= ((lfp{〈qι, sM〉} f

G

CollRsp
) ∩ S)(qf).

9 Given an extensive and monotone function f , its least fix-point computation starting
from x is lfpx f

def
=

∨
n∈N fn(x), where f0(x) = x and fn+1(x) = f ◦fn(x).
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As observed before, when we consider an abstract semantics Aρ
10 we obtain an

abstract interpreter. The idea is simple, we can define a rule system AbsRρ
sp

which
is precisely CollRsp where the abstract semantics �·�ρ for interpreting expressions
is used instead of �·�C, and in terms of which we obtain, as before, a corresponding
interpretation function f

G

AbsR
ρ
sp
. Then we can define

∀M ∈ ℘(Mρ). �G�ρM
def= ((lfp{〈qι, s

M
〉} f

G

AbsR
ρ
sp
) ∩ Sρ)(qf)

4.3 Interpreting Programs

Finally we can compose the two phases and obtain the characterization of inter-
pretation for programs P ∈ L. In particular, as observed in the previous section,
cfgEx[P] returns precisely a graph with Lsp as label’s language, hence we can
use the above semantic interpretation on this resulting graph.

Definition 7 (Program interpreter). Given a semantic rule system SemRsp

for Lsp and S[G] def= λdι. (lfp{〈qι, dι〉} f
G

SemRsp
) ∩D inductively defined on its labels in

Lsp. A program interpreter for the language L is the pair int
def= 〈cfgEx,S[·]〉.

Hence, ∀P ∈ L the program interpretation is S[P] = S[int[P]] def= S[cfgEx[P]].

For instance, the collecting interpreter for L is 〈cfgEx, �·�C〉, while an abstract
interpreter w.r.t. the variable values abstraction ρ is 〈cfgEx, �·�ρ〉.

Combining all together, given P = {C} ∈ L, its collecting semantics starting
from initial memories M ∈ M is computed as follows. The following result holds
by construction and by the intuitive equivalence between the collecting program
semantics and the collecting interpretation of its CFG.

Proposition 1. Let P = {C} ∈ L, then we have �P�C = �int[P]�C, where by
construction ∀M ∈ M. �int[P]�CM = ((lfp{〈qι, sM〉} f

cfgEx[P]

CollRsp
)∩S)(qf). In the abstract

case, �P�
ρ = �int[P]�ρ, where ∀M ∈ Mρ. �int[P]�ρM

def= ((lfp{〈qι, s
M

〉} f
cfgEx[P]

AbsR
ρ
sp

) ∩
Sρ)(qf).

4.4 Specializing Interpreters

In classical computational theory [31] the interpreter is indeed a program with
two inputs, a fragment of code to execute and the set of initial memories from
which to start execution. Our model of program interpretation distinguishes pre-
cisely between the application to the first input (the program) and the second
input (the initial memories). In particular, the first phase consists precisely in
applying the interpreter to the program, and the second phase consists in apply-
ing the resulting structure to the set of initial memories. In other words, it should
be clear that the simple transduction cfgEx[P] is precisely the specialization of
the interpreter on the program, precomputing the interpretation computation
10 In this case, we consider directly the semantic abstraction induced by a memory

abstraction ρ since we are abstracting in the semantic interpretation phase.
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involving only the code, namely the characterization of the sequences of state-
ments to execute and of guards to evaluate. This corresponds precisely to design
the program CFG. The only interpretation steps that remain to perform are
those concerning the semantic interpretation, depending also on data (formally
on initial memories). Hence, we can write

spec(int,P) = spec(〈cfgEx, �·�〉,P) def= cfgEx[P]

Which is indeed a specializer because by construction we have:

∀M ∈ ℘(M). �spec(int,P)�M = �cfgEx[P]�M = �P�M.

5 Specializer (Dis)Optimality

In this section, we formally introduce specializer optimality, i.e., the specializer
property characterizing the analysis precision.

5.1 Abstract Jones Optimality and Completeness

We consider code specialization in the specific context of the specialization of
interpreters and abstract interpretation. Let A be a semantic abstraction and
let int be an interpreter. Note that, given the new definition of interpreter, a
semantic abstraction could be both an approximation of the CFG, providing
a CFG containing the concrete computations and/or an abstraction of data
manipulated by programs. The following definition reinterprets the notion of
Jones optimality where computation time is replaced by the precision of an
abstract interpreter.

Definition 8 (A-optimality). A specializer spec, implementing the function
spec, is A-optimal w.r.t the interpreter int if it does not lose precision w.r.t.
the semantic abstraction A, i.e., if �spec(int,P)�A � �P�

A.

Note that, if we replace �P �
A with time complexity of P , this definition boils

down precisely to Jones-optimality [25,27]. When applied to the case of abstract
interpretation, a stronger property is also important, as specified in the following
definition.

Definition 9 (A-suboptimality). A specializer spec implementing the func-
tion spec is A-suboptimal w.r.t. an interpreter int if it does not add precision,
i.e., ∀P ∈ L . �spec(int,P)�A = �P�

A.

While for straightforward abstractions A, such as the identity and the top
abstraction, A-suboptimality always holds, for non-straightforward abstractions
A, A-suboptimality depends upon the specializer spec and the interpreter int.

Proposition 2. Given a self-interpreter (written in the interpreted language)
int, there exists an A-(sub)optimal specializer.
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Proof. The idea is similar to the case of trivial Jones-optimal [25]. Being int a
self interpreter, there exists a trivial A-optimal specializer semantics spec, i.e.,

spec(P, x) def=
{

x if P = int
spec(P, x) otherwise

which is a (computable) specializer semantics, since �spec(int,P)�A = �P�
A.

Note that, when spec is not A-optimal, it may happen that we don’t have
any relation between the original program and the specialized one, or it may
happen that the specialized program is indeed less precise. In this case, namely
when ∃P ∈ L,∃M ⊆ M. �spec(int,P)�AM � �P�

AM, then we say that spec,
implementing the function spec, is A-disoptimal w.r.t. the interpreter int. Note
that, both the notions of optimality and disoptimality may happen on a specific
program, in particular we can say that spec is ρ-suboptimal/optimal/disoptimal
w.r.t. the interpreter int for the program P if the corresponding definition holds
for P, i.e., �spec(int,P)�A = �P�

A(resp. � or �).
Let us show the relation of optimality with precision in the abstract analy-

sis, namely w.r.t completeness. Completeness in abstract interpretation means
that the abstract computation �·�A is precise as the abstraction of the concrete
computation, i.e., ∀P ∈ L .�P�

A = A(�P�) [14,22]. In this case we say that A is
complete, while, if it holds for a program P, we say that A is complete for P.

Lemma 1. Let spec be a (concrete) specializer implementing spec, int a
collecting self interpreter and A a semantic abstraction. Let ∀P. Ps

int
def=

spec(int,P), then we have the following facts:

1. spec A-suboptimal w.r.t. int ⇒ ∀P. (A complete for P ⇔ A complete for
Ps
int);

2. ∀P. (A complete for P and Ps
int ⇒ spec A-suboptimal w.r.t. int and P);

3. spec A-optimal w.r.t. int ⇒ ∀P. (A complete for P ⇒ A complete for Ps
int);

4. ∀P. (A complete for Ps
int ⇒ spec A-optimal w.r.t. int and P).

Proof. Let us recall that, by construction �P�C = �Ps
int�C.

1. If spec is A-suboptimal then ∀P. �P�
A = �Ps

int�
A. Suppose A complete for

P, then it means that �P�
A = A(�P�), therefore we have �Ps

int�
A = �P�

A =
A(�P�C) = A(�Ps

int�C) hence we have completeness also for Ps
int Analogously

we can prove completeness for Pwhen we have completeness for Ps
int Intu-

itively, we have not the inverse implication since when A is both incomplete
for P and Ps

intwe cannot imply anything on the optimality of the specializer,
while when it is complete for both we can prove the following result.

2. If Ais complete for both P and Ps
intthen �P�

A = A(�P�)and �Ps
int�

A =
A(�Ps

int�C) Therefore �P�
A = A(�P�) = A(�Ps

int�) = �Ps
int�

A meaning sub-
optimality w.r.t. intand P

3. If spec is A-optimal then ∀P. �Ps
int�

A � �P�
A Suppose A complete for P,

then it means that �P�
A = A(�P�) therefore we have A(�Ps

int�) � �Ps
int�

A �
�P�

A = A(�P�) = A(�Ps
int�) Hence they are all equalities, and therefore we

have completeness of Ps
int
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4. If, given P ∈ L, we have A complete for Ps
intthen �Ps

int�
A = A(�Ps

int�) hence
we have ∀P. �Ps

int�
A = A(�Ps

int�) = A(�P�) � �P�
A.

Theorem 1. Let spec be a (concrete) specializer implementing spec, int a col-
lecting interpreter and A a semantic abstraction. Let ∀P. Ps

int
def= spec(int,P),

then we have that ∀P ∈ L if A complete for P then: spec A-optimal w.r.t. int
and P ⇔ A complete for Ps

int ⇔ spec A-suboptimal w.r.t. int and P.

Proof. Trivial by Lemma 1. In particular, if spec is A-optimal w.r.t. int and P,
then by the hypothesis of completeness on P and by Lemma 1(3) we have A is
complete for Ps

int, and by Lemma 1(4) we have spec A-suboptimal w.r.t. int and
P. Finally, by definition spec A-suboptimal is also A-optimal.

These results tell us that in order to obtain an obfuscator by specializing an
interpreter we have to use a specializer which is not optimal w.r.t. the observation
and the interpreter.

We now formalize the relation between the specializer optimality, w.r.t., a
given interpreter, and our capability of obfuscating the source program by spe-
cializing an interpreter. Our aim is to exploit this relation for driving the distor-
tion of the interpreter by means of the property we have to obfuscate, namely
by the property to hide from the analyzer.

Theorem 2. Given an interpreter int and a specializer spec (with semantics
spec), we define the program transformer O(P) def= spec(int,P). For any program
P, O(P) is an obfuscation of P w.r.t. the semantic abstraction A iff spec is
A-disoptimal w.r.t. int on P.

Proof. If spec is A-disoptimal w.r.t. int then �P�
A

� �spec(int,P)�A, and there-
fore we have �P�

A
� �O(P)�A by definition of O(P), meaning that O(P) is an obs-

fuscator for what we observed in previous sections. On the other hand, if �P�
A

�

�O(P)�A, then surely we have �P�
A

� �spec(int,P)�A (by definition of O(P))
meaning that the specializer is A-disoptimal.

At this point it should be clear why disoptimality is defined by keeping a
(strict) approximation relation and not by losing any relation. Indeed, in this
way it guarantees the semantics observed on the obfuscated program to be con-
servative w.r.t. the original semantics by containing it. In this way, while we force
to lose the property we aim at obfuscating, we also partially keep the semantics
of the original program by over approximating it.

Finally, since A-disoptimality depends on both the specializer and the inter-
preter, we can choose to force disoptimality by leaving the specializer unchanged,
and by acting only on the interpreter. We characterize a distortion of the inter-
preter able to make the specializer A-disoptimal. This idea is enforced by two
aspects: (1) Due to the construction proposed, the distortion can be simply char-
acterized as a parser inductively transforming the code in a semantically equiv-
alent program11; (2) Distortion can be driven by the notion of completeness,
which is a semantic property strongly related to optimality as shown before.
11 Note that semantic equivalence on single (atomic) statements is decidable.
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5.2 Distorting Interpreters

In order to understand how to distort interpreters for inducing incompleteness
we observe the following facts:

– For each (not straightforward) abstraction there always exists a program/code
whose abstract semantics is incomplete, hence we can always characterize
syntactic elements making an abstract semantics incomplete [23];

– We can think of transforming statements that will be executed in a semantic
preserving way, yet including these elements;

– Clearly, it is not decidable to determine which statements will be executed,
therefore in order to introduce incomplete syntactic elements in our code
that will be surely executed, in general, we need to transform all program
statements;

– A language parser transforming each statements by introducing incomplete
elements for a fixed abstraction A produces the required results.

– By composing this parser with the interpreter, we obtain a distorted inter-
preter for which the control flow graph interpretation, i.e., its specialization
w.r.t. the input program, is disoptimal, therefore obtaining an obfuscator
obscuring the property expressed by A on any input program.

We define a module that transforms the interpreter as a SFST accepting in
input the language of the parser and in output the required syntactic trans-
formation. This transducer is then composed with the interpreter, forcing the
distorter output language to be the input one of the interpreter, hence generating
a transformed CFG. This transformed CFG will be the source of interpretation.

Definition 10 (Interpreter Distorter). Let int = 〈cfgEx,S[·]〉 be an inter-
preter accepting in input the language L. An interpreter distorter D is a SFST
whose output language is a (strict) subset of L and preserving program seman-
tics, i.e., intD def= 〈D�cfgEx,S[·]〉 is the distorted interpreter if ∀P ∈ L .TD(P) ∈ L
and S[P] = S[TD(P)].

Note that, if Tpars is the trivial transducer associated with pars, then Tpars �
cfgEx = cfgEx.

Example: Trivial Syntactic Distorter. Suppose fb : BExp → BExp and fc :
Stm → Stm be semantic preserving transformers, i.e., ∀b ∈ BExp . �b� = �fb(b)�
and ∀c ∈ Stm. �c� = �fc(c)�, then the distorter in Fig. 6 is a trivial distorter,
where the empty stack update ε → ε and the R moves are omitted in the tran-
sitions. As the parser, it is a symbolic pushdown automaton, which transforms
the code while parsing it.

Theorem 3. Let int be a L interpreter and let intD be distorted by D. Then
∀P = {C ∈}L we have �int[P]� = �intD[P]�.

This result tells us that the semantics of the program obtained by specializing
the distorted interpreter is the same as the semantics of the original program,
providing so far a potential obfuscation. Whether it is an obfuscation depends on
the property we want to hide, and therefore it depends on the specific distortion
and on the specific program semantics.
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Fig. 6. The trivial distortion

6 Obfuscation by Specializing Distorted Interpreters

In this section we show some examples of interpreter distortion making the CFG
specializer disoptimal, therefore producing obfuscated code. As observed before,
the first step is to fix the property to hide by obfuscation and a syntactic element
making the analysis of this property incomplete. In other words, given a program
property A to hide, we define a A-distorting interpreter, namely an interpreter
for which the specializer implementing spec is A-disoptimal. This is obtained
by isolating a syntactic object producing imprecision and by embedding these
objects into the code in such a way the abstract interpretation on A of the
resulting program becomes incomplete.

As an example, in order to obfuscate the program control flow we observe
that incompleteness is obtained by injecting opaque predicates in the program
[20], hence by using the trivial interpreter distorter we can obfuscate CFG simply
by defining the following transformers where b ∈ BExp is an opaque predicate
(e.g., an always true predicate), b′ ∈ BExp and c′ ∈ Stms.12

fc(c)
def=

+
〈b; c + ¬b; c′〉+

fb(b)
def=

+
〈b; b + ¬b; b′〉+

Data Obfuscation: Parity Obfuscation. Suppose we aim at obfuscating
the parity Par (formalized as the well-known parity abstraction on numerical
values) observation of data [18], i.e., of variable integer values13. First of all
we provide a general data abstraction distorter, where we define an expression
transformers (fc and fb) executing a value transformation hiding the property
to obfuscate when storing data, and a complementary (i.e., which composed
returns the identity) transformation when accessing data [18]. For instance, for
obfuscating parity, when we store data we can multiply by 2 (hiding parity),
12 For space reasons, and being quite intuitive, we do not provide the whole formaliza-

tion of obfuscation by opaque predicates.
13 For the sake of simplicity we suppose, without losing generality, that variables can

only contain integer values, not boolean.
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Fig. 7. Data obfuscation interpreter distorter DData.

and therefore when we access data we have to divide by 2. In order to make
everything work, we have to make analogous transformations of variables values
at the beginning (f�) and at the end of the program (f�). Hence, a simple
pushdown automaton is not sufficient since, for these last variables updates, we
have to scan the whole program for collecting variable names. In particular, in
Fig. 7 we define DData, where q4 extracts all the variables accessed in the program
and put them on a stack (var(e) and var(b) are sequences of identifiers), q5 goes
back to beginning of the program and q6 adds, at the beginning, an assignment
involving each variable extracted to which we assign its transformation by f�.
While creating this assignments we keep in the stack ι the names of all the
variables for creating the final assignments at the end of the program (state q7)
assigning to each variable its transformation by f�.

Hence, we define DPar by defining the transformations fc, fb, f� and f� as
follows, where V ar(P) = {xi}i∈[1,n]

f�(x) def= 2 ∗ x f�(x) def= x/2

fc(c)
def=

{
2 ∗ fex(a) if c = x := a
skip if c = skip fb(b)

def= fex(b)

fex(x) def= x/2 fex(n) def= n

fex(e bop e) def= fex(e) bop fex(e) fex(¬b) def= ¬fex(b)

In Fig. 8, on the left, we have the parity obfuscation of the program whose CFG
is depicted in Fig. 2. The following theorem tells us that the so far designed
interpreter distorter provides us with a parity obfuscation technique by special-
izing the distorted interpreter. Intuitively, at the first access to each variable, by
dividing by 2 its value, we lose its parity, adding analysis imprecision and making
so far the abstract parity interpreter incomplete, the specializer disoptimal and
the resulting program obfuscated w.r.t. parity.
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Fig. 8. Obfuscated CFGs.

Theorem 4. Let intPar
def= 〈DPar � cfgEx, �·�C〉 be the distorted interpreter. It

is a Par-distorting interpreter, meaning that ∀P ∈ L . spec(intPar,P) is an
obfuscation of P w.r.t APar.

Control Obfuscation: CFG Flattening. The last example consists in obfus-
cating the CFG by flattening its structure [7,36]. For obfuscating programs by
flattening the CFG it is sufficient to make the program counter (pc) dynamic,
i.e., a variable of the program manipulated during execution. Indeed, in this way
the CFG observation (and therefore any CFG property) becomes imprecise [20].
Hence the idea is precisely to provide the transformers distorting the interpreter
by handling the program counter while executing the program.

Then, let us consider the new variable pc, we define the distorted parser by
inserting each statement in a branch of a non-deterministic choice, whose guard
is the value of pc, value that is created and updated during execution. Also this
distorter DFlat (Fig. 9) cannot be simply a pushdown automaton for two issues
to face. First, we have to count the number of deterministic choices we insert,
in order to know how many brackets 〉+ we have to insert at the end (q4). The
stack cl is used precisely with this purpose. The other issue to face, is the fact
that when we read ∗〈 or +〈 we cannot know how many statement we will have
respectively in the body or in the first branch, hence we cannot predict the value
for pc that we can use for skipping the loop or for the other branch. For this
reason we use two stacks p (principal) and s (secondary) in order to keep two
disjoint chains of values for pc (even and odd values). Finally we have another
stack c for keeping trace of the pc of the first statement of a loop and of the final
pc of a branch. Moreover, we consider a special value lf as final pc.

On the right of Fig. 8 the obfuscation of the program whose CFG is depicted
in Fig. 2.

Formally, let us characterize the semantic abstraction made incomplete by
flattening the program. Here we can simplify the previous characterization [20]
since it is sufficient to find an abstraction made incomplete by a dynamic pc
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Fig. 9. Flattening obfuscation interpreter distorter DFlat.

(we are not looking for an abstraction incomplete iff the pc is dynamic), and it
should be clear that such an abstraction is precisely the CFG: Let us define

AFlat def= λ�P�C. �Cfg(P)�C

where it is well known that program collecting semantics is an abstraction of its
small-step semantics and

�Cfg(P)�C
def=

{

σ ∈ S∗
∣
∣
∣
∣
∀i ∈ N. f cfgEx[P]

CollRsp
(qi, σi) ∈ {〈qi+1, σi+1〉, σi+1}

q0 = qι, σ0 = [qι �→ M]

}

In this way, it should be clear that Cfg(P) is an abstraction of P, since the
set of possible executions contains the set of executions14.

The following theorem tells us that in order to lose any property of the CFG
structure we need to handle the program counter (pc) deciding the next state-
ment to execute in the program. Intuitively in this way the semantic abstraction,
by abstracting the guards involving the pc, loses the CFG structure, and there-
fore any of its properties.

Theorem 5. Let intFlat
def= 〈DFlat � cfgEx, �·�C〉 be the distorted interpreter. It

is a F-distorting interpreter, meaning that ∀P ∈ L . spec(intFlat,P) is an obfus-
cation of P w.r.t AFlat.

7 Conclusions

Our paper shows that code transformations for anti reverse engineering, such as
code obfuscating transformations, can be designed systematically by specializ-
ing distorted interpreters. The idea proposed is to design an obfuscation starting
from the static property π to conceal and determining syntactic elements such
14 We can also let the computations start from a subset of initial memories.
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that the static analysis of π is imprecise/incomplete. Then we can build a dis-
torter D inductively embedding these elements in single statements of programs
without changing their semantics. Finally the distorted interpreter we obtain so
far becomes an obfuscator of π when specialized w.r.t. the program to obfuscate,
since for the resulting program the static analysis of π is forced to be incomplete.
The result is a systematic method for building obfuscating compilers as straight
applications of the well known Futamura’s projections, therefore going beyond
the very first approach [20].

On the Limits of the Approach. The main limit of the proposed approach con-
sists in the fact that it is built on a static model of attacker, namely aiming at
defeating reverse engineering techniques based on static program analyses. In
particular, on the one hand we believe that it is possible to capture any obfusca-
tion technique where the information to obfuscate is a (static) program property
that can be characterized as program/code abstraction, such as slicing obfusca-
tion and opaque predicate obfuscation, on the other hand there probably exist
dynamic obfuscation techniques that may not be modeled in the framework as
it is, such as self-modifying code and virtualization. Indeed, what we propose is
an interpreter distortion based on the distortion of the parser, which is a dis-
tortion limited to obfuscating properties strictly depending on how the code is
written, namely for deceiving static analyses. Nevertheless, the separation of the
static and the dynamic phases of the interpreter suggests us that we could try to
capture other obfuscation techniques by distorting the semantic interpretation
phase, where it is plausible to think of making possible to obfuscate dynamic
analyses, but this clearly needs further work.

Another limit of this work is that it is not yet evaluated by means of an
implementation. Anyway we believe that this will not represent a problem at
least as far as the computational impact is concerned, since once we have built
the interpreter depending on the property to obfuscate, then the complexity
of the specialization is linear on the length of the program (transformation is
performed while parsing the code). While, as far as the computational overhead
of the obfuscated program is concerned, it does not depend on the proposed
approach but on the way the code is transformed, and therefore on the specific
chosen transformation.

Future Works. The notion of Jones optimality can be seen in a wider perspective,
not just as a method for removing the overhead in time complexity, but as an
universal paradigm to determine when a specializer applied to an interpreter and
a program reestablish the initial conditions of the program relatively to some
measure [6]. Hence, the existence of Jones optimal specializers is a key aspect in
modern PL research (e.g., see the Brown and Palsberg striking result [3]). We
believe that widening the range of applicability of the notion of Jones optimality
to different (complexity) measures may provide the perfect theoretical framework
to understand how the intensional nature of code affects the way we analyze it.
Our paper provides a very first application to the case of the precision of an
abstract interpreter.
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Abstract. Constraint-based program synthesis techniques have been
widely used in numerous settings. However, synthesizing programs that
use libraries remains a major challenge. To handle complex or black-
box libraries, the state of the art is to provide carefully crafted mocks
or models to the synthesizer, requiring extra manual work. We address
this challenge by proposing Toshokan, a new synthesis framework as an
alternative approach in which library-using programs can be generated
without any user-provided artifacts at the cost of moderate performance
overhead. The framework extends the classic counterexample-guided syn-
thesis framework with a bootstrapping, log-based library model. The
model collects input-output samples from running failed candidate pro-
grams on witness inputs. We prove that the framework is sound when
a sound, bounded verifier is available, and also complete if the under-
lying synthesizer and verifier promise to produce minimal outputs. We
implement and incorporate the framework to JSketch, a Java sketching
tool. Experiments show that Toshokan can successfully synthesize pro-
grams that use a variety of libraries, ranging from mathematical functions
to data structures. Comparing to state-of-the-art synthesis algorithms
which use mocks or models, Toshokan reduces up to 159 lines of code
of required manual inputs, at the cost of less than 40 s of performance
overheads.

Keywords: Program synthesis · Libraries · Java · Program sketching

1 Introduction

Recent years have seen drastic progress in the development of constraint-based
synthesis technology, made possible by the advances in formal methods and
automated constraint solvers. The constraint solving based techniques guarantee
that the synthesized program satisfies formal specifications and make synthesis
algorithms much more scalable, stepping across domain-specific programming
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tasks and applicable to general-purpose software development using practical,
real-world languages, such as C/C++ [39,41], Python [34], OCaml [9], Java [14,
20,25,27], or JavaScript [32,37].

Toward using constraint-based synthesis to aid practical software develop-
ment, a major challenge is synthesizing programs that use libraries, which is
common in most real-world software. Note that state-of-the-art programming
tools such as those for component-based synthesis [12,14,24,33,43] and unit-test
generation [3,29] only need to run candidate programs (including the library)
for testing. However, for constraint-based synthesis, the synthesizer has to sym-
bolically reason about and analyze the libraries and generate client code that
appropriately exercises library calls. The simplest solution to support libraries
would be inlining—concatenate the library source code onto the synthesis prob-
lem and handle library methods just like other methods. Unfortunately, in prac-
tice, libraries are designed for flexibility and extensibility, making their code
large and complex, and hence difficult for the synthesizer to use. For example,
the Android platform, which contains more than 12 million lines of code [10], is
too big to reason about for any existing synthesizer. Even worse, some libraries
may contain native code, which is entirely out of reach of this approach.

To address this issue, a straightforward approach is to manually create mock
libraries—short pieces of code at the appropriate level of abstraction such that
the essential library functionality is implemented in a simple and analyzable way.
This approach is adopted by state-of-the-art sketch-based synthesis tools [20,35].
While mocks can be effective, they require extra manual work as balancing
the code simplicity and the accuracy of functional equivalence to the authentic
implementation. For example, JSketch [20] mocks the Java standard library
java.util.TreeSet using an object array, whose size can be either bounded or
dynamically resizable. The former option is simpler but may fail to mimic the
TreeSet’s behavior when too many objects are added; the latter option is observ-
ably equivalent to the TreeSet container but introduces extra complexity, which
makes synthesis performance slow. Researchers have developed techniques to
automatically create mock libraries [4,5,16,19] for program analysis or symbolic
execution. However, these techniques focus on special classes of libraries and the
generated mocks do not aim to aid program synthesis.

Another approach is to use non-executable specifications as library models.
These models usually capture the essential properties of the library which can
be leveraged by the synthesizer. For example, a critical property for a cryp-
tography library is that any decryption after an encryption with the same key
is the identity. In [25], this property is described as an algebraic specification:
decrypt(encrypt(m, k), k) ⇒ m. Library models are also developed and used
in other state-of-the-art synthesis tools, in various novel ways [15,21,23,38,41].
While this approach is promising in both terms of simplicity and performance,
it still requires extra manual work in writing the library specifications. This
is actually the well-known specification mining problem for formal verification,
which has been studied for many years [1,2,11,22]. Moreover, these models are
hard to reason about automatically and need special treatment when integrated
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into a synthesis tool. This limits the possible applications their approach may
stretch to. For example, The rewriting-based encoding in JLibSketch [25] only
handles library models that can be represented as equational axioms.

In this paper, we propose a new synthesis framework called Toshokan
(“library” in Japanese) to support constraint-based synthesis algorithms for
handling libraries. This framework takes an alternative approach to the prob-
lem, extending counterexample-guided inductive synthesis (CEGIS)—a standard
inductive synthesis framework [40]—with an automatically built library model
from logged behavior of the library. Intuitively, the proposed framework approx-
imates the behavior of the library using a dynamic set of input-output samples,
and guesses the output of the library when the input is not covered by any
sample. In each CEGIS iteration, when the verifier rejects a candidate program
and provides a witness input, a logger runs the failed candidate with the witness
input. The witness execution exercises the library on some critical input and the
logged input-output pair is added to the library sampling. As the CEGIS loop
runs, more and more logs are gained and the sampling eventually becomes pre-
cise enough and allows the synthesis problem to be solved or rejected. Comparing
with existing library-based synthesis approaches, Toshokan has the following
advantages:

1. it does not require any extra manual work (except for the optional query
function annotation as discussed in Sect. 4) like writing mock implementation
or library models;

2. it synthesizes provably-correct programs using real Java libraries, whose cor-
rectness is guaranteed by an off-the-shelf verifier (currently JBMC); and

3. it allows the synthesizer to treat the library as a black box, making the task
solvable using state-of-the-art Java sketching tool through careful encodings.

We give an overview of the Toshokan framework and elaborate how it works
through an example in Sect. 2. We then in Sect. 3 formally describe the library-
based synthesis problem, the major components of the framework, and the main
synthesis algorithm, and prove its soundness and relative completeness. Then in
Sect. 4, we embody the framework in the setting of sketch-based synthesis, and
present the techniques used in the angelic inductive synthesizer, the centerpiece
of the Toshokan framework, including three different library encodings. In
Sect. 5, we discuss the design of the library logger, focusing on how we handle
references and aliasing, termination and exceptions.

We implemented the Toshokan framework in JSketch [20]—a sketch-
based Java synthesizer—and compared the new system with standard JSketch
that supports user-provided models or mocks.1 The results demonstrate that,
Toshokan successfully synthesized correct code for all 11 benchmarks and saves
the user from the extra manual work of writing library-abstracting mocks or
models. Meanwhile, for most benchmarks, our performance is moderately slower
than but still comparable to existing algorithms. More detailed experimental
results can be found in Sect. 6.

1 The validated artifact is available via DOI 10.5281/zenodo.7009051.

https://doi.org/10.5281/zenodo.7009051
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Fig. 1. Overview of the Toshokan framework (distinct components in gray).

2 Overview

Figure 1 gives an overview of the Toshokan framework, with the components
distinct from standard CEGIS highlighted in gray. In addition to the standard
components from normal CEGIS (verifier, synthesizer, counterexample set, etc.),
the proposed framework features a log-based library model and a library logger.
Whenever a candidate program P failed to be verified, the library logger takes P
along with the authentic library (either source or binaries), runs the program on
all existing counterexample inputs Q, and collects all observed library samplings,
i.e., input-output pairs when the library is invoked. These samplings collectively
form a library model N , which is an underspecification of the library, i.e., only
partially covers the behavior of the library. The angelic inductive synthesizer
(AIS) in Toshokan takes N and determines the uncovered behavior of the
library angelically. In other words, if the model does not cover a particular input,
the AIS can determine the corresponding output arbitrarily. In each iteration, the
AIS proposes a program P along with an expected bound t under which P should
terminate on all inputs from Q; the bounded verifier checks whether P , along
with the authentic library, satisfies the specification and terminates in t steps on
all inputs. The whole synthesis process terminates when the verifier accepts the
proposed program, or when the AIS concludes that there is no solution for the
current counterexample set Q and library model N .

Toshokan by Example We give a step-by-step illustration of Toshokan’s
synthesis process through a simple JSketch example. Figure 2 shows
the gcd n numbers benchmark (adapted from the Sketch source distribu-
tion [36]). The method MultiGCD.main purports to compute the greatest
common divider (GCD) of five input integers, using Java standard library
java.math.BigInteger.gcd2 to compute the binary GCD. As a program sketch,
the for-loop that calls gcd involves some unknown holes and choices (highlighted
in the code) to be filled. Note that the authentic code for gcd is complicated and
may even not be available as a black-box library. Hence the user has to provide

2 The actual library operates BigInteger objects; for simplicity, we adapt the signature
to handle int’s.
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1 class MultiGCD { /∗ synthesize algorithm for gcd of N numbers ∗/
2 harness void main(int[] nums) {
3 int n = nums.length; assume n ≥ 2; . . .
4 int result = gcd(nums[0], nums[1]);
5 for (int i = ??; i < {| n | n − 1 | n − 2 |}; i++)
6 result = gcd({| result | nums[i] |}, {| result | nums[i] |});
7 for (int i =0; i<N; i++) assert nums[i] % result== 0;
8 for (int i =result+1; i ≤ nums[0]; i ++) {
9 bit divisible = 1;

10 for (int j =0; j<N; j++) divisible = divisible && (nums[j] %i == 0);
11 assert ! divisible ;
12 }
13 }}

Fig. 2. JSketch example: gcd n numbers.

JSketch (or the underlying Sketch engine) a mock library or a library model
(e.g., see [36]). Both require expertise and extra work from the user (16 and
20 LoC, respectively).

With Toshokan, the user does not need to write mocks or models anymore.
Table 1 shows how Toshokan solves this synthesis problem in 4 iterations,3

without any user-provided artifacts. In the initial iteration, the synthesizer pro-
poses a random solution as the candidate program. Then the bounded verifier,
which for this example is JBMC [8], checks whether the solution terminates in
a fixed number of steps and satisfies all assertions on all inputs nums. The veri-
fier reports a concrete input that violates assertions: num= {3,3,3,1,3}. Besides
returning this witness input to the synthesizer, the most noteworthy thing is that
Toshokan also runs the failed candidate on the witness input with the authen-
tic gcd implementation, and logs the input-output samples of the all library
calls. In this instance, the logger collects a sample gcd(3,3)= 3 and adds it to
the library model N . This library model helps the synthesizer understand why
the first candidate fails.

With the collected witness input and library sampling, the synthesizer pro-
ceeds to the second iteration and proposes a new candidate program. In this
iteration, the verifier provides a new witness input num= {2,2,2,2,1}. This time,
the logger runs the candidate program with both the current and the previ-
ous witness inputs, and collects two samples: gcd(1,3)= 1 and gcd(2,2)= 2. This
process continues and collects new witness inputs and library samplings in each
iteration, until the synthesizer finds the correct solution in the fourth iteration.
The whole synthesis process finishes within 23 s (see full performance data in
Sect. 6).

3 Toshokan can actually solve this problem in 1 iteration (see Sect. 6); we use this
4-iteration run for illustration purpose.
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Table 1. A Toshokan run for the gcd n numbers problem in Fig. 2.

Iter# Candidate Program (filling lines 5–6 ) Witness Input Collected Sampling

1 for(int i = 4; i ¡ n-1; i++) result = gcd(result, result); nums= {3,3,3,1,3} gcd(3,3)=3

2 for(int i = 2; i ¡ n-1; i++) result = gcd(num[i], result); nums= {2,2,2,2,1} gcd(1,3)=1, gcd(2,2)=2

3 for(int i = 3; i ¡ n; i++) result = gcd(num[i], num[i]); nums= {3,3,2,3,3} gcd(1,1)=1

4 for(int i = 1; i ¡ n; i++) result = gcd(num[i], result); success N/A

3 The Toshokan Framework

In this section, we formally define the synthesis problem and introduce the main
synthesis algorithm in Toshokan. Note that the formalism we give in this
section is purely semantical—it is agnostic to the syntax of the program and
the implementation of the components it relies on. This allows us to present the
key idea of Toshokan framework in a succinct and general way. We will present
in the next section more specifically, in the setting of sketch-based synthesis, how
the synthesis problem is formulated and solved.

3.1 Libraries

Definition 1 (Library Signature). A library signature is a pair Σ = (S,
{Σw,s}(w,s)∈S∗×S), where S is a set of sorts, and {Σw,s}(w,s)∈S∗×S is an S∗ ×S-
indexed family of sets of symbols. We denote the set of all symbols by Funcs(Σ).

Definition 2 (Library). For Σ = (S, {Σw,s}(w,s)∈S∗×S) a library signature, a
Σ-library LΣ = {Lf}f∈Funcs(Σ) is a family of computable functions Lf : w → s
for each symbol f ∈ Σw,s.

Example 1. The library signature for the overview example is constituted by a
single sort and a single function: Σ = ({Z}, {{gcd}Z2→Z}). In other words, the
signature contains a single symbol gcd, which belongs to ΣZ2→Z. We denote the
authentic Σ-library as RealΣ = {Realgcd}, where Realgcd : Z × Z → Z computes
the binary greatest common divider.

Remark: Note that the library functions are defined to be computable and deter-
ministic. This allows us to treat the library as a black box and make queries:
providing concrete input values and asking what the output value is.

Handling Side Effect. Definition 2 considers pure library functions without side
effects or multiple return values. This restriction does not affect the expressive-
ness of our framework as the definition is sufficient for encoding more complex
libraries in real world. For example, we follow the idea of JLibSketch [25] to
handle side effects. Given a Java class which maintains a complex internal state
and contains methods that query and update the current internal state, every
method in the class can be encoded to a pair of library function: both functions
take the current state of the class as an extra argument; one gives the expected
return value of the method and one gives the updated state of the class.
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Example 2. Consider the class java.util.Stack in Java with an initializer init and
two methods void push(int i) and int pop(). This class can be encoded to a library
with four functions. The signature of the library is Σ =

({Z,Stack}, {pop}Stack→Z,

{pop!}Stack→Stack}
)
. A function pop : Stack → Z captures the value returned from

Stack.pop(). In addition, the side effects of the two methods can be represented as
library functions push! : Stack × Z → Stack and pop! : Stack → Stack.

Definition 3 (Sampling). For Σ a library signature, a Σ-sampling is a family
of sets NΣ = {Nf}f∈Funcs(Σ) in which there is a finite set Nf ⊆fin w × s for
each f ∈ Funcs(Σ).

Definition 4 (Consistency). A Σ-sampling N is consistent with a Σ-library
L, denoted as N ≺Σ L, if for any f ∈ Funcs(Σ) and any (t, v) ∈ Nf , Lf (t) = v.

Example 3. In the overview example, as shown in Table 1, a Σ-sampling is main-
tained and expanded in each iteration of the synthesis process. After all four
iterations, the sampling is N = {Ngcd} where Ngcd = {(3, 3, 3), (1, 3, 1), (2, 2, 2),
(1, 1, 1)}. By Definition 4, this sampling is consistent with the authentic library
defined in Example 1, i.e., Ngcd ≺Σ Realgcd.

3.2 The Library-Based Synthesis Problem

We next present the library-based synthesis problem, which is essentially tasked
to find a correct program interacting with a known library. From the perspective
of parametric programming, the space of candidate programs can be encode as a
parameter and the underlying library can be given as another parameter. In other
words, the synthesis problem can be represented as a parameterized program
P[c, L](i) whose behavior is determined by the input i and two parameters:
parameter c controls how to concretize P to a complete program; and parameter
L is the concrete library that P calls. Once c and L are determined, P[c, L]
becomes a complete program whose behavior is deterministic and verifiable.

The specification of the synthesis problem is also represented semantically by
giving a validation condition. In other words, a program satisfies the specification
if and only if all concrete runs of the program satisfy the validation condition.

Definition 5 (Validation Condition). A validation condition for a param-
eterized program P is a family of formulae φP = {φt

P(c, L, i)}t∈N, in which each
φt

P(c, L, i) is satisfied if and only if running P[c, L] on input i terminates within
t steps and satisfies the specification.

Definition 6 (Library-Based Synthesis Problem). A library-based synthe-
sis problem is represented as a tuple (P, C, LReal, φP) where P is a parameterized
program, C is the space of parameters for P, LReal is the library used in P, and
φP is a validation condition for P. The synthesis problem is to find a value
ctr ∈ C and a bound t such that for any input i, φt

P(ctr, LReal, i) is valid.

Remark: Note that the synthesis problem only aims to produce programs verifi-
able in bounded steps (which can be implicitly enforced in P and/or φP). This
is a common practice for modern synthesis tools [7,39,42].
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3.3 Inductive Synthesis with Angelic Libraries

We solve the library-based synthesis problem set forth above using Toshokan,
an enhanced CEGIS framework as illustrated in Fig. 1. We now formally describe
the angelic inductive synthesizer, the key component of the framework.

The Angelic Inductive Synthesizer (AIS), similar to a regular inductive syn-
thesizer in the standard CEGIS loop, maintains a set of sample inputs, finds a
candidate program that satisfies the specification at least for the sample set, and
gives the candidate to a verification oracle for checking. The salient feature of
the AIS is that it also maintains a library sampling NΣ and ignores the exact
behavior of the authentic library not covered by NΣ . Inspired by angelic pro-
gramming [6,13], the AIS divines an angelic library LAng that is consistent to
NΣ and guarantees the synthesized program satisfies the specification for LReal.
In other words, if executed with the authentic library, the synthesized program
does not necessarily satisfy the specification, even if the input is restricted to
a sample set. However, the CEGIS loop will collect more counterexamples and
samplings in each iteration and guarantees the correctness of the final solution
(see our synthesis algorithm later in this section).

Formally, given a validation condition φP , let the current input set and library
sampling be Q and N , respectively, the synthesis task is to check the following
second-order formula:

Φ[φP , Q,N ] ≡ ∃ctr. ∃t. ∃LAng.
(
N ≺Σ LAng ∧

∧

inp∈Q

φt
P(ctr, LAng, inp)

)

where φt
P is the validation condition for the synthesis problem. The following

theorem states that any solution to the original library-based synthesis problem
is also a solution to the inductive synthesis problem.

Theorem 1. Given a library-based synthesis problem L = (P, C, LReal, φP), a
set of inputs Q, and a library sampling N such that N ≺Σ LReal, then if L has
a solution ctr, it witnesses the validity of Φ[φP , Q,N ].

Proof. The solution ctr and the authentic library function LReal witness the valid-
ity of Φ[φP , Q,N ]. First, as N is consistent with LReal, N ≺Σ LReal. Second, as
ctr is a solution to L, there is an integer t0 such that running P[ctr, LReal] on all
inputs from Q terminates within t0 steps, i.e.,

∧

inp∈Q

φt0
P [ctr, LReal, inp]. Therefore

Φ[φP , Q,N ] is valid. 
�
An AIS just solves Φ[φP , Q,N ] and returns the witnessing solution ctr and

bound t. We define it below and discuss our approaches to developing it in Sect. 4.

Definition 7 (Angelic Inductive Synthesizer). An angelic inductive syn-
thesizer is a procedure that accepts queries of the form AIS(φP , Q,N) where φP
is a validation condition, Q is a finite set of inputs, and N is a library sampling.
If Φ[φP , Q,N ] is valid, the procedure responds with a witnessing solution (ctr, t);
otherwise it returns (unsat, 0).
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3.4 Verifier and Logger

While the angelic inductive synthesizer presented in Sect. 3.3 is complete (as
illustrated in Theorem1), it is not sufficient to solve the library-based synthesis
problem: first, it only guarantees the correctness of the synthesized program on
a finite set of inputs Q; second, the correctness of the synthesized program relies
on an angelically chosen library LAng, which is not necessarily consistent with
the authentic library LReal. Therefore, our Toshokan framework requires two
other components: a bounded verifier and a logger. We define them below.

The bounded verifier is slightly stronger than the standard one in a CEGIS
framework: it promises to verify the correctness of the input program and its
termination in bounded steps, or provide a counterexample. The logger runs a
concrete program and collects the interaction with the underlying library.

Definition 8 (Bounded Verifier). A bounded verifier is an oracle that
accepts queries of the form BV(P, c, L, φP , t), where (P, c, L, φP) forms a
library-based synthesis problem and t ∈ N is an execution bound, asking “Do
all executions of P[c, L] terminate in t steps and satisfy the specification φP?”
In other words, it checks the validation condition ∀i. φt

P(c, L, i). If so, the oracle
responds with a positive answer ; otherwise it responds with a witness input
inp such that φt

P(c, L, inp) is invalid, i.e., the concrete execution of P[c, L] on
inp does not terminate in t steps or violates the functional specification.

Remark: While the AIS (cf. Definition 7) treats the library as an absolute black
box, it becomes trickier for the bounded verifier—it can treat the library as a
black box and do testing only, which can be very slow, or leverage the bytecode
(or even source code if available) to make verification more symbolic and efficient.

Definition 9 (Logger). A logger is an oracle that accepts queries of the form
log(P, c, L,Q), where P is a parameterized program, c is a control parameter,
and L is a Σ-library, Q is a finite set of inputs, and runs program P[c, L] with
every input from Q. The logger returns a library sampling N such that for any
f ∈ Funcs(Σ), a pair (t, v) ∈ Nf if and only if one of the runs involves an
invocation f(t) to the library and returns value v.

We will discuss more about the design and implementation of the logger in
Sect. 5.

3.5 The Main Synthesis Algorithm

We are now ready to present the main synthesis algorithm for Toshokan, which
is shown in Algorithm 1. The algorithm extends the classic CEGIS framework
and leverages the three components we described above: AIS the angelic induc-
tive synthesizer, BV the verifier and log the logger. The verifier and the logger
repeatedly provide extra counterexamples and library samplings, respectively, to
refine the inductive synthesis task.
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input : A library-based synthesis problem (P, C, LReal, φP)
output: A solution ctr to the input problem, if any; otherwise ⊥

1 def toshokan(P, C, LReal, φP) :
2 Q, N, S ← ∅ // cex inputs, library sampling and checked solutions

3 ctr ← Init(C) // the control parameter, initially random from C
4 t ← Init() // bound of execution steps

5 repeat
6 w ← BV(P, ctr, LReal, φP , t)
7 if w = � :
8 break
9 else:

10 S ← S ∪ {ctr}, Q ← Q ∪ {w} , N ← N∪ log(P, ctr, LReal, Q)

11 (ctr, t) ← AIS(φP , Q, N)

12 until ctr = unsat;
13 return ctr

Algorithm 1: Main synthesis algorithm for Toshokan.

In addition to a set of witness inputs Q, it also maintains a library sampling
N as an approximation/model of the authentic library LReal. In other words,
N is expanded along the synthesis/verification iterations but always consistent
with LReal. The algorithm starts from empty Q, empty N , a random solution ctr
and an initial bound t. In each iteration, the BV checks whether the current ctr
and t lead to a fully correct program P[ctr, LReal] terminating in t steps (line 6).
if so, the algorithm terminates and returns the solution ctr; otherwise, the failed
solution is added to the set of checked solutions C, and the verification result,
which is a new witness input w, is added to the set Q (line 10). Note that the
AIS may not understand why the new witness input w violates the specification,
because running P[ctr, LReal] on w may involve calls to the library LReal with
arguments not covered by the current sampling N . To this end, the algorithm
invokes log to run the program on all inputs in Q and record the behavior of the
library (line 10). The newly generated sampling are added to N . Now with the
updated S, Q and N , the algorithm asks the inductive synthesizer to generate
a new solution and proceeds to the next iteration (line 11). If the synthesizer
cannot find any more solution, the algorithm terminates and concludes that the
synthesis problem is unsolvable.

Soundness and Completeness. We now discuss the soundness and complete-
ness of the algorithm.

Theorem 2 (Soundness). Given an input library-based synthesis problem
(P, C, LReal, φP), if Algorithm1 terminates and returns a solution ctr, it is a
solution to the synthesis problem. If the algorithm returns unsat, then the syn-
thesis problem has no solution.

Proof. If a solution ctr is returned by the algorithm, it must be produced by
the AIS as a pair (ctr, t) and have passed the checking of the BV. Then by
Definitions 6 and 8, ctr is indeed a solution to the input problem (P, C, LReal, φP).
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If the algorithm returns unsat, the last instance of AIS(φP , Q,N) has no
solution. Then by Theorem 1, the input problem (P, C, LReal, φP) does not have
solution either. 
�

The completeness states that if the input synthesis problem is solvable, Algo-
rithm1 guarantees to produce a solution. We show that algorithm is relatively
complete: if the underlying BV and AIS are both enumerative, then the whole
algorithm is complete. Intuitively, BV and AIS are enumerative if they guaran-
tee to provide the “minimal” witness input and candidate program, respectively.
We next define the enumerative-ness and prove the relative completeness.

Definition 10. A bounded verifier BV is enumerative if there exists a total
ordering assigning a distinct natural number to each possible input of the parame-
terized program W : I → N, such that for any invocation BV(P, ctr, LReal, φP , t),
it returns a counterexample inp only if for any other input inp′ such that
W(inp′) < W(inp), inp′ is not a valid return value.

Definition 11. An angelic inductive synthesizer AIS is enumerative if there
exists a total ordering assigning a distinct natural number to each control value
E : C → N, such that for any invocation AIS(φP , Q,N), it returns ctr only if
for any other value ctr′ such that E(ctr′) < E(ctr), ctr′ is not a solution to the
AIS problem.

Theorem 3 (Relative Completeness). Let BV be an enumerative bounded
verifier and let AIS be an enumerative angelic inductive synthesizer, then run-
ning Algorithm 1 with BV and AIS guarantees to produce a solution if the input
library-based synthesis problem is solvable.

Proof. If the synthesis problem is solvable, there exists a minimal solution ctr.
Assume the algorithm does not produce a solution, then due to the soundness,
the algorithm will not terminate and AIS will produce an infinite sequence of
conjectured solution/bound pairs: (ctr0, t0), (ctr1, t1), . . . such that none of the
ctri’s is a solution. Now as ctr is the minimal solution and AIS is enumerative,
we have E(ctri) < E(ctr) for all i ≥ 0. Therefore there must exist a solution ctrR
appears in the sequence infinitely often. As ctrR is not a solution, let inpR be the
minimal counterexample input and running inpR on P[ctrR, LReal] terminates in
tR steps. As BV is enumerative, it is not hard to prove that there is a infinite
subsequence (ctrR, v0), (ctrR, v1), . . . where v0, v1, . . . is strictly increasing. In
other words, there must be a pair (ctrR, vm) proposed by the AIS and vm > tR.
Therefore vm is sufficiently large for AIS to know that ctrR terminates and fails
to satisfy the specification, then ctrR will not be proposed again after (ctrR, vm).
The contradiction concludes the proof. 
�

Remark: Note that enumerative verifiers and synthesizers are not uncommon in
practice. For example, in Sketch, one can use the minimize keyword to enforce the
synthesizer to fill holes with values as small as possible. Moreover, an enumerative
verifier can be constructed from a regular verifier: once a witness input i = inp
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is found by the regular verifier, add an assumption i < inp to the program and
rerun the regular verifier to find a smaller witness input; repeat the process until
no more witness input can be found. The last found witness input in the process
should be the minimal one.

4 Angelic Inductive Synthesis

So far we have overviewed the Toshokan framework with the general library-
based synthesis problem defined in a semantical way. In this section, we present
our approaches to developing the angelic inductive synthesizer in depth, in the
setting of program sketching. In other words, the representation of parameterized
program and specification is concretized to a sketched program, and the synthesis
task is to fill holes of a sketched program such that all assertions are satisfied.
We first present a simple language for program sketching, then discuss three
different ways to encode and solve the angelic inductive synthesis problem.

The Toshokan Core Language. We instantiate the library-based synthesis
problem (Definition 6) to JSketch, a Java sketching language [20]. Below we
show how the AIS problem can be encoded for a Toshokan core language.
The language is similar to Sketch and allows us to reuse the JSketch-to-Sketch
compilation [20] and the Sketch synthesis engine [39].

The syntax of the Toshokan core language is presented in Fig. 3. Besides
standard programming constructs covered by Sketch (e.g., assignments, condi-
tionals and loops), this language also supports library function definitions and
calls, which are shown as the highlighted portion of the syntax. The language
describes a program sketch which begins with a list of library functions (the L
part). A library function may take primitive or composite values as arguments
and return an primitive or composite value. For each library function f used in
the program, there exists a corresponding full, authentic implementation fReal,
which does not include any holes, assumptions or assertions, or calls to other
library functions.4 The second part of the sketch is the harness functions (or the
H part). It may include constant holes of the form ??, choice of expressions of
the form {| · | · |}, assumptions, assertions, and arbitrary calls to the library
functions.

Intuitively, the synthesis task is to fill the unknown constants with values
(assumed to be naturals) such that running the harness functions will not trigger
any assertion failure before any assumption violation. Formally, let P = L;H be
a program sketch in the Toshokan core language, and let the number of holes
in H be m, then this sketch characterizes a library-based synthesis problem as
per Definition 6: (H,Nm, {fReal}fReal∈L, φP

)

4 This limitation is not fundamental and can be generalized in the future. Without
calls between library functions, the implementation of library logger becomes easier
since logging instrumentation would only need to be done on client code.
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Fig. 3. Syntax of the Toshokan core language (the library-related part is highlighted).

where φP generates bounded validation conditions from a concrete program and
a concrete input, checking that the execution terminates (in a bounded number
of steps) and satisfies all assertions. Formally, let ctr be the values filled to holes
and let inp be the input to the harness, the validation condition can be formulated
in the following form:

φt
P(ctr, inp) ≡ ∃S0 . . . St.∃Z0 . . . Zt.

(

∀0 ≤ j ≤ t.Follow(Sj , Zj+1, Sj+1) ∧ Exec(Zj , Sj , Zj+1)
)

The formula guesses a t-step run of the program, including the executed state-
ment Sj and the valuation Zj of the variables before the statement, for each step
j. The predicate Follow checks that statement Sj+1 follows statement Sj given
the current valuation Zj+1. The predicate Exec checks that running Sj with the
current valuation Zj will successfully yield the next valuation Zj+1.

Direct Encoding for Libraries of Primitive Type. Now we have a library-
based synthesis problem represented by the input sketch in the Toshokan core
language. Recall that a key step of our main synthesis algorithm is to solve the
angelic inductive synthesis problem AIS(φP , Q,N) as described in Definition 7:
given a library sampling N , guess an angelic library consistent with N and
generate a candidate program that satisfies the specification φP on the sample
input set Q. Our approach is to represent this problem as another sketched
program which does not contain library calls. As our core language is consistent
with Sketch both in syntax and semantics, the problem can be directly solved
by Sketch [39] or other synthesis engines.

We start from the simplest case: the library functions all take primitive
arguments only and return primitive values—this is already sufficient for the
overview example gcd n numbers. In this case, the angelic choices can be simply
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represented as uninterpreted functions. Assuming P contains a library function
int f(int u1, . . . , int um) among others, we encode the problem AIS(φP , Q,N)
to a program sketch as shown in Fig. 4. The function h is copied from the har-
ness function in the original P which may involves unknown control holes to be
synthesized, assumptions and assertions delimiting the behavior of the program,
and calls to the library functions. The new harness function test simply takes
the input for h and makes sure the input matches one of the sample inputs
in set Q, then calls the real harness h. The library function f is implemented
as follows: if the input (u1, . . . , um) matches the one sample input (s1, . . . , sm)
from the library sampling N , then return the corresponding output t; otherwise,
return an angelic value from an uninterpreted function fAng. The uninterpreted
function is arbitrary but guarantees the functionality, i.e., LAng always returns
the same output with the same input.

Fig. 4. Direct encoding of AIS(φP , Q, N).

Note that Fig. 4 assumes that function f takes integer parameter and returns
integer values, but the encoding can be easily generalized to more primitive types
supported by modern synthesizers. For example, Sketch has native support of
synthesizing control parameters and uninterpreted functions of int and bit, as
well as constant-sized arrays or nested arrays of primitive values.

Call-Tree-Based Encoding for Libraries of Composite Type. Now let us
consider encoding libraries of composite type, i.e., the library function may take
as argument or return values from user-defined, variable-size types, e.g., records,
variable-size arrays, algebraic data types. While the direct encoding presented in
Fig. 4 is straightforward and efficient and Sketch has native support for arrays,
structs and algebraic data types, naturally extending this encoding to support
composite types is not practically feasible for two reasons: first, for many real-
world libraries (e.g., for encryption/decryption), the source code is not avail-
able and internal data is unknown; second, some libraries are implemented with
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Fig. 5. Example: call-tree-based encoding for Stack.

complex data structures (e.g., java.util.Stack is implemented as a dynamically
resizable array), making the direct encoding inefficient.

To this end, we use a different, call-based encoding for libraries with compos-
ite type. The idea is to characterize the library’s internal state using the call tree
that creates the current value. We illustrate the call tree representation through
the following example.

Consider a Java program that uses the Stack library (see Example 2), which is
shown in Fig. 5a. The main function creates a Stack object s, computes an integer
i through a sequence of method calls to s, and returns the updated s. While the
exact representation of the returned object is hard/impossible to obtain, the
object can be determined by an expression new Stack().push(1).push(2).pop().
This expression can be uniquely represented as a call tree as shown in Fig. 6.
Furthermore, one can assign a unique number to every Stack-valued method.
For example, in Fig. 6, init, push! and pop! are assigned −1, −2, −3, respectively.
Then the call tree’s Polish notation can be uniquely represented as an array (see
the right hand side of Fig. 6).5

Based on this array representation of call trees, we encode library-using pro-
grams to array-manipulating programs. Intuitively, we maintain an array s tree
for each non-primitive value s used in the program, and every method call or
object initialization m is simulated by a corresponding manipulation to the array:
if a m updates s, then expand the call tree by extending s tree accordingly; if
m computes a primitive value from s, then follow the direct encoding and use
an uninterpreted function mAng to make an angelic choice. Figure 5b shows the
encoding of Fig. 5a: we use [Em] to represent the integer value encoding a method

5 Here we assume all integer arguments are positive and use negative integers to rep-
resent methods. If negative integers are involved in the program, the array encoding
has to have an extra bit to indicate a leaf node is a primitive value or a method call.



Bootstrapping Library-Based Synthesis 287

m, and the function main is generated by a line-by-line translation from the orig-
inal Main method. Note that s.pop() returns a primitive value and hence is trans-
lated using the direct encoding as shown in Fig. 4. Figure 7 formally presents the
call-tree-based encoding of method declarations calls, assuming there is a single
composite type C and a single primitive type int.

Fig. 6. Example: Polish notation of call tree.

Query-Based Encoding for
Libraries with Query Functions.
The call-tree-based encoding for
composite type presented above has
a potential scalability issue: the call
tree grows unboundedly when more
and more library calls are made.
Therefore, the size of the correspond-
ing array representation will quickly
become larger than synthesis engines
can handle, especially when library
calls are involved in a loop.

We address this problem by using another query-based encoding when the
library admits query functions, which are inspired by the state query meth-
ods proposed by Pei et al. [30]. Intuitively, query methods have no side effects
and can be used to characterize the library class’ internal mutable state. For
example, consider a non-naive Java class SortedList defining a linked list data
structure that would sort itself as new elements are added into it, as shown in
Fig. 8a. The SortedList class contains two methods: insert and search. The search
method is actually a query function—the internal sate and behavior of a Sort-
edList object l is unique determined by l.search(i) for all possible input i. We

Fig. 7. Call-tree-based encoding.
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ignore the detection of query functions and assume the programmer manually
marks query functions, using the @query keyword.

Given a library with query functions, we can solve the angelic inductive syn-
thesis problem using a query-based encoding. We formally define query functions
below:

Definition 12 (Query Function). Let Σ be a library signature containing
two sorts {P,C} where P is primitive and C is composite. Then a Σ-library LΣ

admits a set of query functions Q if: 1) Q ⊆ ΣC×P ∗→{true, false}; and 2) For every
non-query function f ∈ ΣC×···→C , and every a, a′ ∈ C, if f(a, b̄) �= f(a′, b̄), a
and a′ are distinguishable by query functions, i.e., there exists a g ∈ Q and
ē ∈ P ∗ such that g(a, ē) �= g(a′, ē).

Continuing on the SortedList example, Fig. 8b shows how this program is
encoded. Note that the AIS is based on a finite set of inputs Q. Therefore, we
can approximate the internal state of a SortedList object lst using a bit vector lst -
query, which contains values search(inp) for every inp ∈ Q. When a new SortedList
is created, the bit vector is initialized with all 0’s as the search function always
returns false. To update the bit vector, we expect the logger to invoke the query
function search before and after each non-query function call, namely insert and
insert!, and collect the inputs/outputs as a library sampling N . Based on N , all
library functions are directly encoded in a way similar to Fig. 4.

In addition, for the search function itself, we encode it to an extra function
searchQ. When searchQ is called for lst query with input u, it essentially retrieves
whether u matches any sample input covered by Q; if so, it simply returns the
corresponding value in lst query; otherwise it proceeds to the directly encoded
search function.

5 The Logger

In this section, we discuss another major component of the Toshokan frame-
work: the logger log, whose definitions have been given (in Definition 9). We
discuss our design in the setting of program sketching to match the AIS design
we described in Sect. 4. The design is mostly straightforward—simply run the
candidate program with the current set of counterexample inputs Q, and for
every library call it encounters, log the input and the corresponding output.
Below we discuss some issues we identified and addressed in the design and
implementation of the logger.

References and Aliasing. Real world libraries manipulate dynamically allo-
cated structs and objects using references (pointers), which may be aliased or
overlapped (e.g., two List references a and b such that a �= b but a.next ==
b.next). Therefore, a library function call will not only affect the references
explicitly passed in as arguments, but also those aliased or overlapped with
these arguments, which can be unboundedly many and cannot be tracked using
library sampling.
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Fig. 8. Example of SortedList and its corresponding query-based encoding.

To this end, we track library calls with arguments that are aliased or disjoint
only. More concretely, we first extend the definition of library sampling (see
Definition 3) and the logger in the following way. Assume Σ is a library signature
containing a reference sort Ref and L is a Σ-library containing a function f :
Refn → Ref. Then an extended library sampling of f is a finite set of

Nf ⊆fin B(n) × Refn × Ref × 3{0,1,...,n}

where B(n) is the set of partitions of the set {1, . . . , n}. The first element is a
partition of the references into aliased equivalence classes; references from differ-
ent equivalence classes must be disjoint. The second and the third elements are
simply the input and output of the function. The last element indicates whether
the output reference is aliased, overlapped, or disjoint with the n arguments.

Next, we also adapt the call-tree-based encoding for libraries. In addition to
the encoding we presented in Fig. 7, the encoded program explicitly maintains
the relationship between all references: aliased, disjoint, or overlapped. When-
ever a reference is updated (via either an assignment or a library call), all aliased
references will be updated in the same way and all disjoint references will be kept
unchanged. For other overlapped references, as we don’t track precise informa-
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tion to updated them, they will be havoced, i.e., they will be updated arbitrarily,
being disjoint or still overlapped with the updated reference.

Termination and Exceptions. Termination is a tricky issue for program anal-
ysis and verification, and also for our synthesis framework. Note that the input
program to the logger is not necessarily terminating: it may invoke library calls
infinitely often and the logger may not terminate either. In this case, the logger
can set an execution limit T : if the execution reaches T steps, the logger just
halts and returns the samples collected thus far. The limit T can be simply set
as the integer t0 found by the AIS—according to Definition 7 and the formula
Φ[φP , Q,N ] AIS solves, all sample runs of the synthesized program with the
conjectured angelic library LAng guarantee to terminate within t0 steps. In other
words, if the real execution with the authentic library LReal does not terminate
within t0 steps, the library behavior collected by the logger is already enough to
distinguish LReal and LAng.

Another similar issue is about the exceptions. While the Toshokan core
language is simple, it may present exceptions such as division-by-zero and array
index out-of-bound. More importantly, the library calls made by the candidate
program also might be invalid and throw exceptions from running the authen-
tic implementation of the library. In these cases, our logger simply returns the
library samplings collected thus far and input to the last library call that causes
the exception. These samplings will let the AIS know how the witness input
leads to the exception so that the next candidate can avoid this scenario.

6 Evaluation

We implemented the Toshokan framework in JSketch [20]—a sketch-based
Java synthesizer—and conducted experimental evaluation. It takes a JSketch
file (intuitively a Java program with unknown constants, expressions, etc.) as
input and produces a concrete Java program satisfying user-provided specifica-
tion. Note that our goal is not outperforming vanilla JSketch using models
and mocks [25]: the primary goal of Toshokan is to reduce the extra LoC that
other methods require the user to write. Therefore, our evaluation attempts to
answer the following research questions: RQ1: Can Toshokan synthesize pro-
grams interacting with a wide variety of libraries? RQ2: Does Toshokan reduce
the LoC that the synthesizer user needs to write with acceptable performance? In
this section, we first describe our implementation and benchmarks, then report
the experimental results which answer the two research questions.

Implementation. The implementation was written in Rust and C++ with
around 10k total LoC. We leverage the current frontend of JSketch to encode
most Java-specific features to Sketch, and encode the angelic inductive synthesis
problem as described in Sect. 4. Once a Sketch solution is obtained, we further
leverage the decoder of JSketch to generate a concrete Java program candidate
for verification and logging.
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We employ JBMC [8] as the bounded verifier. Note that JBMC verifies com-
piled Java bytecode, i.e., it does not rely on the availability of the library’s source
code. JBMC also serves as the logger: if a candidate program failed verification,
we build a Java program that explicitly runs the failed program with all witness
inputs and finishes with assert false. JBMC will claim that the program is wrong
and provide the trace of execution. We implemented a data extractor to collect
input-output samples for the library calls involved in the trace. We remark that
the JBMC-based logger is potentially unsound as JBMC uses its own library
models.

Benchmarks. To evaluate Toshokan, we have adopted and converted a num-
ber of synthesis benchmarks from various sources, including Sketch modular syn-
thesis benchmarks using function models [35], JDial benchmark using external
libraries [17] and our own benchmarks using composite-type libraries. We also
write some benchmarks ourselves by converting some well-known, widely used
algorithms and data structures into sketch format with holes added, so that the
benchmark set could be more diversified. We hope the wide range of the bench-
marks adopted could help demonstrate the wide variety of libraries upon which
our methods could be applied to.

Sketch modular synthesis [35] benchmarks are obtained from Sketch source
repository as part of the project’s experimental feature benchmarks [36]. These
benchmarks come with two versions: one model version and one mock version
for each synthesis task. The model version utilizes the function model features
of Sketch to solve synthesis tasks with unknown library functions, as long as
models of the functions are provided. The mock versions are effectively the
same synthesis tasks, but with concrete implementations of the library func-
tions. We excluded some benchmarks that are not legit (e.g., no synthesis task
or no argument for the library function). This ends up in a total of 4 bench-
marks adapted from this benchmark set. JDial [17] benchmarks are obtained
from JDial-Debugger’s Github repository [18]. Among the JDial direct manip-
ulation benchmarks, we picked two out of three benchmarks that use external
libraries (excluding evalPoly 3 which seems to be identical to evalPoly 2 ). We
also combined them into a larger one, evalPoly combined.

Up to this point, all the benchmarks we adopted are using libraries of primi-
tive types. To demonstrate the effectiveness of our methods handling libraries of
composite types, we converted a number of well-known, widely used algorithms
and data structures into sketch formats with added holes. This creates 4 new
benchmarks, namely stack match, set match, arraylist match, and heap sort, all
in encoding for libraries of composite types.

It ends up in a total of 11 benchmarks to be evaluated in experiments.
Whereas the sizes of the client-code sketches are relatively small, the authen-
tic libraries involved in these benchmarks are not small. E.g., the ArrayList
from OpenJDK8 [28] contains 1.4kLOC. Moreover, the authentic versions of
the libraries contain Java features like reflection and lambda expression that
JSketch does not support yet; some of them also invoke native code. There-
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Table 2. Description of benchmarks and experimental results.

Benchmark Toshokan JSketch (Model) JSketch (Mock)

Name LoC #C Lib Data Type Lib Func(s) Enc Time(s) #I Model LoC Time(s) Mock LoC Time(s)

gcd n numbers 70 12 int gcd D 22.44 1 20(29%) 4.8 16(23%) 5.96

lcm n numbers 74 12 int lcm D 25.91 3 21(28%) 3.92 17(23%) 4.11

powerroot sqrt 65 15 int sqrt D 15.40 1 14(22%) 3.81 19(29%) 3.84

primality sqrt 56 12 int sqrt D 32.89 4 14(25%) 3.76 19(34%) 3.75

evalPoly 1 61 15 int pow D 22.77 3 30(49%) 3.91 11(18%) 4.32

evalPoly 2 59 15 int pow D 6.86 1 30(51%) 3.78 11(19%) 3.74

evalPoly combined 97 30 int pow D 15.52 2 30(31%) 3.99 11(11%) 4.31

stack match 24 8 Stack push,pop C 39.18 5 N/A N/A 22(92%) 3.86

set match 26 8 HashSet add,contains C,Q 8.76 1 29(112%) 4.02 32(123%) 4.01

arraylist match 26 8 ArrayList push back,get C,Q 41.75 5 29(112%) 4.1 22(85%) 3.8

heap sort 72 20 Heap insert,pop min C 32.56 4 N/A N/A 159(221%) 4.44

Enc–Encoding(s) used in benchmark for Toshokan
D–Direct encoding of primitive types, C–Call-tree based encoding, Q–Query based
encoding
#C–number of control bits in the sketch after preprocessing. #I–number of iterations
Toshokan runs.

fore inlining these libraries is beyond the capacities of JSketch as currently
implemented.

For each benchmark, we list the size of the program sketch, the number of
control bits in the sketch, and the library’s signature (see Table 2). Note that
the “#C” column of the table describes the numbers of bits needed to represent
a solution candidate for the synthesis task in the benchmark, i.e. a number of
N control bits of the benchmark indicates that the search space of its solution
is 2N . Additionally, the LoC sizes of the model and mock code which JSketch
uses for the respective benchmark are shown in the table, as well as their relative
sizes to the benchmark per se.

Experimental Results. The experiments were conducted on a server with 2
Intel(R) Xeon(R) E5-2630 v4 10-core CPUs, with each core having 2 threads, at
main frequency of 2.20 GHz, with 128 GB of memory. The experiments were run
as 10 independent parallel tasks, and the whole process terminates once any of
the 10 simultaneously running tasks returns with a correct synthesized solution.

Since the solving process of Sketch synthesis engine involves nondeterministic
algorithms presenting nondeterministic intermediate results and performance, as
well as having a large range of different configuration parameters that could be
potentially optimized, the parallelism described above could be a great help in
increasing overall performance for both our methods and our comparing meth-
ods, as long as parallel computing resources are available. Experiments were
run on all 11 benchmarks with a timeout of 1 h. Performance of sketch with
appropriate models and/or mocks on these same benchmarks are also collected
whenever possible using the same parallel methods described above, as baseline
of performance for the effectiveness evaluation.
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Toshokan successfully solved all benchmarks within the timeout. Our
experimental results, including the solving time and number of iterations taken
by Toshokan to find the solution, are shown in Table 2. The results give an
answer to RQ1: Toshokan was able to effectively handle synthesis tasks that
interact with a wide range of different libraries and library functions, including
advanced arithmetic operations, as well as complex composite data structures.
This indicates a good variety of our methods’ possible applications.

Fig. 9. Experimental results: saved LoC vs. extra
time, absolute amount (above for all benchmarks and
below for clustered benchmarks).

Now let us proceed to
the second research ques-
tion. We take the mock/-
model LoC as a measure of
the extra code needed for
the synthesizer user to write
which Toshokan managed
to save, and the extra time
Toshokan takes to solve
the benchmark comparing
to mock/model as measures
of performance overhead.
We believe the measures
allow us to reasonably indi-
cate the benefit/cost ratio of
our approach.

Figure 9 compares the
absolute amount of extra
LoC against extra time
by Toshokan. This figure
indicates how Toshokan
trades extra synthesis time
for saving the programmer’s
effort (in terms of LoC).
For example, by adopting
Toshokan, a programmer
who wants to write the set -
match program could save
32 LoC writing at the cost
of waiting for only 4 extra
seconds. This figure would
paint a picture from a
potential user’s perspective on the performance numbers.

Observing Table 2 and the figures, we are encouraged toward an answer
to RQ2: On one hand, Toshokan saves the user some work from writing
various kinds of mocks and models. Depending on the actual complexities of the
underlying library and synthesis task, the Mock/Model LoC ranges from 11 to
159, and could be as high as 2.21× of the original sketch LoC. On the other hand,
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the performance slowdown is moderate. All benchmarks on Toshokan showed
a slowdown of less than 40 s. Given the extra LoC of code writing Toshokan
managed to eliminate, we consider this performance as acceptable in proving the
effectiveness of our methods.

7 Related Work

Several library models have been proposed in different settings and handled by
the synthesizer in different ways. Gascon et al. [15] model each component of the
target language as a proof rule, which allows the synthesizer to symbolically exe-
cute programs consisting of these components. JLibSketch [25] model libraries
as equational specifications and automate the reasoning about library models by
term rewriting. Unlike above approaches in which the rules/equations are man-
ually written by experts, the model in Toshokan is simply a partial function
and automatically generated. We tried to include the JLibSketch on the reported
benchmarks [25]. Unfortunately, we found the Java programs produced for all
these benchmarks are flawed and cannot be handled by our implementation.6

The function models used in modular synthesis [35] are more flexible. The
model can be either strong (deterministic) or weak (nondeterministic). In other
words, there can be a unique or multiple valid outputs for the same input. The
key contribution of their work is a CEGIS+ algorithm which handles both strong
and weak models efficiently. However, the functional models and the canonical-
ization functions they rely on are still manually written, while our library models
are generated automatically from the logger. This is made possible by the fact
that there is a canonical, executable library in our setting. In contrast, the orig-
inal functions in [35] are not necessarily executable—these functions per se can
be templates with holes to be filled by the synthesizer. The JSketch (Model
version) which we have compared with implements the CEGIS+ algorithm (see
experimental results in Sect. 6). The idea of angelic synthesis is also used by
Burst [26], which does not aim to synthesize and handle library models.

There is a rich literature in component-based synthesis, which aims to gener-
ate a program consisting of library calls to a provided API. This line of work was
pioneered by Prospector [24] and followed by many synthesis tools including
CodeHint [14], SyPet [12], EdSynth [43] and FrAngel [33]. These systems
typically synthesize code making library calls by actually executing the candi-
date program on a set of test cases. Our approach also treats the library as
a black box but not for testing. We synthesize provably-correct, library-using
programs by incorporating inductive synthesis (using JSketch) and bounded
verification (using JBMC).

Unit-test generation is another related research area. The task is to generate
sequences of method calls to exercise the library to be tested. For example,
6 As a limitation of current JSketch, when generators are involved, the raw output
of JSketch is not compilable and some manual adaptation is needed. This is impos-
sible for Toshokan because the CEGIS loop must compile JSketch output every
iteration.
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Pacheco et al. [29] generate method calls randomly and guide the generation
with feedback from executing the generated sequences. Fudge [3] extracts code
snippets from corpus code and mutate them to generate fuzz drivers. Instead of
testing libraries, our purpose is to synthesize client code of libraries that satisfies
formal specifications.

The idea of delegating complex verification tasks to external oracles is also
explored by SyMO [31], but the main distinction is about the synthesizer’s side.
SyMO (and all existing SyGuS solvers) treat libraries as a white-box, defined
function. In other words, when library call f(x) is part of the grammar, SyGuS
solvers need access to the implementation of f(x) as a defined function. In con-
trast, our angelic inductive synthesizer treats the library as a black box. More-
over, many libraries are not pure-functional (e.g. Stack.push), with side effects
updating the internal composite data structure, which cannot be handled by
SyMO.

External function handling in direct manipulation. The most related work
to this paper is JDial [17], which performs direct manipulation, a special form
of program repair. In each iteration of the synthesis procedure, JDial lever-
ages Sketch to guess a single input-output pair of the library function which
is not covered by the current program’s execution, then runs the library func-
tion with the guessed input to check whether the guessed output is correct.
While JDial and Toshokan share the same idea of dynamically expanding
the library model, they are different in several aspects. First, JDial supports
interactive program repair, while Toshokan, for the first time, integrates the
dynamic library model into a fully-automatic sketch-based synthesis procedure.
Second, JDial only handles simple mathematical functions such as Math.pow
or Math.max, and it is not clear how their approach can be extended to support
libraries manipulating objects, with internal states and references, etc., and how
scalable their approach toward more sophisticated libraries. Third, JDial runs
authentic libraries eagerly and not guided by counterexamples, e.g., its Math.max
example takes more than 90 iterations. By contrast, Toshokan runs the whole
rejected program and only logs those library calls witness the failure, making
the generated library model smaller and more helpful for the synthesizer.

8 Conclusion

We proposed Toshokan, a new program synthesis framework in which programs
that use external libraries could be synthesized without any mock or model
from the user. Toshokan extends the classic counterexample-guided inductive
synthesis framework with a bootstrapping, log-based library model. We found
that, comparing to existing synthesis techniques that are able to handle external
libraries through user-provided models or mocks, our methods save the user from
the extra manual work, at the cost of moderate performance overhead.

Acknowledgments. This research was supported in part by the National Science
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Abstract. Deep neural networks have been shown to be vulnerable
to adversarial attacks that perturb inputs based on semantic features.
Existing robustness analyzers can reason about semantic feature neigh-
borhoods to increase the networks’ reliability. However, despite the sig-
nificant progress in these techniques, they still struggle to scale to deep
networks and large neighborhoods. In this work, we introduce VeeP, an
active learning approach that splits the verification process into a series
of smaller verification steps, each is submitted to an existing robustness
analyzer. The key idea is to build on prior steps to predict the next
optimal step. The optimal step is predicted by estimating the robust-
ness analyzer’s velocity and sensitivity via parametric regression. We
evaluate VeeP on MNIST, Fashion-MNIST, CIFAR-10 and ImageNet
and show that it can analyze neighborhoods of various features: bright-
ness, contrast, hue, saturation, and lightness. We show that, on average,
given a 90minute timeout, VeeP verifies 96% of the maximally certifiable
neighborhoods within 29minutes, while existing splitting approaches ver-
ify, on average, 73% of the maximally certifiable neighborhoods within
58 minutes.

1 Introduction

The reliability of deep neural networks (DNNs) has been undermined by adver-
sarial examples: perturbations to inputs that deceive the network. Many adver-
sarial attacks perturb an input image by perturbing each pixel independently by
up to a small constant ε [14,27,36,45,46]. To understand the local robustness
of a DNN in ε-balls around given images, many analysis techniques have been
proposed [12,13,16,24,34,38,42,47,48,52,54]. In parallel, semantic adversarial
attacks have been introduced, such as HSV transformations [21] and colorization
and texture attacks [5]. Figure 1 illustrates some of these transformations. Unlike
ε-ball adversarial attacks which are not visible, feature adversarial attacks can
be visible, because the assumption is that humans and networks should not mis-
classify an image due to perturbations of semantic features. Reasoning about net-
works’ robustness to semantic feature perturbations introduces new challenges
to robustness analyzers. The main challenge is that unlike ε-ball attacks, where
pixels can be perturbed independently, feature attacks impose dependencies on
the pixels. Abstracting a feature neighborhood to its smallest bounding ε-ball
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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will lead to too many false alarms. Thus, existing robustness analyzers designed
for ε-ball neighborhoods perform very poorly on feature neighborhoods.

This gave rise to several works on analyzing the robustness of feature neigh-
borhoods [3,32,42]. These works rely on existing ε-ball robustness analyzers and
employ two main techniques to reduce the loss of precision. First, they encode the
pixels’ dependencies imposed by the features by adding layers to the network [32]
or by computing a tight linear abstraction of the feature neighborhood [3]. Sec-
ond, they split the input range into smaller parts, each is verified independently,
e.g., using uniform splitting [3,32,42]. Despite of these techniques, for deep net-
works and large neighborhoods, existing works either lose too much precision and
fail to verify or split the neighborhoods into too many parts. In the latter case,
approaches must choose between a very long execution time (several hours for deep
networks and a single neighborhood) or forcing the analysis to terminate within
a certain timeout, leading to certification of neighborhoods that are significantly
smaller than the maximal certifiable neighborhoods. These inherent limitations
diminish the ability to understand how vulnerable a network is to feature attacks.

Our work: splitting of feature neighborhoods via active learning. We address the
following problem: given a set of features, each with a target perturbation diame-
ter, find a maximally robust neighborhood defined by these features. We propose
a dynamic close-to-optimal input splitting to boost the robustness certification
of feature neighborhoods. Unlike previous splitting techniques, which perform
uniform splitting [3,32] or branch-and-bound [6,7,19,30,35,48,52], our splitting
relies on active learning: the success or failure of previous splits determines the
size of future splits. The key idea is to phrase the verification task as a process,
where each step picks an unproven part of the neighborhood and submits it to a
robustness analyzer. The analyzer either succeeds in proving robustness or fails.
Our goal is to compute the optimal split. An optimal split is one where the
number of failed steps is minimal, the size of each proven part is maximal, and
the execution time is minimal. Predicting an optimal split requires estimating
the exact robustness boundary of the neighborhood, which is challenging.

Splitting by predicting the analyzer’s velocity and sensitivity. We present VeeP
(for verification predictor), a learning algorithm, treating the robustness analyzer
as the oracle, which dynamically defines the splitting. VeeP defines the next step
by predicting the next optimal diameters. To this end, it approximates the ana-
lyzer’s sensitivity and velocity for the unproven part. Informally, the sensitivity
is a function of the diameters quantifying how certain the robustness analyzer
is that the neighborhood is robust. A positive sensitivity means the analyzer
determines the neighborhood is robust, while a non-positive sensitivity means
the analyzer fails. The velocity is a function of the diameters quantifying the
speed of the robustness analyzer. VeeP predicts the diameters of the next step
by solving a constrained optimization problem: it looks for the diameters maxi-
mizing the velocity such that its sensitivity is positive. VeeP relies on parametric
regression to approximate the velocity and sensitivity functions of the current
step. It terminates either when it succeeds verifying robustness for the given
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Fig. 1. Examples of ImageNet images and maximally perturbed images in the neigh-
borhoods that VeeP verified robust, for an AlexNet model.

target diameters or when it fails to prove robustness for too small parts. It is
thus a sound and precise verifier, up to a tunable precision level.

We implemented VeeP in a system, which relies on GPUPoly [34] as the
robustness analyzer (the oracle). We evaluate VeeP on different kinds of archi-
tectures, including ResNet models for CIFAR-10 and AlexNet models for Ima-
geNet. Our experiments focus on several semantic features: brightness, con-
trast, and HSL (hue, saturation, lightness). Results show that, when given a
90 minute timeout, VeeP almost perfectly closes the gap between the maximal
certified feature neighborhoods and the minimal feature adversarial examples:
the verified diameters that VeeP computes are, on average, at least 96% of the
maximal certifiable diameter. On average, VeeP completes in 29 minutes. We
compare to branch-and-bound, which computes 74% of the maximal diameters
in 54 minutes, and to uniform splitting, which computes 73% of the maximal
diameters in 62 minutes. We study the acceleration rate of VeeP over branch-
and-bound and uniform splitting by running an experiment without a timeout.
Results show that VeeP reduces the execution time of branch-and-bound by 4.4x
and of uniform splitting by 10.2x. We also compare to the theoretical optimal
greedy baseline that “knows” the optimal diameter of every step. We show that
VeeP’s time overhead is only 1.2x more than this theoretical optimal baseline.
Figure 1 illustrates how large the neighborhoods that VeeP verifies. It shows pairs
of original ImageNet images and the maximally perturbed image in the neigh-
borhood that VeeP verified robust, for an AlexNet model. In these examples,
every neighborhood is defined by a different feature (hue, saturation, and light-
ness), and the target diameter submitted to VeeP is determined by computing
a minimal adversarial feature example along the corresponding feature.

To conclude, our main contributions are:

– A learning algorithm, called VeeP, to verify robustness of feature neighbor-
hoods. VeeP computes an optimal split of the neighborhood, each part is
verified by a robustness analyzer. To predict the next split, VeeP approxi-
mates the analyzer’s velocity and sensitivity using parametric regression.

– An evaluation of VeeP on MNIST, Fashion MNIST, CIFAR-10 and ImageNet
over fully-connected, convolutional, ResNet, and AlexNet models. Our evalu-
ation focuses on neighborhoods defined using brightness, contrast, and HSL.
Results show that VeeP provides a significant acceleration over branch-and-
bound and uniform splitting.



302 A. Kabaha and D. Drachsler-Cohen

2 Preliminaries

In this section, we provide the background on neural network classifiers, verifi-
cation of feature neighborhoods, and existing splitting approaches.

Neural network classifiers. Given an input domain R
d and a set of classes

C = {1, . . . , c}, a classifier is a function mapping inputs to a score vector over
the possible classes D : Rd → R

c. A fully-connected network consists of L layers.
The first layer takes as input a vector from R

d, denoted i, and it passes the input
as is to the next layer. The last layer outputs a vector, denoted oD(i), consisting
of a score for each class in C. The classification of the network for input i is the
class with the highest score, c′ = argmax(oD(i)). When it is clear from the con-
text, we omit the superscript D. The layers are functions, denoted h1, h2, . . . , hL,
each takes as input the output of the preceding layer. The network’s function
is the composition of the layers: o(i) = D(i) = hL(hL−1(· · · (h1(i)))). The func-
tion of layer m is defined by a set of processing units called neurons, denoted
nm,1, . . . , nm,km

. Each neuron takes as input the outputs of all neurons in the
preceding layer and outputs a real number. The output of the layer m is the vec-
tor (nm,1, . . . , nm,km

)T consisting of all its neurons’ outputs. A neuron nm,k has
a weight for each input wm,k,k′ and a single bias bm,k. Its function is computed
by first computing the sum of the bias and the multiplication of every input by
its respective weight: n̂m,k = bm,k +

∑km−1
k′=1 wm,k′,k ·nm−1,k′ . This output is then

passed to an activation function ϕ to produce the output nm,k = ϕ(n̂m,k). Acti-
vation functions are typically non-linear functions. In this work, we focus on the
ReLU activation function, ReLU(x) = max(0, x). We note that, for simplicity’s
sake, we explain our approach for fully-connected networks, but it extends to
other architectures, e.g., convolutional and residual networks.

Local robustness. A safety property for neural networks that has drawn a lot
of interest is local robustness. Its meaning is that a network does not change
its classification for a given input under a given type of perturbation. Formally,
given an input x, a neighborhood containing x, I(x) ⊆ R

d, and a classifier D, we
say D is robust in I(x) if ∀x′ ∈ I(x), argmax(D(x′)) = argmax(D(x)). We focus
on feature neighborhoods, consisting of perturbations of an input x along a set of
features f1, . . . , fT . The perturbation of an input along a feature f is a function
f : Rd × R → R

d, mapping an input x and a diameter δ to the perturbation of
x along the feature f by δ. To abbreviate, we call the perturbation function the
feature f , similarly to [32]. For all features f and inputs x, we assume f(x, 0) = x.
Given a feature f , a diameter δ̄, and an input x, the feature neighborhood If,δ̄(x)
is the set of all perturbations of x along f by up to diameter δ̄: If,δ̄(x) = {f(x, δ) |
0 ≤ δ ≤ δ̄}. We extend this definition to a set of features by considering a
diameter for every feature. Given a set of features f1, . . . , fT , their diameters
δ̄1, ..., δ̄T , and an input x, we define:

If1,δ̄1,...,fT ,δ̄T
(x) = {fT (...f2(f1(x, δ1), δ2)..., δT ) | 0 ≤ δ1 ≤ δ̄1, ..., 0 ≤ δT ≤ δ̄T }
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3 Verification of Feature Neighborhoods: Motivation

There are many verifiers for analyzing robustness of neural networks [12,13,
16,24,34,38,42,47,48,52,54]. Most of them analyze box neighborhoods, where
each input entry is bounded by an interval [l, u] (for l, u ∈ R). In particular,
they can technically reason about feature neighborhoods: first, one has to over-
approximate a feature neighborhood If1,δ̄1,...,fT ,δ̄t

(x) to a bounding box neigh-
borhood, and then pass the box neighborhood to any of these verifiers. However,
this approach loses the dependency between the input entries, imposed by the
features, and may result in spurious counterexamples. To capture the depen-
dencies, a recent work proposes to encode features as a layer and add it to the
network as the first layer [32]. This has been shown to be effective for various
features, such as brightness, hue, saturation, and lightness. However, for deep net-
works and large feature neighborhoods, encoding the dependency is not enough
to prove robustness: either the analysis time is too long or the analyzer loses too
much precision and fails. Because feature neighborhoods have low dimensional-
ity (every feature introduces a single dimension), divide-and-conquer is a natural
choice for scaling the analysis [3,32,42].

Divide-and-conquer for feature neighborhoods. Divide-and-conquer is highly effec-
tive for scaling the analysis of feature neighborhoods. The key challenge is com-
puting a useful split. A branch-and-bound approach (BaB) computes the split
lazily [6,7,19,30,35,48,52]. To illustrate, consider a single feature neighborhood
If,δ̄(x). A BaB approach begins by analyzing If,δ̄(x). If the analysis fails, it
splits the neighborhood into two neighborhoods, If,δ(x) and If,δ̄−δ(f(x, δ)). Then,
it analyzes each neighborhood separately and continues to split neighborhoods
upon failures. As a result, it tends to waste a lot of time on analyzing too
large neighborhoods until reaching to suitable-sized neighborhoods. A uniform
splitting approach determines a number m and splits the neighborhood into
If,δ̄/m(x), . . . , If,δ̄/m(f(x, δ̄·(m−1)/m)) [3,32,42]. This approach may still fail for
some neighborhoods, due to timeouts or loss in precision, or waste too much time
on verifying too small neighborhoods. This raises the question: can we dynami-
cally determine a split that minimizes the execution time of the verification?

4 Problem Definition: Time-Optimal Feature Verification

In this section, we define the problem of robustness verification of feature neigh-
borhoods minimizing the execution time. To simplify notation, the definitions
assume a single feature, but they easily extend to multiple features.

We view the robustness analysis of feature neighborhoods as a process. Given
a feature neighborhood, the verifier executes a series of steps, dynamically con-
structed, until reaching the maximal diameter for which the network is robust.
Our verification process relies on a box analyzer A, which can determine the
robustness of box neighborhoods. Every verification step determines the next
(sub)neighborhood to verify and invokes the analyzer. The analyzer A need not
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be complete and may fail due to overapproximation error. That is, given a net-
work and a box neighborhood, A returns robust, non-robust, or unknown. Since
the goal of the feature verifier is to compute a maximal neighborhood, if A returns
unknown, it splits the last neighborhood into smaller neighborhoods. To guarantee
that the verification process terminates, if A fails to verify a feature neighborhood
with a diameter up to a predetermined threshold δMIN, we assume that this neigh-
borhood is not robust. Because the feature verifier terminates when reaching the
maximal diameter, the challenge is not to improve its precision but rather to keep
its execution time minimal. We next provide formal definitions.

Definition 1 (Verification Step). Given a box analyzer A, a classifier D, and
a feature neighborhood defined by f , δ̄ and x, a verification step is a pair (δx, δ),
such that 0 ≤ δx < δ̄ and 0 < δ ≤ δ̄. The result of a verification step (δx, δ) is
A’s result for D and If,δ(f(x, δx)), which is robust, not robust or unknown.

We next define feature verification sequence, consisting of verification steps.

Definition 2 (Feature Verification Sequence). Given a box analyzer A,
a precision level δMIN, a classifier D, and a feature neighborhood defined by
f , δ̄, and x, a feature verification sequence is a sequence of verification steps
s1, . . . , sm that verify the maximally robust neighborhood up to δ̄, i.e., either:

– there is no step whose result is not robust and, for every δy ∈ [0, δ̄], there is
a step s = (δx, δ), where δx ≤ δy ≤ δx + δ, for which A returns robust. That
is, the verification steps cover all inputs in If,δ̄(x), or

– there is no step whose result is not robust, except perhaps the last step sm =
(δm,x, δm) whose result is unknown or not robust and δm = δMIN. For every
δy ∈ [0, δm,x], there is a step s = (δx, δ), where δx ≤ δy ≤ δx + δ, for which
A returns robust. That is, the verification steps cover all inputs in If,δm,x

(x)
and we assume there is an adversarial example in If,δMIN

(f(x, δm,x)).

Finally, we define the problem of time-optimal feature verification. To this
end, we introduce a notation. Given a verification step s, we denote by t(s) the
execution time of the analyzer A on the neighborhood defined by step s. We note
that we assume that the time to define a verification step s = (δx, δ) is negligible
with respect to t(s). Given a feature verification sequence S = (s1, . . . , sm), its
execution time is the sum of its steps’ execution times: t(S) = Σm

i=1t(si). Our
goal is to compute a feature verification sequence minimizing the execution time.

Definition 3 (Time-Optimal Feature Verification). Given a box analyzer
A and a feature neighborhood defined by f , δ̄ and x, a time-optimal feature
verification sequence S is one that minimizes the execution time: argminSt(S).

This problem is challenging because divide-and-conquer algorithms have the exe-
cution time of a verification step only after they invoke A on that step’s neighbor-
hood. Thus, constructing a verification sequence is bound to involve suboptimal
choices. However, we show that it is possible to predict the execution time of a
(new) verification step based on the execution times of the previous steps. We
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note that although we focus on analysis of deep neural networks, we believe that
predicting verification steps based on prior steps is a more general concept which
is applicable to analysis of other machine learning models.

5 Prediction by Proof Velocity and Sensitivity

In this section, we present the key concepts on which we build to predict the
verification steps: proof velocity and sensitivity. We show that these can be
modeled by parametric functions. We then explain how these functions can be
used to predict optimal steps by solving a constrained optimization problem.

Proof velocity. To minimize the execution time of the verification process, we wish
to maximize the proof velocity. Proof velocity is the ratio of the neighborhood’s
certified diameter and the time to verify it by the box analyzer A. In the follow-
ing, we denote the execution time of step s = (δx, δ) by t(s) = tA(If,δ(f(x, δx))).
The certified diameter of this step’s neighborhood, denoted δs

A, is equal to δ, if A
returns robust, and 0, if A returns non-robust or unknown.

Definition 4 (Proof Velocity). Given a box analyzer A, a classifier D, a
feature neighborhood defined by f , δ̄, and x, and a verification step s = (δx, δ),
the proof velocity of s is: VA(If,δ(f(x, δx))) = δs

A

t(If,δ(f(x,δx)))
.

The velocity is either a positive number, if A returns robust, and 0 otherwise.
A zero velocity means that the feature verifier has to split this neighborhood and
that we have not gained from this analysis. Empirically, we observe that if A relies
on linear approximations to analyze the network robustness, the proof velocity
can be modeled as a function of the certified diameter. For small networks or
neighborhoods, the velocity is approximately a linear function of the diameter,
because the analysis time is, in practice, constant. The larger the network or the
neighborhood, the longer the analysis time because the overapproximation error
increases, and thus the analyzer A executes more refinement steps (e.g., back-
substitution [42] or solving linear programs [48]). We empirically observe that
when the network or the neighborhood are large enough to trigger refinement
steps, the execution time is approximately exponentially related to the diameter:
t(δ) ∝ exp(β · δ), for some parameter β. Consequently, V (δ) ∝ δ · exp(−β · δ).
Note that, for β = 0, the proof velocity is linear in δ. Thus, this function captures
both cases of small network/neighborhood and large network/neighborhood. We
illustrate this relation in Fig. 2, showing the measured proof velocity (the blue
dots) as a function of the diameter δ, across different models and three box
analyzers relying on different linear approximations. The figure also shows the
function we use to approximate the proof velocity (the red curve). The figure
shows how close the approximation is. We next summarize this observation.

Observation 1. For every verification step s = (δx, δ), if δs
A > 0, the velocity

can be approximated by: V (δ) = αV · δ · exp(−βV · δ) for βV ≥ 0 and αV ∈ R.
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Fig. 2. Velocity and sensitivity as functions of the diameter δ, for different models and
three box analyzers: GPUPoly [34], DeepZono [41], and RefinePoly [40]. Blue dots show
the measured values and red curves show our function approximations.

We can use this observation to predict time-optimal verification steps. To this
end, at the beginning of every verification step, we require to (1) estimate the
parameters of the velocity’s function and (2) predict the maximal δs

MAX for which
the analyzer A returns robust. With these values, we can define the next step by
computing δ ∈ (0, δs

MAX] maximizing the proof velocity. In order to predict the
maximal value δs

MAX, we define the concept of neighborhood sensitivity.

Neighborhood sensitivity. The sensitivity concept builds on the commonly known
concept network confidence. Given a classifier D and an input x, the confidence of
the classifier in class j is the output oD

j (x), i.e., the score that D assigns for j on
input x. Based on this term, we define the sensitivity of x as the difference between
the confidence in j and the highest confidence in a class different from j:

SD(x, j) = oD
j (x) − argmaxj′ �=j(o

D
j′ (x))

If SD(x, j) > 0, then D classifies x as j, and the higher SD(x, j) the more
certain the classifier is in its classification of x as j. We extend this term to
neighborhoods. We define the neighborhood sensitivity as the minimal sensitivity
of its inputs: SD(I, j) = min{SD(x′, j) | x′ ∈ I}. From this definition, we get
few observations. First, for any I ⊆ I ′, we have SD(I ′, j) ≤ SD(I, j). That
is, extending a neighborhood with more inputs may decrease the neighborhood
sensitivity in j. Second, if SD(I, j) ≤ 0, then I is not robust to j. Third, if A
is precise, then for every verification step s = (δx, δ), we have δs

A = δ if and
only if the sensitivity SD(If,δ(f(x, δx)), j) is positive. In practice, we rely on an
imprecise analyzer A and we cannot compute the exact neighborhood sensitivity.
However, we can approximate a neighborhood’s sensitivity by relying on the
analysis of A. Since most incomplete analyzers compute, for every output neuron
k, real-valued bounds [lk, uk], we can approximate the neighborhood sensitivity:

SD
A (If,δ(f(x, δx)), j) = lj − max

j′ �=j
uj′
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Thus, to compute the maximal δs
MAX whose neighborhood can be proven robust

by A, we can compute the maximal δs
MAX for which SD

A (If,δs
MAX

(f(x, δx)), j) > 0.
The remaining question is how to approximate the sensitivity function. Empir-
ically, we observe that if A relies on linear approximations to analyze the net-
work robustness, the neighborhood sensitivity has an exponential relation to the
diameter. This is demonstrated in Fig. 2, for different models and linear approx-
imations. The figure shows how close the approximation is (red curves) to the
measured sensitivity (the blue dots). We next summarize this observation.

Observation 2. For every verification step, the neighborhood sensitivity can be
approximated by: SA(δ) = αS + βS · exp(γS · δ), where αS , βS , γS ∈ R.

This exponential relation can be explained by considering the effect of linear
approximations on non-linear computations. At a high-level, the exponential
relation is linked to the number of non-linear neurons being approximated. We
exemplify this relation in the extended version of this paper [23, Appendix A].

Time-optimal feature verification via proof velocity and sensitivity. Given the
functions of the velocity and sensitivity, we can state our problem as a con-
strained optimization. Given an analyzer A, a feature neighborhood defined by
f , δ̄ and x, and the currently maximal certified diameter δx, the δ of the optimal
verification step s = (δx, δ) is a solution to the following optimization problem:

max V D(If,δ(f(x, δx))) such that SD
A (If,δ(f(x, δx)), cx) > 0

Here, cx is the classification of x. Because both functions are convex, the global
maximum can be computed as standard. First, we compute the feasible region of
δ by comparing SD(If,δ(f(x, δx)), cx) to zero. Second, we compute the derivative
of V D(If,δ(f(x, δx))), compare to zero, and compute the optimal δ. If the opti-
mal δ is not feasible, we take the closest feasible value. Therefore, if we know the
parameters of the velocity and sensitivity functions, we can compute an optimal
verification step. The challenge is to approximate these parameters, for every step.
In the next section, we explain how to predict them from the previous steps.

6 VeeP: A System for Time-Optimal Feature Verification

In this section, we present our system, called VeeP, for computing time-optimal
verification steps. VeeP builds on the ideas presented in Sect. 5 and dynamically
constructs the verification steps by solving the constrained optimization prob-
lem. The challenge is predicting the parameters of the velocity and sensitivity
functions. The key idea is to treat the analyzer as an oracle, whose responses to
previous verification steps are used to define the next step. Conceptually, VeeP
builds on active learning, where it acts as the learner for optimal verification
steps and the analyzer acts as the oracle. Throughout execution, VeeP tracks
the accumulated verified diameters of the robust neighborhood. If a verification
step succeeds, the robust neighborhood is extended and the verified diameters
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increase. If a step fails, the next predicted diameters will be smaller, up to a
minimal value δMIN. Thus, although VeeP predicts the diameters, which may be
too small or large, its overall analysis is sound and precise up to δMIN. It is sound
because it employs divide-and-conquer and relies on a sound analyzer. It is pre-
cise because if a step fails for diameters greater than δMIN, then VeeP attempts
again to extend the robust neighborhood by predicting smaller diameters. We
begin this section by explaining how VeeP reasons about neighborhoods defined
by a single feature and then extend it to general feature neighborhoods.

6.1 VeeP for Single Feature Neighborhoods

In this section, we describe VeeP for analyzing neighborhoods defined by a single
feature. VeeP takes as inputs a classifier D, a feature f , a diameter δ̄, and an input
x. During its execution, it maintains in δx the sum of the certified diameters. It
returns the maximal δx ≤ δ̄ for which the neighborhood is robust, up to precision
δMIN. VeeP operates iteratively, where the main computation of every iteration is
determining a verification step sk = (δx, δk) to submit to the analyzer A.

Defining a verification step. The goal of a verification step is to increase the
accumulated certified diameter δx by a diameter δk. VeeP aims at choosing δk

such that (1) the sensitivity of If,δk
(f(x, δx)), as determined by the box analyzer

A, is positive, and (2) If,δk
(f(x, δx)) maximizes the proof velocity. VeeP leverages

Observation 1 and 2 and approximates them as Sk(δ) = αS + βS · exp(γS · δ)
and Vk(δ) = αV · δ · exp(−βV · δ). It solves two parametric regression problems
to determine θk

S = (αS , βS , γS) and θk
V = (αV , βV ). This requires to obtain

examples: e1S = (δ1, S(δ1)), ..., eM
S = (δM , S(δM )) and e1V = (δ1, V (δ1)), ..., eM

V =
(δM , V (δM )). The minimal number of examples is three for Sk(δ) and two for
Vk(δ). Given the examples, the parameters are determined by minimizing a loss:

θk
S = argmin

αS ,βS ,γS

L(αS , βS , γS , e1S , . . . , eM
S ) θk

V = argmin
αV ,βV

L(αV , βV , e1V , . . . , eM
V )

For the loss, VeeP uses the least squares error. Given the parameters, VeeP solves
the optimization problem (Sect. 5) to approximate the optimal value of δk:

max Vθk
V
(δ) such that Sθk

S
(δ) > 0

The remaining question is how to obtain examples. A naive approach is to ran-
domly select δ1, . . . , δM and for each δi run the analyzer A on If,δi(f(x, δx)), to
find the sensitivity and velocity. However, these M calls to A are highly time
consuming, especially because their only goal is to predict the next diameter to
analyze. Instead, VeeP relies on previous steps to estimate examples by leverag-
ing two empirical observations. First, the function Vk(δ) is similar to previous
Vk−i(δ), for small values of i. Thus, VeeP can use as examples (δk−i, Vk−i(δk−i)),
for small values of i. Second, the function Sk(δ) is similar to Sk−i(δ), for small
values of i, up to a small alignment term: Sk(0)−Sk−i(0). Thus, VeeP can use as
examples (δk−i, Sk−i(δk−i)+Sk(0)−Sk−i(0)), for small values of i. Note that com-
puting Sk(0) does not require to run A, because the sensitivity of If,0(f(x, δx)) is
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Fig. 3. Analysis for the brightness feature, an ImageNet image, and AlexNetTiny.

exactly the sensitivity of the input f(x, δx), which can be computed by running
it through the classifier D. Based on these observations, VeeP obtains examples
as follows. Its first example is (0, Sk(0)). Since the velocity of this step’s neigh-
borhood is zero, it is not used to approximate Vk(δ). The next M − 1 examples
are defined as described by the previous M − 1 predicted diameters, which have
already been submitted to A. Note that the examples are defined from previous
steps regardless of whether their neighborhoods have been proven robust or not.
When VeeP begins its computation and has no previous steps, it executes M −1
steps whose diameters are some small predetermined values.

Example. Figure 3 shows an example of VeeP’s analysis for a brightness neighbor-
hood with δ̄ = 0.2, an ImageNet image x (the image on the left) and an AlexNet-
Tiny classifier D. We assume M = 3. The first two steps rely on predetermined
small diameters δ0 = 10−4 and δ1 = 10−3. VeeP begins by submitting to A the
neighborhood If,δ0(x) and A returns robust. VeeP thus updates the accumulated
diameter δx = 10−4 and constructs the example e0. The example consists of the
sensitivity S0 and velocity V0 (computed from A’s analysis), and the sensitivity
S0(0) at δx = 0 (computed by running x through D). The next verification step
submits to A the neighborhood If,δ1(f(x, 10−4)) and A returns robust. VeeP
thus updates δx = 1.1 · 10−3 and constructs the example e1, consisting of the
sensitivity S1 and velocity V1 (computed from A’s analysis) and the sensitivity
S1(0) (computed by running f(x, 10−4) through D). To predict the next diam-
eter δ2, VeeP relies on e0, e1 and S2(0) (computed by running f(x, 1.1 · 10−3)
through D). Its examples are: e0S = (0, 1.52), e1S = (10−4, S0 + S2(0) − S0(0)),
e2S = (10−3, S1+S2(0)−S1(0)), and e0V = (10−4, V0), e1V = (10−3, V1). Given the
examples, it minimizes the MSE loss to compute the parameters θ2S and θ2V . After-
wards, it solves the constrained optimization function to compute δ2. The result
is δ2 = 2.8 ·10−3. VeeP submits to A the neighborhood If,δ2(f(x, 1.1 ·10−3)) and
A returns robust. VeeP updates δx and constructs the example e2, as described
before. VeeP predicts the next diameter δ3, by repeating this process using the
examples e1 and e2. It continues until reaching the target diameter δ̄ = 0.2. The
most perturbed image in this neighborhood is shown on the right of Fig. 3.

Overall operation. The operation of VeeP is summarized in Fig. 4 and mostly
follows the description above, up to few modifications to guarantee termination.
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Fig. 4. The VeeP System.

Initially, VeeP sets δx = 0 and generates the first M − 1 steps using predeter-
mined diameters. Every verification step predicts the next diameter based on
previous iterations, as described before (steps 1–4 in Fig. 4). Then, to avoid cer-
tification failures and guarantee termination, VeeP performs three corrections to
the predicted diameter δk (step 5). First, it checks whether in the last M steps,
there has been a step i with a smaller predicted diameter, δi < δk, that failed.
If so, VeeP sets δk to the minimal value between the last verified diameter (if
exists) and the last failed one from the last M steps. Second, it subtracts a small
constant from δk. Third, it guarantees that δk is not below the precision level by
setting δk = max(δk, δMIN). These refinements, along with the prediction based
on recent examples, aim at mitigating predicting too large or too small diameters.
The neighborhood defined by (δx, δk) is submitted to the analyzer A (step 6),
which returns the real-valued bounds of the output neurons. Accordingly, VeeP
computes the sensitivity Sk and velocity Vk. If Sk > 0, then the neighborhood is
robust and thus δx is increased by δk. Afterwards, VeeP checks the termination
conditions. The first condition is Sk ≤ 0 and δk = δMIN, indicating that the
neighborhood is maximal. The second condition is δx = δ̄, indicating that VeeP
certified the target diameter. If the conditions are not met, VeeP constructs the
example of this step and continues to another iteration.

Correctness analysis. We next discuss the time overhead of VeeP and its correct-
ness. The first lemma analyzes the time overhead of VeeP. The overhead is the
additional time that VeeP requires compared to an oblivious splitting approach.
The overhead of every step consists of the call to the classifier D (to compute
Sk(0)) and the time to solve the regression problems (to approximate Sk and
Vk). The time overhead also includes the M − 1 initial calls to the analyzer A.

Lemma 1. The total overhead is n · (TD + TR) + ΣM−1
i=1 TA,i, where TD is the

time to run a single input in the classifier D, TR is the time to solve a regression
problem from M examples, n is the number of verification steps and TA,i is the
execution time of A on the ith initial step.
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In practice, TD and TR are significantly shorter than the time to run the analyzer
A. Since the value of M is small (we pick M = 3 or M = 4), the overhead
of the initial queries to the analyzer is negligible when compared to the total
execution time of VeeP. As a result, we observe that the execution time of VeeP
is very close to the optimal greedy baseline that “knows” the optimal diameter of
every step. We continue with a lemma guaranteeing termination and a theorem
guaranteeing soundness and precision (up to δMIN). Proofs are provided in the
extended version of this paper [23, Appendix B].

Lemma 2. Given a classifier D, an input x, a feature f and a diameter δ̄, if A
is guaranteed to terminate, then VeeP is guaranteed to terminate.

Theorem 1. Given a classifier D, an input x, a feature f , a diameter δ̄, and a
precision level δMIN, if A is sound (but may be incomplete), then VeeP is:

– sound: if it returns If,δx
(x), then this neighborhood is robust, and

– precise up to δMIN: if it returns δx smaller than δ̄, then we assume there is
δ̂ ∈ (δx, δx + δMIN] such that x′ = f(x, δ̂) is an adversarial example.

6.2 VeeP for Multi-feature Neighborhoods

In this section, we present VeeP’s algorithm to verify neighborhoods defined by
multiple features f1, f2, . . . , fT . VeeP computes a sequence of verification steps
that cover the maximal robust T -dimensional hyper-rectangle neighborhood.
The sequence is constructed such that VeeP computes the maximal diameters
feature-by-feature. To compute the maximal diameter of the ith feature, VeeP
computes the maximal robust i-dimensional neighborhood of the first i features.
Similarly to Sect. 6.1, a verification step is a pair of an offset vector (δ1, . . . , δT )
(instead of δx) and a diameter δ. A verification step thus corresponds to a hyper-
cube neighborhood If1,δ,...,fT ,δ(x0), where x0 is the perturbation of x as deter-
mined by the features and offsets (x0 = fT (. . . (f2(f1(x, δ1), δ2), . . .), δT )). While
VeeP could predict a different diameter for each feature, this would increase
the prediction’s complexity by a factor of T . Besides this, the analysis is simi-
lar to Sect. 6.1 but generalizes it to high dimension, resulting in few differences.
First, computing the offsets is more subtle than computing δx. Second, the exam-
ples used for prediction also leverage the closest examples. Third, computing the
accumulated verified diameters, required for checking the termination conditions,
involves obtaining the vertices of the certified region. We next explain all these
differences, then exemplify VeeP’s operation, and finally present the algorithm.

Offsets. Initially, all offsets are zero. Recall that VeeP computes the maximal
diameters feature-by-feature, and, for every fi, it computes the maximal robust
i-dimensional neighborhood of f1, ..., fi. After every verification step, VeeP com-
putes the next offsets. Assume VeeP is currently at feature fi. If a step fails for
δ > δMIN, the offsets of the next step are identical. If a step fails for δ = δMIN

or reaches δ̄i, VeeP computes the initial offsets of fi+1, as shortly described.
Otherwise, VeeP computes the next offsets based on a feature-by-feature order
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(from 1 to i). The order, defined in [23, Appendix C], guarantees that VeeP cov-
ers the entire i-dimensional neighborhood. We later exemplify it on a running
example. Upon starting a feature fj , VeeP computes the initial offsets based on
the already certified neighborhoods. This is obtained by finding the earliest step
forming a vertex on the j-dimensional boundary of the certified region, such
that the vertex’s jth offset is within (0, δ̄j). This leverages the already certified
neighborhoods: since the steps define hyper-cube neighborhoods, as a byproduct
of their analysis, there is also progress in the direction of the succeeding, not yet
analyzed, features. The complete computation is provided in [23, Appendix C].

Examples. The diameter of a verification step is predicted by M + 1 examples:
(0, Sk(0)), M −1 (adapted) recent examples and, to increase the prediction accu-
racy, the closest example, with respect to the Euclidean distance. The M − 1
recent examples are used only if they (aim to) advance the diameter of the same
feature as the current step does. If not all of them advance the same feature, VeeP
completes the missing examples with closest examples or initialization examples.

Termination. VeeP terminates when it reaches all target diameters or all maxi-
mal diameters. These conditions generalize the termination conditions presented
in Sect. 6.1. To check the first condition, VeeP maintains an array ds of the certi-
fied diameters, which are updated after every verification step. The diameters are
computed from the vertices bounding the certified region. Although the region
induced by the maximal diameters is a hyper-rectangle, the certified region may
form other shapes. During the analysis, VeeP computes the vertices of the cer-
tified region. To update ds, it selects the maximal bounded hyper-rectangle,
with respect to the Euclidean norm. To check the second condition, VeeP checks
whether it has failed for T consecutive iterations for a neighborhood whose diam-
eter is δMIN. Correctness follows from the the operation of VeeP: upon failure
of a neighborhood with diameter δMIN, it proceeds to the next feature. Thus, T
consecutive failures imply that VeeP has reached all maximal diameters.

Example. We next exemplify VeeP for a neighborhood defined by brightness and
contrast, where δ̄1 = δ̄2 = 0.08 and M = 3 (Fig. 5). VeeP computes the maxi-
mal diameters one by one: first the brightness’s diameter and then the contrast’s
diameter. Figure 5(a) visualizes the verification steps that compute the maximal
diameter of brightness. The sequence begins from the offset (0, 0) (i.e., x0 = x),
and the computation is similar to Sect. 6.1. When VeeP reaches δ̄1, it continues
to the contrast feature. It begins by finding the earliest verification step form-
ing a vertex on the 2-dimensional boundary of the certified region, such that the
vertex’s second offset is within (0, δ̄2). This is the first step and the vertex is
(0, 0.018) (since this step’s diameter is 0.018). Thus, the initial offset of contrast is
(0, 0.018). During the analysis of the contrast feature, VeeP computes verification
steps feature-by-feature. Thus, after initializing the offsets, VeeP advances the
brightness’s offset, until reaching its maximal certified diameter (rightmost square,
top row, Fig. 5(b)). Then, by the order VeeP follows for the verification steps, it
(again) looks for the earliest step forming a vertex on the 2-dimensional boundary
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Fig. 5. Example of VeeP’s analysis to certify a neighborhood defined by brightness and
contrast, for an MNIST image, on a fully-connected network.

of the certified region, such that the vertex’s second offset is within (0, δ̄2). This
is the leftmost square, top row, Fig. 5(b). Thus, it sets the next offset (i.e., of the
leftmost square, top row, Fig. 5(c)) to that vertex’s offsets. The rest of the compu-
tation continues similarly (Fig. 5(c), (d), and (f)). We next illustrate the different
sets of examples used for the prediction (besides (0, Sk(0))). Consider Fig. 5(b).
The examples used by the middle step at the top row are the two leftmost squares
at the top row and the middle square at the row below. The examples used by
the leftmost square at the top row are the three closest examples – the three left-
most squares at the bottom row – since there are no steps advancing the contrast’s
diameter. After every verification step, VeeP constructs for each feature the ver-
tices of the certified neighborhood. Figure 5(e) shows the vertices after complet-
ing the verification steps of Fig. 5(d): ten red vertices for contrast and two yellow
vertices for brightness. Figure 5(f) shows the vertices after completing all verifica-
tion steps. Given the vertices, VeeP computes the accumulated verified diameter
of each feature, which is the minimum coordinate of its vertices. For example, in
Fig. 5(e), the verified diameter of brightness is 0.08, which is the minimum of the
first coordinates of (0.08, 0) and (0.08, 0.067), and similarly, the verified diameter
of contrast is 0.065. VeeP updates the current maximal diameters to these diame-
ters if they form a larger hyper-rectangle than the current ones. Note that if VeeP
terminates after reaching all target diameters (e.g., Fig. 5(f)), the certified region
is a hyper-rectangle and is thus returned.

Overall operation. Algorithm 1 summarizes the operation of VeeP. VeeP begins
by initializing ds, the maximal diameters array, the first M − 1 examples (as
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Algorithm 1: Multi-feature-VeeP (D, x, f1, δ̄1,. . . , fT , δ̄T )
Input: A classifier D, input x, features f1, . . . , fT and diameters δ̄1, . . . , δ̄T .
Output: Diameter array ds s.t. If1,ds[1],...,fT ,ds[T ](x) is maximally robust.

1 ds = [0, . . . , 0]
2 Ex = InitExamples(M)
3 offsets = [0, . . . , 0]
4 count min = 0
5 while ∃ds[i] < δ̄i ∧ count min < T do
6 x0 = perturb(x, f1, . . . , fT , offsets)
7 S0 = D(x0)
8 δ = predict(Ex, x0, S0)
9 t0 = time()

10 {lo,j , uo,j}c
j=1 = A(D, If1,δ,...,fT ,δ(x0))

11 t1 = time()
12 S = lcx − maxj �=cx uj

13 V = S > 0 ? δ
t1−t0

: 0

14 Ex = Ex ∪ {(δ, S, V, S0, offsets)}
15 offsets = compute next offsets(Ex, δ̄1, . . . , δ̄T )
16 BV1, . . . , BVT = compute certified neighborhood vertices(Ex)
17 ds curr = [0, . . . , 0]
18 for i = 1; i ≤ T ; i + + do
19 ds curr[i] = min{vi | v ∈ BVi}
20 if vectorNorm(ds curr) > vectorNorm(ds) then ds = ds curr
21 count min = (S ≤ 0 ∧ δ == δMIN)? count min + 1 : 0

22 return ds

described in Sect. 6.1), the offset array and a counter count min, tracking the
number of consecutive failures. Then, it enters a loop, where each iteration com-
putes a single verification step. An iteration of the loop begins by determining x0

from the offsets (Line 6). Then, it progresses as described in Sect. 6.1 (Lines 7–
14): it computes x0’s sensitivity, predicts δ, submits to A, computes the velocity
and sensitivity, and adds this verification step as a new example. After that, it
computes the new offsets (Line 15). Next, the maximal diameters are computed.
To this end, VeeP constructs, for each feature, the vertices of the certified region
(Line 16). Computing the vertices is a technical computation determined from
the set of examples. We omit the exact computation. Given the vertices, VeeP
computes the current verified diameters ds curr. The current verified diameter
of feature i is the minimum ith coordinate of its vertices (Lines 17–19). Then, if
the Euclidean norm of ds curr is greater than that of ds, it updates ds (Line 20).
Lastly, the counter count min is increased, if A failed, or resets, otherwise (Line
21). The loop continues as long as VeeP has not reached all target diameters and
has not failed during the last T iterations (Line 5).

Correctness. We next present the correctness guarantees of Algorithm 1. Proofs
are provided in the extended version of this paper [23, Appendix B].
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Lemma 3. Given a classifier D, an input x, features f1, . . . , fT and diameters
δ̄1, . . . , δ̄T , if A is guaranteed to terminate, then VeeP is guaranteed to terminate.

Lastly, we show that VeeP is sound and precise, up to precision of δMIN for
each feature’s maximal diameter.

Theorem 2. Given a classifier D, an input x, features f1, . . . , fT and diameters
δ̄1, . . . , δ̄T , if A is sound (but may be incomplete), then:

– VeeP is sound: at the end of the algorithm If1,ds[1],...,fT ,ds[T ](x) is robust.
– VeeP is precise up to δMIN for each feature’s maximal diameter.

7 Evaluation

In this section, we evaluate VeeP. We begin with implementation aspects and
optimizations and then present our experiments.

Implementation. We implemented VeeP in Python1. It currently supports
neighborhoods defined by one or two features. For the analyzer, it relies on
GPUPoly [34]. It further builds on the idea of Semantify-NN [32] that encodes
features as input layers with the goal of encoding pixel relations to reduce
overapproximation errors. Semantify-NN encodes features using fully-connected
and convolutional layers. For some features, this approach is infeasible for high-
dimensional datasets because of the high memory overhead. To illustrate, denote
the input dimension by h×w×3. The HSL input layers, as defined in Semantify-
NN, map an (R,G,B) triple into a single value in the feature domain, resulting
in a perturbed output of h×w. This output is then translated back to the input
domain. Namely, a fully-connected layer requires (h × w) × (h × w × 3) weights.
For ImageNet, where h = w = 224, this layer becomes too large to fit into a
standard memory (over 60GB). Instead, we observe that for some features the
feature layer’s weights are mostly zeros and thus this layer can be implemented
using sparse layers [2,37]. Our implementation sets δMIN = 10−5 and M = 3. As
optimization, it does not keep all previous examples, but only the required ones,
which are dynamically determined. For example, for the neighborhood in Fig. 5,
VeeP keeps only the examples at the top two rows.

Evaluation setup. We trained models and ran the experiments on a dual AMD
EPYC 7742 server with 1TB RAM and eight NVIDIA A100 GPUs. We evaluated
VeeP on four image datasets: MNIST [28] and Fashion-MNIST [53], with images
of size 28×28, CIFAR-10 [25], with images of size 32×32×3, and ImageNet [11],
with images of size 224×224×3. We considered fully-connected, convolutional [29],
ResNet [18], and AlexNet [26] models. For MNIST and Fashion-MNIST, we used
FC-5000× 10, a fully-connected network with 50k neurons. For MNIST, we also
used a convolutional network SuperConv with 88k neurons (from ERAN’s reposi-
tory2). For CIFAR-10, we used ResNetTiny with 311k neurons (from ERAN) and
1 https://github.com/ananmkabaha/VeeP.
2 https://github.com/eth-sri/eran.

https://github.com/ananmkabaha/VeeP
https://github.com/eth-sri/eran
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ResNet18 with 558k neurons. For ImageNet, we used AlexNetTiny with 444k and
AlexNet with 600k neurons. The last four models were trained with PGD [31].
Since GPUPoly currently does not support MaxPool layers, we replaced them in
AlexNet with convolutional ones (justified by [44]). The CIFAR-10 models were
taken from ERAN’s repository, and we trained the other models.

Baseline approaches. We compare VeeP to popular splitting approaches: branch-
and-bound (BaB) [6,7,19,30,35,48,52] and uniform splitting [3,32,42]. Any BaB
technique starts by attempting to certify the robustness of the given neighbor-
hood. If it fails, it splits the verification task into two parts and attempts to
certify the robustness of each separately. If the certification fails again, BaB
repeats the splitting process until all parts certify the original neighborhood.
The difference between BaB techniques is what neurons they can split and how
they choose what to split. For example, some rely on heavy computations, such
as solving a linear program [6,35]. For our setting, where the split focuses on
the input neurons and the input has low dimensionality, the long-edge approach,
which splits the input neuron with the largest interval, has been shown to be
efficient [6]. We thus compare to this approach. Uniform splitting splits a neigh-
borhood into smaller neighborhoods of the same size, sufficiently small so the
analyzer can certify them. Thus, it requires a pre-determined split size (unlike
VeeP and BaB which adapt it during the execution). For a fair comparison, we
need to carefully determine this size: providing a too small size will result in too
long execution times (biasing our results), while providing a too large size will
result in certification failures. Thus, we estimate the maximal split size which will
enable the uniform splitting to certify successfully. To this end, before running
the experiments, we run the following computation. For each neighborhood, we
define several smaller neighborhoods. For each, we look for the maximal ε which
can be verified by GPUPoly without splitting. Finally, we determine the split
size of the uniform splitting to be the minimal value of ε across all these smaller
neighborhoods. For a fair comparison, both baseline approaches were integrated
in our system, i.e., they rely on GPUPoly and the feature layers described before.

Experiments. We run two experiments: one limits the execution time with a
timeout and measures the maximal certified diameter, and the other one mea-
sures execution time as a function of the certified diameter. In each experiment,
we run multiple problem instances. In each instance, we provide each approach
a network, an image, one or two features, and a target diameter (if there are two
features, both have the same target diameter). We define the target diameter to
be the diameter of the minimal feature adversarial example δadv (computed by
a grid search). That is, we provide each approach an upper bound on the maxi-
mal certified diameter. We measure how close is the returned certified diameter
to δadv. Note that our problem instances are challenging because the feature
neighborhoods we consider are the largest possible.

Maximal certified diameter given a timeout. In the first experiment, we evaluate
the maximal certified diameter of all approaches, given a timeout. The evaluated
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Table 1. VeeP vs. branch-and-bound and uniform splitting over brightness, contrast,
hue, saturation, and lightness neighborhoods, averaged over 50 images.

Dataset Model VeeP BaB Uniform

δadv δf% t[m] δf% t [m] δf% t [m]

MNIST SuperConv Brightness 0.61 100 0.5 100 1.16 98 4.1

MNIST SuperConv B&C 0.56 99 26.1 98 35.2 81 77.3

MNIST FC 5000 × 10 Brightness 0.15 100 1.9 100 11.5 100 13.4

MNIST FC 5000 × 10 B&C 0.134 94 54.5 59 86.4 62 81.8

F-MNIST FC 5000 × 10 Brightness 0.3 100 3.5 100 15.5 100 27.9

CIFAR-10 ResNetTiny Brightness 0.42 100 7.9 100 32.1 89 60.6

CIFAR-10 ResNetTiny B&C 0.3 96 73.4 49 144.6 30 164.1

CIFAR-10 ResNetTiny Hue 3.36 99 27.5 62 59.1 77 48.94

CIFAR-10 ResNetTiny Saturation 0.83 98 5.6 100 21.0 96 68.8

CIFAR-10 ResNetTiny Lightness 0.39 100 10.8 100 45.9 76 32.6

ImageNet AlexNetTiny Brightness 0.22 95 68.8 59 87.6 59 82.7

ImageNet AlexNetTiny Hue 0.99 78 40.6 25 67.4 37 68.1

ImageNet AlexNetTiny Saturation 0.39 97 27.7 79 69.0 71 74.9

ImageNet AlexNetTiny Lightness 0.16 93 64.8 17 83.4 52 71.4

feature neighborhoods are defined by brightness (a linear feature) and contrast
and HSL (non-linear features). The contrast feature defines the brightness dif-
ference between light and dark areas of the image, and the HSL features are
color space transformations, where hue defines the position in the color wheel,
saturation controls the image’s colorfulness and lightness the perceived bright-
ness. We run VeeP, BaB, and uniform splitting over the different models. For
most networks and neighborhoods, we let each splitting approach run on a sin-
gle GPU for 1.5 hours. For ResNet18, AlexNet, and the brightness and contrast
(B&C) neighborhoods of TinyResNet, we let each splitting approach run on
eight GPUs for 3 hours. We measure the execution time in minutes t[m] and
the maximal certifiable diameter δf . We compare δf to the diameter of the
closest adversarial example in the feature domain δadv (for B&C, we compare
to (δadv,δadv)). Table 1 reports our results for the smaller models. Each result
is averaged on 50 images. The results indicate that VeeP proves on average
at least 96% of the maximal certifiable diameters in 29 minutes. The maximal
diameters computed by the baselines are 74%, for BaB, and 73%, for uniform
splitting. Their execution times are 54 minutes, for BaB, and 62 minutes, for uni-
form splitting. Table 2 reports our results for the two largest models, ResNet18
and AlexNet. Because of the long timeout, we focus on ten images and compare
only to BaB. Our results show that VeeP proves at least 96% of the maximal
diameters, while BaB proves 44%. VeeP’s execution time is 98 minutes, whereas
BaB is 160 minutes.
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Table 2. VeeP vs. branch-and-bound over large models, averaged over 10 images.

Dataset Model VeeP BaB

δadv δf% t [m] δf% t [m]

CIFAR-10 ResNet18 Brightness 0.41 100 88.4 58 150

CIFAR-10 ResNet18 Saturation 0.85 98 45.2 98 123

ImageNet AlexNet Brightness 0.42 92 130 6 180

ImageNet AlexNet Saturation 0.56 100 67.3 52 165

ImageNet AlexNet Lightness 0.32 93 162 3 180

Execution time as a function of the certified diameter. In the second experiment,
we measure the execution time of every approach as a function of the certified
diameter. In this experiment, there is no timeout and thus we focus on two mod-
els, ResNetTiny and AlexNetTiny, and two features: brightness and saturation.
For each network and a feature, we consider 50 images. For each network, image,
and a feature, the target diameter is the diameter of the closest adversarial exam-
ple δadv. We run all approaches until completion. During the execution of each
approach, we record the intermediate progress, that is, the required time for cer-
tifying r ·δadv of the neighborhood, for ratio r ∈ {0.1, 0.2, . . . , 0.8, 0.9, 0.95, 0.98}.

Figure 6 shows the results of this experiment. It depicts the execution time
in minutes of each approach as a function of r, i.e., the ratio of the certified
diameter and the target diameter δadv. Our results indicate that VeeP provides
acceleration of 4.4x compared to BaB and acceleration of 10.2x compared to
uniform splitting. The figure demonstrates the main drawbacks of uniform split-
ting and branch-and-bound. On the one hand, choosing a large step size for
uniform splitting can certify smaller ratios of the target diameter more quickly.
On the other hand, for larger ratios, uniform splitting must use a smaller step
size, which significantly increases the execution time. The results also show that
BaB wastes a lot of time on attempts to certify too large neighborhood until
converging to a certifiable split size. We note that both baseline approaches are
sub-optimal since they do not attempt to compute the optimal split size. In con-
trast, VeeP predicts the split sizes that minimize the execution time and thus
performs better than the baselines. We validate VeeP’s optimality by compar-
ing it to a theoretical greedy optimal baseline. The theoretical baseline “knows”
(without any computation) the optimal step size for every verification step. To
simulate it, before every verification step of the optimal baseline, we compute
the optimal step size by running a grid search over the remaining diameter (i.e.,
δ̄ − δx). We then let the optimal baseline pick the diameter determined by the
grid search. Note that this baseline is purely theoretical: we do not consider the
execution time of running the grid searches as part of its execution time. Our
results indicate that VeeP’s performance is very close to the theoretical baseline’s
performance, VeeP is slower by only a factor of 1.2x. The additional overhead of
VeeP stems from several factors: (1) the time to estimate the predictors, (2) the
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Fig. 6. Comparison of VeeP to uniform splitting, branch-and-bound, and a greedy
optimal baseline, averaged over 50 images.

time to run the network on f(x, δx), and (3) the inaccuracies of our predictors
and correction steps.

Lastly, we exemplify how large the feature neighborhoods that VeeP certifies
are. Figure 7 shows four certified neighborhoods, defined by different features.
For each, the figure shows the features, the range of the certified diameters, and
several images generated by uniformly sampling from the certified range. The
images are organized across the diameter axis, where the original image x is at
the origin. These examples demonstrate that the certified feature neighborhoods
contain images that are visually different compared to the original image. Being
able to certify large feature neighborhoods allows network designers understand
the robustness level of their networks to feature perturbations.

8 Related Work

In this section, we discuss the most closely related work to VeeP.

Network robustness and feature verification. Many works introduce verifiers ana-
lyzing the robustness of L∞-balls, where each pixel is bounded by an inter-
val [12,13,16,24,34,38,42,47,48,52,54]. Other works consider feature verifica-
tion [3,32,42,49]. Earlier works on feature verification, focusing on rotations,
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Fig. 7. Examples of images in feature neighborhoods, certified by VeeP.

brightness and contrast, translate feature neighborhoods into L∞ neighborhoods
and then analyze them with existing verifiers [42,49]. Recent works encode the
feature constraints into the verifier. One work relies on Monte Carlo sampling to
overapproximate geometric feature constraints by convex linear bounds [3]. The
bounds are refined by solving an optimization problem and then submitted to an
existing verifier. Other work proposes an input layer that encodes the feature and
is added to the original network [32]. All works also employ uniform splitting.

Splitting techniques. To increase precision and scalability, many verifiers rely
on uniform splitting [3,32,42] or branch-and-bound (BaB) [6,7,19,30,35,48,52].
Long-edge is a common BaB technique that splits the input with the largest inter-
val [7,52]. Smart-Branching (BaBSB) [7] and Smart-ReLU (BaBSR) [6,48] rely
on a fast computation to estimate the expected improvement of splitting an input
or a neuron and then split the one maximizing the improvement. Filtered Smart
Branching (FSB) extends BaBSR by bound propagation to estimate multiple can-
didates of BaBSR [35,48]. Another work relies on an indirect effect analysis to
estimate the neuron splitting gain [19]. Others suggest to train GNNs via super-
vised learning to obtain a splitting strategy [30]. However, building the dataset
and training the GNNs can be time consuming. In contrast to BaB, which lazily
splits inputs or neurons, VeeP dynamically predicts the optimal split.

Feature attacks. Several adversarial attacks rely on semantic feature perturbations.
One work relies on HSV color transformations (which is close to HSL) [21]. Other
works link adversarial examples to PCA features [4,8,56]. Other feature attacks
include facial feature perturbations [15], colorization and texture attacks [5], fea-
tures obtained using scale-invariant feature transform (SIFT) [51], and semantic
attribute perturbations using multi-attribute transformation models [22].

Learning. Our approach is related to several learning techniques. It is mainly
related to active learning, where a learner learns a concept by querying an
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oracle [1]. Active learning is suitable for tasks in which labeling a dataset is
expensive [55], for example real-life object detection [17], crowd counting [57],
and image segmentation [39]. Similarly, in our setting, querying the analyzer
to obtain examples is expensive. Our setting is also related to online learn-
ing, where new data gradually becomes available. Online learning typically
addresses tasks with time-dependent data [20], e.g., visual tracking [33], stock
price prediction [50], and recommendation systems [9]. In contrast, VeeP’s
examples are not time-dependent. Our approach is also related to CEGIS and
CEGAR. Counterexample-guided inductive synthesis (CEGIS) synthesizes a
program by iteratively proposing candidate solutions to an oracle [43]. The
oracle either confirms or returns a counterexample. Counterexample-guided
abstraction-refinement (CEGAR) is a program verification technique for dynam-
ically computing abstractions capable of verifying a given property [10]. It begins
from some abstraction to the program and iteratively refines it as long as there
are spurious counterexamples. In contrast, VeeP relies on recent examples, not
necessarily counterexamples.

9 Conclusion

We presented VeeP, a system for verifying the robustness of deep networks in
neighborhoods defined by a set of features. Given a neighborhood, VeeP splits
the verification process into a series of verification steps, each aiming to verify
a maximal part of the given neighborhood in a minimal execution time. VeeP
defines the next verification step by constructing velocity and sensitivity predic-
tors from previous steps and by considering recent failures. VeeP is guaranteed
to terminate and is sound and precise up to a parametric constant. We evaluate
VeeP over challenging experiments: deep models for MNIST, Fashion-MNIST,
CIFAR-10 and ImageNet, and large feature neighborhoods, defined by the clos-
est feature adversarial example. Results show that the average diameter of the
neighborhoods that VeeP verifies is at least 96% of the maximal certifiable diam-
eter. Additionally, VeeP provides a significant acceleration compared to existing
splitting approaches: up to 10.2x compared to uniform splitting and 4.4x com-
pared to branch-and-bound.
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Abstract. Control dependence is a fundamental concept used in many
program analysis techniques such as program slicing, program debugging,
program parallelization, and detecting security leaks. Since the introduc-
tion of this concept in the late eighties, numerous definitions of control
dependencies and their computation methods have been developed. The
later definitions are progressively more generalized covering a wide spec-
trum of modern programming language constructs. The most generalized
concepts are the weak and strong control closure (WCC and SCC) that
capture the nontermination (in)sensitive control dependencies of a given
program. In this paper, we have developed a novel method to compute
WCC incrementally. Any client application of WCC such as program slic-
ing requires computing the WCC repeatedly in a fixpoint computation.
An incremental algorithm to compute WCC will improve the performance
of the client application significantly. We have provided the proof of cor-
rectness and the theoretical worst-case complexity of our algorithm. We
have performed an experimental evaluation on well-known benchmarks,
and our experiments reveal that we have significantly improved the prac-
tical efficiency in computing WCC incrementally. We have obtained an
average speedup of 31.03 in all benchmarks and a maximum speedup of
35.29 than the best state-of-the-art algorithm computing WCC.

Keywords: Control dependence · Weak control closure · Strong
control closure · Program slicing · Nontermination insensitive ·
Nontermination sensitive

1 Introduction

Control dependence is a fundamental concept used in many program analy-
ses techniques such as compiler optimization and debugging [6], program slic-
ing [7,11,22], and information flow security [5]. It expresses a relation between
two program instructions stating that one controls the execution of another.
The state-of-the-art control dependence computation is based on computing
postdominator relations [6]. It is the fastest algorithm which is applicable
for programs that must exit from a single program point. However, modern
software systems such as nonterminating reactive systems or distributed web
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services do not have any exit point and postdominator-based control dependence
computation algorithms are not applicable for such systems [1,20].

Danicic et al. [4] introduced the concept of weak and strong control closure
(WCC and SCC) that capture weak and strong forms of control dependencies
from (non)terminating systems that are nontermination insensitive and nonter-
mination sensitive respectively. These are the most general form of the closure
relation of control dependencies. Program transformation technique such as pro-
gram slicing may require preserving nontermination in the sliced program if the
original program is nonterminating. Slicing based on SCC preserves nontermi-
nation and produces larger slices which may be useful for program verification.
On the other hand, slicing based on WCC may not preserve nontermination and
produces smaller slices. There exist numerous definitions of control dependencies
in the literature [2,6,19,21,22]. All such dependencies are the special cases of
control dependencies captured by WCC and SCC. Thus, WCC and SCC have a
wider applicability than the control dependencies based on computing postdom-
inator relations.

Fig. 1. Programs P

Let us illustrate these concepts and their relations
by the program P in Fig. 1. Suppose we are interested
to detect program statements that affect the value of
x at Statement 8. The assignment to x at Statements
1 and 4 directly affect the value of x at Statement 8.
We can obtain these direct influences by computing
data dependencies. Moreover, the boolean expression
i > 0 at Statement 2 indirectly affects the value of
x at Statement 8 as it decides whether Statement 4
will be executed or not. We can obtain these indirect
influences by computing control dependencies. Fur-
thermore, Statement 6 directly affects the boolean
expression at Statement 2 due to data dependence, and thus statements 1, 2, 4,
and 6 affect the value of x at Statement 8. Statement 4 is control dependent on
Statement 2 as it decides whether statement 4 will be executed or not. The stan-
dard control dependence computation method identifies this control dependence
as follows: there exist two paths from Statement 2 to the end of this program
in which Statement 4 always executes in one path and Statement 4 may not
execute in the other path. This proves that Statement 2 controls the execution
of Statement 4. This method only works if the program has a single exit point.
However, if the whole program is under an infinite loop such as the following:

Program Q: while(true){S1, . . . , S8}
where S1, . . . , S8 refers to statements 1 to 8 in Program P, then the above method
for computing the control dependencies will not work since there is no exit point
to this code. WCC (see Definition 4 in Sect. 2) is the generalization of the
standard control dependencies that also works for nonterminating programs and
computes the closure relation of control dependencies. For example, if we would
like to know what affects the computation of x at Statement 8 in Program Q,
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we see that there are two paths from Statement 2 to statements 4 and 8. This is
enough to say that a control closure of a set S of program statements including
statements 8 and 4 must include Statement 2 (provided that Statement 2 is
reachable from S) as it decides which one (Statement 4 or Statement 8) will
be executed next. One difference between SCC and WCC is that the SCC of S
will also include the while(true) statement as it preserves the nontermination.
Statement 2 is nontermination sensitively control dependent on the while(true)
statement and thus SCC will include this statement.

1 Let C be the the slicing criterion, and let S = C.
2 repeat

3 S′ :=
⋃

n∈S

{m : m
dd

→∗ n}
4 S := cl(S′)
5 until S = S′

Algorithm 1: slicing

Danicic et al.’s original algorithms to compute WCC and SCC are expen-
sive. Most recent works [12,14,18] on computing WCC and SCC have shown
performance improvements in these algorithms. These improvements are mostly
on the one-time application of these algorithms. However, client applications
such as program slicing require computing WCC/SCC incrementally. Existing
algorithms lose performance due to repeated computation of unnecessary infor-
mation. To illustrate this fact, we recall Algorithm 1 from [12,14]1 which is the
static backward slicing algorithm computing the slice set S from the given slicing
criterion C. Given any control flow graph (CFG) representation of a program
and the slicing criterion C which is a subset of the CFG nodes, Algorithm 1

computes S until a fixpoint is reached. The relation
dd

→∗ denotes the transitive-
reflexive closure of the data dependence relation dd→. The function cl(.) computes
WCC or SCC in each fixpoint iteration. It is obvious that an incremental com-
putation of this function will improve the overall performance of the program
slicing algorithm.

In this paper, we have developed a novel algorithm that is able to compute
WCC incrementally. We proved the correctness of our algorithm theoretically
and experimentally, provided the theoretical worst-case time complexity of our
method which is quadratic in the size of the CFG, implemented our algorithm in
the Clang/LLVM compiler framework, and compared our results with the best
state-of-the-art method by performing experimental evaluation on SPEC CPU
2017 benchmarks. Our experiments reveal that the algorithm developed in this
paper is the fastest among all algorithms computing WCC reported in the litera-
ture if WCC needs to be computed incrementally. We have obtained the maximum

1 We replaced the goto statement in [12,14] by the repeat..until loop.



328 A. N. Masud

speedup of 35.29 on our largest benchmark and an average speedup of 31.03 on all
benchmarks with respect to the best baseline approach computing WCC.

The remainder of this paper is organized as follows. Section 2 brings some
relevant concepts and notations from the literature on control dependence and
WCC, Sect. 3 provides the details of our algorithm developed in this paper,
the proof of correctness, and its theoretical worst-case time complexity, Sect. 4
explains the experimental evaluation, Sect. 5 discusses the works that are related
to ours, and Sect. 6 concludes the paper.

2 Background

In this section, we recall definitions of CFG, control dependence, WCC, and other
related concepts from the relevant literature [4,14]. The definitions of Control
dependence and WCC are provided at the level of CFG representation of pro-
grams. First, we recall the formal definition of a control flow graph (CFG) from
our earlier study [12,14].

Definition 1 (CFG). A CFG is a directed graph (N,E) where

1. N is the set of nodes that includes a Start node from where the execution
starts, at most one End node where the execution terminates normally, Cond
nodes representing boolean conditions, and nonCond nodes; and

2. E ⊆ N × N is the relation describing the possible flow of execution in the
graph. An End node has no successor, a Cond node has at most one true
successor and at most one false successor, and all other nodes have at most
one successor.

Applications like program slicing may remove part of the code and we may
obtain a CFG from such code in which a Cond node has either or both of the
successors missing. Other kinds of nodes may have a missing successor as well.
An execution that reaches such nodes may be silently nonterminating because
an execution may not proceed and the control is not returned to the operating
system. Moreover, a CFG may not have an End node and the execution of its
code may possibly be nonterminating. Thus, our definition of CFG can repre-
sent a wide range of practical programs. Note that our CFGs are deterministic
according to the definition.

The functions succG(n) and predG(n) denote the set of successors and pre-
decessors of the CFG node n in the graph G. We sometimes drop the subscript
G if it is understood from the context. A path in a graph G is the sequence of
CFG nodes n1, . . . , nk such that ni+1 ∈ succG(ni) (also ni ∈ predG(ni+1)) for
all 1 ≤ i ≤ k − 1. We use the notation [n1..nk] to denote such a path. A non-
trivial path contains more than one node; otherwise, the path is a trivial path.
A path is proper if its initial and final vertices are distinct. Two paths [n1..nk]
and [m1..ml] are disjoint if ni �= mj for any k, l > 0, 1 ≤ i ≤ k, and 1 ≤ j ≤ l. If
[n2..nk] and [m2..ml] are disjoint paths and n1 = m1, then we say that [n1..nk]
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and [m1..ml] are disjoint paths from n1. We use the notation n ∈ π to denote
that the CFG node n belongs to the path π, and use the notation n ∈ π − S
to indicate that n is any node in the path π that does not belong to the set of
CFG nodes S.

We now recall the definition of WCC from Danicic et al. [4] with some aux-
iliary relevant definitions. In what follows, let G = (N,E) be a CFG, and let
N ′ ⊆ N .

Definition 2 (N ′-Path). An N ′-path is a finite path [n1..nk] in a CFG G where
k > 1, nk ∈ N ′ and ni �∈ N ′ for all 1 < i < k.

Intuitively, an N ′-path must end at a node in N ′, the first node in this path
can be any node from N (or N ′), and no intermediate node in this path must
be from N ′. With this definition, we can now define an N ′-weakly committing
node as follows:

Definition 3 (N ′-Weakly Committing). A node n ∈ N is N ′-weakly com-
mitting in a CFG G if all N ′-paths from n have the same endpoint. In other
words, there is at most one element of N ′ that is ’first- reachable’ from n.

The following definition states whether a given subset of CFG nodes N ′ is N ′-
weakly control-closed.

Definition 4 (Weak Control Closure). N ′ is weakly control-closed in G if
and only if all nodes n �∈ N ′ that are reachable from N ′ are N ′-weakly committing
in G.

Given any subset N ′ of CFG nodes, if N ′ is not weakly control-closed in the
CFG G according to Definition 4, then we compute the WCC set of N ′ denoted
WCC(N ′) (or WCC for brevity) such that N ′ ⊆ WCC(N ′) ⊆ N . The defi-
nition of weak control closure captures the control dependencies obtained from
postdominator relations. To illustrate this relation, we now bring the definition
of postdominator relation and the control dependencies based on this relation.

A CFG node n postdominates another CFG node m if and only if every path
from m to the End node must go through n. If n �= m in this definition, then
we say that n strictly postdominates m. Note that this definition relies on the
fact that the CFG must have a unique End node. The standard definition of
postdominator-based control dependencies was first introduced by Ferrante et
al. [6] as follows:

Definition 5 (Control Dependence [6,12,21]). Node n is control dependent
on node m (written m

cd→ n) in the CFG G if (1) there exists a nontrivial path
π in G from m to n such that every node m′ ∈ π − {m,n} is postdominated by
n, and (2) m is not strictly postdominated by n.

Since the definition of postdominator relies on the existence of a unique End
node, the above definition of control dependence is applicable when this restric-
tion holds. Intuitively, the relation m

cd→ n holds when there exist two branches
of m such that n is always executed in one branch and may not execute in the
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other branch. To illustrate this relationship with WCC, let us assume that N ′

includes n, the unique End node ne, and the Start node n�. Also, assume that
all nodes are reachable from node n�. Then, [m..n] is an N ′-path. Since m is
not strictly postdominated by n, there must be another path [m..ne] which is
also an N ′-path. Then, node m is not N ′-weakly committing due to having two
N ′-paths with different endpoint. Thus, N ′ is not a WCC due to not capturing
the control dependence relation m

cd→ n, and a WCC of N ′ must include m.
The concept of N ′-weakly deciding nodes are introduced by Danicic et al. [4]

to provide an algorithm to compute the WCC of N ′.

Definition 6 (Weakly Deciding Vertices). A node n ∈ N is N ′-weakly
deciding in G if and only if there exist two finite proper N ′-paths in G such that
both start at n and have no other common vertices. WDG(N ′) denotes the set of
all N ′-weakly deciding vertices in G.

Thus, if there exists an N ′-weakly deciding vertex n, then n is not N ′-weakly
committing. The WCC of a subset N ′ ⊆ N of CFG nodes in a CFG G can be
computed according to the following equation:

WCC(N ′) = N ′ ∪ {n : n ∈ WDG(N ′), n is reachable from N ′ in G} (1)

Example 1. Consider the CFG in Fig. 2. Let N ′ = {n0, n1, n5, n11}. Here are
some examples of N ′-paths in this CFG:

π0 = n1, n0

π1 = n3, n1

π2 = n3, n2, n1

π3 = n6, n4, n3, n1

π4 = n6, n5

π5 = n10, n1

π6 = n10, n9, n6, n4, n3, n2

The path [n3..n0] is not an N ′-path as it includes the node n1 ∈ N ′. The CFG
node n1 is N ′-weakly committing since there exists a single N ′-path π0. Also,
node n3 is N ′-weakly committing as both π1 and π2 have the same endpoint n1.
However, node n6 is not N ′-weakly committing due to the paths π3 and π4. It
is an N ′-weakly deciding node. Thus, N ′ is not weakly control closed. Similarly,
nodes n7, . . . , n10 are N ′-weakly deciding due to having two disjoint N ′-paths
from these nodes. As all these nodes are reachable from n11 ∈ N ′, the WCC of
N ′ must include these nodes according to Eq. 1.

Regarding the program semantics of the client application of WCC or SCC
such as program slicing or information flow security, the execution semantics
of programs are captured/preserved through computing the additional depen-
dencies such as data dependencies as shown in Algorithm 1. However, the data
dependencies are not enough to capture the indirect influences of conditional
statements or boolean instructions in loop statements. Thus, WCC/SCC is
applied on top of data dependencies to capture these indirect influences.
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3 Incremental Computation of WCC

We compute WCC in two steps. First, we generate an influencer graph G =
(N , E) from the CFG G = (N,E) such that N = N , and G is a directed graph
that encodes direct influences to all CFG nodes by the Cond nodes. We say that
a Cond node n influences the execution of a node m if there exists a path [n..m]
in the CFG G which does not include any other Cond node. The influencer graph
G is thus a program representation encoding all direct influences in the source
code. This simplistic informal definition of influence is extended in the following
section to construct the influencer graph G. In the second step, given any set
N ′ ⊆ N , we traverse G from the nodes in N ′ to detect all Cond nodes that are
weakly deciding and are reachable from the nodes in N ′ in G. We compute the
graph G only once. But, we traverse it incrementally to compute WCC and avoid
recomputing decisions taken earlier.

3.1 Generating the Influencer Graph

The intuitive idea of having an influencer graph is the following. Given any
CFG node n, we should immediately recognize which Cond node m controls
the execution of n (if any). Usually, m is the last Cond node in any path from
the Start node to n. Subsequently, there may be other Cond nodes preceding
m that control the execution of m. Let π be any path from the Start node to
n, and let m1, . . . , mk be the subsequence of Cond nodes in π. We intend to
obtain the edges (n,mk) and (mi+1,mi) for all 1 ≤ i ≤ k − 1 in the influencer
graph. Then, given any CFG node n ∈ N ′, any path [n..mi] in the influencer
graph indicates that there may be an N ′-path [mi..n] in the CFG if no node in
this path is in N ′ except n. After obtaining the influencer graph of any CFG,
we can limit our search space to verify which Cond nodes should belong to the
WCC. We perform the search in the influencer graph in a way, as explained in
the next section, that ensures that the paths in the influencer graph correspond
to N ′-paths in the CFG. Since any Cond node m which is N ′-weakly deciding
and thus has two disjoint N ′-paths may belong to the WCC of N ′, we assign
each edge in the influence graph by a branch number to identify the disjointness
of the N ′-paths. In order to generate the influencer graph, we consider a distinct
branch number for each branch of a Cond node. A CFG node is called a Join
node if it has multiple predecessors. A Join node is also a Cond node when it has
two successors. We assign a default label to the branch emerging from a Join but
nonCond node. The influencer graph G = (N , E) is a directed graph with edge
labels that can be obtained from the CFG G = (N,E). Any edge (n,m, l) ∈ E
in G implies that there exists a path [m..n] in the CFG G, m is a Cond or a
Join node, and the edge label l can take any value from the set {0, 1, 2, 3} to
represent the branch number. The semantics of the encoding of edge label l is
the following:

– l=0 represents the default branch number emerging from the Join node m,
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– l = 1 or l = 2 implies that m is a Cond node which usually has at most two
branches and n can be reached from m in the CFG by traversing the branch
marked by l,

– l = 3 implies that m is a Cond node and n can be reached from m by
traversing any of the two branches of m.

Since any CFG node can have at most two branches according to the definition
of CFG (Definition 1), we need at most four unique branch numbers. In the
practical implementation of our approach, we handle more than four branch
labels to handle switch statements. However, we restrict ourselves to four unique
branch numbers for the brevity of our presentation.

In the following, we provide the formal definition of an influencer graph G.

Definition 7. (Influencer Graph). Let G = (N,E) be a CFG. An influencer
graph G = (N , E) of a CFG G consists of the set of CFG nodes N = N , and the
set of edges E containing all edges (n,m, l) such that m is either a Join or a Cond
node, and there exists a CFG path [m..n] such that no node n′ ∈ [m..n]−{n,m}
is a Cond or a Join node. The edge label l can take any value as follows:

1. l = 0 if m is a Join node
2. l = 3 if m is a Cond node, n is a Join node, and no disjoint path exists from

m to n in the CFG, and
3. l ∈ {1, 2} if m is a Cond node, n is not a Join node, and for all edges

(n,m′, l′) ∈ E such that [m..n] and [m′..n] are disjoint paths in G, we must
have that l′ �= l.

Any edge (n,m, l) in G implies that m may affect the execution of n if l �= 0.
Thus, m may influence the execution of n, and the graph G encodes all such
influences in the CFG G. When l = 0, m will not directly influence n, but n
may be influenced by another node m′ if there exists an edge (m,m′, l′) in G
such that l′ �= 0. In fact, for all sequences of edges (n,m, 0) and (m,m′, l′) in G,
we can remove the edge (n,m, 0) and add a new edge (n,m′, l′) in G in a post-
processing phase of generating G. This compact representation will only encode
all direct influences in G. However, we consider it as a syntactic sugar and keep
the edge (n,m, 0) in G to simplify its generation. Since any CFG node has at
most two successors according to the definition of CFG, we need at most four
unique labels for the influencer graph G.

Figure 2(a) presents the CFG of a function taken from the Perlebench bench-
mark obtained from the well-known SPEC CPU2017 [3] benchmark suite. This
CFG is generated by the Clang frontend [9], and each node in this CFG repre-
sents a basic block containing the straight-line sequence of instructions written in
C language. All Cond nodes (e.g., n9, n8, n3, etc.) in this CFG have two succes-
sors, all Join nodes (e.g., n1, n6, n3, etc.) have multiple predecessors, and there
exist nodes that are both Cond and Join nodes (e.g. n6, n3, etc.). Figure 2(b)
presents the influencer graph that is obtained from the CFG in (a) according to
Definition 7.

Algorithm 2 generates the influencer graph G of a given CFG G. It uses the
following notations/functions:
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Fig. 2. (a) The CFG generated by the Clang frontend for the ”Perl do open raw” func-
tion taken from the Perlbench benchmark in SPEC CPU2017 [3] (we omit the program
instructions for simplicity), (b) The influencer graph G generated by Algorithm 2 in
which edge styles are differed by their edge labels

– The function I : N → N ∪ {⊥, ι} records the direct influence of a given CFG
node. For example, I(n) = m implies that m may be a Cond node (or a
Join node) which may influence the execution of n directly (resp. indirectly).
Initially, I(n) = ⊥ for all CFG nodes n representing that an influencer node
of n is yet to be recognized. Also, we initially set I(n�) = ι to denote that
the execution of the Start node n� is not influenced by any other node.

– The function Em denotes the set of all edges from the node m in the influencer
graph G. In particular, any (n, l) ∈ Em implies that (m,n, l) is an edge in G.

– The function Dist(n,m) denotes the minimum distance of node n from either
m if m is a Cond node or a Cond node immediately before m in the CFG
if m is a Join node. We compute this function during the generation of the
influencer graph and use this function to traverse correct N ′-paths during the
computation of WCC which is explained in the next section.

Algorithm 2 is a worklist-based algorithm that visits each edge (n,m) in
the CFG exactly once, detects and includes an edge (m,n′, l) in the influencer
graph G for any l ∈ {0, 1, 2, 3} and n′ ∈ N that may influence m where n′ = n
or n′ = I(n) (see Lines 13, 14, 21, 27, 31, 36). It also computes the minimum
distance Dist(m,n′) from n′ to m or a Cond node immediately before m in the
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Input: CFG G = (N, E)
Output: G = (N , E), Dist

1 forall (n ∈ N do
2 I(n) = ⊥, visit(n)=false
3 end
4 W = {(n�, 0, 0)} and I(n�) = ι
5 while (W �= ∅) do
6 Remove (n, l, d) from W
7 visit(n)=true
8 newlabel = 1
9 forall (m ∈ succ(n)) do

10 nedge = (⊥, ⊥)
11 if (n is a Cond node) then
12 I(m) = n
13 if ((n, X) �∈ Em for any X ∈ {0, 1, 2, 3} then nedge = (n, newlabel)
14 if ((n, l′) ∈ Em ∧ l′ > 0 such that l′ �= newlabel) then

nedge = (n, 3)
15 newlabel = newlabel + 1
16 dist = 1

17 end
18 if (n is a nonCond Join node) then
19 I(n) = n
20 I(m) = n
21 nedge = (n, 0)
22 dist = d + 1

23 end
24 if (n is not a Cond and Join node) then
25 I(m) = I(n)
26 if (I(n) �= ι ∧ ¬(I(n), X) ∈ Em for any X ∈ {0, 1, 2, 3}) then
27 nedge = (I(n), l)
28 dist = d + 1

29 end
30 if (I(n) �= ι ∧ (I(n), l′) ∈ Em ∧ l′ > 0 ∧ l′ �= l) then
31 nedge = (I(n), 3)
32 dist = min(d + 1, Dist(m, I(n))

33 end

34 end
35 if (nedge = (m′, l′) �= (⊥, ⊥)) then
36 Em = Em ∪ {nedge}
37 Dist(m, m′) = dist

38 end
39 if (¬visit(m) ∧ nedge = (m′, l′)) then W = W ∪ {(m, l′, dist)}
40 else if (¬visit(m)) then W = W ∪ {(m, l, dist)}
41 end

42 end
Algorithm 2: genInfluencerGraph
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CFG. The choice of n′ depends on the kind of visited node n. If n is a Cond node
or a Join node, then n′ = n as n is recognized to be the new influencer of m,
and n′ = I(n) otherwise to interpret the fact that the influencer of n becomes
the influencer of m. The choice of l depends on the following facts:

– If n is a Cond node, then the first and the second visited successors m1 and m2

of n introduce the edges (m1, n, 1) and (m2, n, 2) in G. However, we include
the edge (mi, n, 3) instead of (mi, n, l) for l = 1 or l = 2 if there already exists
an edge (mi, n, l′) in G for any i = 1, 2, l′ > 0, and l′ �= l since mi can be
reached from n through either of the two branches.

– If n is a Join node and not a Cond node, we include the edge (m,n, 0) in G
to represent the fact that m is not influenced by n, but there possibly be a
successor of n in G that may influence m.

– If n is neither a Join node nor a Cond node, then we include the edge
(m, I(n), l) in G where the edge-label l may be the continuation of the pre-
viously selected edge-label or l = 3 if G already includes an edge (m, I(n), l′)
for any l′ > 0 and l′ �= l.

3.2 An Incremental Algorithm to Compute WCC

Once we obtain the influencer graph G as explained in the previous section, we
perform a search for disjoint N ′-paths in G to detect all N ′-weakly deciding
nodes. Then, the WCC of N ′ includes N ′ and all N ′-weakly deciding nodes that
are reachable from N ′ in the CFG. Before we provide a systematic search in
graph G, we provide a few details on G.

There may have multiple edges (n1, n, l) and (n2, n, l) to the node n in G
with the same edge label. This is due to the sequence of CFG nodes n, n1, n2

in the CFG such that n is a Cond or Join node, and ni is neither a Cond nor
a Join node for i = 1, 2. Thus, both n1 and n2 belong to the same branch
of n and both are predecessor nodes of n in G. If either n1 or n2 belongs to
N ′, then the edge (ni, n, l) represents the N ′-path [n..ni] for any i ∈ {1, 2}.
However, if both n1 and n2 are in N ′, then only [n..n1] is an N ′-path, but
[n..n2] is not. Our systematic search in G incorporates this fact by looking into
the distance Dist(ni, n) computed in Algorithm 2 and considers the N ′-path
[n..n1] as Dist(n1, n) < Dist(n2, n).

We compute the set of N ′-weakly deciding vertices by traversing the graph
G from the nodes in N ′ in the forward direction according to Algorithm 4. We
maintain the following functions as invariant during the fixpoint iteration of the
algorithm:

– The function End : N → N records the end element of a potential N ′-
path from the given node. For example, End(n) = m implies that [m..n] is
a potential N ′-path in the CFG. Initially, we set End(n) = ⊥ for each CFG
node n to represent the fact that an N ′-path from n is yet to be traversed (if
exists).

– For all CFG nodes n such that either n ∈ N ′ or n is identified as an N ′-weakly
deciding node, we set wdVec(n) = true; wdVec(n) = false otherwise.



336 A. N. Masud

– The function L : N → P({1, 2, 3}) records the set of non-zero edge-labels of a
given node n, and any l ∈ L(n) indicates that an N ′-path exists from n in the
branch of the CFG marked by l. For example, L(n) = {1, 3} indicates that
an N ′-path exists from node n in the CFG which can be visited by traversing
any of the two branches of n in the CFG.

– The function M : N ×{0, 1, 2, 3} → N ×N represents the pair of a CFG node
and a nonnegative integer number in relation to a given pair of a CFG node
and an edge label. Given any CFG node m and the edge label l ∈ {0, 1, 2, 3},
M(m, l) = (n, d) represents the fact that (n,m, l) is an edge in the influencer
graph G with distance d = Dist(n,m) such that the path [m..n] is either
an N ′-path or a prefix of an N ′-path. If there exist multiple edges (n′,m, l)
and (n,m, l) in G such that both represent N ′-paths (or a prefix of N ′-paths)
[m..n] and [m..n′], we set M(m, l) = (n, d) if d = Dist(n,m) < Dist(n′,m).
We set M(m, l) = (⊥,⊥) when no N ′-path exists from m in the CFG. If
M(m, l) = (n, d), we use the functions first and second to denote the equality
first(M(m, l)) = n and second(M(m, l)) = d respectively.

Given the CFG G, a subset of CFG nodes N ′, and the boolean variable
initialize?, Algorithm 3 computes the WCC of N ′. If initialize? is true, the
functions End, L, wdVec, and M are initialized, and the influencer graph G and
the function Dist are computed by applying Algorithm 2. Algorithm 4 is applied
to compute the set of N ′-weakly deciding nodes WD followed by computing the
reachability of the nodes in WD from N ′ in the CFG G. We omit the details of
the checkreachability function as it is a simple graph reachability algorithm
visiting each edge in the CFG exactly once starting from N ′ and return the set
of all nodes in WD that are reachable from N ′.

For the subsequent application of Algorithm 3 in computing the WCC of a
superset of N ′ (after the first computation of WCC set), Algorithm 3 is called
with the boolean variable initialize? set to false . Algorithm 4 is applied with
the previously computed values of the functions End, L, wdVec, and M. These
functions are considered as the internal states of the algorithm which are initial-
ized only once and the WCC set is computed incrementally if the input set N ′

grows incrementally in the consecutive calls of Algorithm 3.
Algorithm 4 computes the set of N ′-weakly deciding nodes from the influ-

encer graph G and the set N ′. We assume that the functions End, L, wdVec,M,
and Dist are globally available to Algorithms 3 - 5. Algorithm 4 systematically
traverses the graph G from the nodes in N ′ in the forward direction and updates
the functions End, L, wdVec,M to record the visit of N ′-paths and their dis-
jointedness. While visiting an edge (n,m, l) in G, L(m) is updated to record the
visit of the node m through the branch l �= 0, M(m, l) is updated to record
the predecessor node n of m providing the N ′-path through the branch l and
the distance from n (or the nearest Cond node of n) to m. A CFG node m is
included in the set of N ′-weakly deciding vertices WD if the following constraints
are satisfied:

|L(m)| > 1 (2)

|{End(p) : l′ ∈ L(m), p = first(M(m, l′)), End(p) �= ⊥}| > 1 (3)
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Input: G,N ′, initialize?
Output: WCC

1 if (initialize?) then
2 forall (n ∈ N) do
3 End(n) = ⊥, L(n) = ∅, wdVec(n) = false

4 forall l ∈ {0, . . . , 3} do M(n, l) = (⊥,⊥)

5 end

6 (G,Dist) =geninfluencergraph(G)

7 end

8 WD =computeWD(G, N ′)
9 WCC = N ′∪ checkreachability(G,WD,N ′)

Algorithm 3: ComputeWCC

Input: G = (N, E), N ′
Output: WD

1 WD = ∅
2 forall (n ∈ N ′) do

3 wdVec(n) = true, End(n) = n

4 end
5 W = N ′
6 while (W �= ∅) do
7 Remove n from W

8 forall ((m, l) ∈ En) do
9 if (wdVec(m)) then continue

10 if (l �= 0) then L(m) = L(m) ∪ {l}
11 if (M(m, l) = (⊥,⊥) ∨ second(M(m, l)) > Dist(n,m)) then
12 M(m, l) = (n,Dist(n,m))
13 end
14 changed = false

15 S = {End(p) : l′ ∈ L(m), p = first(M(m, l′)), End(p) �= ⊥}
16 if (|S| > 1) then

17 errorEnd = End(m)
18 End(m) = m
19 WD = WD ∪ {m}
20 wdVec(m) = true
21 changed = true
22 if (errorEnd �= ⊥ ∧ errorEnd �= m) then

23 propagateToReplace(m, errorEnd)
24 end

25 end
26 else

27 changed = (End(m)! = End(first(M(m, l)))

28 End(m) = End(first(M(m, l)))

29 end

30 if (changed) then W = W ∪ {m}
31 end

32 end

Algorithm 4: ComputeWD
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Input: m, errorEnd
1 Wq = {m}
2 while (Wq �= ∅) do
3 Remove n from Wq

4 for (m ∈ succG(n)) do
5 if (End(m) == errorEnd ∧ wdVec(m) == false) then
6 End(m) = ⊥
7 Wq = Wq ∪ {m};

8 end

9 end

10 end
Algorithm 5: propagateToReplace

Fig. 3. An example influencer graph

Equation 2 implies that m is a Cond node in the CFG having two branches
and multiple N ′-paths exit from m in the CFG. Equation 3 implies that there
exist two predecessors m1 and m2 of m in G such that End(m1) �= End(m2) and
End(mi) �= ⊥ for i = 1, 2. Thus, there exist two disjoint N ′-paths from m in
the CFG, and m is included in the set of an N ′-weakly deciding vertices WD.
We provide the theoretical proof of the correctness of our approach in the next
section.

While visiting the graph G, it may happen that the update of the function
End is based on partial information that may lead to error if proper actions are
not taken. We illustrate this scenario by an example in Fig. 3. Let n1 and n5

belong to N ′ and End(ni) = ⊥ for all 1 ≤ i ≤ 6 initially. During the visit of this
graph from n5, Algorithm 4 updates End(ni) = n5 for all i ∈ {3, . . . , 6}. While
visiting the graph from n1, eventually node n3 is included in WD due to visiting
two disjoint paths [n3..n5] and [n3..n1], and End is updated by End(n3) = n3.
Next, if node n4 is visited without taking any action, Eqs. 2 and 3 are satisfied
for node n4 since End(n6) = n5 and End(n3) = n3, and node n4 will be included
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in WD imprecisely. Even though two N ′-paths exist from n4, the paths are not
disjoint. We resolve this imprecision in our algorithm as follows. If a CFG node
m is included in WD, we set End(m) = m due to our choice of invariant during
the fixpoint computation. Moreover, node m should be the end element for all
nodes n �∈ WD and that belong to a path π from m in G. However, if we had
End(m) = m′ �= ⊥ before we set End(m) = m, and if we have End(n) = m′,
we reset End(n) = ⊥ so that End(n) can be set to m in a later visit to n
from m. For example, for the influencer graph in Fig. 3, we reset End(n) =
⊥ and later set End(n) = n3 for n ∈ {n4, n6} after we set End(n3) = n3.
This action will not include n4 in WD as Eq. 3 will not be satisfied for node
n4 due to resetting End(n6). Algorithm 4 performs this reset by calling the
propagateToReplace procedure in Algorithm 5.

3.3 Proof of Correctness

In this section, we provide a number of lemmas to justify that Algorithm 4
correctly discovers all N ′-weakly deciding nodes. Finally, we provide Theorem 1
to prove that Algorithm 3 correctly computes the WCC of N ′.

Lemma 1. Any path [n1..nk] in the influencer graph G implies that there exists
a path [nk..n1] in the CFG.

Proof. Let n ∈ N be a CFG node such that ni ∈ succ(n) for any 1 ≤ i ≤ k − 1.
Algorithm 2 includes the edge (ni, ni+1) in G while visiting the CFG node n due
to one of the following cases:

1. If n is a Cond node or a Join node, then ni+1 = n and ni+1, ni is a path in
the CFG,

2. Otherwise, ni+1 = I(n).

Let I(n) = m1 for any m1 ∈ N . According to Algorithm 2, m1 can only be a
Join or a Cond node (see Lines 12, 19, 20). Then, I(n) = m1 is obtained due
to traversing a CFG path m1, . . . , ml = n such that no mj is a Cond or Join
node and I(mj) = m1 (Line 25) for 2 ≤ j ≤ l. Thus, there exists CFG paths
[m1..n], and consequently, [m1..ni] is a CFG path with ni+1 = m1 being a Cond
node. Thus, any path [n1..nk] in the influencer graph G is obtained due to the
existence of a CFG path [nk..n1] such that n2, . . . , nk are all Cond or Join nodes.

	

Note. While constructing the graph G, an edge (n,m) is included in this graph
if either m is a Cond or Join node, or m = I(n′) for some node n′ such that
I(n′) �= ⊥. If I(n′) = ⊥, we would not have an edge (n,m) in this graph (see the
conditions at lines 26, 30, and 35 in Algorithm 2.

Lemma 2. Let N ′ ⊆ N , let [n1..nk] be any path in the influencer graph G, let
n1 ∈ N ′, and let ni �∈ N ′ for all 2 ≤ i ≤ k. Then, either π = [nk..n1] is an
N ′-path or there exists another N ′-path which is a prefix of π in the CFG G.
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Proof. According to Lemma 1, there exists a path [nk..n1] in the CFG G. If
no node in this path is in N ′ except n1, then [nk..n1] is an N ′ path. However,
if the path [nk..n1] includes multiple nodes from N ′, then there exists a node
m ∈ [nk..n1] which is in N ′ and the closest node to nk. Thus, [nk..m] is an
N ′-path in the CFG which is the prefix of [nk..n1]. 	

Lemma 3. Let End(n) = m for any n,m ∈ N computed in Algorithm 4. Then,
there exists a path π = [m..n] in the influencer graph G such that either m ∈ N ′

or m ∈ WD.

Proof. Algorithm 4 assigns End(n) = m while traversing an edge (n′, n, l) in G
for any n′ ∈ N . Either (i) End(n) = n (Line 18) or (ii) End(n) = End(n1) = m
for any predecessor n1 = first(M(n, l) of n (Line 28). In the first case, n = m
and n ∈ WD. Thus, π is a trivial path containing only the node n, and the
lemma trivially holds. In the second case, we use the inductive reasoning to
show that there exists a path nk, . . . , n1 in G such that End(ni) = End(ni+1)
for all 1 ≤ i ≤ k − 1 due to the update in Line 28, and eventually we must
have nk = m and End(m) = m since G is a finite graph. Algorithm 4 assigns
End(m) = m if m ∈ N ′ (Line 3) or m ∈ WD (Line 18) during traversing G, and
consequently, the lemma holds. 	

Lemma 4. Let End(n) �= ⊥ for any n ∈ N computed in Algorithm 4. Then,
there exists an N ′-path from n in the CFG.

Proof. Let n = n0, and let End(n0) = n1 for any n1 ∈ N . According to Lemma 3,
there exists a path [n1..n0] in the influencer graph G such that either n1 ∈ N ′

or n1 ∈ WD. If n1 ∈ N ′, then according to Lemma 2, there exists an N ′-path
from n in the CFG G. However, if n1 ∈ WD, there exists a predecessor m1 of
n1 in G such that End(m1) �= ⊥. Let End(m1) = n2. We apply the inductive
reasoning to infer that there exists a sequence of paths [nk..nk−1], . . . , [n1..n0]
in G such that ni ∈ WD for 0 ≤ i ≤ k − 1, and eventually nk ∈ N ′ since G is
finite, End(m) = m for all m ∈ N ′ due to initialization (Line 3 in Algorithm 4),
and End(m′) for all m′ �∈ N ′ are updated from End(m) by traversing G from N ′.
Thus, according to Lemma 2, there exists an N ′-path from n in the CFG. 	

Lemma 5. Let n ∈ N be a CFG node satisfying Eq. 2 and Eq. 3. Then, there
exist two edges (n1, n, l1) and (n2, n, l2) in G such that l1 �= l2, End(n1) �=
End(n2), End(ni) �= ⊥ and li > 0 for i = 1, 2.

Proof. Since |L(n)| > 1, there exist two edges (n1, n, l1) and (n2, n, l2) in G for
any n1, n2 ∈ N such that l1 �= l2 and li > 0 for i = 1, 2. The conditions l1 �= l2
and li > 0 for i = 1, 2 imply that node n is a Cond node having two successors
in the CFG.

Since Eq. 3 is satisfied for the node n, either End(n1) �= End(n2) and the
lemma holds consequently, or End(n1) = End(n2). In the second case, there
exists another edge (n3, n, l3) such that End(n3) �= End(ni) for i = 1, 2. As
n is a Cond node, l3 �= 0 according to Algorithm 2 (see Lines 13 and 14 in
Algorithm 2). So, we have one of the following possibilities: (i) l3 �= l1 and
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l3 �= l2, (ii) l3 = l1, but l3 �= l2, or (iii) l3 = l2, but l3 �= l1. Consequently, we
have the CFG nodes n3 and either n2 due to Case (i) or (ii) or n1 due to Case
(iii) such that the conditions in the lemma are satisfied. 	

Lemma 6. Let π = [n..m] be a CFG path such that n is reachable from the
Start node. Then, there exists a subsequence of CFG nodes n1, . . . , nk = m of π
such that [nk..n1] is a path in G.
Proof. We consider the subsequence of CFG nodes n1, . . . , nk = m of π such that
each ni is a Cond or Join node for 1 ≤ i ≤ k − 1. Let mi

0 = ni, . . . , m
i
ik

= ni+1

be the sequence of nodes from ni to ni+1 in π for all 1 ≤ i ≤ k − 1 and ik ≥ 0.
Algorithm 2 traverses the path π as it is reachable from the Start node. At each
visit to the node mi

j for any 1 ≤ j ≤ ik, Algorithm 2 inserts the edge (mi
j , ni, l)

for any l ∈ {0, . . . , 3}. Thus, (ni+1, ni, l) is an edge in G for all 1 ≤ i ≤ k − 1,
and [nk..n1] is a path in G. 	

Lemma 7. Let n ∈ N be a CFG node such that there exist two disjoint N ′-paths
from n in the CFG. Then, Eqs. 2 and 3 are satisfied for n in Algorithm 4.

Proof. Let π1 and π2 be two disjoint N ′-paths from n in the CFG. According to
Lemma 6, there exist two paths [nk..n1] and [ml..m1] in G which are subsequences
of nodes in π1 and π2 respectively. Also, nk,ml ∈ N ′ since π1 and π2 are N ′-paths
in the CFG.

Node n is a Cond node having two distinct branches in the CFG, and thus
we must have n1 = n and m1 = n. So, there exist two edges (n2, n, l1) and
(m2, n, l2) in the influencer graph G such that l1 �= l2 since n2 and m2 are at
different branches of n. Also, since n is a Cond node, li > 0 for i = 1, 2. Thus,
Eq. 2 is satisfied for n.

Since π1 and π2 are disjoint paths that only meet at the CFG node n, [nk..n1]
and [ml..m1] are also disjoint paths that only meet at n1 = m1. We must have
End(nk) = nk and End(ml) = ml since nk,ml ∈ N ′. While visiting the influencer
graph G in Algorithm 4, End(n2) and End(m2) may take any value from the sets
{n2, . . . , nk} and {m2, . . . , ml} respectively, which are disjoint sets. Thus, Eq. 3
is satisfied for n. 	

Lemma 8. Let n ∈ N be a CFG node satisfying Eqs. 2 and 3. Then, n is an
N ′-weakly deciding node.

Proof. According to Lemma 5, there exist two edges (n1, n, l1) and (m1, n, l2) in
G such that l1 �= l2, End(n1) �= End(m1), End(n1) �= ⊥, End(m1) �= ⊥ and li > 0
for i = 1, 2.

For any m ∈ N ′, End(m) = m due to initialization, and End(m′) �= ⊥ is
derived from this initial values of End(m) for all other m′ �∈ N ′. Let End(n1) =
n2. There exists a path [n2..n1] in G such that either n2 ∈ N ′ or n2 ∈ WD
(Lemma 3). If n2 ∈ WD, there exist a predecessor n′

2 of n2 such that End(n′
2) �=

⊥ according to Algorithm 4 (see Lines 15–18 in Algorithm 4). Let End(n′
2) = n3.

Since G is finite, we apply inductive reasoning to infer that there exists a path
[nk..n1] in G such that nk ∈ N ′, [ni+1..ni] is a path in G and ni ∈ WD for all
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1 ≤ i ≤ k − 1 . Similarly, there exists a path [ml..m1] in G such that ml ∈ N ′,
[mi+1..mi] is a path in G and mi ∈ WD for all 1 ≤ i ≤ l − 1.

In what follows, we show that the paths π1 = [ml..m1, n] and π2 = [nk..n1, n]
are disjoint by contradiction. Suppose there exist no such disjoint paths to n.
Thus, they meet at the first common node ni = mj in π1 and π2 for any 1 ≤ i ≤ k
and 1 ≤ j ≤ l. So, the paths [nk..ni+1] and [ml..mj+1] are disjoint.

Now, if there exists a node m ∈ [ni..n] which is in WD and thus End(m) �= ⊥,
we can apply inductive reasoning as before to show that there exists a path
[mp..m1] for any p ≥ 1 such that mp ∈ N ′. This path does not meet any of the
paths [nk..ni+1] and [ml..mj+1] as they are disjoint. This implies that we can
always have two disjoint paths from n regardless of whether [mp..m1] meet with
[ni..n] and/or [mj ..n]:

1. the path [nk..n] if [mp..m1] meet with both [ni..n] and [mj ..n] or only with
[mj ..n], and

2. another path [mp..mt] followed by [mt..n] where mt meet at [mj ..n].

This contradicts our assumption that no paths like π1 and π2 to n are disjoint.
So, our assumption about the existence of the node m ∈ WD is not correct. Thus,
no node in the paths [ni..n] and [mj ..n] are in WD. We must have End(ni) �= ⊥
due to the path [nk..ni] such that End(nk) = nk. Algorithm 4 then traverses
the paths [ni..n] and [mj ..n] and set End(m) = End(ni) for all m ∈ [ni..n] and
m ∈ [mj ..n] (see conditions at Line 16 and the update at Line 28 in Algorithm 4).
This contradicts the assumption of the lemma that End(n1) �= End(n2). Thus,
our only assumption that π1 and π2 are not disjoint cannot be true.

Then, π1 and π2 lead to two N ′-paths π3 and π4 from n in the CFG G
according to Lemma 4. These paths are disjoint as all Cond and Join nodes in
these paths are disjoint. Node n is thus an N ′-weakly deciding vertex. 	

Theorem 1. Algorithm 3 correctly and precisely computes the WCC of a subset
N ′ of CFG nodes.

Proof. For all N ′-weakly deciding node n in the CFG, Eqs. 2 and 3 are satisfied
for n in Algorithm 4 according to Lemma 7. Moreover, for all CFG nodes n
satisfying Eqs. 2 and 3 in Algorithm 4, n is an N ′-weakly deciding node according
to Lemma 8. Since Algorithm 4 includes all CFG nodes n in WD if Eqs. 2 and
3 are satisfied for n, Algorithm 4 includes a CFG node n in WD if and only if n
is an N ′-weakly deciding node. Algorithm 3 then computes the set WCC that
includes N ′ and a subset of WD that are reachable from N ′ in the CFG. 	


3.4 Worst-Case Time Complexity

In this section, we provide a number of lemmas to state the theoretical worst-case
time complexity of our algorithms.

Lemma 9. Let G = (N , E) be the influencer graph generated from a CFG G =
(N,E) such that |G| = |N | + |E| and |G| = |N | + |E|. Then, it holds that
O(|G|) = O(|G|).
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Proof. For each visit to a CFG edge, Algorithm 2 inserts at most one edge in G.
Moreover, since N = N , we must have O(|G|) = O(|G|). 	

Lemma 10. The worst-case time complexity of Algorithm 2 is O(|N |log2|N |).
Proof. The worst-case time complexity of Algorithm 2 is dominated by the while

loop (line 5–42). The while loop visits each CFG node exactly once. For each
visited node n, the forall loop (line 9–41) visits each edge from n exactly once.
Thus, the while and the forall loop collectively iterates |N | + |E| times. The
worst-case cost of each basic operation inside the while and the forall loop is
constant except for the costs of the operations (n,X) ∈ Em and (I(n),X) ∈ Em

at Lines 13, 14, 26, and 30, the cost of inserting the edge {nedge} in Em at
Line 36, and the cost of accessing and updating Dist(m, .) at Lines 32 and 37.
All these data structures can contain at most |N | elements, and the worst-case
cost for insertion, search, and update operations are O(log2|N |) as practical
implementation of these data structures use red-black trees. Thus, the worst-
case cost of the entire loop (Line 5–42) is O((|N | + |E|) ∗ log2|N |). Since any
CFG node has at most two outgoing edges according to the definition of CFG,
we have O(|N |) = O(|E|), and the worst-case time complexity of Algorithm 2 is
O(|N |log2|N |). 	

Lemma 11. The worst-case time complexity of Algorithm 4 is O(|N |2).
Proof. The worst-case cost of Algorithm 4 is dominated by the while loop (Line
6–32). This loop iterates as long as there exist elements in the worklist W . While
visiting an edge (n,m, l) in the influencer graph G, m is included in W if End(m)
is changed (see Lines 18, 21, 27–30). The function End(m) may change its value
⊥ to some other value n ∈ N for the first time. If End(m) = m is set once, its
value will never be changed and it will never be included in W . Also, End(m) = n
may change to End(m) = n′ if there exists a path [n..m] in the influencer graph
such that n′ ∈ [n..m] and n′ is included in WD, or n′ ∈ N ′ is an immediate
predecessor of m. Thus, if End(m) is changed |N | times, it implies that |N |
nodes are in WD ∪ N ′ and thus no new node can be included in W as End will
then never be changed, and the changed variable will always be false afterward.
So, we can safely consider that for each node m in the influencer graph, End(m)
may change two times (from ⊥ to some value n ∈ N , and n to m if m ∈ WD).
Each additional change will be due to including a node in WD. Since at most |N |
node can be included in WD, the while and the loop forall loop (Lines 8–31)
will iterate at most 2 ∗ |N | + 2 ∗ |E| times in total.

By choosing suitable data structures, all other operations in the while and
forall loops can be performed at constant time except for the operation of the
propagateToReplace procedure in Algorithm 5. Algorithm 5 requires visiting each
node and edge in the graph G at most once with all other operations in the while

loop at constant cost. Thus, the worst-case cost of Algorithm 5 is O(|N | + |E|)
which is effectively O(|N |) due to Lemma 9. Thus, the worst-case cost of the
while loop in Algorithm 4 is O((2 ∗ |N | + 2 ∗ |E|) ∗ |N |) which is equivalent to
O(|N |2). This is also the worst-case cost of Algorithm 4. 	
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Theorem 2. The worst-case time complexity of Algorithm 3 computing the
WCC set is O(|N |2).
Proof. The worst-case cost of the checkreachability procedure can be at
most O(|N |) times as it requires visiting each node and edge at most once in a
loop with all other operations in the loop at a constant cost. Thus, the worst-case
cost of Algorithm 3 is dominated by the worst-case cost of the computeWD
procedure which is O(|N |2) according to Lemma 11.

Note that even though the worst-case cost of Algorithm 3 is quadratic in the
size of the CFG, we believe that the amortized complexity of this algorithm is
much better as indicated by our experimental evaluation in the next section.

4 Experimental Evaluation

The main objectives of our experimental evaluation include measuring the cor-
rectness of our algorithm and comparing its practical efficiency with the state-
of-the-art approaches. In doing so, we have implemented our algorithms in the
Clang/LLVM compiler framework [9]. We have compared our approach with the
state-of-the-art WCC computation algorithm developed earlier [12,14] which
is currently the best-known algorithm for computing WCC with an average
speedup of 10.6 compared to the algorithm of Danicic et al. [4]. This state-of-
the-art algorithm is also implemented in the Clang/LLVM compiler framework
and released as open-source in a GitHub repository2.

All experiments are performed in an Intel(R) Core(TM) i7-7567U 3.50GHz
CPU with 16 GB of RAM memory and all implementations are compiled using
the LLVM version 11.0.0. We have used seven benchmarks from the SPEC CPU
2017 benchmark suite consisting of approximately 2081 KLOC. These bench-
marks are written in C language and were also used in the experimental evalu-
ation of the state-of-the-art approaches. Note that the SPEC CPU 2017 bench-
mark suite contains other benchmarks. However, they are not written solely in
the C language. Since our implementation can only handle C code, these other
benchmarks are thus excluded from the experiments.

In order to perform experiments for the incremental computation of WCC,
we choose the set N ′ of CFG nodes randomly. This choice of randomness is due
to the fact that N ′ should be provided by the client application of WCC such as
program slicing as illustrated in Algorithm 1. This choice of randomness neither
affects the generality of our algorithm nor affects our experiment in any way. We
run each experiment 10 times. The number 10 is selected due to the fact that
earlier experimental evaluation [12,14] ran each experiment 10 times as well.
For the client applications like slicing or information flow control, this number
will depend on the size of the CFG, the maximal number of Cond nodes in a
maximal path, and the point of interest such as the nodes in the slicing criterion,
etc. Usually, this number should be the maximum number of iterations to reach

2 https://github.com/anm-spa/CDA.

https://github.com/anm-spa/CDA


Fast and Incremental Computation of Weak Control Closure 345

Table 1. Execution times of computing WCC incrementally on seven selected bench-
marks from SPEC CPU 2017 [3]

# Benchmarks KLOC #proc Tω TM Speedup

1 Mcf 3 40 17728.4 52010.9 2.93

2 Nab 24 327 121747.7 430778.8 3.54

3 Xz 33 465 66832.0 147705.6 2.21

4 X264 96 1449 60603.5 208273.6 3.44

5 Imagick 259 2586 56359.8 225375.0 4.0

6 Perlbench 362 2460 2006511.4 18762418.0 9.35

7 GCC 1304 17827 12317538.2 434684910.3 35.29

Total/Average 2081 25154 14647321.0 454511472.2 31.03

fixed-point in Algorithm 1. However, since this number is unknown, 10 is a good
number for the experiments to get an indication of whether we can obtain a
significant speedup or not. Each experiment took the Z number of randomly
selected N ′ sets where Z is a random number between 1 and 15.

We computed the influencer graph only once and apply our WCC compu-
tation algorithm (Algorithm 3) Z times consecutively for each experiment. On
the other hand, we apply the state-of-the-art algorithm [12,14] Z times con-
secutively to compute the WCC set for each experiment. In order to verify the
correctness of our method, we compare the WCC sets computed by our incre-
mental algorithm and the best baseline algorithm in [12,14] computed for the
same N ′ set. We obtained exactly the same WCC sets for all experiments in each
benchmark computed by both methods. This provides us the empirical proof of
the correctness of our method.

For each experiment, we recorded the time in milliseconds taken by both
methods. The results are presented in Table 1 in which Tω denotes the execution
time of our algorithm, TM denotes the execution time of the best baseline algo-
rithm, and #proc is the number of procedures in each benchmark. The speedup
column indicates the speedup of our method which is computed as TM/Tω. In
the final row, all numbers in each column are the sum of the numbers in 7 bench-
marks except the final number in the speedup column. The speedup in the final
row is obtained from the values of TM and Tω in the final row which gives us
the average speedup for the entire experiment.

Table 1 illustrates that we improved the performance in the incremental com-
putation of WCC significantly. The performance improvements are between 2 to
4 times for smaller benchmarks compared to the best baseline approach. How-
ever, for larger benchmarks like Perlbench or GCC, the performance improve-
ments are significant. We obtained a speedup of 9.35 and 35.29 times for Perl-
bench and GCC respectively. On average, we obtained a speedup of 31.03 for
the entire experiment. This proves that our approach can be the best alternative
to compute WCC over the state-of-the-art algorithms.
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As seen in Table 1, the performance improvement results are skewed towards
larger benchmarks such as GCC and Perlbench. We bring our discussion of these
skewed results from our earlier results on non-incremental WCC computation
methods [14]. The higher gain for GCC is due to the fact that GCC is the largest
benchmark in the benchmark suite, the size of CFGs for the procedures in this
benchmark is much bigger than the size of the CFGs in the benchmarks like Mcf,
Xz, or Nab. The Xz benchmark (for example) provides the lowest speedup due
to the fact that it has fewer procedures than GCC and the sizes of the CFGs
for most procedures in this benchmark are very small; the average size of a CFG
(i.e. number of CFG nodes) is only 8 per procedure. GCC has 38 times more
procedures than Xz and the average size of a CFG per procedure is 20. Also,
greater speedups are obtained in larger CFGs. There are 171 and 55 procedures
in GCC with the size of the CFGs greater than 200 and 500 respectively and
the maximum CFG size is 15912, whereas the maximum CFG size in Xz is 87.
The Perlbench is the second largest benchmark in our experiments in terms of
the CFG size and the number of procedures. We obtained the second highest
speedup (9.35) for this benchmark. Our results would have been less skewed if
we would consider other benchmarks similar to GCC or Perlbench that have
more procedures and the CFG sizes are larger, unlike Xz or Mcf.

5 Related Work

The concept of control dependence was first introduced by Denning and
Denning [5] in analyzing the information-flow security of programs. He used
the dominator-based (inverse of postdominator) approach to identify pro-
gram instructions influenced by the conditional instructions in the program.
Weiser [22] shown how to use this concept in program slicing. This concept
was first formalized by Ferrante et al. [6] and used it to compute the program
dependence graph (PDG). PDG is a program representation that can be used
for program slicing and program optimization techniques. This formal definition
of control dependence was based on computing postdominator relation which
is still being used in modern compilers such as LLVM or GCC for program
transformation and program optimization techniques.

Several alternatives to this standard definition are introduced in the litera-
ture. The earliest of these alternatives is the work of Podgurski and Clarke [19].
They provided the concept of weak and strong syntactic dependence where
strong syntactic dependence is the standard control dependence relation of Fer-
rante et al. and the weak syntactic dependence is the nontermination sensitive
control dependence relation. Bilardi and Pingali [2] provided a generalized frame-
work of Podgurski and Clarke which is parameterized with respect to a set of
CFG paths providing different control dependence relations. The above control
dependences were extended by Ranganath et al. [20,21] to deal with programs
containing exceptions or nonterminating programs. Modern software such as web
services, distributed systems, or robot control software may be nonterminating
and it may be desirable to compute control dependence from such systems. The
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authors in Reference [20,21] introduced control dependencies that are applicable
to these modern programming language constructs. They defined the nonter-
mination insensitive and nontermination sensitive control dependencies in the
opposite sense of Podgurski and Clarke, and provided algorithms to compute
these control dependence relations.

Danicic et al. [4] provided the concept of weak and strong control closure
that are nontermination insensitive and nontermination sensitive respectively.
These definitions are the most general and unifying definitions capturing a wide
variety of programming language constructs. They have shown that all previously
defined control dependence relations are the special case of these two generalized
concepts. They have provided algorithms to compute WCC and SCC and the
worst-case time complexity of these algorithms are O(|N |3) and O(|N |4) where
|N | is the number of vertices of the CFG.

More recently, a number of works extending and improving various concepts
of Danicic et al. have been introduced. Our earlier works in [12,14] provided algo-
rithms to compute WCC and SCC that improved the theoretical worst-case time
complexity by an order of the size of the CFG as well as the practical efficiency.
We have extended the definitions of WCC and SCC for interprocedural programs
in order to prove the semantic correctness of dependence-based program slicing
in [17], and provided an algorithm to compute the WCC for interprocedural pro-
grams in [18]. However, none of these improvements considered the incremental
computation of WCC.

Léchenet et al. [10] provided an improvement of Danicic et al. by applying
various optimizations and demonstrated the efficiency improvements in practical
evaluation. The theoretical complexity of their algorithm is not provided and the
algorithm is not incremental in nature. Khanfar et al. [8] developed a demand-
driven algorithm to compute direct control dependencies to a particular program
statement which requires that the program must have a unique exit point. This
algorithm is not incremental in nature and their algorithm does not compute
WCC.

Recently, we have shown an interesting duality relationship between comput-
ing the SSA program and the WCC relation [13]. Our incremental algorithm may
provide an improved algorithm to compute the SSA program without computing
the standard dominance frontier-based SSA construction as done in [15,16].

6 Conclusion and Future Works

Numerous definitions of control dependence relations are introduced in the lit-
erature to handle a wide spectrum of programming language constructs. The
weak and strong control closures are the most generalized definitions captur-
ing nontermination (in)sensitive control dependencies. Since the introduction of
these concepts, a series of works have been published to provide an improved
algorithm computing WCC and SCC and extend them to handle interprocedural
programs. However, there exists no effort that provides an incremental computa-
tion of WCC. Incremental computation of WCC is especially important for the
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client application of WCC such as program slicing since it requires the repeated
computation of WCC in a fixpoint iteration. A non-incremental algorithm loses
performance by repeatedly computing unnecessary information. In this paper,
we have developed a novel algorithm to compute WCC incrementally which is
also the fastest algorithm among all the existing approaches to computing WCC.
We have provided the proof of correctness of our method and analyzed its worst-
case time complexity which is quadratic in terms of the size of the CFG. We have
implemented our algorithm in the Clang/LLVM compiler framework and com-
pared it with the best baseline approach by running experiments on well-known
benchmarks. We have obtained an average speedup of 31.03 in all benchmarks
and a maximum speedup of 35.29 in the largest benchmark. This gives us an
indication that the amortized complexity of our algorithm is much better than
the theoretical worst-case complexity.

The future direction of this work includes developing a method that also com-
putes SCC and is applicable to interprocedural programs. The further extension
will be to develop definitions and algorithms to handle time-sensitive weak and
strong control closure that will be beneficial to detect timing leaks in security-
critical software.
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Abstract. Local Completeness Logic (LCL) has been put forward as a program
logic for proving both the correctness and incorrectness of program specifica-
tions. LCL is an abstract logic, parameterized by an abstract domain that allows
combining over- and under-approximations of program behaviors. It turns out that
LCL instantiated to the trivial singleton abstraction boils down to O’Hearn incor-
rectness logic, which allows us to prove the presence of program bugs. It has been
recently proved that suitable extensions of Kleene algebra with tests (KAT) allow
representing both O’Hearn incorrectness and Hoare correctness program logics
within the same equational framework. In this work, we generalize this result by
showing how KATs extended either with a modal diamond operator or with a top
element are able to represent the local completeness logic LCL. This is achieved
by studying how these extended KATs can be endowed with an abstract domain so
as to define the validity of correctness/incorrectness LCL triples and to show that
the LCL proof system is logically sound and, under some hypotheses, complete.

Keywords: Local completeness logic · Incorrectness logic · Complete abstract
interpretation · Kleene algebra with tests

1 Introduction

Kleene algebra [7] with tests (KAT) [17] allows an equational reasoning on programs
and their properties. Programs are modeled as elements of a KAT, so that their prop-
erties can be algebraically derived through the general equational theory of KATs.
KATs feature sound, complete, and decidable equational theories and have found suc-
cessful applications in several different contexts, most notably in network program-
ming [1,2,12,30,31]. The foundational study of Kozen [18] has shown that the reason-
ing of Hoare correctness logic [16] can be encoded and formulated equationally within a
KAT. Later work by Desharnais, Möller and Struth [10,24] extended KATwith a domain
(KAD) to express themodal operators of propositional dynamic logic [11], thus enabling
amore natural way of reasoning through amap from actions to propositions. The expres-
sive power of KAD has been recently substantiated by Möller, O’Hearn and Hoare [23],
who have shown how to encode both Hoare [16] correctness and O’Hearn [25] incor-
rectness program logics in a unique class of KAD where a backward diamond modality
is exploited to encode strongest postconditions. Furthermore, very recently, Zhang, De
Amorim and Gaboardi [33, Theorem 1] have shown that O’Hearn incorrectness logic
cannot be formulated within a conventional KAT, but, at the same time, a full fledged
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modal KAT is not needed. In fact, [33] proves that a KAT including a greatest element,
called TopKAT, is capable to encode both Hoare and O’Hearn logic in a purely equa-
tional fashion.Moreover, [33] provides a PSPACE algorithm to decide TopKAT equality,
based on a reduction to Cohen et al. [6]’s algorithm for KAT.

This stream of works made it possible to reason equationally on both program cor-
rectness and incorrectness in the same algebraic framework. For example, in the KAD
framework where a backward diamond modality 〈a|p plays the role of strongest post-
condition of a KAT element a (viz., a program) for a KAT test p (viz., a precondi-
tion), the validity of a Hoare correctness triple {p} a {q} is determined by the inequality
〈a|p ≤ q, while the validity of an O’Hearn incorrectness triple [p] a [q] boils down to
q ≤ 〈a|p. Moreover, if a KAT test s plays the role of specification for a program a and
a Hoare triple {p} a {q} is provable, then a can be proved correct through the inequality
q ≤ s. Vice versa, if [p] a [q] is a provable incorrectness triple, then incorrectness of a
can be verified as q ≤ ¬s.

The Problem. Recently, Bruni et al. [4] put forward a novel program logic, called
local completeness logic LCL, which is parameterized by an abstract domain [8,9] of
program stores and simultaneously combines over- and under-approximations of pro-
gram behaviours. This program logic leverages the notion of locally complete abstract
interpretation, meaning that the abstract interpretation of atomic program commands,
such as variable assignments and Boolean guards, is complete (i.e. with no false alarm)
locally on the preconditions, as opposed to standard completeness [13,29] which must
be satisfied globally for all the preconditions. While a global completeness program
logic was proposed in [14], Bruni et al. [4] design a proof system for inferring that a
program analysis is locally complete. It turns out [4, Section VI] that the instantiation of
this LCL program logic to the trivial store abstraction with a unique “don’t know” value
abstracting any concrete store property, boils down to O’Hearn incorrectness logic [25].
Moreover, Bruni et al. [5] also show that abstract interpretations can be made locally
complete through minimal domain refinements that repair the lack of local complete-
ness in a given program analysis.

In the original definition of LCL in [4] program properties are represented as ele-
ments of a concrete domain C and program semantics as functions of type C → C.
Although straightforward, this approach determines a specific type of program seman-
tics. Vice versa, by exploiting a KAT, program properties are represented as tests and
programs as generic elements of the KAT. Hence, a KAT based formulation becomes
agnostic w.r.t. the underlying semantics and can therefore admit multiple different mod-
els of computation (e.g., trace-based semantics, or even models not related to program
semantics as shown by the language-theoretic example in Sect. 3.5). Furthermore, KAT
is a particularly suitable formalism for compositionally reasoning on programs as all
its basic composition operations on programs (concatenation, choice and Kleene iter-
ation) are directly modeled within the algebra: this allows us to represent composite
programs and tests as elements of the KAT and, in particular, to check for their equality
and inclusion directly in the algebra. Thus, following the KAT-based model of incor-
rectness logic advocated by Möller, O’Hearn and Hoare [23], this paper pushes forward
this line of work by studying an algebraic formulation of LCL program logic, with the
objective of showing that there is no need to leverage particular semantic properties of
programs to reason on their local completeness.
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Contributions. In this work, we show that the local completeness logic LCL can be
made fully algebraic in a suitable KAT, yet preserving all its noteworthy logical prop-
erties proved in [4]. For this purpose we show that:

– Our proof systems are logically sound and complete (likewise [4], completeness
needs some additional hypotheses).

– By instantiating the algebraic version of the LCL logic to the trivial domain abstract-
ing any concrete value to “don’t know” we exactly obtain O’Hearn incorrectness
program logic [25], thus retrieving its logical soundness and completeness as conse-
quences of our results.

– Triples of O’Hearn incorrectness logic carry two postconditions, corresponding to
normal and erroneous program termination. While the original local completeness
logic LCL in [4] only considers normal termination, we propose a generalization
that also supports erroneous termination. Moreover, we use the KAD construction
of [23] to generalize our logical soundness and completeness results to incorrectness
triples.

In particular, we study two different formulations of LCL given: (1) in a KAD, the
KAT model used in [23], and (2) in a TopKAT, the KAT model employed in [33]. In
both frameworks, we put forward a suitable notion of abstract domain of KAT that, cor-
respondingly, induces a sound abstract semantics for KAT programs (i.e., KAT terms).
Our local completeness logic on KAT, called LCK, turns out to be logically sound w.r.t.
this abstract semantics, meaning that a provable LCK triple [p] a [q] for an abstract
domain A on a KAT K satisfies:

(i) q is below the strongest postcondition in K of the program term a for the precon-
dition p;

(ii) the program term a is locally complete for the precondition p in the abstract
domain A;

(iii) the approximations inA of q and of the strongest postcondition of a for p coincide.

The proofs of all the results have been omitted and can be found in the full version
of the paper [22].

2 Background on Kleene Algebra with Tests

A Kleene algebra with tests (KAT) is a purely algebraic structure that provides an ele-
gant equational framework for program reasoning. A KAT consists of actions, playing
the role of programs, and tests, interpreted as pre/postconditions and Boolean guards.
KAT elements can be combined with three basic operations: nondeterministic choice
a1 + a2, sequential composition a1; a2, and Kleene iteration a∗. A standard model of
KAT used to represent computations is the relational model, in which KAT elements are
binary relations on some set, thus modeling programs as a relation between input and
output states. Further models of KAT include regular languages over a finite alphabet,
square matrices over another Kleene algebra, and Kleene algebra modulo theories [15].
In the following, we briefly recall some basics of KAT. For more details, the reader is
referred to [7,10,17].
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An idempotent-semiring (i-semiring) is a tuple (A,+, ·, 0, 1) where: (1) (A,+, 0)
is a commutative monoid with an idempotent addition, i.e., for all a ∈ A, a + a = a;
(2) (A, ·, 1) is a monoid, where the multiplication symbol · is often omitted, such that,
for any a ∈ A, 0 · a = a · 0; (3) multiplication distributes over addition (in both
arguments). In an i-semiring A, the relation a ≤ b

�⇔ a + b = b is a partial order,
referred to as the natural ordering, that we will implicitly use throughout the paper.
Note that the addition + is the join w.r.t. this natural ordering.

A test-semiring is a tuple (A, test(A),+, ·,¬, 0, 1) where: (1) (A,+, ·, 0, 1) is an
i-semiring; (2) test(A) ⊆ A, and (test(A),∨,∧,¬, 0, 1) is a Boolean subalgebra of A
with greatest element 1 and least element 0, complement ¬, where the meet ∧ and join
∨ of the Boolean algebra test(A) coincide, resp., with multiplication · and addition +.

A Kleene algebra is a tuple (K,+, ·, ∗, 0, 1) where: (1) (K,+, ·, 0, 1) is an i-semi-
ring; (2) (·)∗ : K → K is a unary operation, called Kleene star or iteration, satisfying
the following conditions:

1 + aa∗ ≤ a∗ 1 + a∗a ≤ a∗ (∗-unfold)
b + ac ≤ c ⇒ a∗b ≤ c b + ca ≤ c ⇒ ba∗ ≤ c (∗-induction)

Definition 2.1 (KAT [17]). A Kleene algebra with tests (KAT) is a two-sorted algebra
(K, test(K), +, ·, ∗, ¬, 0, 1) such that (K, test(K),+, ·,¬, 0, 1) is a test-semiring and
(K,+, ·, ∗, 0, 1) is a Kleene algebra.
A KAT K is countably-test-complete (CTC) if any countable subset of test(K) admits
least upper bound (lub).
A KAT is ∗-continuous, referred to as KAT∗, if it satisfies the following condition:
for all a, b, c ∈ K, ab∗c =

∨
n∈N

abnc (this equation implicitly assumes that the lub∨
n∈N

abnc, w.r.t. the natural ordering of K, exists).

A relational KAT [19] on a carrier set X is determined by a set K ⊆ ℘(X × X)
of binary relations on X with tests test(K) ⊆ ℘({(x, x) | x ∈ X}), where addition
is union, multiplication is composition of relations, the additive identity is the empty
relation, the multiplicative identity is {(x, x) | x ∈ X}, the Kleene star is the reflexive-
transitive closure, and test complement is set complementation w.r.t. the multiplicative
identity.

Informally, a backward diamond 〈 · | · on a KAT allows us to compute strongest
postconditions of programs, that is, 〈a|p can be interpreted as post[a]p.

Definition 2.2 (bdKAT [23]). A backward-diamond KAT (bdKAT) is a two-sorted
algebra (K, test(K),+, ·, ∗,¬, 0, 1, 〈|) such that:

(1) (K, test(K),+, ·, ∗,¬, 0, 1) is a KAT;
(2) 〈 · | · : K → (test(K) → test(K)) is a backward-diamond operator satisfying the

following conditions: for all a, b ∈ K and p, q ∈ test(K),

〈a|p ≤ q ⇔ pa ≤ aq (bd1)

〈ab|p = 〈b|(〈a|p) (bd2)

��
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The axiom (bd1) is equivalent to requiring that 〈a|p is the least test in K satisfying
pa ≤ aq (the original definition of Kleene algebra with domain in [10] is of this form).
Moreover, pa ≤ aq in (bd1) is equivalent to pa = paq (see [10, Lemma 3.4]).

Definition 2.3 (TopKAT [21]). A KAT with top (TopKAT) is a KAT K that contains a
largest element  ∈ K, that is, for all a ∈ K, a ≤ . ��

3 Local Completeness Logic in KAT

We investigate how the local completeness program logic LCL [4] can be interpreted
on a KAT. To achieve this, we need to address the following tasks:

– To define a notion of abstract domain of a KAT, with the aim of abstracting the set
of program predicates, namely tests of a KAT;

– To establish a concrete semantics and a corresponding sound abstract semantics of
programs on KATs;

– To adapt the local completeness proof system to attain valid triples on a KAT;
– To prove logical soundness and completeness w.r.t. a KAT of this new proof system.

3.1 Program Properties in KAT

Program properties can be broadly classified as intensional and extensional. The former
relate to how programs are written, while the latter concern the input-output relation of
a program, i.e., its strongest postcondition denotational semantics. Local completeness
logic LCL relies on an abstract interpretation of programs which crucially depends
on intensional properties of programs, meaning that even if two programs share the
same denotation, they could well have different abstract semantics. Thus, we expect
that an appropriate definition of abstract semantics based on a KAT model should also
be intensional. Given two elements a and b of a modal bdKAT playing the role of
programs, we therefore expect that their backward diamond functions might coincide,
i.e. 〈a| = 〈b|, even if a and b encode different programs, i.e. a �= b. However, as shown
by the following remark for the basic relational model of KAT, it might happen that for
certain classes of KAT models the backward diamond interpretation is injective.

Proposition 3.1. Let K be a relational KAT on a set X where test(K) = ℘({(x, x) |
x ∈ X}). Then, for all a, b ∈ K, 〈a| = 〈b| ⇔ a = b.

This means that, at least for some fundamental KAT models, KAT elements are
equal iff they are extensionally equal, or, equivalently, they carry exclusively exten-
sional program properties. In this case, when a program is encoded with a KAT element
all the intensional properties are lost and it is indistinguishable from any other pro-
gram with the same denotational semantics. Therefore, an abstract interpretation-based
semantics can not be defined directly on KAT elements.
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3.2 KAT Language

As a consequence of the discussion in Sect. 3.1, the concrete semantics cannot be
directly defined on KAT elements. A solution is to define it on an inductive language.
Actually, in a language of programs, two elements are equal iff they are syntactically
equal, or, in other terms, if the corresponding programs are written in the same way.
This property makes a language an ideal basis upon which a semantics can be defined,
because this brings the chance of depending on intensional properties.

A natural choice for defining this language of programs is the so-called KAT lan-
guage, as originally defined by Kozen and Smith [19, Section 2.3], because it contains
all and only the operators of a KAT, so that the interpretation of language terms as KAT
elements is the most natural one. This language is inductively defined from two disjoint
sets of primitive actions and tests through the basic elements/operations 0, 1,+, ·,∗ of
KATs. More precisely, given a set Σ of primitive actions and a set B of primitive tests
such that Σ ∩ B = ∅, the corresponding KAT language TΣ,B of terms is defined as
follows:

Atom � a ::= a ∈ Σ | p ∈ B
TΣ,B � t ::= a | 0 | 1 | t1 + t2 | t1 · t2 | t∗

For simplicity, we assume that 0 and 1 are primitive tests inB, so that 0, 1 ∈ Atom. The
notation Atom(t) ⊆ Atom will denote the set of atoms occurring in a term t ∈ TΣ,B .
Notice that a KAT language TΣ,B is an equivalent representation of the language of
regular commands used in [4,25] for their program logics.

Given a KAT K, an evaluation of atoms in K is a mapping u : Atom → K such
that p ∈ B ⇒ u(p) ∈ test(K). An evaluation u induces an interpretation of terms
�·�u : TΣ,B → K, which is inductively defined as expected:

�a�u � u(a) �t1 + t2�u � �t1�u + �t2�u

�t1 · t2�u � �t1�u · �t2�u �t∗�u � �t�∗
u

In turn, the concrete semantic function

�·�K : TΣ,B → (
test(K) → test(K)

)

models the strongest postcondition of a program, i.e. of a language term, for a given
precondition, i.e. a KAT test. This is therefore defined in terms of the backward diamond
of a bdKAT as follows:

�t�Kp � 〈�t�u|p. (1)

We will often use �t� to denote a concrete semantics, by omitting the superscript K
when it is clear from the context.

3.3 Kleene Abstractions

An abstract domain is used in abstract interpretation for approximating store properties,
i.e., sets of program stores form the concrete domain, likewise in our KAT model, the
role of concrete domain is played by the set of tests test(K) of a KAT K, ordered by
the natural ordering induced by K.
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Definition 3.2 (Kleene Abstract Domain). A poset (A,≤A) is a Kleene abstract
domain of a bdKAT K if:

(i) There exists a Galois insertion, defined by a concretization map γ : A → test(K)
and an abstraction map α : test(K) → A, of the poset (A,≤A) into the poset
(test(K),≤K);

(ii) A is countably-complete, i.e., any countable subset of A admits a lub. ��
The abstract semantic function �·��

A : TΣ,B → (A → A) defines how abstract pre-
conditions are transformed into abstract postconditions. Likewise store-based abstract
interpretation, this abstract semantics is inductively defined as follows:

�a��
Ap� � α(�a�Kγ(p�)) �t1 + t2�

�
Ap� � �t1�

�
Ap� + �t2�

�
Ap�

�t1 · t2��
Ap� � �t2�

�
A(�t1�

�
Ap�) �t∗��

Ap� �
∨

n∈N
(�t��

A)
np�

(2)

It is worth remarking that condition (ii) of Definition 3.2 ensures that the abstract
semantics of the Kleene star in (2) is well defined. It turns out that �·��

A is a sound (and
monotonic) abstract semantics.

Theorem 3.3 (Soundness of bdKAT Abstract Semantics). Let A be a Kleene
abstraction of a CTC bdKAT K and TΣ,B be a language interpreted on K. For all
p�, q� ∈ A, p ∈ test(K), and t ∈ TΣ,B:

p� ≤A q� ⇒ �t��
Ap� ≤A �t��

Aq� (monotonicity)

α(�t�Kp) ≤A �t��
Aα(p) (soundness)

3.4 Local Completeness Logic on BdKAT

Given a Kleene abstract domain A, we will slightly abuse notation by using

A � γ ◦ α : test(K) → test(K)

as a function (indeed, this is the upper closure operator on tests induced by the Galois
insertion defining A). Let us recall the notions of global vs. local completeness. If f :
test(K) → test(K) is any test transformer then:

– A is globally complete for f , denoted C
A(f), iff A ◦ f = A ◦ f ◦ A;

– A is locally complete for f on a concrete test p ∈ test(K), denoted C
A
p (f), iff

A ◦ f(p) = A ◦ f ◦ A(p).

It is known [14] that global completeness is hard to achieve in practice, even for
simple programs. Moreover, a complete and compositional (i.e., inductively defined on
program structure) abstract interpretation is even harder to design [3]. This motivated
to study a local notion of completeness in abstract interpretation [4] as a pragmatic and
more attainable weakening of standard global completeness.

In our local completeness logic on a Kleene algebra, a triple [p] t [q], where p and
q are tests and t is a language term, will be valid when:
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Fig. 1. Proof system LCKA.

(1) q is an under-approximation of the concrete semantics of t from a precondition p;
(2) A is locally complete for �t� on the precondition p;
(3) q and �t�p have the same over-approximation in A.

Definition 3.4 (Triple Validity). LetK a CTC bdKAT,A be a Kleene abstraction ofK,
and TΣ,B be a KAT language interpreted on K. For all p, q ∈ test(K) and t ∈ TΣ,B ,
a triple [p] t [q] is valid in A, denoted by |=K

A [p] t [q], if

(i) q ≤K �t�Kp;
(ii) �t��

Aα(p) = α(q) = α(�t�Kp). ��
The local completeness proof system in [4] can be adapted to our algebraic frame-

work, yielding the set of rules denoted by LCKA in Fig. 1. The only syntactic difference
concerns the usage of elements of test(K) as pre/postconditions and the language of
terms TΣ,B playing the role of programs.

It turns out that the logic LCKA is logically sound (we use “logical” soundness to
avoid overloading the soundness of abstract semantics).

Theorem 3.5 (Logical Soundness of �K
A). If �K

A [p] t [q] then

(i) q ≤K �t�p;
(ii) �t��

Aα(p) = α(q) = α(�t�p).

Analogously to what happens for LCL, we can prove that LCKA is logically com-
plete under these two additional hypotheses:

(A) The following infinitary rule is added to LCKA:

∀n ∈ N. �K
A [pn] t [pn+1]

(limit)�K
A [p0] t∗ [

∨
n∈N

pn]

Let us point out that the lub
∨

n∈N
pn always exists in K, as a consequence of the

CTC requirement on K.
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(B) The concrete semantics of the primitive actions and tests occurring in the program
are globally complete.

It can be proved that the rule (limit) preserves logical soundness (see the full ver-
sion [22]).

Theorem 3.6 (Logical Completeness of �K
A). Assume that conditions (A) and (B) hold.

If |=K
A [p] t [q] then �K

A [p] t [q].

Summing up, this shows that the local completeness logic LCL introduced in [4]
can be made fully algebraic by means of a natural interpretation on modal KATs with
a backward diamond operator, still preserving its logical soundness and completeness,
which are proved by using just the algebraic axioms of this class of KATs. Hence, this
shows that there is no need to leverage particular semantic properties of programs to
reason on their local completeness.

3.5 An Example of a Language-Theoretic KAT

To give an example digressing from programs and showing the generality of the KAT-
based approach, we describe a language-theoretic model of Kleene algebra, early intro-
duced by Kozen and Smith [19, Section 3].

Let Σ = {u} and B = {b1, b2} be, resp., the sets of primitive actions and tests. An
atom is a string c1c2, where ci ∈ {bi, bi}. If ci = bi, where i ∈ {1, 2}, then bi appears
positively in the atom c1c2, while if ci = bi it appears negatively. A guarded string
is either a single atom or a string α0a1α1...anαn, where αi are atoms and ai ∈ Σ. If
we are only interested in the first (last) atom of a guarded string αa1α1...anβ, we may
refer to it through the syntax αx (xβ). Concatenation of guarded strings is given by a
coalesced product operation �, which is partially defined as follows:

xα � βy �
{

xαy if α = β

undefined otherwise

The elements of this KAT G are sets of guarded strings. Thus, + is set union, the
product is defined as pointwise coalesced product:

A · B � {x � y | x ∈ A, y ∈ B},

while the Kleene iteration is: A∗ �
⋃

n∈N
An. The product identity corresponds to the

whole set of atoms 1G � {b1b2, b1b2, b1b2, b1b2}, while 0G is the empty set. The set
of tests is test(G) � ℘(1G).

It turns out that G is a bdKAT, whose backward diamond is as follows: for all a ∈ G
and p ∈ test(G),

〈a|p = {β | xβ ∈ pa}. (3)

Proof. Let r = {β | xβ ∈ pa}. It can be proved (see the full version [22]) that in a
bdKAT K, for all p ∈ test(K) and a ∈ K, (bd1) holds iff 〈a|p is the least (w.r.t. the
natural ordering) q ∈ test(K) such that pa = paq. Therefore, it is enough to show that
r is the least q ∈ test(G) satisfying pa = paq.
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Let xβ ∈ pa. By definition, β ∈ r means that xβ � β = xβ is contained in par. This
therefore means that pa ≤ par. The opposite inequality is trivial since r is a test, hence
r ≤ 1G , and by monotonicity of ·, we have that pa ≥ par, thus implying pa = par.
Assume now, by contradiction, that there exists t ∈ test(G) such that pa = pat, t ≤ r
and t �= r. This means that there is at least an atom β in r which is not in t. By definition
of r, there is a guarded string xβ ∈ pa. Since pa = pat, the last atom of all the guarded
strings in pa must be in t, but this does not hold for xβ as β /∈ t. ��

Let us consider the evaluation function G : Atom → G as defined in [19]:

G(a) � {αaβ | α, β ∈ 1G},

G(b) � {α ∈ 1G | b appears positively in α}.

We consider the abstract domain A � {, e, o,⊥} determined by the following
abstraction α : test(G) → A and concretization γ : A → test(G) maps:

α(p) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if p = ∅
e if ∅ � p ⊆ {b1b2, b1b2}
o if ∅ � p ⊆ {b1b2, b1b2}
 otherwise

γ(p�) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if p� = ⊥
{b1b2, b1b2} if p� = e

{b1b2, b1b2} if p� = o

1G if p� = 
By counting, in an atom, the number of primitive tests that appear positively we

obtain an integer that may be even or odd. Hence, this abstract domain A represents the
property of being even e or odd o of all the atoms occurring in a test p ∈ test(G).

By using our logic LCK, we study the correctness of the program r � (u · b1)∗ ∈
G, assuming a precondition p � {b1b2, b1b2} ∈ test(G) and a specification Spec �
p = γ(e). Let us define two auxiliary tests: q � {b1b2, b1b2}, s � {b1b2, b1b2, b1b2}.
Using the equation (3), we can easily check the following local completeness equations:

α(�u�A(s)) = α(�u�1G) = α(1G) =  = α(1G) = α(�u�s) ⇒ C
A
s (�u�)

α(�u�A(p)) = α(�u�p) = α(1G) =  = α(1G) = α(�u�p) ⇒ C
A
p (�u�)

α(�b1�A(1G)) = α(�b1�1G) = α(q) =  = α(q) = α(�b1�1G) ⇒ C
A
1G (�b1�)

Therefore, we have the following derivation in LCKA of the triple [p] r [s]:

C
A
p (�u�)

(transfer)�K
A [p] u [1G ]

C
A
1G (�b1�) (transfer)�K

A [1G ] b1 [q]
(seq)�K

A [p] u · b1 [q]

C
A
s (�u�) (transfer)�K

A [s] u [1G ]

C
A
1G (�b1�) (transfer)�K

A [1G ] b1 [q]
(seq)�K

A [s] u · b1 [q] q ≤ A(s)
(iterate)�K

A [s] (u · b1)∗ [s]
(rec)�K

A [p] (u · b1)∗ [s]

Here, in accordance with the soundness Theorem 3.5, we have that s ⊆ �r�p ⊆
A(s). Observe that A(s) � Spec holds, meaning that an abstract interpretation-based
analysis fails to prove that the program r is correct for Spec. However, unlike con-
ventional abstract interpretation, LCKA is capable to show that s � Spec = {b1b2}
is indeed a true alert, meaning that the program r is really incorrect and the failure to
prove its correctness was not due to a false alarm.
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Fig. 2. Proof System UL.

3.6 Under-Approximation Logic

O’Hearn [25] incorrectness logic (IL) establishes two main novelties w.r.t. the seminal
Hoare logic of program correctness [16]: (1) a valid postcondition of an incorrectness
triple for a program P is an under-approximation of the strongest postcondition of
P , rather than an over-approximation of Hoare logic; (2) incorrectness triples feature
two postconditions: one corresponding to a “normal” program termination and one cor-
responding to an erroneous termination. Even if IL was originally defined with both
those features, we first neglect the second one — i.e., we consider “normal” termina-
tion only — and we refer to the resulting program logic as Under-approximation Logic,
denoted by UL. For the sake of clarity, Fig. 2 recalls the UL proof system, adapted to
our algebraic framework. We only focus on the “propositional” fragment of this logic,
meaning that the roles of all the special program commands (i.e., error, assume, skip,
nondet used in [25]) and variable manipulations commands of incorrectness logic are
played by some corresponding elements inAtom. Hence, for all of them, the single rule
(transfer) is unifying and enough for our purposes.

Analogously to what has been proved in [4, Section 6] for LCL, it turns out that
the trivial abstraction, i.e., the abstract domain Atr � {} that approximates all the
concrete elements to a single abstract element, allows us to show that the instantiation
LCKAtr

, with the additional rule (limit), boils down to UL, namely, our LCK logic
generalizes UL, even when both are interpreted on KATs.

Theorem 3.7 (LCKAtr
≡ UL). Let K be a CTC bdKAT. Assume that LCKAtr

includes the rule (limit). For any p, q ∈ test(K) and t ∈ TΣ,B:

�K
Atr

[p] t [q] ⇔ �UL [p] t [q].

Moreover, since the abstraction map defining Atr is αAtr
= λx., we have that

condition (ii) of Definition 3.4 for the validity of a LCK triple trivially holds, that is,
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�t��
Aα(p) =  = α(q) = α(�t�Kp). This therefore entails that

|=K
Atr

[p] t [q] ⇔ |=UL [p] t [q]. (4)

This allows us to retrieve the soundness and completeness results of incorrectness
logic [25] as a consequence of those for LCK.

Corollary 3.8. Under the same hypotheses of Theorem 3.7, the proof system UL is
sound and complete, that is, �UL [p] t [q] ⇔ |=UL [p] t [q].

4 Incorrectness Logic in KAT

Incorrectness logic IL has been introduced by O’Hearn [25] as a natural under-approxi-
mating counterpart of the pivotal Hoare correctness logic [16], and quickly attracted a
lot of research interest [20,26–28,32]. Incorrectness logic distinguishes two postcon-
ditions corresponding to normal and erroneous/abnormal program termination. Here,
we generalize the algebraic formulation of our LCK logic to support abnormal ter-
mination. We follow the approach of Möller, O’Hearn and Hoare [23], namely, each
language term is interpreted as a pair of KAT elements which model the normal and
abnormal execution. The evaluation function has type u : Atom → (K × K), while
the interpretation function has type �·�u : TΣ,B → (K × K). As a shorthand �·�u can
be subscripted with ok or err to denote, resp., its first normal and second erroneous
component. The definition is as follows:

�a�u � u(a)

�t1 + t2�u � (�t1�uok + �t2�uok , �t1�uerr + �t2�uerr )

�t1 · t2�u � (�t1�uok · �t2�uok , �t1�uerr + �t1�uok · �t2�uerr )

�t∗�u � (�t�∗
uok

, �t�∗
uok

· �t�uerr )

(5)

Following the original definition of IL, the precondition encodes an ok condition only,
while the postcondition contains both an ok and an err component. Hence, the latter
is given by a pair (p, q) ∈ test(K) × test(K), typically denoted by ok : p, err : q. The
concrete semantics �·� : TΣ,B → (test(K) → (test(K) × test(K))) is defined as

�t�p � ok : 〈�t�uok |p, err : 〈�t�uerr |p
To refer to one of its components, �·� can be subscripted with ok or err , e.g., �t�ok p.

Given a Kleene abstract domain A on K, the corresponding abstract semantics
�·��

A : TΣ,B → (A → (A × A)) is defined as follows:

�a��
Ap� � ok : α(�a�ok γ(p�)), err : α(�a�err γ(p�))

�t1 + t2�
�
Ap� � ok : �t1�

�
Aok

p� + �t2�
�
Aok

p�, err : �t1�
�
Aerr

p� + �t2�
�
Aerr

p�

�t1 · t2��
Ap� � ok : �t2�

�
Aok

(�t1�
�
Aok

p�), err : �t1�
�
Aerr

p� + �t2�
�
Aerr

(�t1�
�
Aok

p�)

�t∗��
Ap� � ok :

∨
n∈N

(�t��
Aok

)np�, err : �t��
Aerr

∨
n∈N

(�t��
Aok

)np�

(6)
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The ok part coincides with the semantics of LCK, while the err component puts in
place some differences. In particular, the composition exhibits a short-circuiting behav-
ior, meaning that an error in the first command aborts the execution without executing
the second one, while the Kleene star allows an error to occur after some error-free iter-
ations. It is straightforward to check that this definition of abstract semantics is mono-
tonic and sound.

The proof system LCK can be extended with incorrectness triples. In particular, a
triple [p] t [ok : q][err : r] is valid if the standard validity conditions hold for both ok
and err .

Definition 4.1 (Incorrectness Triple). Let K be a CTC bdKAT K and TΣ,B be a lan-
guage interpreted on K. An incorrectness triple is either [p] t [ok : q] or [p] t [err : r],
where p, q, r ∈ test(K) and t ∈ TΣ,B .
Let A be a Kleene abstract domain on K with abstraction map α : test(K) → A.

– The triple [p] t [ok : q] is valid if: (1) q ≤ �t�ok p, and (2) �t��
Aok

α(p) = α(q) =
α(�t�ok p).

– The triple [p] t [err : r] is valid if: (1) r ≤ �t�err p, and (2) �t��
Aerr

α(p) = α(r) =
α(�t�err p).

– A triple [p] t [ok : q][err : r] is valid when both [p] t [ok : q] and [p] t [err : r]
are valid. In particular, if q = r then the triple [p] t [εεε : q] is valid. ��

The proof system LCILA defining the local completeness incorrectness logic is
given in Fig. 3.

Theorem 4.2 (Logical Soundness of LCILA). The triples provable in LCILA are
valid.

Furthermore, it turns out that LCILA is logically complete.

Theorem 4.3 (Logical Completeness of LCILA). Let A be a Kleene abstract domain
on a CTC bdKAT K and TΣ,B be a language interpreted on K. Assume that the
atoms in t ∈ TΣ,B are globally complete, i.e., for all a ∈ Atom(t), C

A(�a�ok ) and
C

A(�a�err ) hold. If [p] t [ok : q][err : r] is valid, then it is provable in LCILA.

Example 4.4. Consider a relational bdKAT K � ℘(Z × Z) on the set of integers Z,
where 1K � {〈z, z〉 | z ∈ Z} and 0K � ∅, and the standard integer interval abstraction
Int [8,9]. Let us consider a language with primitive actions Σ � {x := x+ 1, err}.
The evaluation function u : Σ ∪ B → Kok × Kerr is defined as expected:

u(x := x+ 1) = ({〈z, z + 1〉 | z ∈ Z}, 0K), u(err) = (0K , 1K).

We study the correctness of the program r ≡ ((x := x+ 1) + err)∗, for the precon-
dition p � {〈0, 0〉, 〈2, 2〉} and the specification Spec � (ok : {〈z, z〉 | z ≥ 0}, err :
0K). Let us define an auxiliary sequence of tests pn � {〈n, n〉, 〈n + 2, n + 2〉} and
s � {〈z, z〉 | z ≥ 0}.
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Fig. 3. Proof system LCILA.

We can easily check the local completeness of the atoms by exploiting the following
characterization (see the full version [22]) of the backward diamond operator in a rela-
tional KAT K on a set X where test(K) = ℘({(x, x) | x ∈ X}): for all a ∈ K and
p ∈ test(K),

〈a|p = {(y, y) | ∃x ∈ X. (x, x) ∈ p, (x, y) ∈ a}.

We therefore have the following derivation in LCILInt for r:

C
Int
pn

(�x := x+ 1�ok ) C
Int
pn

(�x := x+ 1�err )
(transfer)�K

Int [pn] x := x+ 1 [ok : pn+1]

C
Int
pn

(�err�ok ) C
Int
pn

(�err�err )
(transfer)�K

Int [pn] err [ok : 0]
(choice)�K

Int [pn] (x := x+ 1) + err [ok : pn+1]
(limit)†

C
Int
s (�x := x+ 1�ok ) C

Int
s (�x := x+ 1�err )

(transfer)�K
Int [s] x := x+ 1 [err : 0]

C
Int
s (�err�ok ) C

Int
s (�err�err )

(transfer)�K
Int [s] err [err : s]

(choice)‡

†
(limit)�K

Int [p0] ((x := x+ 1) + err)∗ [ok : s]
‡

(choice)�K
Int [s] (x := x+ 1) + err [err : s]

(rec-err)�K
Int [p0] ((x := x+ 1) + err)∗ [err : s]

By soundness of LCILInt in Theorem 4.2, the program r satisfies the ok part of Spec
because

�r�ok p ⊆ Int(s) = s ⊆ s = Specok .

However, the err part is not satisfied as Int(s) = s � ∅ = 0K = Specerr . Moreover,
LCILInt also catches true alerts as s � Specerr = s. ��
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Fig. 4. Proof system IL.

4.1 Relationship with Incorrectness Logic

Section 3.6 has shown that LCK yields a generalization of UL. The same can be done
for IL, i.e., we prove that LCILA with incorrectness triples generalizes the incorrectness
logic of [25]. For the sake of clarity, we recall in Fig. 4 an algebraic version of IL.
Analogously to the reduction of Theorem 3.7, this generalization is obtained by letting
A = Atr, where Atr is the trivial abstract domain.

Theorem 4.5. Let K be a CTC bdKAT and TΣ,B a language interpreted on K. For
any p, q ∈ test(K), t ∈ TΣ,B ,

�K
Atr

[p] t [ok : q][err : r] ⇔ �IL [p] t [ok : q][err : r].

The abstraction map α = λx. of Atr makes the validity of a triple trivially true. In
particular, �t��

Atrok
α(p) =  = α(q) = α(�t�ok p) and �t��

Atr err
α(p) =  = α(q) =

α(�t�err p) hold. As a consequence, we obtain that

|=K
Atr

[p] t [ok : q][err : r] ⇔ |=IL [p] t [ok : q][err : r] (7)

By this equivalence (7) and Theorems 4.2 and 4.3, we can thus retrieve the logical
soundness and completeness of IL as a consequence of the one of LCILAtr

.

Corollary 4.6. LetK be a CTC bdKAT and TΣ,B a language interpreted onK. For any
p, q ∈ test(K), t ∈ TΣ,B , �IL [p] t [ok : q][err : r] ⇔ |=IL [p] t [ok : q][err : r].

5 Local Completeness Logic in TopKAT

We have shown in Sect. 3 how KAT extended with a modal backward-diamond operator
allows us to interpret and represent the local completeness program logic. This result
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follows the approach by Moller, O’Hearn and Hoare [23], who leverage a backward-
diamond operator in their KAT interpretation of correctness/incorrectness logics. On
the other hand, Zhang, de Amorim and Gaboardi [33] have recently shown that incor-
rectness logic can be formulated for a standard KAT, provided that it contains a top
element, thus giving rise to a so-called TopKAT. In particular, [33] observed that a Top-
KAT is enough to express the codomain of relational KATs. In this section, we take a
similar path in studying an alternative formulation of local completeness logic based on
a TopKAT.

5.1 Abstracting TopKATs

We expect that the base case of abstract semantics �a��
Ap� for a basic action a ∈ Atom

is defined as best correct approximation in A of the concrete semantics of a on the
concretization of p�. In a bdKAT this is achieved in definition (2) through its backward-
diamond operator, which is crucially used in (1) to define the strongest postcondition
as �a�Kγ(p�) = 〈�a�u|γ(p�). Zhang et al. [33] observed that in a relational model of
KAT, the codomain inclusion cod(q) ⊆ cod(pa) defining the meaning of an under-
approximation triple [p] a [q] can be expressed in a TopKAT as the inequality q ≤
pa, thus hinting that this latter condition could be taken as definition of validity of
incorrectness triples in a TopKAT. We follow here a similar approach by considering
the element p�a�u as a proxy for strongest postconditions in a TopKAT. It is worth
noticing that while in a bdKAT a strongest postcondition 〈�a�u|p is always a test, in a
TopKAT K, given p ∈ test(K) and a term t ∈ TΣ,B , it is not guaranteed that there
exists a test q ∈ test(K) such that p�t�u = q, as shown by the following example.

Example 5.1 (Strongest Postconditions in TopKAT). Consider the Kleene algebra
A3 = {0, 1, a} consisting of 3 elements and characterized by Conway [7, Chapter 12].
This algebra can be lifted to a KAT by letting test(A3) � {0, 1} and defining the KAT
operators as follows:

+ 0 1 a
0 0 1 a
1 1 1 1
a a 1 a

· 0 1 a
0 0 0 0
1 0 1 a
a 0 a 0

0∗ � 1 1∗ � 1 a∗ � 1

We have that 1 ≥ a and 1 ≥ 0, because 1 + a = 1 and 1 + 0 = 1, so that A3 is a
TopKAT with  = 1. Moreover,  · 1 · a = 1 · 1 · a = a, whereas there exists no
q ∈ test(A3) satisfying  · q = a. Indeed,  · 1 = 1 · 1 = 1 �= a and  · 0 = 0 �= a. ��

In general, the lack of such a q ∈ test(K) implies that the abstract domain cannot
be defined as an abstraction of the set of topped-tests {p | p ∈ test(K)}, because
in this case we could miss the abstraction α(p�a�u). To settle this issue, an abstract
domain must provide an approximation of the larger set

top(K) � {a | a ∈ K}
which contains all the multiplicative elements of type a.
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Definition 5.2 (Top Kleene Abstract Domain). A poset (A,≤) is a top Kleene
abstract domain of a TopKAT K if:

(i) There exists a Galois insertion, defined by γ : A → top(K) and α : top(K) → A,
of the poset (A,≤A) into the poset (top(K),≤K);

(ii) A is countably-complete. ��
The abstract semantic function �·��

A : TΣ,B → (A → A) on a top Kleene abstrac-
tion A can be therefore defined for the base case a ∈ Atom as

�a��
Ap� � α(γ(p�)�a�u),

while the remaining inductive cases are defined as in (2) for Kleene abstractions. The
monotonicity and soundness properties of this abstract semantics hold, provided that
the TopKAT is ∗-continuous1, which is referred to as TopKAT∗.

Theorem 5.3 (Soundness of TopKAT Abstract Semantics). Let A be a Kleene
abstraction of a TopKAT∗ K and TΣ,B be a language interpreted on K. For all
p�, q� ∈ A, a ∈ K and t ∈ TΣ,B:

p� ≤A q� ⇒ �t��
Ap� ≤A �t��

Aq� (monotonicity)

α(a�t�u) ≤A �t��
Aα(a) (soundness)

5.2 Local Completeness Logic on TopKAT

Completeness and triple validity are adapted to the TopKAT framework as follows.
Given a Top Kleene abstract domain A on a TopKAT∗ K, A is defined to be locally
complete for a ∈ K on an element b ∈ K, denoted by C

A
b (a), when

A(ba) = A(A(b)a)

holds. Moreover, A is globally complete for a, denoted by C
A(a), when it is locally

complete for any b ∈ K.
Likewise, a triple [a] t [b], with a, b ∈ K and t ∈ TΣ,B , is valid, denoted by

|=TK
A [a] t [b], when:

(1) b ≤ a�t�u; (2) �t��
Aα(a) = α(b) = α(a�t�u).

The corresponding proof system, denoted by LCTKA, has the same rules of LCKA

in Fig. 1 except (transfer), (relax) and (iterate) which are modified as follows:

c ∈ Atom C
A
a (�c�u)

(transfer)�TK
A [a] c [a�c�u]

1 This condition plays a role similar to the CTC condition for bdKATs.
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�a′ ≤ �a ≤ A(�a′) �TK
A [a′] t [b′] �b ≤ �b′ ≤ A(�b)

(relax)�TK
A [a] t [b]

�TK
A [a] t [b] �b ≤ A(�a)

(iterate)�TK
A [a] t∗ [a+ b]

This incarnation LCTKA of local completeness logic for TopKAT∗ turns out to be
logically sound and, under additional hypotheses, complete.

Theorem 5.4 (Logical Soundness of �TK
A ). If �TK

A [a] t [b] then

(i) b ≤ a�t�u;
(ii) �t��

Aα(a) = α(b) = α(a�t�u).

Logical completeness needs the following additional conditions:

(a) Likewise LCKA, the same infinitary rule for Kleene star:

∀n ∈ N. �TK
A [an] t [an+1]

(limit)�TK
A [a0] t∗ [

∨
n∈N

an]

where we assume that:
–

∨
n∈N

an always exists. Let us remark that for bdKAT, such explicit condition
was not needed, as it was entailed by the CTC requirement on the KAT.

–  distributes over
∨

n∈N
an, i.e., 

∨
n∈N

an =
∨

n∈N
an.

It turns out that this additional rule (limit) is sound (see the full version [22]).
(b) Global completeness of all the primitive actions and tests occurring in the program.

Theorem 5.5 (Logical Completeness of �TK
A ). Assume that conditions (a) and (b)

hold. If |=TK
A [a] t [b] then �TK

A [a] t [b].

Let us describe an example of derivation in LCTKA.

Example 5.6. Consider a relational KAT K = ℘(Z×Z) on the set of integers Z, where
1K � {(z, z) | z ∈ Z} and 0K � ∅. Notice that Z × Z ∈ K is the top element 
of K, meaning that K is a TopKAT. Let us consider a language with primitive actions
Σ = {x := x+ 1} and primitive tests B = {x ≥ 0, x < 0}. The evaluation function
u : Σ ∪ B → K is defined as expected by the following relations:

u(x := x+ 1) � {(z, z + 1) | z ∈ Z},

u(x ≥ 0) � {(z, z) | z ∈ Z, z ≥ 0},

u(x < 0) � {(z, z) | z ∈ Z, z < 0}.

Consider the following sign abstraction Sign � {Z, Z≤0, Z�=0, Z≥0, Z<0, Z=0,
Z>0, ∅} of ℘(Z), whose abstraction and concretization maps are straightforward. Let
us verify that the program

r ≡ (
(x ≥ 0) · (x := x+ 1)

)∗ · (x < 0)
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does not terminate with precondition p � {(0, 0), (10, 10)}, i.e., we prove the specifica-
tion Spec � ∅. Let us define the following auxiliary elements: q � {(1, 1), (11, 11)},
s � p + q, t≥0 � {(x, z) | x ∈ Z, z ∈ Z≥0}, and observe that Sign(t≥0) = t≥0.
The following local completeness conditions for the atoms hold:

α(Sign(p)�x ≥ 0�u) = α(t≥0�x ≥ 0�u) = Z≥0 = α(p�x ≥ 0�u),
α(Sign(p)�x := x+ 1�u) = α(t≥0�x := x+ 1�u) = Z>0 = α(p�x := x+ 1�u),

α(Sign(s)�x < 0�u) = α(t≥0�x < 0�u) = ∅ = α(s�x < 0�u).

Moreover, we also have that:

q = {(x, z) | x ∈ Z, z ∈ {1, 11}} ≤ t≥0 = Sign(p).

The following derivation shows that the triple [p] r [0K ] is provable in LCTKSign:

C
Sign
p (�x ≥ 0�u)

(transfer)�TK
Sign [p] x ≥ 0 [p]

C
Sign
p (�x := x+ 1�u)

(transfer)�TK
Sign [p] x := x+ 1 [q]

(seq)�TK
Sign [p] (x ≥ 0) · (x := x+ 1) [q] q ≤ Sign(p)

(iterate)
�TK
Sign [p]

(
(x ≥ 0) · (x := x+ 1)

)∗ [s]
C

Sign
s (�x < 0�u)

(transfer)�TK
Sign [s] x < 0 [0K ]

(seq)
�TK
Sign [p]

(
(x ≥ 0) · (x := x+ 1)

)∗ · (x < 0) [0K ]

By Theorem 5.4, we have that 0K ⊆ p�r�u ⊆ Sign(0K) = ∅, meaning that the
program does not terminate, and Spec is satisfied as p�r�u = ∅ = Spec. ��

5.3 Relationship with Under-Approximation Logic

We have shown in Sect. 3.6 that the backward-diamond formulation of LCK generalizes
UL. The same can be done for the TopKAT formulation. A TopKAT version of the UL
proof system has been already proposed in [33, Figure 6]. The reduction here considered
refers to such system, with the following minor differences:

– We consider only propositional fragments of the logic, meaning that the rules
(assume) and (identity) are replaced by the following single (transfer) rule:

c ∈ Atom (transfer)�UL [a] c [a�c�u]

– The premises of the (consequence) rule in [33, Figure 6], b ≤ b′ and c′ ≤ c, are
relaxed to b ≤ b′ and c′ ≤ c. Notice that the former implies the latter.
Furthermore, the soundness proof of [33, Theorem 4] is not affected by this change,
because (b′ ≥ b ∧ c ≥ c′ ∧ bp ≥ c) ⇒ b′p ≥ bp ≥ c ≥ c′, and, by
[33, Theorem 3], it holds that b′p ≥ c′ entails b′p ≥ c′.

– The (limit) rules of LCTKA and UL differ on the distributivity condition. We
assume that distributivity also holds in UL.

By instantiating to the trivial abstract domain Atr, it turns out that the two proof
systems become equivalent.
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Theorem 5.7 (LCTKAtr
≡ UL). Let K be a TopKAT∗. For any a, b ∈ K, t ∈ TΣ,B:

�TK
Atr

[a] t [b] ⇔ �UL [a] t [b].

In turn, the logical soundness and completeness of UL can be retrieved as a conse-
quence of those of LCTK.

Corollary 5.8. Under the same hypotheses of Theorem 5.7, the proof system UL is
sound and complete, that is, �UL [p] t [q] ⇔ |=UL [p] t [q].

Finally, let us mention that the full version [22] also shows how to define an incor-
rectness logic in TopKAT.

6 Conclusion

This work has shown that the abstract interpretation-based local completeness logic
introduced in [4] can be generalized to and interpreted in Kleene algebra with tests. In
particular, we proved that this can be achieved both for KATs extended with a modal
backward diamond operator playing the role of strongest postcondition, and for KATs
endowed with a top element. Our results generalize both the modal [23] and top [33]
KAT approaches that encode Hoare correctness and O’Hearn incorrectness logic using
different classes of KATs. In particular, our KAT-based logic leverages an abstract inter-
pretation of KAT, a problem that was not studied so far.

Our plan for future work includes, but is not limited to, the following questions.

– For a KAT with top , following the technical idea underlying the approach by
Zhang et al. [33], we defined an abstract domain as an approximation of all the alge-
braic elements of type  · a, where a is any element of the KAT (cf. Definition 5.2).
Although this definition technically works, it is somehow artificial, because the ele-
ments  · a do not carry a clear intuitive meaning. As an interesting future task, we
would like to characterize under which conditions an element  · a coincides with
 · p for some test p ∈ test(K), and if such test p is unique.

– This work is a first step towards an algebraic and equational approach to abstract
interpretation. We envisage that the reasoning made by an abstract interpreter of
programs could be made purely equational within a KAT equipped with a suitable
collection of axioms. The ambition would be to conceive a notion of abstract Kleene
algebra (AKA) making this slogan true: AKA is for the abstract interpretation of
programs what KAT is for concrete interpretation of programs.
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Abstract. In this paper, we develop semantic foundations for precise
cost analyses of programs running on architectures with multi-scalar
pipelines and in-order execution with branch prediction. This model
is then used to prove the correction of an automatic cost analysis we
designed. The analysis is implemented and evaluated in an extant frame-
work for high-assurance cryptography. In this field, developers aggres-
sively hand-optimize their code to take maximal advantage of micro-
architectural features while looking for provable semantic guarantees.

1 Introduction

Provable cost analysis, such as [22,28], provides a rich palette of methods and
tools for estimating (generally in the form of upper bounds) execution time with
respect to a mathematical operational and cost model. However, operational and
cost models commonly used in provable cost analysis elude micro-architectural
features, such as caches, predictors, and pipelines, which are performance-critical
and carefully exploited in high-performance implementations. As a consequence,
the upper bounds computed by existing cost analyses are overly coarse. In par-
ticular, they cannot be used to guide carefully crafted manual optimizations, for
instance the instruction scheduling of the program, since a typical provable cost
analysis will be oblivious to instruction scheduling.

Specific areas of computer science require high-performance and maximal
reliability. It is for example the case of cryptographic engineers who develop
high-speed implementations of common cryptographic algorithms. Increasingly,
cryptographic engineering is adopting high-assurance techniques [5] to deliver
provable guarantees that implementations are correct with respect to their high-
level specification (expressed mathematically or as pseudo-code), cryptographi-
cally secure, and protected against side-channels. Unfortunately, high-assurance
cryptography still relies on simulation or benchmarking for measuring the effi-
ciency of implementations, largely ignoring the line of work in provable cost
analysis.
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Fig. 1. Two different approaches to scheduling instructions for code that accu-
mulates 8 consecutive 32-bit integers from memory. Comments indicate execu-
tion cycles on the microarchitecture described in Fig. 2.

Listing 1.1 provide a classic example of an array sum program that can be
aggressively optimized in order to take advantage of modern micro-architectural
mechanisms. The program computes (in variable r) the sum of the elements
of an array A. An optimized version of this program is given in Listing 1.2,
which exploits the architecture capability to perform loads in parallel, avoiding
the two cycles penalty for each element occurring in Listing 1.1. It thus uses
more registers to store the pending results. A standard cost analysis would con-
clude, wrongly, that the optimized program has a worst execution time than
the original: indeed, both programs executed the same amount of loads, but the
optimized program performs an additional assignment and addition. Summing
the delay of each instruction, as a naive cost analysis would do, concludes that
the optimized version is worse than the original. To understand the benefit of
this optimization, the programmer has to reason on the model of instruction
parallelism.

This paper develops semantic foundations for cost analysis of pipelined-
optimized programs. We focus on the instruction pipeline mechanism and do
not model caches in this work. Our work is intended for the programmer who
wants to formally check the cost impact of manual optimizations. Such pro-
grammers are usually happy to assume that all program code and all data is
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in L1 cache, in order to focus on careful instruction selection, scheduling, and
register allocation. Cryptographic primitives fall into this case. We focus on in-
order processors, as out-of-order processors will change the scheduling imagined
by the programmer. Although out-of-order processors are more common due to
their efficiency, manual optimizations are still particularly relevant for in-order
embedded systems. Indeed, embedded systems cannot handle the complexity
and energy cost of out-of-order processors.

Our work makes the following contributions.

– We provide a detailed semantic model, presented in Sect. 3, which is a small-
step semantics precisely modeling the execution cost (in processor cycles) of
instruction parallelism and branch prediction inside an in-order processor.

– We then design in Sect. 4 a provably correct static analysis that computes safe
relational bounds on this cost. The analysis is a mix of a standard relational
numerical analysis, a standard may/must static analysis and a new block
symbolic execution that extracts a tight range for the execution time of an
instruction block. The static analysis is proven sound with respect to the
small-step semantics (Theorem 3). The full proof of correctness is given in
the companion report [1].

– We have implemented our approach into Jasmin [3,4], an existing framework
for high-performance and high-assurance cryptography. We use our analysis
to obtain relational cost bounds for scalar and vectorized implementations of
popular cryptographic algorithms. These experiments show that our estimates
are precise (in particular the difference between the upper and lower bounds
is tight), and significantly improve on the bounds delivered by traditional cost
analyses which ignore instruction parallelism.

2 Processor Behavior on an Example

We consider a low-level language (inspired from Jasmin [3,4] internal representa-
tion), with memory load/store, and scalar operations. Programs in our language
are executed on a multi-scalar pipelined processor. A pipelined processor decom-
poses the execution of an atomic instruction into several stages such that the next
instruction can enter the first stage as soon as the previous instruction leaves
it. A sequence of stages constitutes a pipeline, and the latency of a pipeline is
the number of stages it comprises. A multi-scalar pipelined processor has several
pipelines in parallel, allowing it to execute simultaneously several instructions,
by loading them into different pipelines. All pipelines are not identical: each
pipeline can have a different latency, and supports a different set of instructions.
The latency of a pipeline depends on the instructions supported, where basic
instructions, such as additions, will be executed quickly, while more complex
operations (e.g. multiplications and floating-point operations) will take a longer
time.

Figure 2 describes an example of a processor with five pipelines (A, L, S,
M and J) and the instructions each pipeline can handle: for example, multipli-
cation has a latency of 5, and is only supported by the pipeline M . This is a
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Fig. 2. Instructions handled by each pipeline of our processor, with their laten-
cies in parenthesis

simple processor, real processors have more pipelines and can handle a larger
instruction set. Note that the method presented in this paper is not specific
to this processor: the number of pipelines, the instructions supported and their
latencies are parameters of the cost semantics and of the analysis.

Instruction Fetching. We now give a high-level overview of how a proces-
sor fetches an instruction, which is done in three steps. First, the processor
checks that the instruction has no data-dependency conflict with other instruc-
tions already in the pipelines. Then, the processor resolves the instruction by
evaluating the registers read by the instruction into values – which are either
integers or memory addresses. Finally, the resolved instruction, called a transient
instruction, is placed in a pipeline supporting it.

Data-Dependencies. Before starting executing an instruction – i.e. loading it in
the first stage of a pipeline – the processor must check that this instruction has no
conflict with other instructions being currently executed. For example, consider
the execution of lines 1 through 3 of Listing 1.1 on the processor of Fig. 2. The
resulting state of the processor can be found in Fig. 3a. The first instruction can
be placed in stage A1 (the first stage of the A pipeline), while simultaneously
loading the second instruction into stage L1. However, the instruction of the
third line cannot be loaded during the same cycle, because it depends on the
values of registers r and t, which will be written by the previous instructions:
the processor must wait for their executions to finish before fetching l.3.

Essentially, an instruction can be executed if: i) there is a pipeline available
(i.e. whose first stage is empty) supporting it; and ii), none of its variables
(a.k.a. registers or memory locations such as @A) have data-dependencies with
instructions currently in the pipelines. More precisely, an instruction atom cannot
be executed if:

– any variable it reads is written by another instruction currently in a pipeline
(read-after-write dependency);

– any variable it writes is read or written by another instruction in the pipeline
(write-after-read and write-after-write).
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We refer to these dependencies using the acronyms RaW, WaR and WaW. Com-
ing back to our example, the instruction l.3 needs to wait for two cycles – the
latency of the load – to be fetched after l.2 because of a RaW dependency on t.

Fig. 3. Example of pipeline states for the processor of Fig. 2. Each cell represents
a pipeline stage, e.g. stage J4 in the second state contains a jump.

Instruction Resolution. Before being placed in the first stage of a pipeline sup-
porting it, the instruction is resolved, by replacing the registers it reads by their
current value. We illustrate this mechanism on the array sum (Listing 1.1). Let us
suppose that the first cell of A contains value 32, stored in t after the execution
of l.2. The instruction l.3 r := r + t is resolved into the transient instruction
r := 0 + 32. Note that a transient instruction no longer reads any register,
which allows to avoid some data-dependency conflicts. After the instruction l.2
has been fetched, we can expect the pipelines to be in the state of Fig. 3a, where
@A designates the address stored in A.

Branch Prediction. When the processor executes a sequence, it simply incre-
ments its program counter to find the next instruction to execute. But in the
case of a conditional jump, the next instruction to execute is harder to infer. In
that case, a jump must be resolved: if the jump is taken, then its destination
is computed and used to update the program counter. Otherwise, the processor
continues its execution with an incremented program pointer. The jump must go
through all the stages of its pipeline to affect the program counter. Not fetching
any instruction during its processing would severely impact the performances of
the processor. It is more interesting to start fetching and executing one of the
two branches as soon as a jump is encountered, without waiting for the jump
to be fully processed. The branch predictor (BP) is in charge of deciding which
branch will be speculatively executed. It typically uses a history, usually in the
form of a buffer, to remember the previous branches taken and bases its decisions
upon it. When the jump has been fully processed, the prediction is checked. In
case of a correct prediction, the execution of the speculated branch continues.
Otherwise, all the modifications made by the speculated branch must be roll
backed, and the correct branch starts its execution. The roll-back requires to
buffer the speculated instructions when they are retired from their pipeline and
to identify which instructions in the pipelines are speculation.
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The content of the pipelines, i.e. the instructions already loaded, is not suf-
ficient to roll back the pipelines. For example, consider the following two code
snippets. The instruction jmp(c) : T is a conditional jump: the program contin-
ues with the instruction at address T – further in the code – if c holds, or goes
to the next instruction otherwise. So the then branch of this conditional is not
displayed here, only its else branch. In the first code snippet, the else branch
contains only l.3, while it contains l.2-3 in the second.

1 a := 4 * 8;
2 jump (c) : T;
3 b := 2 + 6;

1 jump (c) : T;
2 a := 4 * 8;
3 b := 2 + 6;

These two programs are executed from empty pipelines and we assume here
that the else branch is speculatively executed. Let us take a snapshot of the pro-
cessor state after the three instructions have been fetched and after the processor
has executed three cycles to make the instructions progress in their pipelines. For
both executions, the pipelines should be in the state of Fig. 3b. Notice that the
speculated addition b := 2 + 6 has been fully executed and has left the pipe-
line. Also, in both cases, the multiplication is at the same depth (4) as the jump,
and there is no way of telling if it was speculatively executed, or if it was fetched
before the jump. Hence it is not possible to determine if the multiplication must
be removed simply by inspecting the pipelines.

Therefore, to be able to perform roll backs, the processor: (i) buffers the
effects of the retired instructions (here the addition); and (ii), timestamps the
instructions to track their dependencies. Any instruction that has been fully
executed is placed into a buffer, called the speculation buffer, before acting on
the memory. Once it is guaranteed that no previous jump can roll it back, it
is committed, effectively modifying the memory. When a roll back is performed,
any instruction in the buffer or the pipelines with an higher timestamp than the
jump is removed. These mechanisms are inspired from [10].

3 Concrete Small-Step Pipeline Semantics

In this section we define the concrete small-step semantics of a multi-pipelined
processor where the cost in cycles is tracked. This semantics precisely models a
pipelined processor with branch prediction. It includes a speculation buffer in
order to model the roll back mechanism used after branch misprediction. In the
next section, we will present an approximation of this semantics w.r.t. the cost,
which we use to build a sound static analysis. Figure 5 summarizes the notations
used by our semantics rules in Fig. 7, 8 and 9.

Language. The syntax of our language is given in Fig. 4. Atomic instructions
atom ∈ Atoms can be basic arithmetic operations, memory loads/stores and jump
instructions. The instructions operate on registers in Reg, which can contain
integer values in Z or memory locations in MemLocs. Finally, programs are built
using sequential composition of atomic instructions, conditionals and while loops.
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Fig. 4. Syntax of the language

The jump instruction is not meant to be directly written by the programmer.
Its role will be explained in the semantic rules for conditionals. Conditionals
and loops are annotated with distinct labels � in the set of labels L. The branch
predictor uses them to distinguish the different conditional jumps and to build
its history of past jumps.

The syntax is inspired from the Jasmin language [3,4], which features pre-
cisely such a combination of low-level atomic instructions that translate directly
to assembly and high-level structures consisting of while loops and conditionals.

Memory State. Values are stored at locations, Location = Reg ∪ MemLocs,
comprising registers and memory locations. A memory state σ : Location �→ Val is
a map from locations to values, which are either integers or memory locations (see
Fig. 5). For any atomic instruction atom and memory state σ, we let S�atom�σ be
the memory state obtained when evaluating atom in σ. This atomic instruction
semantics is defined as usual—we omit the details.

Pipeline State. Our semantics is parametric in the processor’s architecture,
i.e. the number of pipelines, the instructions they support, and the instructions’
latencies. For simplicity, the jump instruction is handled by a single pipeline J .
This is the usual settings for branch predictors as it simplifies the design of the
processor. Formally, we assume a fixed set of pipelines Pips. For every pipeline
X ∈ Pips, we note Xi the i-th stage of X. For any atomic instruction atom, its
latency characterizes the number of stages required to execute the instruction
before it can leave the pipeline. We note |atom| its latency, and we write X ∈ atom
if the pipeline X handles the instruction atom. We also confuse atom with the
set of all pipelines that handle atom. Then, the latency of a pipeline |X| is the
maximal latency of the instructions it supports. The pipelines are ordered so
that given an instruction handled by several pipelines, these pipelines will be
checked in a fixed order. For instance on our processor, for a comparison, the
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Fig. 5. Concrete pipelined processor

pipelines will be checked in the order A, then L, then S. As a shorthand, we
write X = min{Y ∈ atom} to get the first pipeline handling atom.

Each stage of a pipeline is either empty (denoted ε), or contains a transient
instruction – obtained by resolving an atomic instruction – ready to be processed.
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Fig. 6. The timestamps associated to the instructions records prediction depen-
dencies, and allow to perform roll backs if necessary.

The set of transient instructions is denoted Atomst. As explained in Sect. 2, we
need to annotate the instructions in the pipelines to know if they are speculation
and depend on a jump retiring. Each transient instruction in a pipeline stage is
associated to a timestamp, which orders it w.r.t. the other instructions in the
pipelines. A smaller timestamp denotes an older instruction. The timestamp is
incremented each time we fetch a new instruction. Therefore, a pipeline state π
is a function from pipeline stages Stages to pairs of an integer and a transient
instruction ((i, atomt) ∈ (N×Atomst)), or to the empty slot ε. To be able to roll
back a jump with index i, we use the pipeline state π[j : j ≤ i], which is the state
π where only instructions older than i in π have been kept. Newer instructions of
π (i.e. such that π(Xk) = (j, atomt) with j > i) are replaced with ε. We illustrate
this in Fig. 6, using the branch prediction example of Sect. 2. Recall that the two
programs had the same pipelines state (described in Fig. 3b). But when adding
the timestamps, we obtain two distinct states. In the first case (Fig. 6a), the
multiplication has been fetched before the jump, and thus its timestamps (1)
is smaller than the one of the jump (2). Hence, in case of rollback due to a
misprediction of the jump, the multiplication will not be evinced. In the second
case (Fig. 6b), the multiplication is speculatively executed, and fetched after the
jump: its timestamps (2) is greater than the one of the jump (1), and will thus
be evinced if the jump destination was mispredicted.

Speculation Buffer. After it has been executed, an instruction is stored in
the speculation buffer β. The instruction will be committed, i.e. its effect will be
applied on the memory σ, only when the processor is guaranteed that it was not
an incorrect speculation. Similarly to the pipeline state π, the speculation buffer
β keeps track of the index of the instructions to check the sequential dependen-
cies. Hence β is a set of pairs (i, atomt) ∈ (N × Atomst). We let min(β, π) be
the minimal index associated to an instruction in β and π (we define similarly
max(β, π)). Similarly to π, β[j : j ≤ i] is the buffer β where only the instruc-
tions older than i in β have been kept. The effect of the instructions in the
speculation buffer should be taken into account as if it was already applied on
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Fig. 7. Rules of data dependency locks

the memory state σ. The notation β(σ) corresponds to the application on σ of
these instructions, from the oldest to the most recent.

Branch Prediction History. The branch predictor is guided by a history
of previous jumps. Usually, it is a buffer associating a boolean taken or not
taken to each jump label �, but this can change depending on the processor.
Therefore, we chose to keep its precise implementation abstract in our model.
We note h this history and assume two operators: BP-predict(h, �) holds if the
BP predicts that the jump at � will be taken; and h′ = BP-update(h, �, taken)
updates the history depending on whether or not the jump was actually taken.
We suppose that these operations are deterministic and that the history is not
modified by external sources. However, we make no assumption on the quality
of the prediction: it can mispredict every time for instance.

Directives. The processor behaves greedily, and tries to fetch as many instruc-
tions as possible per cycle. If no pipeline is available for the next instruction
atom, or if atom has a data-dependency conflict with the instructions already
in the pipelines, then the processor cannot fetch the instruction atom and must
execute a cycle. Executing a cycle makes all instructions progress one stage fur-
ther in their pipeline. When an instruction atom has been through |atom| stages,
then it is retired and it is placed in the speculation buffer β. At each cycle, β
tries to commit its oldest instructions.

These three actions, fetching an instruction, executing a cycle and commit-
ting from the speculation buffer, are called directives. The fetch atom directive
loads the instruction atom in the first stage of an available pipeline. The commit
directive removes the oldest instruction of the speculation buffer if it does not
depend on a jump in π. Finally the cycle directive executes a processor cycle,
which makes instructions progress in their pipelines, then calls directive commit.
All those directives are defined by the rules in Fig. 8, and described below. Notice
that the fetch directive does no need the speculation buffer β because it will
always be applied on a memory state β(σ).

Data-Dependencies. An instruction is fetched only if the variables it reads
or writes are available. This is checked by the locks(atom, atom′, σ) statement
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Fig. 8. Directives in a speculative context

(defined in Fig. 7), which holds whenever the instruction atom has a data depen-
dency with the transient instruction atom′ in the memory state σ. There are
three rules—for the WaW, WaR and RaW dependencies—which are defined
using the variables used by atom. These rules rely on the auxiliary functions
read(atom, σ) and write(atom, σ) which return, respectively, the variables read
and written by atom in σ—the state σ is used to check if memory accesses are
in conflict. For instance, the atomic instruction a := [b + n] reads the value in
the memory location pointed by b + n, that is the memory location σ(b) + n.
The functions read and write are overloaded to also compute the variables read
and written by transient instructions such as atom′: read(atom′). In that case,
we do not need the memory state because transient instructions have already
been resolved.

Jumps are interdependent, and we cannot fetch a jump if one is already being
processed. This is captured by the Jump lock rule.

Fetch. The Fetch rule in Fig. 8 defines the judgment (σ, π) ↪−−−−−−−−→
fetch (i,atom)

π′,

which places an instruction in the pipelines. First, it resolves the instruction
using resolve(atom, σ), and then places it into the first stage of a pipeline sup-
porting it. This fetch directive will only be applied on a state (σ, π) which
does not violate the data-dependencies. This condition will be checked using
the statement ready(atom, σ, π) defined by the Ready rule, which verifies that:
1) the state (σ, π) is ready to fetch the instruction atom, by checking that
¬ locks(atom, atom′, σ) for any atom′ in the pipelines (i.e. there are no data-
dependencies); and 2), that there is an available pipeline X supporting the
instruction. Notice that the fetch directive does not check ready itself.
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Commit. The buffer β prevents mis-speculated instructions from being applied
on the memory state σ. Instructions in β are committed only if they are the
oldest, i.e.have the smallest timestamp, ensuring that they do not depend on a
jump, which would then have a smaller timestamp while still being in π. This
is captured by the judgment (σ, π, β) ↪−−−−→

commit
(σ′, β′), which is defined by the

Commit rule. This rule allows to commit an instruction (i, atomt) in the specu-
lation buffer β if it is the oldest instruction in both the buffer and the pipeline
state. Since timestamps record how old instructions are – where smaller indices
denote older instructions – and since all instructions have distinct timestamps,
we check that (i, atomt) is the oldest instruction by verifying that i is the smallest
timestamp in both β and π.

Executing Cycles. (σ, π, β) ↪→ (σ′, π′, β′) represents the execution of one cycle
and is defined by the One-Cycle rule. It makes all the instructions progress
one stage further in their pipeline, and relies on next(π,Xi) to get the new
content of the stage Xi, according to the previous stage Xi−1. The operator
next makes all instructions advance by one stage if they have not yet reached
the end of their executions. Then, all the instructions that are retired, obtained
by the operator retired, are added to β to be validated. Finally, we commit as
many instructions from β as possible—we check that we no longer commit any
instructions by verifying that the oldest instruction, with timestamp i, is not in
the new speculation buffer β′.

Small-Step. Given a statement s and an initial processor state ω, the judgment
(s, ω) →t (s′, ω′) states that after t cycles of fetching and executing instructions
from s, the processor ends in state ω′, and it still has to fetch and execute s′. The
statements s is always a sequence of the form s1; s2, and our rules are defined
inductively on the syntax of s1—s2 is the continuation, which is essential for the
branch predictor. We describe the most important rules below, which are given
in Fig. 9—the full semantics is in the companion report [1].

Atomic. The rules for s1 = atom are Atomic and Cycle. In the Atomic
rule, we test whether the current state of the processor is ready to fetch atom
using ready(atom, β(σ), π). We use the state β(σ), since an instruction to be
fetched must consider the pending instructions in the speculation buffer β for
its memory state, to be consistent with the speculation it might be in. The
fetched instruction atom is timestamped using a timestamp greater than all the
timestamps in both β and π. Finally, the fetch (i, atom) directive places the
instruction in the pipelines. Here, no new cycle is necessary, hence t = 0, and
the continuation s remains to be fetched and executed. The second rule, Cycle,
is used when the state is not ready for atom. In that case, a cycle is executed,
and the processor still has to fetch and execute atom; s.

Conditional. The rules Spec-Cond-True-Correct and Spec-Cond-True-
Incorrect define the behavior of the processor when encountering a conditional
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Fig. 9. Selected small-step semantics rules with explicit speculation

and the then-branch must be taken (i.e. when b �= 0 in our language). The two
rules presented can be decomposed into three steps: first the processor fetches the
jmp; then executes it with the speculative execution of one of the branches; and
finally, either continues normally the execution if the speculation was correct, or
it rolls back if it mis-speculated.

The cost t is exactly the number of cycles needed to fetch the atomic jump
(since the continuation is skip). Because the continuation is skip, no more rules
can be applied, and the last rule applied is Atomic to fetch jmp(b). Hence the
jump is now in stage J1, and we can consult the pipeline state to find which
branch to take. We also obtain the timestamp k of the jump for the roll back.

In both rules, the predicted branch is then executed. The speculation lasts
exactly |jmp| cycles, which is checked by the Enforce-Cycle-* rules defined in
Fig. 10: in case the branch and continuation are too short, we let the processor
execute cycles on an empty program with judgment (s, ω) =−−→ t (s′, ω′). After
processing the jump, the history h is updated. The processor behavior after the
speculation ends depends on the correctness of the prediction. If the processor
correctly predicted the branch, then the continuation s′ obtained after the spec-
ulation is used (rule Spec-Cond-True-Correct). Otherwise, the continuation
and all instructions in π and β that were speculated are discarded (rule Spec-
Cond-True-Incorrect). We keep the state σ3 since committed instructions



Semantic Foundations for Cost Analysis of Pipeline-Optimized Programs 385

Fig. 10. Small-step semantics to enforce arbitrary cycle execution

Fig. 11. Execution cost for small-step semantics

were necessarily older than the jump which was in J during the speculation.
Finally, the processor restarts its execution from the correct branch s1.

Remark that the history h does not change during the speculation. This
is because the processor does not fetch another jump while there is already
a jump in the pipeline. Therefore, two predictions cannot be interlaced: the
branch history cannot change between the prediction of rule Spec-Cond-* and
its update at the end of the rule.

Fetch and Execution Cost. For any program p and processor state ω, the judg-
ment (p; skip, ω) →t (skip, ω′) states that all instructions of p have been fetched
in t cycles. If ω has empty an pipeline state πε and an empty speculation buffer,
then t is the fetch cost of p. But not all instructions have been executed and
committed after t cycles: some instructions may still be in π or β. To obtain the
full execution cost, we need to keep executing cycles until we reach a pipeline
state πε, where all the stages are empty (i.e. ∀Xi, πε(Xi) = ε), and an empty
speculation buffer. This is captured by the judgment (p, σ, h) ⇓t σ′, which gives
the execution cost t of a program p starting with memory state σ and a branch
predictor history h—see the Done rule in Fig. 11.

4 Static Analysis

We now present the static analysis technique we designed, which allows to obtain
provable relational bounds of the execution cost of a program. To do this, we
first instrument the original program s by adding a cost variable cost, such
that the set of possible run-time values of cost in the instrumented program
contains the exact value of the execution cost of s. We then perform a standard
relational numerical static analysis on this instrumented program to obtain rela-
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Fig. 12. Static analysis notation

tional bounds between the original program cost and input variables (for instance
the length of an input array). The instrumentation is performed using a standard
may/must static analysis and a symbolic execution of instruction blocks.

The analysis algorithm is presented in Sect. 4.1, illustrated on an example
and with the soundness theorem guaranteed. The soundness proof is detailed in
Sect. 4.2.

4.1 Instrumentation for a Numerical Analysis

The instrumentation of each statement is defined by induction in Fig. 13 and
the notations of the analyses are summarized in Fig. 12. For blocks—a sequence
of atomic instructions atom1; . . . ; atomn without control-flow structure—the
instrumentation relies on a block cost approximations �blk�� which outputs the
bounds [u, o] of the cost to execute blk. The instrumentation relies on an alias
analysis—whose purpose is explained later—and is thus parameterized by an
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Fig. 13. Instrumentation of a program (L = |jmp|)

abstract memory state σ� from the alias analysis. The instrumentation adds
non-deterministic increment cost += [u, o] to the cost variable.

Instrumented programs are analyzed using a numerical analysis �·��
n. We let

R0 be the input registers of our programs, and denote by ι�n[s] the initial abstract
memory state of the program s. Let s′ be the instrumentation of a program s.
To obtain the cost (invariant) C of s, we project the abstract numerical invariant
of s′ on the input registers R0 and the cost variable:

C(s) = projR0∪{cost}(�s
′��

n(ι
�
n[s])) where (s′,_) = T(s, ι�a[s]))

Block Instrumentation. The block instrumentation computes the cost with
�blk��. It performs two simulations �blk����

Must
and �blk����

May
of the block to

obtain under and over approximations of the execution cost. To simulate the
execution of a block, the analysis takes the instructions of the block in order and
tries to fetch them. If no instruction can be fetched, e.g. because the first stage
of all pipelines are full, or because of a data-dependency, it increments its cycle
counter and updates its abstract pipeline state π� with a function cycle—which
makes instructions advance on stage forward in their pipelines. In these simu-
lations, the pipeline abstract state π� is a function from stages to unresolved
instructions (the abstract simulation cannot resolve instructions, as this require
a concrete memory state).
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The simulation relies on an abstract memory state σ� from an auxiliary alias
analysis conducted in parallel to the instrumentation. This alias analysis is used
to determine if there may be data-dependencies between the current instruc-
tion and any instruction in the pipelines, using an alias operator 
��. The alias
operator 
�� used depends on how data-dependencies should be handled, which
depends on whether we are computing the lower or upper-bound. When com-
puting the lower bound, we are in the best-case scenario, and assume that there
is a data-dependency—hence a delay—only if the memory location must always
alias. Hence we require that the must-alias operator 
��

Must satisfies:

¬ 
��
Must (atom, atom

′, σ�) =⇒ ∀σ ∈ γ(σ�), locks(atom, atom′, σ)

On the other hand, the upper bound corresponds to the worst-case scenario, and
relies on a may alias analysis to detect instructions that may induce a delay: if an
instruction is known never to alias with any instruction already in the pipeline,
no data-dependency delay needs to be added. We require that the may-alias
operator 
��

May satisfies:


��
May (atom, atom′, σ�) =⇒ ∀σ ∈ γ(σ�),¬ locks(atom, atom′, σ)

If there is no data-dependency, then the simulation finds an empty stage for
atom and updates the alias analysis.

Example. Consider the instrumentation of the program below. This program
computes in register p the scalar product of two vectors stored in arrays A and
B. We suppose that A and B do not alias at the beginning, and that the may
and must alias analyses are able to determine that there is no aliasing between
the address read l.14 and l.18. Each instruction is commented with the cycle at
which it is fetched in its block, starting from an empty pipeline.

1 // Initialization
2 cost := 0;
3 p := 0; // 1
4 i := 0; // 1
5 r0 := n-i; // 2
6 // Block ’s cost
7 cost += [1, 2] ;
8 while (r0 > 0) do
9 // Backtrack penalty

10 cost += [0, 4];
11 r1 := i*8; // 1
12 a := [A + r1]; // 6

17 r2 := i*8; // 6
18 b := [B + r2]; // 11
19 c := a*b; // 13
20 p := p+c; // 18
21 i := i+1; // 18
22 r0 := n-i; // 19
23 // Block ’s cost
24 cost += [18, 19];
25 done;
26 // Backtrack penalty
27 cost += [0, 4];

Finally, we use a numerical static analysis to obtain the final value of the
cost variable. On the example above, we assume that the inputs A and B are
of size n ≥ 0, and we select R0 = {n} as input register. Once projected, the
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relation between cost and the initial value of n gives a cost of the program in
the interval [1 + 18n; 6 + 23n].

The soundness of the static analysis is formalized in the following theorem
where we used the concretization function γn to link the initial and final states.

Definition 1 (Initial states). A memory state σ0 is initial if it satisfies

(σ0, σ0) ∈ γn(ι�n[s]) ∧ σ0 ∈ γa(ι�a[s])

Theorem 1 (Static analysis soundness). Let s be a program and σ0 an
initial state. Then, the computed numerical relation is a sound approximation of
the execution cost of s from σ0:

∀h, t, (s, σ0, h) ⇓t _ =⇒ (σ0, {cost �→ t}) ∈ γn ◦ C(s)

4.2 Proof of Soundness

To prove Theorem 1, we need to prove that: (i) the block approximation is sound;
and (ii), the program instrumentation is sound.

The following theorem states the soundness of our block instrumentation.

Theorem 2 (Block approximation correction). For any block blk and
abstract memory state σ�:

�blk��σ� = (u, o,_) ⇒ ∀σ ∈ γ(σ�), t, h,
(
(blk, σ, h) ⇓t _ ⇒ t ∈ [u, o]

)

The theorem is proved by bi-simulation, by induction on the number of instruc-
tions of blk. For the lower bound, if the concrete semantics fetches an instruction,
the correction of the must analysis ensures that the simulation will fetch it too.
However, the abstract simulation of the pipeline state may fetch instruction ear-
lier than the concrete semantics, e.g. when the must alias analysis does not detect
that an aliasing always occurs. Thus the under-approximation cost is smaller or
equal to the concrete cost.

For the upper bound, the converse reasoning applies. If the concrete semantics
executes a cycle, because of a conflict, then the correction of the may alias
analysis guarantees that the over-approximation also executes a cycle. The may
analysis may not be able to statically prove that some instruction cannot alias
with an instruction already in the pipeline, which can result in more cycles in
the abstract semantics. Thus the over-approximation cost is larger or equal to
the concrete cost.

Soundness of the Program Instrumentation. We rely on an approximate program
semantics to prove the soundness of our program instrumentation. This big-step
semantics is defined inductively on the syntax, with a special case for blocks,
and computes bounds for each statement. It abstracts away the reorder buffer
and the branch prediction history, keeping only the memory state σ and the
abstract state σ� computed by the alias analyses. Its rules are in Fig. 14 and
follows the scheme of the instrumentation. It is straightforward to show that the
cost-approximate semantics computes the same bounds than the ones of the cost
variable in the instrumented program.

The cost-approximate semantics is sound w.r.t. the small-step semantics.
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Fig. 14. The big-step approximate semantics computes the cost bounds of state-
ments, with the help of an alias abstract memory state σ�

Theorem 3 (Cost-approximate soundness). Let s be a program, σ1 a mem-
ory state, σ�

1 an abstract alias state such that σ1 ∈ γa(σ
�
1), and s′ the instrumen-

tation of s (i.e. (s′,_) = T(s, σ�
1)), then

∀t, h, u, o, σ2,

(
(s, σ1, h) ⇓t σ2

∧ (s, σ1, σ
�
1) ⇓[u,o] (σ2,_)

)
=⇒

(
σ2[cost �→ t] ∈ S�s′�σ1

∧ u ≤ t ≤ o

)

Also, the existence of an execution in the small-step semantics is enough to
guarantee the existence of bounds for the cost-approximate semantics.

Theorem 4 (Cost-approximate existence). Let s be a program and σ1 a
memory state and σ�

1 an abstract alias state such that σ1 ∈ γa(σ
�
1)

∀t, h, σ2, (s, σ1, h) ⇓t σ2 =⇒
(
∃o, u, (s, σ1, σ

�
1) ⇓[u,o] (σ2,_)

)

For Theorem3, only the second component of the conjunction requires a
detailed proof—the other is a trivial property of the instrumentation. The proof
of this theorem is given in the companion report [1], and relies on several interme-
diate semantics, until we obtain a big-step semantics with immediate application
of instructions on the memory state (i.e. where the effects of an instruction are
applied immediately, and not when it is committed) and with approximations
due to dropping the branch prediction history and concrete memory state in the
block analysis.

Cost from a Non-empty Pipeline State. The difficulty of Theorem 3’s proof is that
the intermediate processor states in the small-step semantics do not necessarily
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have an empty pipeline state and empty speculation buffer, while Theorem 2
consider the execution cost of a block from an empty pipeline state.

Assume that we have two blocks blk1 and blk2 that are executed one after the
other (e.g. blk1 and blk2 can be the body of a while loop). Then, blk2 is executed
starting from the processor state ω1 resulting from blk1’s execution.

(blk1, 〈σ1, πε, h, ∅〉) →t1 ω1, (blk2, ω1) →t2 (skip, ω2) and ω2 ↪→t′
2 〈σ′, πε, h

′, ∅〉

Here, we need to show that t1 + t2 + t′2 ≤ o1 + o2, where:

(blk1, σ1, σ
�
1) ⇓[_,o1] (σ2, σ

�
2) and (blk2, σ2, σ

�
2) ⇓[_,o2] (σ

′, σ′�)

The fetch cost t1 of blk1 is smaller than its execution cost t′1. Hence using The-
orem 2:

(blk1, σ1, h) ⇓t′
1

σ2 and t1 ≤ t′1 ≤ o1

But we cannot bound the execution cost of blk2 by o2, because Theorem 2 only
bounds the cost of executing blk2 starting from an empty pipeline and speculation
buffer state. Since it starts from a (potentially) non-empty state ω1, t2 may be
strictly larger than o2.

Intuitively, the cost approximation t1 + t2 + t′2 ≤ o1 + o2 holds because the
additional cost incurred when starting from an non-empty pipeline state has
already been accounted by the previous block, i.e. in o1. To formalize this, let
max(π) be the maximum delay of all resources in π:

max (π) = max

(

max
Xi∈Stages,π(Xi) �=∅

(|π(X)| − i + 1)
︸ ︷︷ ︸

delays on locations

, max
X∈Pips

1X1 �=∅
︸ ︷︷ ︸

delay for first stages

)

where 1C evaluates to 1 if the predicate C is true, 0 otherwise.
The following lemma guarantees that we do bound the cost of a statement

by computing its cost from an empty pipeline.

Lemma 1. Let 〈σ, π, h, β〉 be a processor state and s a program. Consider the
following two executions starting from the pipeline and buffer states, resp., π, β
and πε, ∅.

(s; skip, 〈σ, π, h, β〉) →t (skip, 〈_, π′,_,_〉)
and (s; skip, 〈σ, πε, h, ∅〉) →t′

(skip, 〈_, π′′,_,_〉)

Then t′ ≤ t and t +max(π′) ≤ max(π) + t′ +max(π′′)

The proof, given in the companion report [1], is not straightforward, and requires
some care. Indeed, the two executions may not execute cycles synchronously:
there is no guarantee that the execution which started with non-empty pipelines
will execute a cycle when the other execution, which started from πε, does. To
tackle this issue, we introduce the notion of lateness, a partial order relation on
pipeline states that captures the fact that a pipeline state has already executed
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more cycles than another one. We prove that this partial ordering is preserved
by our semantics.

Proof of Theorem 1. To conclude the proof of Theorem 1, let us take s a program,
σ0 an initial memory state, h a branch predictor history, such that the execution
cost of s is t in the small-step semantics: (s, σ0, h) ⇓t σ1. Recall that C(s) =
projR0∪{cost}(�s′��

n(ι
�
n[s])) with T(s, ι�a[s]) = (s′,_). By Theorem 4, there exists o

and u such that (s, σ0, σ
�
0) ⇓[u,o] (σ1,_). By Theorem 3, σ1[cost �→ t] ∈ S�s′�(σ0).

Using the soundness of the numerical abstraction �·��
n, we have

∀σ�,∀(σ0, σ) ∈ γn(σ�), {σ0} × S�s�σ ⊆ γn(�s��
nσ�)

and in particular {σ0}×S�s′�σ0 ⊆ γn(�s′��
nι�n[s]). After projecting on R0 and

cost, we obtain (σ0, {cost �→ t}) ∈ γn ◦ C(s) which concludes this proof.

5 Implementation

We implemented our instrumentation technique on top of Jasmin [3,4]. This
framework allows to build high-assurance and high-speed cryptographic imple-
mentations by: i) combining low-level assembly instructions (e.g. flags and vec-
torized instructions) and high-level structured control flow; ii) using a verified
compiler, with a mechanized Coq proof of behavior preservation; iii) verifica-
tion tools for proving properties of Jasmin programs, including an embedding of
Jasmin in the Easycrypt proof assistant [6], and a static analyzer to check the
memory safety of Jasmin programs. The Jasmin compiler performs several com-
pilation passes, such as dead-code elimination, function call inlining, and sharing
of stack variables. All these compilation passes are proven correct in Coq (i.e.
they preserve the semantics of programs)1.

We have integrated our cost analysis late enough in the compilation chain
in order to avoid change of the cost between the intermediate representation
that is analyzed and the final assembly code that is generated by the compiler.
Our analysis is implemented in OCaml and currently not verified in Coq. The
analysis is parameterized by a user-given processor specification file, listing the
instructions, their latency and the pipelines supporting them.

By default, the instrumentation respects the approximation semantics by
making no assumption on the branch predictor. In the worst-case scenario the
instrumentation thus considers that the branching always mis-predicts. We also
provide an option that lets the user assume a basic branch predictor for the
processor, which always tries to take the same branch as previously taken. Such
a branch predictor can only mis-predict twice on a given while loop execution:
when it enters and when it leaves.

The alias and numerical static analyzer (mentioned in Sect. 4) have been
obtained by modifying the Jasmin static analyzer. This analyzer, which uses

1 Currently, Jasmin only supports x86 architectures. Note however that our method
is not specific to x86, and can be applied to other architectures.
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Fig. 15. Experimental results.

abstract interpretation techniques [12], was initially introduced in [4] to prove
safety, and was executed before any compilation pass. Our cost analysis is run
later in the compilation chain and it has been necessary to enhance the Jasmin
relational numerical analysis with a dynamic packing technique, which handles
the same variable with different degrees of precision at different program points.
This a slight variation of the packing technique introduced in [13] where packs
of variable where fixed at the level of block/function.

6 Experiments

We evaluate our cost analysis on different implementations of cryptographic
primitives written in Jasmin. Examples include Poly1305 [7], a lookup-table-
based implementation of AES [15], ChaCha20 [9] and multiplication in the finite
field Fp with p = 2255 − 19. The latter is a core routine of the Curve25519
key exchange [8]. We report our experiments in Fig. 15. For some examples we
report results for both a reference (“ref”) and a hand-optimized (“opt”) imple-
mentation. When cost depends on the (length of) inputs, our tool computes
a symbolic cost w.r.t. to a variable len; for AES and ChaCha encryption and
Poly1305 authentication this variable is the length of the input message. In the
invariant computed by the numerical analysis, we only keep the best asymptotic
constraint when several bounds were available. The tests were done assuming a
basic branch predictor. The only target architecture currently supported by Jas-
min is AMD64 (also known as x86-64 or x64). There are only very few in-order
AMD64 CPUs; for our experiments we decided to approximate one of them,
namely the Intel Atom 330. The pipeline structure and instruction latencies are
modeled according to the documentation in Fog’s CPU manuals [17,18].

We compare our results with a reference naive analysis (last column in
Fig. 15) that over-approximates the cost of any block of atomic instructions by
the sum of the latencies of each instruction. This approach hence coincides with
state-of-the-art cost analyzer that do not take into account instruction pipelin-
ing. We also compare the reference programs to their hand-optimized variant,
if available. For all programs we obtain a smaller upper-bound than the naive
analysis. It shows that our bound computation is likely to improve precision over
cost analyzers that ignore instruction pipelining. Our lower and upper-bounds
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are asymptotically very close, which shows that our cost analysis is asymptoti-
cally precise. For programs with hand-optimized version, the upper bound of the
optimized program is asymptotically smaller than the lower bound of the original
program. This shows our tool usefulness in proving the impact of programmer
optimizations.

7 Related Work

Starting from the seminal work of Wegbreit [28], there has been a large body of
work for analyzing the cost of programs using recurrence relations [2], program
logics [25], type systems [14,21,23,26], and static analysis [19]. These approaches
rely on sophisticated methods for computing numerical invariants and inferring
iterations bounds for loops or recursive computations. Our method allows to
leverage these powerful methods in a more realistic cost model that accommo-
dates cost-critical micro-architectural features.

Cost analysis is also useful for reasoning about side-channel leakage. Ngo et
al. [24] define the constant-resource policy, an observational information flow
policy which guarantees that the execution cost of a program does not depend
on its secret inputs. Their analysis is an instance of a relational cost analysis [11],
a variant of cost analysis that computes lower and upper bounds for the relative
cost of two programs. These works are carried in the setting of a simple cost
model; applying our cost model and methodology to side-channel analysis is an
interesting direction for future work.

An alternative is to carry dynamic analyses with cycle-accurate cost models.
For instance, Yourst [30] develops a model for a x86-64 processor. Dynamic
approaches trade off precision for generality—bounds are for specific inputs.
However, it would be interesting to explore if cycle-accurate cost models could
be used for refining instrumentation.

An even simpler approach is to measure execution time for a large number of
inputs. When combined with a statistical analysis, this approach yields a useful
heuristic for analyzing if cryptographic implementations leak [27]. However, this
approach does not provide any guarantee.

Worst Case Execution Time (WCET) analysis is a well-known industrial
success in cost analysis. Using Abstract Interpretation, state-of-the-art analyz-
ers are able to predict a safe upper-bound for embedded micro-architectures
with strict real-time constraints. They take into account several advanced archi-
tectural optimizations, including pipelines and caches [16,20,29]. Our approach
differs in scope, precision and semantic foundations. We focus our reasoning on
instruction scheduling and provide feedback to programmer who want to hand-
optimize their program, like in cryptographic implementation. Our abstraction is
more coarse (e.g., we do not try to merge symbolic pipelines on junction points),
but already precise enough for the cryptographic application area. WCET tools
are clearly more ambitious in term of cost model and precision but they do not
ground their work on a semantic model with the same level of mathematical
rigour than us. We consider our work as an attempt to reconcile cost precision
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and rigorous semantic proofs. We also believe that our instrumentation approach
can be more easily connected to previous foundational cost analysis works [22]
by reusing off-the-shelf cost analyzers.

8 Conclusion

We developed a precise cost semantics for pipelined-optimized softwares executed
on in-order processors. The semantics is suitable for automatic cost analysis and
formal semantic proofs of soundness. Preliminary experiments demonstrate that
our automatic analysis is more accurate than a naive cost analysis.

One direction for future work would be to extend our cost semantics with a
cache model and extend our analysis with a may/must tracking of cache misses.
An other perspective is to formalize in Coq the soundness of our cost analysis
in order to integrate it with the Jasmin high-assurance Coq framework.

References

1. Companion report. https://hal.inria.fr/hal-03779257
2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-form upper bounds in static

cost analysis. J. Autom. Reason. 46, 161–203 (2011)
3. Almeida, J.B., et al.: Jasmin: high-assurance and high-speed cryptography. In:

Proceedings of CCS’2017, pp. 1807–1823. ACM (2017)
4. Almeida, J.B., et al.: The last mile: high-assurance and high-speed cryptographic

implementations. In: Proceedings of S&P’2020, pp. 965–982. IEEE (2020)
5. Barbosa, M., et al.: SoK: computer-aided cryptography. In: Proceedings of S&P

2021, pp. 777–795. IEEE (2021)
6. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:

EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1_6

7. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760_3

8. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

9. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: Workshop Record of SASC 2008:
The State of the Art of Stream Ciphers (2008)

10. Cauligi, S., et al.: Constant-time foundations for the new spectre era. In: Proceed-
ings of PLDI’2020, pp. 913–926. ACM (2020)

11. Çiçek, E., Barthe, G., Gaboardi, M., Garg, D., Hoffmann, J.: Relational cost anal-
ysis. In: Proceedings of POPL 2017, pp. 316–329. ACM (2017)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of POPL 1977, pp. 238–252. ACM (1977)

13. Cousot, P., et al.: The ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS,
vol. 3444, pp. 21–30. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31987-0_3

https://hal.inria.fr/hal-03779257
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-540-31987-0_3
https://doi.org/10.1007/978-3-540-31987-0_3


396 G. Barthe et al.

14. Crary, K., Weirich, S.: Resource bound certification. In: Proceedings of POPL 2000,
pp. 184–198. ACM (2000)

15. Daemen, J., Rijmen, V.: AES proposal: Rijndael, version 2 (1999). http://csrc.nist.
gov/archive/aes/rijndael/Rijndael-ammended.pdf

16. Ferdinand, C., et al.: Reliable and precise WCET determination for a real-life pro-
cessor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211,
pp. 469–485. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45449-
7_32

17. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs - An optimization
guide for assembly programmers and compiler makers (2020). https://www.agner.
org/optimize/microarchitecture.pdf

18. Fog, A.: The microarchitecture of Intel, AMD and VIA CPUs - instruction tables
(2020). https://www.agner.org/optimize/instruction_tables.pdf

19. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static
estimation of program computational complexity. In: Proceedings of POPL 2009,
pp. 127–139. ACM (2009)

20. Hahn, S., Reineke, J.: Design and analysis of SIC: a provably timing-predictable
pipelined processor core. In: Proceedings of RTSS 2018, pp. 469–481. IEEE (2018)

21. Hughes, J., Pareto, L.: Recursion and dynamic data-structures in bounded space:
towards embedded ML programming. In: Proceedings of ICFP 1999. pp. 70–81.
ACM (1999)

22. Knoth, T., Wang, D., Polikarpova, N., Hoffmann, J.: Resource-guided program
synthesis. In: Proceedings of PLDI 2019, pp. 253–268. ACM (2019)

23. Knoth, T., Wang, D., Reynolds, A., Hoffmann, J., Polikarpova, N.: Liquid resource
types. In: Proceedings of ICFP 2020, pp. 106:1–106:29 (2020)

24. Ngo, V.C., Dehesa-Azuara, M., Fredrikson, M., Hoffmann, J.: Verifying and synthe-
sizing constant-resource implementations with types. In: Proceedings of SP 2017,
pp. 710–728. IEEE Computer Society (2017)

25. Nielson, H.R.: A Hoare-like proof system for analysing the computation time of
programs. Sci. Comput. Program. 9(2), 107–136 (1987)

26. Reistad, B., Gifford, D.K.: Static dependent costs for estimating execution time.
In: Proceedings of LFP1994, pp. 65–78. ACM (1994)

27. Reparaz, O., Balasch, J., Verbauwhede, I.: Dude, is my code constant time? In:
Proceedings of DATE 2017, pp. 1697–1702. IEEE (2017)

28. Wegbreit, B.: Verifying program performance. J. ACM 23(4), 691–699 (1976)
29. Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M., Ferdinand, C.:

Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(7),
966–978 (2009)

30. Yourst, M.T.: PTLsim: a cycle accurate full system x86-64 microarchitectural sim-
ulator. In: Proceedings of ISPASS 2019, pp. 23–34. IEEE Computer Society (2007)

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://doi.org/10.1007/3-540-45449-7_32
https://doi.org/10.1007/3-540-45449-7_32
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/instruction_tables.pdf


Parameterized Recursive Refinement
Types for Automated Program

Verification

Ryoya Mukai, Naoki Kobayashi(B) , and Ryosuke Sato

The University of Tokyo, Tokyo, Japan

koba@is.s.u-tokyo.ac.jp

Abstract. Refinement types have recently been applied to program ver-
ification, where program verification problems are reduced to type check-
ing or inference problems. For fully automated verification of programs
with recursive data structures, however, previous refinement type sys-
tems have not been satisfactory: they were not expressive enough to state
complex properties of data, such as the length and monotonicity of a list,
or required explicit declarations of precise types by users. To address the
problem above, we introduce parameterized recursive refinement types
(PRRT), which are recursive datatypes parameterized by integer param-
eters and refinement predicates; those parameters can be used to express
various properties of data structures such as the length/sortedness of a
list and the depth/size of a tree. We propose an automated type infer-
ence algorithm for PRRT, by a reduction to the satisfiability problem for
CHCs (Constrained Horn Clauses). We have implemented a prototype
verification tool and evaluated the effectiveness of the proposed method
through experiments.

1 Introduction

There has been a lot of progress on automated/semi-automated verification tech-
niques for functional programs, such as those based on higher-order model check-
ing [6,14,16] and refinement types [2,15,17,18,20–22,24,25]. Fully automated
verification of functional programs using recursive data structures, however, still
remains a challenge. In the present paper, we follow the approach using refine-
ment types, and introduce parameterized recursive refinement types and a type
inference procedure for them.

Refinement types can be used to express various properties of recursive data
types. For example, if we are interested in the length of an integer list, we can
prepare a type of the form ilistL[n], which describes a list of length n, and
assign the following types to constructors:

Nil : ilistL[0]
Cons : ∀n.int × ilistL[n] → ilistL[n + 1]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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The type of Cons indicates that Cons takes a pair consisting of an integer and
a list of length n as an argument, and returns a list of length n + 1. If we
are interested in the sortedness of a list (in the ascending order) instead, we
may prepare a type of the form ilistS[b, x], which describes a list consisting
of elements no less than x, where the additional Boolean parameter b denotes
whether the list is null (thus, if b is true, the value of x should be ignored). The
following types can then be assigned to the constructors. (Actually, the second
parameter 0 of the type of Nil does not matter and may be any other value.)

Nil : ilistS[true, 0]
Cons : ∀b, x, y. x : int × {ilistS[b, y] | ¬b ⇒ x ≤ y} → ilistS[false, x]

Once an appropriate refinement type is assigned to each occurrence of a con-
structor, a standard procedure for automated/semi-automated refinement type
inference (e.g., based on a reduction to the CHC solving problem [2,15,18,25])
is applicable.

A main problem in applying the refinement type approach above to the fully-
automated verification is that each constructor has more than one refinement
type, and it is unclear which type should be used for each occurrence of the
constructor (unless a programmer explicitly declares it). For example, for a sort-
ing function sort, an input list is a plain, unsorted list, while the output list
should be sorted; hence the latter should have type ilistS[b, x] for some b, x.
In the context of fully automated verification, we cannot expect a programmer
to declare the types like ilistL[n] and ilistS[b, x] above. Thus, an automated
verification tool should choose appropriate refinements of recursive data types
from infinitely many candidates.

To address the problem above, we parameterize recursive types with integers
and predicates, and assign generic types to data type constructors. For example,
for integer lists, we prepare a parameterized type ilist〈n; eNil, (ϕCons, eCons)〉,
where n is an integer denoting the number of integer parameters, ϕCons is a
predicate on integers, and eNil and eCons are functions on integer tuples, and we
assign the following types to constructors:

Nil : ∀k, PCons, fNil, fCons.ilist〈k; fNil, (PCons, fCons)〉[fNil()]
Cons : ∀k, PCons, fNil, fCons.∀ỹ.

{x : int × ilist〈k; fNil, (PCons, fCons)〉[ỹ] | PCons(x, ỹ)}
→ ilist〈k; fNil, (PCons, fCons)〉[fCons(x, ỹ)]

Here, (i) PCons is a predicate variable, (ii) fNil and fCons are functions of types
unit → intk and intk+1 → intk respectively, and (iii) ỹ is a sequence of k
integer variables (where k is the first parameter of ilist). By changing the part
〈k; fNil, (PCons, fCons)〉, we can express various list properties. For example, list
type constructors ilistL and ilistS can be defined as follows:

ilistL := ilist〈1;λ().0, (λ(x, y).true, λ(x, y).y + 1)〉
ilistS := ilist〈2;λ().(0, 0), (λ(x, y1, y2).y1 > 0 ⇒ x ≤ y2, λ(x, y1, y2).(1, x))〉.
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In fact, by instantiating the parameters k, PCons, fNil and fCons to 1, λ(x, y).true,
λ().0, and λ(x, y).y + 1 respectively, we obtain the following types for Nil and
Cons:

Nil : ilistL[0]
Cons : ∀y.{x : int × ilistL[y] | true} → ilistL[y + 1],

which corresponds to the types of Nil and Cons given for ilistL. Similarly, by
instantiating the parameters k, PCons, fNil and fCons to 2, λ(x, y1, y2).y1 > 0 ⇒
x ≤ y2, λ().(0, 0), and λ(x, y1, y2).(1, x) respectively, we obtain the types of Nil
and Cons given for ilistS.

The remaining question is how to automatically assign an appropriate instan-
tiation of parameterized recursive types to each occurrence of a constructor. To
this end, we first pick the values of k, fNil, fCons (in the case of lists; we will
deal with more general recursive data types in the following sections) in a cer-
tain heuristic manner, and prepare a predicate variable for PCons. We can then
reduce the problem of refinement type inference to the CHC satisfiability prob-
lem [1] in a standard manner [2,18], and use an automated CHC solver [2,4,7].
If the refinement type inference fails, that may be due to the lack of sufficient
parameters; thus, we increase the value of k and accordingly update the guess for
fNil and fCons so that the resulting refinement types are strictly more expressive.
This refinement loop may not terminate due to the incompleteness of the type
system discussed later in Sect. 3, but we can guarantee a weak form of relative
completeness, that if a program is typable, then the type inference procedure
terminates eventually under the hypothetical completeness assumption of the
underlying CHC solver, as discussed later in Sect. 4.

We have implemented the procedure sketched above, and succeeded in fully
automatic verification of several small but challenging programs using lists and
trees. Our contributions are summarized as follows.

– The design of parameterized recursive refinement types (PRRT): the idea of
parameterizing recursive types with some indices goes back at least to Xi and
Pfenning’s work [24], and that of parameterization of types with refinement
predicates has also been proposed by Vazou et al. [21]. We believe, however,
that the specific combination of the parameterizations, specifically designed
with fully automated verification in mind, is new.

– An inference procedure for PRRTs, its implementation and experiments.

The rest of this paper is structured as follows. Section 2 introduces the target
language of our verification method based on parameterized recursive refinement
types. Section 3 proposes a new refinement type system, and Sect. 4 explains
a type inference procedure, which serves as a program verification procedure.
Section 5 reports an implementation and experimental results. Section 6 discusses
related work, and Sect. 7 concludes the paper.
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2 Target Language

We consider a first-order1 call-by-value functional language as the target of our
refinement type inference.

2.1 Syntax

We assume a finite set of data constructors, ranged over by L. The set of expres-
sions, ranged over by e, is defined by:

e (expressions) ::= s | f(s̃) | fail | if s then e1 else e2

| let x = e1 in e2

| match s with {L1(x̃1) → e1, . . . , Lk(x̃k) → ek}
s (simple expressions) ::= x | n | s1 + s2 | L(s1, . . . , sk)

D (programs) ::= {f1(x̃1) = e1, . . . , fk(x̃k) = ek}

The syntax of expressions above is fairly standard. A simple expression denotes
an integer or a recursive data structure; we represent Booleans as integers, where
non-zero integers are considered true and 0 is considered false. We write ·̃ for
a sequence; for example, s̃ denotes a sequence of simple expressions s1, . . . , sk.
For a technical convenience, the arguments of a function call f(s̃) are restricted
to simple expressions; this is not a fundamental restriction, f e can be expressed
by let x = e in f x. The expression fail is a special command to indicate an
error; the purpose of our refinement type system introduced later is to guarantee
that fail does not occur during the execution of any well-typed program. As
demonstrated in the examples below, the expression fail is often used to express
the specification of a program. The conditional expression if s then e1 else e2
evaluates e2 if the value of s is 0 and evaluates e1 otherwise. The match expression
match s with {L1(x̃1) → e1, . . . , Lk(x̃k) → ek} evaluates [ṽi/x̃i]ei if the value of
s is Li(ṽi). For the sake of simplicity, we have only + as an operator on integers,
but other standard primitives (−, ×, <, =, ...) can be incorporated with no
difficulty, and used in examples.

A program D is a set of (mutually recursive) function definitions. We assume
that the set {f1, . . . , fk} of function names contains main, the name of the “main”
function.

2.2 Typing

We introduce a simple (monomorphic) type system, and require that programs
and expressions are well-typed in the type system.

1 The restriction to first-order programs is just for the sake of simplicity; our refine-
ment type system can be easily extended for higher-order functions in a standard
manner.
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We assume a finite set D of (names of) recursive data types, ranged over by
d. The set of (simple) types, ranged over by κ, is defined by:

κ (simple types) ::= b | (b1, . . . , bk) → b

b (base types) ::= int | d
Here, a type of the form (b1, . . . , bk) → d is called a constructor type. When
k = 1, we just write b → d for (b) → d. To distinguish simple types from
refinement types introduced later, we sometimes call simple types sorts.

A constructor environment, written C, is a map from the set of data con-
structor to the set of constructor types. A (simple) type environment, written
K, is a map from a finite set of variables to types. The type judgment relations
C;K �ST e : κ and C �ST D : K are defined by the typing rules in Fig. 1.

Henceforth, we consider only expressions e and programs D such that C;K �ST

e : κ and C �ST D : K for some C,K. As usual, programs well-typed in the simple
type system do not get stuck; however, they may be reduced to the error state
fail.

In the rest of this paper, we further impose the following restriction on con-
structor types: for each constructor type C(L) = (b1, . . . , bk) → d, we require that
{b1, . . . , bk} ⊆ {int, d}. Thus, we forbid a constructor type like (int, d1) → d2
with d1 
= d2. We permute argument types and normalize each constructor type
to the form (intk, d�) → d. Again, the restriction is just for the sake of simplicity
of the discussions in later sections. We write Cd for the restriction of C on type
d, {L : κ ∈ C | κ is of the form (˜b) → d}. Note that C can be decomposed to the
disjoint union of maps Cd1 � · · · � Cdk . For the integer list type ilist discussed
in Sect. 1, Cilist = {Nil → ( ) → ilist, Cons → (int, ilist) → ilist}.

2.3 Operational Semantics

We define a small-step semantics of the language. The sets of evaluation contexts
and values, respectively ranged over by E and v, are defined by:

E::= [ ] | E + s | n + E | L(ṽ, E, s̃) | f(ṽ, E, s̃) | if E then e1 else e2

| let x = E in e | match E with {L1(x̃1) → e1, . . . , Lk(x̃k) → ek}
v::= n | L(v1, . . . , vk)

The reduction relation e −→D e′ on (closed) expressions is defined by
the rules in Fig. 2. The expression [ṽ/x̃]e (which is an abbreviated form of
[v1/x1, . . . , vk/xk]e) denotes the expression obtained from e by substituting ṽ
for x̃. We write −→∗

D for the reflexive and transitive closure of −→D. We some-
times omit the subscript D and just write −→ and −→∗ for −→D and −→∗

D

respectively.
For a program D such that C �ST D : K and K(main) = (b1, . . . , bk) →

int, we say D is safe if there exist no v1 : b1, . . . , vk : bk and E such that
main(v1, . . . , vk) −→∗

D E[fail]. In the rest of this paper, we shall develop a
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Fig. 1. Simple Type System

Fig. 2. Reduction Rules

refinement type system that guarantees the safety of any well-typed program,
and an automated procedure for proving the well-typedness, hence the safety of
a given program. Note that the safety of a program does not imply the termina-
tion of the program; termination verification, for which various techniques [8,9]
are available, is outside the scope of this paper.

Example 1. The program D1 defined below declares function range, which takes
an integer n and returns the list [n, n − 1, . . . , 1], and checks that the length of
range(n) equals its argument n.
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D1 = {range(n) = if n then let r = range(n − 1) in Cons(n, r)
else Nil(),

len(l) = match l with {Nil() → 0, Cons(n, l′) → 1 + len(l′)},

main(n) = let r = range(n) in let l = len(r) in

if n 
= l then fail else 0}

The evaluation of main(n) terminates without failure if n ≥ 0, and falls into an
infinite loop if n < 0. ��
Example 2. The following program D2 focuses on function isort, which sorts a
list in the ascending order by the insertion sort algorithm, and checks that its
return value is sorted.

D2 = {gen(n) = if n then Cons(∗, gen(n − 1)) else Nil(),
insert(x, l) = match l with {

Nil() → Cons(x, Nil()),
Cons(y, l′) → if x < y then Cons(x, l) else Cons(y, insert(x, l′))

},

isort(l) = match l with {
Nil() → Nil(), Cons(n, l′) → insert(n, isort(l′))

},

is sorted rec(x, l) = match l with {
Nil() → 1,
Cons(y, l′) → if x ≤ y then is sorted rec(y, l′) else 0

},

is sorted(l) = match l with {
Nil() → 1, Cons(n, l′) → is sorted rec(n, l′)

},

main(n) = let s = is sorted(isort(gen(n))) in
if s then 0 else fail

}

The term ∗ indicates a non-deterministic integer value, omitted in the formal
syntax for the sake of simplicity. The function insert constitutes a part of the
insertion sort, which takes x and a sorted list l and returns a sorted list that
consists of x and the elements of l. The function is sorted returns 1 if the given
list is sorted in the ascending order, and 0 otherwise. ��
Example 3. The type itree for binary trees with integer values is defined with
Citree = {Leaf → ( ) → itree, Node → (int, itree, itree) → itree}. The
following program D3 generates a random tree with a given size, and verifies
that the generated tree has the given size as expected.
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D3 = {gen tree(n) =
if n then

let m = ∗ in let � = gen tree(m) in
let r = gen tree(n − 1 − m) in Node(∗, l, r)

else Nil(),

size(t) = match t with {
Leaf() → 0,
Node( , �, r) → 1 + size(�) + size(r)

},

main(n) = let s = size(gen tree(n)) in
if s 
= n then fail else 0

}.

If n 
= 0,2 gen tree(n) picks a number m, and returns a tree of size n, consisting
of the left child of size m and the right child of size n − 1 − m. Function size
calculates the tree size (the number of nodes except leaves). ��

3 A Parameterized Refinement Type System

This section introduces a refinement type system that guarantees the safety of
well-typed programs.

3.1 Refinement Types

The syntax of parameterized recursive refinement types, ranged over by τ , is
defined by:

τ (types) ::= {β | ϕ} | {(β1, . . . , βk) | ϕ′} → {β | ϕ}
β (type patterns) ::= δ[y1, . . . , yn]

δ (raw types) ::= int | d〈n; (P1, F1), . . . , (Pk, Fk)〉
P (predicates) ::= λ(ỹ).ϕ

Here, ϕ denotes a formula over integer arithmetic, and F denotes a function
on integer tuples; we do not fix the precise syntax of ϕ and F , but assume
that standard arithmetic and logical operators are available. In δ[y1, . . . , yn], (i)
n = 1 if the raw type δ is int, and (ii) n = m if δ = d〈m; (P1, F1), . . . , (Pk, Fk)〉.
Intuitively, {int[x] | ϕ} is the type of an integer x that satisfies ϕ. The type
{(β1, . . . , βk) | ϕ′} → {β | ϕ} describes a function or a constructor that takes
arguments of types β1, . . . , βk that satisfy ϕ′, and returns a value of type {β | ϕ}.
For example, {(int[x]) | x > 0} → {int[y] | y > x} describes a function that
takes a positive integer x as an argument and returns an integer greater than

2 Actually, gen tree(n) will not terminate if n < 0, but that does not concern us here
since we are interested in only the safety property.
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x. As this example indicates, the variables occurring in the part (β1, . . . , βk) are
bound in {(β1, . . . , βk) | ϕ′} → {β | ϕ}, and may occur in ϕ′ and ϕ. As usual,
we allow implicit renaming of bound variables. We often write δ![s1, . . . , sn] for
{δ[y1, . . . , yn] | y1 = s1 ∧ · · · ∧ yn = sn}; we sometimes omit the superscript !
when there is no danger of confusion.

Refinement types for datatypes are more involved. For each (simple) datatype
d with Cd = {L1 : (int�1 , dm1) → d, . . . , Lk : (int�k , dmk) → d}, we consider
refinement types of the form:

{d〈n; (P1, F1), . . . , (Pk, Fk)〉[y1, . . . , yn] | ϕ}.

Here, n denotes the number of integer parameters y1, . . . , yn, and (Pi, Fi) is a
pair of a predicate and a function corresponding to the constructor Li. The
above type denotes a data structure constructed from L1, . . . , Lk, by assigning
the following type to Li.

{(int[x1], . . . , int[x�i ], δ[ỹ1], . . . , δ[ỹmi
]) | Pi(x̃, ỹ1, . . . , ỹmi

)}
→ δ![Fi(x̃, ỹ1, . . . , ỹmi

)]

Here, δ denotes d〈n; (P1, F1), . . . , (Pk, Fk)〉, x̃ = x1, . . . , x�i , and ỹi = yi,1, . . . ,
yi,n. Thus, the arity of the predicate Pi and the function Fi is �i + min, and
Fi returns an n-tuple of integers. Recall that the part δ![Fi(x̃, ỹ1, . . . , ỹmi

)]
should be considered an abbreviated form of {δ[z1, . . . , zn] | (z1, . . . , zn) =
Fi(x̃, ỹ1, . . . , ỹmi

)}. Note that Pi and Fi take only integers as their arguments;
thus information about recursive data structures is abstracted to integers by the
type system.

For example, ilistL in Sect. 1 is expressed as

ilist〈1; (λ().true, λ().0), (λ(x, y).true, λ(x, y).y + 1)〉,
and the constructors Nil and Cons are given the following types:

Nil : ( ) → ilistL![0]

Cons : (int[x], ilistL[y]) → ilistL![y + 1].

Note that the argument type of Cons is

{(int[x], ilistL[y]) | (λ(x, y).true)(x, y)} ≡ {(int[x], ilistL[y]) | true},

which has been abbreviated to (int[x], ilistL[y]).
As another example, recall ilistS in Sect. 1. It is expressed as:

ilist〈2;(λ( ).true, λ( ).(0, 0)),
(λ(x, y1, y2).(y1 > 0 ⇒ x ≤ y2), λ(x, y1, y2).(1, x))〉,

and the constructors are given the following types:

Nil : ( ) → ilistS![0, 0]

Cons : {(int[x], ilistS[y1, y2]) | y1 > 0 ⇒ x ≤ y2} → ilistS![1, x].
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Remark 1. If we are interested in proving that a sorting function takes an integer
list as an argument and returns a sorted list that is a permutation of the argu-
ment, we need to parameterize the list type also with information about the ele-
ments of a list. One way to do so would be to introduce the type ilistP[y1, y2, y3]
of a list of length y1 that contains y3 occurrences of the element y2, and the type
ilistSP[y1, y2, y3, y4] of a sorted list (of type ilistS[y1, y2]) containing y4 occur-
rences of the element y3. Then the type of a sorting function can be expressed
as: {ilistP[y1, y2, y3] | true} → {ilistSP[y1, z, y2, y3] | true}. ��

3.2 Typing

We define the type judgment relations C;Γ ;ϕ � e : τ and C � D : Γ for expres-
sions and programs by the typing rules in Fig. 3. Here, C is a constructor type
environment as before, and Γ maps each variable (including a function name)
to its type. The type bindings on integer types and datatypes are restricted to
the form x : {β | true}, so we just write x : β. The conditions on variables of
integer types and datatypes are instead accumulated in the part ϕ of the type
environment. Type bindings on integer types are further restricted to x : int[x];
hence we sometimes just write x : int. In a type judgment C;Γ ;ϕ � e : τ , we
implicitly require that all the types are well-formed; for example, ϕ and τ may
contain only integer variables occurring in Γ (including those in the part β) as
free variables. The definition of well-formedness is given in the longer version of
this paper [13].

The type judgment C;Γ ;ϕ � e : τ intuitively means that if each free variable
in e has type Γ (x) and satisfies the condition described by ϕ, then e is safely
executed (without reaching fail), and either e diverges or evaluates to a value
of type τ . In Fig. 3, |= ϕ means that the formula ϕ is a valid formula of integer
arithmetic.

We explain some key rules. The typing rules for expressions are fairly stan-
dard, except T-DC and T-Sub for datatypes. In T-App, we require that the
β-part of the argument types matches between the function and actual argu-
ments. The condition |= ϕ ∧ (

∧k
i=1 ϕi) ⇒ ϕ′ requires that the condition ϕ′

required by the function is met by the actual arguments. In rule T-Fail, the
condition |= ¬ϕ ensures that there exists no environment that makes ϕ hold,
so that fail is unreachable. In T-If, the branching condition is accumulated in
the conditions for the then- and else-branches. In T-Let, the condition ϕ1 on
the value of e1 is accumulated in the condition for e2.

In rule T-DC, the third and fourth conditions require that the arguments of
the constructor Li has an appropriate type, and the fifth condition requires that
they also satisfy the precondition Pi. The last premise ensures the post condition
(represented by the function Fi) of the data constructor implies the condition
ϕ′ on the constructed data. Note that the “δ-part” may be locally chosen in
the rule (thus, the constructor Li is polymorphic on 〈n; (P1, F1), . . . , (Pk, Fk)〉,
and that part may be instantiated for each occurrence of the constructor), but
that the same δ must be used among Li(s1, . . . , s�i+mi

) and the components
s�i+1, . . . , s�i+mi

.
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Fig. 3. Refinement Type System

In rule T-Match, the type environment Γ ′
i for the subexpression ei is

obtained from Γ by adding type bindings for the variables x̃i (see the fourth
line of the premises). The condition ϕ′

i (defined on the fifth line) is obtained
by strengthening the condition ϕ with information that s matches Li(x̃i). Note
that as in rule T-DC, the “δ-part” is shared among s and decomposed elements
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(bound to) x�i+1, . . . , x�i+mi
. The rule T-Sub is for subsumption. We allow only

the refinement condition to be weakened; for datatypes, the β-part (of the form
d〈n; (P1, F1), . . . , (Pk, Fk)〉[ỹ]) is fixed.

Example 4. Let us recall the program D1 defined in Example 1. It is typed as
C � D1 : Γ0, where Γ0 consists of:

range : int[n] → ilistL![n],

len : ilistL[n] → int![n],
main : int[n] → {int[x] | true}.

Below we focus on the definition of the function range, and show how to derive
C;Γ1; true � if n then e2 else Nil() : ilistL![n] (which is required for deriving
C � D1 : Γ0), where

Γ1 = (Γ0, n : int)
e2 = (let r = range(n − 1) in Cons(n, r))

ilistL = ilist〈1; (λ().true, λ().0), (λ(x, y).true, λ(x, y).y + 1)〉.
First, the type of range(n − 1) in the body is derived as follows.

Γ1(range) = {int[m] | true} → {ilistL[y] | y = m}
C;Γ1;n 
= 0 � n − 1 : {int[m] | m = n − 1}

|= m = n − 1 ⇒ true
|= m = n − 1 ∧ y = m ⇒ y = n − 1

C;Γ1;n 
= 0 � range(n − 1) : {ilistL[y] | y = n − 1}.
(T-App)

Second, the expression Cons(n, r) is typed as:

C;Γ2;ϕ2 � n : {int[x1] | true}
C;Γ2;ϕ2 � r : {ilistL[y1] | y1 = n − 1}

|= ϕ2 ⇒ (λ(x, y).true)(x1, y1)
|= ϕ2 ∧ y1 = n − 1 ∧ z = (λ(x, y).y + 1)(x1, y1) ⇒ z = n

C;Γ2;ϕ2 � Cons(n, r) : {ilistL[z] | z = n},
(T-DC)

where Γ2 = (Γ1, r : ilistL[q]) and ϕ2 = (n 
= 0 ∧ q = n − 1). Finally, using the
judgments above, we obtain:

C; Γ1; n �= 0 � range(n − 1) : ilistL![n − 1]

C; Γ2; ϕ2 � Cons(n, r) : ilistL![n]

C; Γ1; n �= 0 � e2 : ilistL![n]

|= n = 0 ⇒ (λ().true)()
|= n = 0 ∧ y = (λ().0)() ⇒ y = n

C; Γ1; n = 0 � Nil() : ilistL![n]

C; Γ1; true � if n then e2 else Nil() : ilistL![n].

��
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Our type system can also deal with properties on trees, as demonstrated in
the following example.

Example 5. Recall the program D3 given in Example 3. It is typed as C � D3 :
Γ0, where Γ0 is:

Γ0 = {gen tree : int[n] → itreeZ![n],

size : itreeZ[n] → int![n],
main : int[n] → {int[x] | true}}.

Here, itreeZ = itree〈1; (λ().true, λ().0), (λ(x, y1, y2).true, λ(x, y1, y2).y1 +
y2 + 1)〉. Intuitively, itreeZ[n] is the type of trees with n nodes. The expression
Node(∗, �, r) in the definition of the function gen tree is typed by:

C;Γ1;ϕ1 � ∗ : {int[x1] | true}
C;Γ1;ϕ1 � � : {itreeZ[y1] | y1 = m}

C;Γ1;ϕ1 � r : {itreeZ[y2] | y2 = n − 1 − m}
|= ϕ1 ⇒ (λ(x, y1, y2).true)(x1, y1, y2)

|= ϕ1 ∧ y1 = m ∧ y2 = n − 1 − m ∧ z = y1 + y2 + 1 ⇒ z = n

C;Γ1;ϕ1 � Node(∗, �, r) : {itreeZ[z] | z = n},
(T-DC)

where

Γ1 = (Γ0, n : int,m : int, � : itreeZ[m], r : itreeZ[n − 1 − m])
ϕ1 = (n 
= 0).

The last premise (|= ϕ1 ∧ y1 = m ∧ y2 = n − 1 − m ∧ z = y1 + y2 + 1 ⇒ z = n)
uses the function λ(x, y1, y2).y1 + y2 + 1 in itreeZ to obtain an accumulated
value for the tree size.

The match expression in function size is typed by:

C;Γ2;ϕ′
1 � 0 : int![0]

C;Γ2;ϕ′
1 � 0 : int![n]

(T-Sub)

...
C;Γ ′

2;ϕ
′
2 � e3 : int![1 + y1 + y2]

C;Γ ′
2;ϕ

′
2 � e3 : int![n]

(T-Sub)

C;Γ2; true � e2 : int![n],
(T-Match)

where

Γ2 = (Γ0, t : itreeZ[n])
Γ ′
2 = (Γ2, : int, � : itreeZ[y1], r : itreeZ[y2])

e2 = (match t with {Leaf() → 0, Node( , �, r) → e3})
e3 = 1 + size(�) + size(r)
ϕ′
1 = (n = 0)

ϕ′
2 = (n = 1 + y1 + y2).

��
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Remark 2. It is sometimes too restrictive to fix the β-part in rule T-Sub. For
example, the function isort of the program D2 (defined in Example 2) is equiv-
alent to the function isort′ defined below, which is obtained by substituting
Nil() in the match body of D2 with l.

isort′(l) = match l with {
Nil() → l, Cons(n, l′) → insert(n, isort′(l′))

}.

However, since l is returned directly, the argument and return types of isort′

share the same β-part. Therefore, our type system cannot express that isort′

converts an unsorted list to a sorted one. To relax the restriction, we need a
more sophisticated version of the subtyping rule T-Sub, which would cause too
much burden for the type inference procedure discussed in the next section. It is
left for future work to overcome the problem above without incurring too much
overhead for type inference. ��

The following proposition states the soundness of the type system (recall the
definition of safety in Sect. 2.3).

Proposition 1 (soundness). Suppose C � D : Γ , with Γ (main) = {(β1, . . . ,
βk) | true} → {β | true}. Then, the program D is safe.

The proposition follows from the soundness of a standard refinement type sys-
tem without parameterization 〈n; (P1, F1), . . . , (Pk, Fk)〉, as follows. Because
only constructors are polymorphic on the part 〈n; (P1, F1), . . . , (Pk, Fk)〉, if a
program D is well-typed, then by annotating each occurrence of construc-
tor Li with the parameter 〈n; (P1, F1), . . . , (Pk, Fk)〉, and treating the anno-
tated constructor L

(〈n;(P1,F1),...,(Pk,Fk)〉)
i as a new constructor, and the δ-part

d〈n; (P1, F1), . . . , (Pk, Fk)〉 as the name of a new datatype, we can obtain a pro-
gram D′ that is well-typed without the parameterization. The safety of D′ follows
from the soundness of a standard refinement type system (without parameteri-
zation); hence D is also safe.

Note that the completeness does not hold: there exists a program that is
safe but not typable in our refinement type system. Beside the issue discussed in
Remark 2, the sources of incompleteness include the restriction of the parameters
of data types to integers. For example, consider the property of the append
function: “a function takes two lists and returns the list obtained by appending
two lists.” In theory, it is possible to encode all the information of a list by using
Gödel encoding, but that is not possible in practice, where we have to restrict
the underlying integer arithmetic, e.g., to linear integer arithmetic.

4 Inferring Parameterized Refinement Types

This section describes a type inference procedure, which takes a program (with-
out type annotations) and a constructor type environment as input, and checks
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whether the program is well-typed. The overall flow of the type inference proce-
dure is shown in Fig. 4.

In Step 1, we first determine the raw type of each expression, with the values
of the part [n; ˜(P, F )] kept unknown. For example, given the program D2 in
Example 2, we infer:

gen : int → ilist[ρ1], isort : ilist[ρ1] → ilist[ρ2],

where ρ1 and ρ2 are variables representing the part [n; ˜(P, F )]. (Note that the
same variable ρ1 is assigned to the return type of gen and the argument type of
isort, since the return value of gen is passed to isort.) This is performed by
using an ordinary unification-based type inference algorithm.

In Step 2, the part n and ˜F of each raw type variable ρi is chosen, while
the predicates ˜P are kept unknown. In Step 3, we prepare predicate variables
for the unknown predicates in raw types and refinement predicates, and reduce
the typability problem to the satisfiability problem for constrained Horn clauses
(CHCs) [1]. We then invoke an off-the-shelf CHC solver [2,4,7] to check whether
the obtained CHCs are satisfiable. If so, we can conclude that the program is
well-typed (and outputs inferred types); otherwise, we go back to Step 2 and
refine the F -part of raw types, with an increased value of n.

In the rest of this section, we explain more details of Steps 2 and 3.

Fig. 4. The flow of type inference
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4.1 Step 2: Instantiation of Raw Types with ˜F

In Step 2, we determine the components n and ˜F of δ.
For the sake of simplicity, the number of integer parameters n is shared by

all types, and the functions ˜F do not depend on δ but on d. On the other
hand, the predicate variables ˜P are specific to δ. Thus, we explicitly write δ =
d〈n; (Pδ,1, Fd,1), . . . , (Pδ,k, Fd,k)〉 here.

We choose n and Fd,j as follows, to ensure that the precision of type inference
is monotonically improved at each iteration. Suppose Cd = {L1 : (int�1 , dm1) →
d, . . . , Lk : (int�k , dmk) → d}. Let us write n(i) and F

(i)
d,j for the values of n

and Fd,j at the i-th iteration of the refinement loop in Fig. 4. At the (i + 1)-
th iteration, we pick n′ > 0 and a tuple of functions (F ′

1, . . . , F
′
k) with F ′

j ∈
int�j+mjn′ → intn′

(that has not been chosen before) and set n(i+1) and F
(i+1)
d,j

as follows.

n(i+1) := n(i) + n′

F
(i+1)
d,j := λ(x̃, ỹ1, . . . , ỹmj

).(F (i)(x̃, ỹ′
1, . . . , ỹ

′
mj

), F ′
j(x̃, ỹ′′

1 , . . . , ỹ′′
mj

)).

Here, x̃ and ỹj are sequences of variables of length �k and n(i+1) respectively,
and ỹj = ỹ′

j , ỹ
′′
j with |˜y′

j | = n(i) and |ỹ′′
i | = n′. For example, if n(i) = 1 and

F
(i)
j (x, y1, y2) = x+y1 +y2 with n′ = 1 and F ′

j(x, y1, y2) = 1+max(y1, y2), then

F
(i+1)
j (x, y11, y12, y21, y22) = (x + y11 + y21, 1 + max(y12, y22)).

Since the choice of n(i) and F
(i)
d,j above ensures that the information carried

by types monotonically increases, we can guarantee that our type inference pro-
cedure is relatively complete with respect to the (hypothetical3) completeness of
the CHC solver used in Step 3, in the following sense. Let us assume that the
language for describing functions of type

⋃ω
j=1 int

li+mij → intj is recursively
enumerable; for example, we can restrict functions to those expressible in linear
integer arithmetic. Then we can enumerate all the tuples of functions and use the
i-th tuple as (F ′

1, . . . , F
′
k) above. Suppose that a program D is typable by using,

as Fd,j , functions belonging to the language assumed above. Then, assuming
that the CHC solver used in Step 3 below is complete, our procedure eventually
terminates and outputs “Verified”. (In other words, our procedure eventually
terminates output “Verified”, or gets stuck in Step 3 due to the incomplete-
ness of the CHC solver.) This is because the functions required for typing D is
eventually chosen and added to F

(i)
d,j .

For the sake of efficiency, the actual implementation imposes a further restric-
tion on the function F ′

j added at each iteration, at the sacrifice of relative com-
pleteness; see Sect. 5.1.

Remark 3. While we currently employ the same n for all data types, it can be
effective to selectively add a parameter to an individual raw type, based on the
unsatisfiable core returned from the solver in Step 3.
3 Since the CHC satisfiability problem is undecidable in general, there is no complete

CHC solver.
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4.2 Step 3: Reduction to CHC Solving

In this step, we prepare predicate variables for the P -part of raw types and
unknown refinement predicates ϕ, and construct a template of a type derivation
tree. We then extract constraints on the predicate variables based on the typing
rules. The extracted constraints consists of constrained Horn clauses (CHCs), of
the following form:

∀x̃.(H ⇐ B1 ∧ · · · ∧ Bk),

where Bi and H are atomic constraints of the form p(s1, . . . , s�) or integer con-
straints (s1 ≤ s2, s1 = s2,. . . ). The program is well-typed (with the choice of n

and ˜F in the previous step), just if the CHCs are satisfiable, i.e., if there exists an
assignment of predicates to predicate variables that make all the clauses valid.
The latter problem (of CHC satisfiability) is undecidable in general, but there
are various efficient solvers that work well for many inputs [2,4,7].

Since the reduction from refinement type inference to the CHC satisfiabil-
ity problem is fairly standard (see, e.g., [2,18]), we sketch the reduction only
informally, through an example.

Example 6. Let us recall the program D1 in Example 1, and focus on the function
range. When n = 1, we need to derive C;Γ1; p1(h) � if h then e2 else Nil() : τ0
(which is required in T-Prog for proving C � D1 : Γ0), where

– Γ0 = (range : {int[h] | p1(h)} → {ilistL[i] | p2(h, i)}, . . .),
– Γ1 = (Γ0, h : int),
– e2 = (let r = range(h − 1) in Cons(h, r)),
– τ0 = {ilist1[i] | p2(h, i)}, and
– ilist1 := ilist〈1; (p3, λ().0), (p4, λ(x, y).y + 1)〉.
The derivation for the judgment is of the form:

...
C;Γ1; p1(h) ∧ h 
= 0 � range(h − 1) : τ3

C;Γ1, r : τ3;ϕ2 � Cons(h, r) : τ0

C;Γ1; p1(h) ∧ h 
= 0 � e2 : τ0

|= p1(h) ∧ h = 0 ⇒ p3()
|= p1(h) ∧ h = 0 ∧ i = 0 ⇒ p2(h, i)

C;Γ1; p1(h) ∧ h = 0 � Nil() : τ0

C;Γ1; p1(h) � if h then e2 else Nil() : τ0.

where ϕ2 = (p1(h) ∧ h 
= 0 ∧ p5(h, j)) and τ3 = {ilistL[j] | p5(h, j)}. From the
side conditions of the subderivation on the righthand side, the following CHCs
are obtained:

p3() ⇐ p1(h) ∧ h = 0,

p2(h, i) ⇐ p1(h) ∧ h = 0 ∧ i = 0.

CHCs are also obtained from the other subderivation in a similar manner. ��



414 R. Mukai et al.

5 Implementation and Experiments

This section reports an implementation and experimental results.

5.1 Implementation

We have implemented a prototype program verifier for a subset of OCaml, which
supports first-order functions, integers, and recursive data structures, based on
the type inference procedure described above. As the backend CHC solvers,
we employed multiple solvers: Z3 [12] ver. 4.8.12, HoIce [2] ver. 1.9.0, and
Eldarica [4] ver. 2.0.7; that is because these solvers have pros and cons, and their
running times vary depending on problem instances, as we report in Sect. 5.2.

As for the function F ′ in Sect. 4.1, the current implementation supports
only the following functions fi,� ∈ int�k+mk → int with i ∈ {1, 2, 3} and
� ∈ {+,max,min} (where n′ in Sect. 4.1 is set to 1).

f1,�(x1, . . . , x�k , y1, . . . , ymk
) =

{

1 + (y1 � · · · � ymk
) if mk > 0

0 otherwise

f2,�(x1, . . . , x�k , y1, . . . , ymk
) = x1 � · · · � x�k � y1 � · · · � ymk

f3,�(x1, . . . , x�k , y1, . . . , ymk
) = x1 � · · · � x�k ,

and chooses f1,+, f2,+, f3,+, f1,max, f2,max, f3,max, f1,min, f2,min, f3,min in this
order, at each iteration. (Here, max and min are operations over integers
extended with −∞ and ∞.) In the case of lists, f1,+, f2,+, f3,+, f2,max, and
f2,min can be used for computing the length, the sum of elements, the head ele-
ment, the maximal element, and the minimal element of a list, respectively; since
f1,max and f1,min coincide with f1,+ for lists, it will be excluded out. Since the set
of functions added as F ′ is finite, the current implementation obviously does not
satisfy the relative completeness discussed in Sect. 4.1. Supporting more func-
tions is not difficult in theory, but because the current implementation seemed
to have already hit a certain limitation of the state-of-the-art CHC solvers (as
reported in the next subsection), we plan to add more functions only after more
efficient CHC solvers become available.

5.2 Experiments and Results

To evaluate the effectiveness of our approach, we have tested our prototype tool
for several list/tree-processing programs. The experiments were conducted on a
machine with Ubuntu 20.04.1 on Windows Subsystem for Linux 2, AMD Ryzen
7 3700X 8-Core Processor, and 16GB RAM.
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Table 1. The experimental results

Program #Lines n Time [s] CHC solver #clauses #pvars

List-sum 17 2 2.25 HoIce 25 12

List-max 20 2 2.33 Z3 26 12

List-sorted 19 3 3.08 Z3 46 22

Range-basic 12 1 1.52 HoIce 16 8

Range-len (Ex. 1) 15 1 1.81 HoIce 25 12

Range-concat-len 21 1 2.61 HoIce 58 22

Isort-len 28 1 2.39 HoIce 66 27

Isort-is-sorted (Ex. 2) 30 3 4.32 Z3 79 33

Msort-len 45 — — — 145 49

Msort-is-sorted 52 — — — 161 54

Tree-size (Ex. 3) 15 1 1.95 HoIce 32 14

Tree-depth 21 1 2.07 HoIce 34 15

Bst-size 20 1 2.65 HoIce 64 28

Bst-sorted 51 — — — 148 74

Table 1 summarizes the experimental results. The benchmark set consists of
the following programs.

– “list-sum” takes an integer m as an input, randomly generates a list so that
the sum of elements is m, and then checks that the sum of elements is indeed
m. Similarly, “list-max” generates a list so that the maximum element is
m, and checks that the maximum element is indeed m, and “list-sorted”
randomly generates a sorted list and checks that the list is indeed sorted.

– “range-X” generates a list [m;m−1; · · · ; 1] using the function range in Exam-
ple 1, and checks its properties, where the property is “n = 0 if the generated
list is null, and m > 0 otherwise” for X=basic, “the length is m” for X=len.
The program “range-concat-len” calls gen(m) twice, concatenates the two
lists, and check that the length of the resulting list is 2m.

– “isort-X” takes an integer m as an input, generates a list of length m, sorts
it with isort in Example 2, and checks properties of the resulting list, where
the property is “the length of the list is m” for X=len, and “the list is sorted”
for X=sorted.

– “msort-X” is a variation of “isort-X”, where isort is replaced with a function
for the merge sort.

– “tree-size” (“tree-depth”, resp.) takes an integer m as an input, generates a
tree of size (depth, resp.) m, and checks that the size (depth, resp.) of the
tree is indeed m (for X=size).

– “bst-X” generates a binary search tree of a given size, and checks that the
tree has the expected size (for X=size) or that the tree is a valid binary search
tree (for X=sorted).



416 R. Mukai et al.

Appendix A shows some of the concrete programs used in the experiments.
In the table, the column “#Lines” shows the number of lines of the program

(excluding empty and comment lines), and the column “n” shows the final value
of n in Fig. 4, when the verification succeeded; the cell filled with “—” indicates
a timeout (due to the backend CHC solver), where the time limit was set to
300 s. The columns “Time” and “CHC solver” show the running time and the
backend CHC solver. Actually, we have run our tool for each of the three CHC
solvers: Z3 [12] ver. 4.8.12, HoIce [2] ver. 1.9.0, and Eldarica [4] ver. 2.0.7, and
the table shows only the best result. The result for other solvers are reported
in Appendix A. The columns “#clauses” and “#pvars” show the numbers of
output clauses and predicate variables, respectively (which do not depend on
the value of n).

The results show that our tool works reasonably well: we are not aware of
fully automated tools that can verify most of those programs. Our tool failed,
however, to verify “msort-len”, “msort-is-sorted”, and “bst-sorted”. To analyze
the reason, we have manually prepared an optimal choice of functions ˜F for
those problems, and run the CHC solvers for the resulting CHC problems. None
of the CHC solvers could solve the problems in time. This indicates that the
main bottleneck in the current tool is not the choice of functions ˜F discussed in
Sects. 4.1 and 5.1, but rather the backend CHC solver. We expect that “msort-
len”, “msort-is-sorted”, and “bst-sorted” can be automatically verified by our
method if a more efficient CHC solver becomes available. It would be, however,
important also to improve the heuristics for choosing n and ˜F , as briefly discussed
in Remark 3.

6 Related Work

As already mentioned in Sect. 1, the idea of parameterizing recursive types
with indices to represent various properties goes back at least to Xi and Pfen-
ning’s work on dependent ML [23,24]. In their system, however, explicit declara-
tions of refinement types are required for data constructors and recursive func-
tions. Kawaguchi et al. [5] introduced recursive refinement types, which allows a
restricted form of parameterization of datatypes with predicates, and Vazou et
al. [21] have introduced abstract refinement types, which are refinement types
parameterized with predicates. Like Xi and Pfenning’s system (and unlike ours),
those systems also require explicit declarations of abstract refinement types for
datatype constructors and/or functions, although refinement parameters in the
code part can be omitted and automatically inferred (cf. [21], Sect. 3.4). The
type system of Vazou et al. [21] supports polymorphism on predicates, unlike
our type system.

The reduction from (ordinary) refinement types to the CHC satisfiability
problem has been well studied [2,3,19]; we used that technique in Step 3 of
our type inference procedure. The problem of inferring parameterized recursive
refinement types appears to be related with that of inferring implicit parameters
in refinement type systems [17,20]. In fact, Tondwalkar et al. [17] reduced the
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inference problem to the problem of solving existential CHCs, an extension of
the CHC problem, and our problem of inferring P and F can also be reduced to
that problem. We, however decided not to take that approach, because efficient
solvers for existential CHCs are not available.4 We instead designed a heuristic
procedure to construct F , and reduced the rest of the inference problem to the
satisfiability problem for ordinary CHCs.

There have been other (non-type-based) approaches to verification of pro-
grams manipulating recursive data structures. The series of work on TVLA [10,
11] targets programs with destructive updates, and infers the shape of data struc-
tures by using a 3-valued logic. Besides the difference in the target programs,
to our knowledge, their analysis fixes predicates used for abstraction a priori
(e.g., in [10], “instrumentation predicates” are specified by a user of the tool),
whereas our tool fixes only the set of functions Fj ’s for mapping data structures
to integers, and leaves it to the underlying CHC solver to find appropriate pred-
icates. Thanks to the type-based approach, our approach can also be naturally
extended to deal with higher-order programs.

7 Conclusion

We have introduced parameterized recursive refinement types (PRRT) that can
express various properties of recursive data structures in a uniform manner, and
proposed a type inference procedure for PRRT, to enable fully automatic verifi-
cation of functional programs that use recursive data structures. We have imple-
mented a prototype automated verification tool, and confirmed that the tool
can automatically verify small but non-trivial programs. Future work includes
an extension of the verification tool for a full-scale functional language, and a
further refinement of the type inference procedure to improve the efficiency of
the tool.

Acknowledgments. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Number JP20H05703.

Appendix

A Details of Experiments

Table 2 presents the experimental results for each backend CHC solver. The
columns “n” and “Time” for each solver have the same meaning as Sect. 5.2.

4 The work of Tondwalkar et al. [17] does not suffer from this problem, since the exis-
tential CHCs obtained in their work is acyclic, while the existential CHCs generated
from our inference problem would be cyclic.
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Table 2. The results of verification with three solvers

Z3 HoIce Eldarica

Program n Time [s] n Time [s] n Time [s]

List-sum 2 2.34 2 2.25 2 4.26

List-max 2 2.33 2 2.39 2 6.79

List-sorted 3 3.08 — — 3 23.07

Range-basic 1 1.60 1 1.52 1 1.80

Range-len — — 1 1.81 1 2.92

Range-concat-len — — 1 2.61 — —

Isort-len — — 1 2.39 — —

Isort-is-sorted 3 4.32 — — — —

Msort-len — — — — — —

Msort-is-sorted — — — — — —

Tree-size — — 1 1.95 1 8.73

Tree-depth — — 1 2.07 — —

Bst-size — — 1 2.65 — —

Bst-sorted — — — — — —

As examples of the benchmark programs, Listings 18.1 and 18.2 respectively
show the programs named “list-sum” and “bst-size” in Sect. 5.2.

Listing 18.1. Program list-sum

type list = Nil | Cons of int * list

let rec gen n =

if n = 0 then Nil

else

let x = Random.int (n + 1) in

Cons(x, gen (n - x))

let rec sum xs =

match xs with

| Nil -> 0

| Cons(x, xs) -> x + sum xs

let rec main n =

if n >= 0 then

let s = sum (gen n) in

assert (s = n)

else

0
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Listing 18.2. Program bst-size

type bst = Leaf | Node of int * bst * bst

let rec insert t x =

match t with

| Leaf -> Node(x, Leaf , Leaf)

| Node(y, l, r) ->

if x < y then Node(y, insert l x, r)

else Node(y, l, insert r x)

let rec gen n =

if n = 0 then Leaf

else insert (gen (n - 1)) (Random.int 10000)

let rec size t =

match t with

| Leaf -> 0

| Node(_, l, r) -> 1 + size l + size r

let rec main n =

if n >= 0 then

let g = size (gen n) in

assert (g = n)

else

0
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4. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: 2018 Formal Methods
in Computer Aided Design (FMCAD), pp. 1–7 (2018)

5. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification.
In: Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15–21, 2009, pp. 304–315. ACM (2009). https://doi.org/10.1145/
1542476.1542510

6. Kobayashi, N., Sato, R., Unno, H.: Predicate abstraction and CEGAR for higher-
order model checking. In: PLDI 2011, pp. 222–233. ACM Press (2011)

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1145/1542476.1542510
https://doi.org/10.1145/1542476.1542510


420 R. Mukai et al.

7. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods Syst. Design 48(3), 175–205 (2016). https://doi.org/
10.1007/s10703-016-0249-4

8. Kuwahara, T., Terauchi, T., Unno, H., Kobayashi, N.: Automatic termination veri-
fication for higher-order functional programs. In: Shao, Z. (ed.) ESOP 2014. LNCS,
vol. 8410, pp. 392–411. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54833-8 21

9. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: Hankin, C., Schmidt, D. (eds.) Conference Record of POPL 2001:
The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, London, UK, January 17–19, 2001, pp. 81–92. ACM (2001). https://
doi.org/10.1145/360204.360210

10. Lev-Ami, T., Sagiv, M.: TVLA: a system for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-45099-3 15

11. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and
canonical abstraction for singly-linked lists. In: Cousot, R. (ed.) VMCAI 2005.
LNCS, vol. 3385, pp. 181–198. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30579-8 13

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Mukai, R., Kobayashi, N., Sato, R.: Parameterized recursive refinement types for
automated program verification (2022), a longer version of this paper, available
from http://www.kb.is.s.u-tokyo.ac.jp/∼koba/

14. Ong, C.H.L., Ramsay, S.: Verifying higher-order programs with pattern-matching
algebraic data types. In: Proceedings of POPL, pp. 587–598. ACM Press (2011)

15. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI 2008, pp. 159–169
(2008)

16. Sato, R., Unno, H., Kobayashi, N.: Towards a scalable software model checker
for higher-order programs. In: Proceedings of PEPM 2013, pp. 53–62. ACM Press
(2013)

17. Tondwalkar, A., Kolosick, M., Jhala, R.: Refinements of futures past: Higher-order
specification with implicit refinement types. In: Møller, A., Sridharan, M. (eds.)
35th European Conference on Object-Oriented Programming, ECOOP 2021, July
11–17, 2021, Aarhus, Denmark (Virtual Conference). LIPIcs, vol. 194, pp. 18:1–
18:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPIcs.ECOOP.2021.18

18. Unno, H., Kobayashi, N.: On-Demand refinement of dependent types. In: Garrigue,
J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 81–96. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 8

19. Unno, H., Kobayashi, N.: Dependent type inference with interpolants. In: Pro-
ceedings of the 11th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, September 7–9, 2009, Coimbra, Portugal,
pp. 277–288. ACM (2009)

20. Unno, H., Terauchi, T., Kobayashi, N.: Automating relatively complete verifica-
tion of higher-order functional programs. In: The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2013, pp.
75–86. ACM (2013)

https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1007/978-3-642-54833-8_21
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-540-45099-3_15
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-540-30579-8_13
https://doi.org/10.1007/978-3-540-78800-3_24
http://www.kb.is.s.u-tokyo.ac.jp/~koba/
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://doi.org/10.4230/LIPIcs.ECOOP.2021.18
https://doi.org/10.1007/978-3-540-78969-7_8


Parameterized Recursive Refinement Types 421

21. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,
Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6 13

22. Vazou, N., Seidel, E.L., Jhala, R., Vytiniotis, D., Jones, S.L.P.: Refinement types
for haskell. In: Proceedings of the 19th ACM SIGPLAN international conference on
Functional programming, Gothenburg, Sweden, September 1–3, 2014, pp. 269–282.
ACM (2014)

23. Xi, H., Pfenning, F.: Eliminating array bound checking through dependent types.
In: Davidson, J.W., Cooper, K.D., Berman, A.M. (eds.) Proceedings of the ACM
SIGPLAN ’98 Conference on Programming Language Design and Implementation
(PLDI), Montreal, Canada, June 17–19, 1998, pp. 249–257. ACM (1998). https://
doi.org/10.1145/277650.277732

24. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of POPL, pp. 214–227 (1999)

25. Zhu, H., Nori, A.V., Jagannathan, S.: Learning refinement types. In: Proceedings of
ICFP 2015, pp. 400–411. ACM (2015). https://doi.org/10.1145/2784731.2784766

https://doi.org/10.1007/978-3-642-37036-6_13
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/2784731.2784766


Adversarial Logic

Julien Vanegue(B)

Bloomberg, New York, USA
jvanegue@bloomberg.net

Abstract. We introduce Adversarial Logic, an extension of Incorrect-
ness Logic [1] with an explicit Dolev-Yao [2] adversary to statically ana-
lyze the severity of security vulnerabilities in the under-approximate set-
ting. Adversarial logic is built on the ability to separate logical facts
known to the adversary from facts solely known to the program under
analysis. This flavor of program incorrectness can be used to analyze
software in which error behavior occurs at deeper levels of interaction
between the program and its environment, such as subtle cases of infor-
mation disclosure requiring multiple program executions to be uncov-
ered. We introduce the Oscillating Bit Protocol, an example algorithm
where such a vulnerability can be detected using adversarial logic while
remaining elusive to other frameworks. We define a flavor of symbolic
execution in which the adversary guides the introduction of symbolic
variables and the checking of attack assertions. Additionally, we intro-
duce equivalence testing, an under-approximate version of program equiv-
alence only proven on specific program paths and used to extract differ-
ences between comparable implementations. We provide a denotational
semantics for adversarial logic and prove its soundness, thereby guaran-
teeing that extracted attack paths are true positives.

1 Introduction

The ever growing volume of software developed over the last several decades has
led to a situation where software vendors and open source projects are unable
to keep up with the sheer number of vulnerabilities found and disclosed by the
community every year. In just the Linux kernel, a single testing tool [3] identified
more than 3,000 bugs in two years, and thousands of others are regularly found in
mainstream projects [4]. A crucial problem in the presence of such large numbers
of bugs is to determine the practical security implications of each bug to inform
which bugs must get fixed first.

Particularly dangerous software attacks attempt to elevate privileges [5] or
steal secrets [6] using an adversarial program (or exploit) manually written by
a security expert. Determining the potential for compromise of a vulnerable
program is a time-consuming task of paramount importance, that has received
surprisingly little attention from the formal verification community. This is espe-
cially critical as (a) known bugs are left unremediated for a long time, (b) security
compromises are increasingly costly and (c) existing tools keep finding hundreds
of new bugs every month.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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This paper provides a logical foundation for exploit programming [7] ded-
icated to the static exploitability analysis of program bugs. Not all bugs are
considered equal from an exploitability perspective: Can it be used to divert the
program’s control flow or corrupt data [8]? Does it allow information disclosure
leading to password or private key compromise [6]? Does it allow untrusted code
execution as root, or other remote user [5]? Elaborate exploits often require mul-
tiple stages of probing the target for reconnaissance [9] or leverage several weak
bugs to build a complete attack. For example, an exploit may first attempt to
guess internal program addresses using an information disclosure vulnerability
to infer the location of sensitive data [10], and then use a subsequent array out of
bound access to tamper with said data. Analyzing such bug chaining currently
remains out of reach for existing program analysis frameworks.

Historically, program verification has focused on sound and over-approximate
analysis guaranteeing the absence of entire classes of bugs in analyzed soft-
ware [11,12] at the expense of false positives. To work around program analysis
undecidability, recent trends are focusing on under-approximate and complete
analyses in which findings are guaranteed to uncover real issues. Theoretical
underpinning of bug finding now enjoys a foundational theory of incorrectness
logic [1] (IL), a new logic focusing on uncovering true bugs rather than prov-
ing the absence of bugs. Fuzz testers [3,4] and other complete tools are indeed
immediately actionable in the software development life-cycle of large software
organizations, where the absence of false positives is critical to developer adop-
tion. Incorrectness logic was recently extended to include heap reasoning [13]
and concurrency checking [14] demonstrating its versatile nature. Adding an
explicit attack program to reason about adversarial behaviors of incorrectness is
a fundamentally under-approximate problem, and naturally extends IL.

We introduce adversarial logic (AL), a new under-approximate logic extend-
ing incorrectness logic (IL) to determine bug exploitability by leveraging accu-
mulated error in software programs. Adversarial reasoning can be used as a
theoretical basis to determine the existence of true attacks in buggy software.
The resulting logic gives rise to a notion of attack soundness that captures suf-
ficient conditions for an attack to be guaranteed satisfiable by an adversary. To
prove soundness, it is sufficient to demonstrate that some execution paths of
the program are exploitable. This differs from typical verification frameworks
which attempt to prove statements about all possible program paths. We prove
the main attack soundness result of this paper in Sect. 5. AL extends IL in the
following ways:

– We consider the system under analysis to be a parallel composition of the
analyzed program and an explicit adversarial program attempting to falsify
the program specification.

– We focus on proving the satisfiability of anattack contract rather than follow-
ing the usual methodology of checking code contracts in the program itself.

– We introduce adversarial preconditions, which allows for program errors to
accumulate transitively. IL has no error preconditions and only error post-
conditions.
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– We add channel communication rules to model that only explicitly shared
program output is visible to an external adversary.

– We introduce a new adversarial consequence rule to derive additional adver-
sarial knowledge otherwise remaining unobserved in program output.

– We generalize the backward variant rule of IL to the parallel case, so that AL
can determine the existence of attacks in interactive protocol loops without
unrolling the entire attack path.

The new adversarial consequence rule is of particular importance to the dis-
covery of indirect information disclosure attacks, as AL can model leaking of
internal program state without assuming its direct observability by the adver-
sary.

It is worth noting that adversarial logic does not encode root cause analy-
sis [15] as it does not attempt winding back to the source of bugs. Rather, it
provides a framework to analyze bug effects by considering unintended computa-
tions as first-class primitives, allowing the transitive tracking of error conditions
through the adversarial interpretation of the program.

The rest of the paper is organized as follow: we introduce a motivating exam-
ple of an information disclosure attack in the Oscillating Bit Protocol in Sect. 2.
We introduce the rules of Adversarial Logic in Sect. 3. We explore additional
examples demonstrating the usage of AL in Sect. 4. Among these new examples
is a technique to under-approximate program equivalence we call equivalence
testing. We give the denotational semantics of AL and prove soundness of AL
rules with respect to its semantics in Sect. 5. We briefly provide alternative pre-
sentations to adversarial logic based on the formalism of dynamic logic [16] and
information systems [17] in Sect. 6. Finally, we cover related work in Sect. 7 and
conclude on future work.

2 Motivation

Let us start with an example in Table 1 where an information disclosure attack
is performed in O(n) interactions with the program. Note how the value of the
secret variable is used to grant access to the function do_serve. Due to a discrep-
ancy in the return value of the server function, it is possible for an adversary to
determine the secret without reading it directly. The server’s observable return
value will be 0 (the adversary’s goal encoded in adv_assert on line 14), or 1
(the provided value was too big) or 2 (the provided value was too small). There-
fore, an adaptive search can guess the secret value in a maximum attempts of
O(n) instead of the naive brute-force algorithm in O(2n) where n is the size of
the secret in bits. The oscillating nature of checking the adversarial assertion is
represented as a finite state automaton in Table 2.
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Table 1. Oscillating bit protocol: target program (Left) and adversary (Right)

// pre: client socket established
1. uint8 secret = rand8();
2.
3. void server(int sock)
4. {
5. uint8 err = 0 in
6. uint8 cred = 0 in
7. while (true) do
8. read(sock, cred);
9. if (secret == cred)
10. err = 0;
11. else if (secret < cred)
12. err = 1;
13. else if (secret > cred)
14. err = 2;
15. if (!err) do_serve(sock);
16. write(sock, err);
17. done
18.}

// pre: socket established to server
1. int client(int sock)
2. {
3. uint8 ret = 1 in
4. uint8 guess = UINT8_MAX in
5. uint8 step = (UINT8_MAX / 2) + 1 in
6. while (true) do
7. write(sock, guess);
8. read(sock, ret);
9. if (ret == 1)
10. guess = guess - step;
11. else if (ret == 2)
12. guess = guess + step;
13. step = (step / 2) + 1;
14. adv_assert(ret == 0);
15. done
16.}

Table 2. OBT attack has initial state (I) and started state (S) then oscillates between
high (H) and low (L) before terminating in success (T ) or failure (F ).
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Since integer are represented with 8-bits in this example, the adversary would
need to consider only 8 + 1 = 9 values before it can successfully guess the
secret and satisfy the adversarial assertion. Note that width 8 is chosen for
simplicity, and this class of linear-complexity attacks scales very well when x
grows to 16, 32, 64, etc. Not all attacks are that simple in practice, and one can
imagine polynomial or more complex attack strategies up to infinite ones. The
full sequence of interactions in the oscillating bit protocol is given in appendix.

3 Adversarial Logic

Adversarial Logic (AL) marries under-approximate reasoning [1,18] with an
adversarial model [2] suitable for the study of complex software implementa-
tion attacks. We will work with this toy imperative language made of variables,
expressions, channels, predicates and commands.

Variables V ::= x | n | α

Expressions E ::= V | rand() | E + E | E - E | ...
Channels L ::= s | ∅ | (V::L) | (L::V) | (s \ V)
Predicates B ::= B ∧ B | B ∨ B | ¬B | E == E | E ≤ E | ...
Data types T ::= uint8 | uint32 | float
Commands C ::= skip | x := E | s := L | C1; C2 | C1 || C2

| if B then C1 else C2

| while B do C done
| read(s, x)
| write(s, E)
| adv_assert(B)
| T x = E in C
| Com(C1,C2)

Expressions are made of named variables x, concrete integers n, symbolic
values α, random values, and their arithmetic combinations. Channel variables
are named resources (s1, s2, etc.) whose values are ordered lists of scalar values.
In particular, the value (s::x) is the concatenation of values in channel s with
the value of variable x added to the end of s. The value (s\x) is the value of
channel s after removing the value of x from the head. The value of an empty
channel is an empty list.

For simplicity, a small set of scalar variable types T is available, which is
sufficient to cover all examples of this paper. Machine encoding of such data
types is not central to the logic and remains out of scope for this paper. We
will sometimes treat the rand() value as an uint8 (such as the oscillating bit
protocol in Table 5) and other times as a float (as in the equivalence testing
example of Table 7). We will adopt rand8() or randf() as needed to make precise
which version is used, or simply rand() when the version is obvious from context.

Predicates are built from the usual logical and, or, not, as well as equal-
ity and inequality tests. All commands can be used in program or adversarial
terms, except assertions which are limited to the adversary. The communication
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primitive Com is distinct from read and write, and Com can be applied at any
time after the corresponding write is completed and before the corresponding
read is performed. This flexibility makes AL able to encode any desired caching
strategy. Although studies of specific caching strategies are out of scope for this
paper, attacks leveraging caching behavior are now mainstream [19,20] and it is
critical to allow a spectrum of possibilities as to when communication effectively
happens on channels. As such, we leave Com implicit in our examples and apply
the corresponding proof rule when required to make progress.

Although AL can reason about the full adversarial term when available, it is
not required to be the case and a minimal template is often sufficient. Example
2 and 3 of Sect. 4 show how such templates can be leveraged to build attack
proofs. Additional syntactic sugar is defined for convenience purpose:

if P c
def
= if P then c else skip

T x = E1, y = E2 in C
def
= T x = E1 in (T y = E2 in C)

if P c1 else if Q c2 else c3
def
= if P then c1 else (if Q then c2 else c3)

AL inherits from incorrectness logic in that its semantics is defined using a
couple of relations ok and ad where ok is the program interpretation and ad is
the adversarial interpretation. We recall that inference triples in incorrectness
logic are written as:

[ok: P ] c [ok: Q][er: R]
def
=

[ok: P ]c[ok: Q] and [ok: P ]c[er: R].

Each code fragment c lifts precondition P to postcondition Q and error post-
condition R. We generalize erby ad so that inference triples are written as:

[ok: P1][ad: P2] c [ok: Q1][ad: Q2]
def
=

[ok: P1]c[ok: Q1] and [ad: P2]c[ad: Q2].

Program interpretation and adversarial interpretation are compositional and
allow independent reasoning over ok and ad. A novelty of adversarial logic is that
assertions are solely checked by the adversary. Rules Success and Failure check
the satisfiability of an attack contract rather than a program contract. Checking
of assertions augment adversarial knowledge, as both outcomes may inform the
choice of subsequent interactions with the program.

Success
[ad: Q ∧ (Q ⇒ B)] adv_assert(B) [ad: Q ∧ true]

Failure
[ad: Q ∧ (Q ⇒ ¬B)] adv_assert(B) [ad: Q ∧ ¬B]

More succinctly, rules in AL are written as:

[ε: P ] c [ε: Q]
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where ε ∈ {ok, ad} is a short notation to write two rules [ok : P ] c [ok : Q] and
[ad: P ] c [ad: Q] as one when the rule is valid in both program and adversarial
interpretations. This allows a much more succinct representation of adversarial
logic proof rules.

Basic operations such as reading and writing on channels require the use
of new Read and Write rules. I/O rules are defined as synchronous primi-
tives, where a read (resp. write) happens immediately if data is available on the
(potentially infinite) channel.

s ∈ Chan(P )
Read

[ε: P ] read(s, x) [ε: ∃v∃x′∃s′.P (s′/s, x′/x) ∧ s = (s′\v) ∧ x = v]

s ∈ Chan(P )
Write

[ε: ∃v.P ∧ x = v] write(s, x) [ε: ∃s′.P (s′/s) ∧ s = (s′::v)]

Access to channel are implemented using Floyd’s axiom of assignment as
applied to channel values (lists). Channels in AL are accessed first-in / first-out
and can be used to represent files, sockets, and other inter-process communica-
tion primitive of real systems. If an attempt is made to read data on an empty
channel, the Skip rule can be used to simulate a blocking read. Reads and writes
are performed one datum at a time. Operations on bigger data length can easily
be encoded using repetition of these base rules.

Parallel composition of a program cp and an adversary ca is constructed from
a program interpretation and an adversarial interpretation of parallel terms:

[ok: P1][ad: P2] cp || ca [ok: Q1][ad: Q2]

Two parallel terms may either be an adversarial term and a program term,
or two independent program terms, with ε1,ε2 ∈ {ok, ad} :

[ε1: P1]c1[ε1: Q1] [ε2: P2]c2[ε2: Q2]
Par ε1, ε2 ∈ {ok, ad}

[ε1: P1][ε2: P2] c1 || c2 [ε1: Q1][ε2: Q2]

The Par rule does not permit communication in itself. This follows from
the adversarial logic principle that no information is shared unless explicitly
revealed. This parallel rule is unusual as it uses two pre-conditions and two post-
conditions, enforcing variable separation without requiring an extra conjunctive
connector as done in separation logic [21].

When two parallel terms need to share information, AL requires to use the
communication rule Com on channel s. While program and adversary share
no local or free variables, shared channels are required for communication. To
preserve uniqueness of names, we may use sa in the adversarial interpretation,
and sp in the program interpretation to refer to channel s, although we will just
use s when the meaning is clear from context. Examples of Com usage can be
found in the simplest example of next section in Table 3.

s ∈ Chan(P ) ∩ Chan(A) ε1, ε2 ∈ {ok, ad}
Com

[ε1: P ][ε2: A] c1 || c2 [ε1: ∃v∃s′.P (s′/s) ∧ s = (s′\v)][ε2: ∃v∃s′.A(s′/s) ∧ s = (s′::v)]
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Applications of adversarial logic include cases where the adversary wishes
to infer hidden values of variables and predicates that have not been commu-
nicated. In these cases, the Adversarial Consequence rule can augment the
adversarial postcondition A′ if observable values communicated by the program
are consequences of hidden program conditions, represented as program predi-
cate Q). We require that Free(Q) = ∅ as free variables in Q are not defined in
the adversarial term. This can be guaranteed by creating fresh names during the
introduction of Q in the adversarial context, so that no names are shared. It is
assumed that s ∈ Chan(A)∩ Chan(P ). Basic usage of this rule can be found in
all examples of Sect. 4.

[ok: P : ∃w.v1 = w]cp : if(Q)write(s, v1)[ok: P ′ :Q ∧ ∃w.s = (ls::w)]

[ad: A : ∃w.s = (w::la)]ca : read(s, v2)[ad: A′ : ∃w.s = la ∧ v2 = w]
Adv.Cons.

[ok: P ][ad: A] cp || ca [ok: P ′][ad: A′ ∧ ∃v1.Q ∧ v1 = v2]

Adversarial logic generalizes the Backward variant rule of incorrectness
logic [1] for parallel composition of program and adversarial terms, which we
name the Parallel Backward Variant, or PBV.

[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
PBV i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cn
p || cm

a [ok: ∃n.P (n)][ad: ∃m.A(m)]

AL’s backward variant rule is a parallel composition of a program fragment
cp repeated n times with an adversarial code fragment ca repeated m times. It is
not required for the number of program steps n and adversarial steps m to be the
same, as long as at least one step is taken at each iteration (i, j ∈ {0, 1}∧ i+ j ≥
1). This condition enforces that every extracted attack trace is finite. Examples
in this article show cases where n = m (the oscillating bit protocol), and others
where n �= m (equivalence testing).

The PBV rule cannot be expressed using two instances of IL’s original BV
rule, as PBV can express conditions where adversarial and program conditions
are subject to communication. It may also be useful to apply the original sequen-
tial BV rule in parallel when program and adversarial terms are independently
reducible, however this does not equate to using the parallel version of the rule
which can provide synchronization across terms. A practical example of PBV
usage is demonstrated in Table 5 of Sect. 4.

One notable incorrectness rule absent from AL is the sequential short-circuit.
In this rule, execution of the second term of a sequence is avoided if the first term
terminates by an error. As adversarial logic is meant to analyze consequences of
erroneous program executions, short-circuiting serves no benefit. This highlights
a key difference between IL’s original error relation er and AL’s adversarial
relation ad. All other rules of adversarial logic are similar to incorrectness logic
with the difference that either ok or ad can be used in the precondition, therefore
restoring a lost symmetry in incorrectness logic while preserving its meaning.
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(a) Adversarial logic core rules with restored symmetry from IL : ε ∈ {ok, ad}

Unit
[ε: P ] skip [ε: P ]

[ε: P ]c[ε : Q]
Constancy Mod(c) ∩ Free(F ) = ∅

[ε : P ∧ F ]c[ε: Q ∧ F ]

[ε: P ⇒ P ′] [ε: P ]c[ε: Q] [ε: Q′ ⇒ Q]
Consequence

[ε: P ′]c[ε: Q′]

Assume
[ε: P ] assume(B) [ε: P ∧ B]

Rand
[ε: P ] x = rand() [ε: ∃x′.P (x′/x) ∧ x = v]

Assign
[ε: P ] x = e [ε: ∃x′.P (x′/x) ∧ x = e(x′/x)]

[ε: P1]c[ε: Q1] [ε: P2]c[ε: Q2]
Disj

[ε: P1 ∨ P2]c[ε: Q1 ∨ Q2]

[ε: P ∧ x = e]c[ε: Q] x /∈ Free(P )
Local

[ε: P ] T x = e in c [ε: ∃x ∈ T.Q]

[ε: P ]c1[ε: Q] [ε: Q]c2[ε: R]
Seq

[ε: P ]c1; c2[ε: R]

[ε: P ]ci[ε: Q]
Choice i ∈ [1, 2]

[ε: P ]c1 + c2[ε: Q]

Iterate Zero
[ε: P ]c∗[ε: P ]

[ε: P ]c∗; c[ε: Q]
Iterate non-zero

[ε: P ]c∗[ε: Q]

while B do C done � (assume(B); C)∗; assume(¬B)

if B then C else C′ � (assume(B); C) + (assume(¬B); C′)

(b) Adversarial Logic : communication rules between program and adversary

s ∈ Chan(P )
Read

[ε: P ] read(s, x) [ε: ∃v∃x′∃s′.P (s′/s, x′/x) ∧ s = (s′\v) ∧ x = v]

s ∈ Chan(P )
Write

[ε: ∃v.P ∧ x = v] write(s, x) [ε: ∃v∃s′.P (s′/s) ∧ s = (s′::v)]

[ε1: P1]c1[ε1: Q1] [ε2: P2]c2[ε2: Q2]
Par ε1, ε2 ∈ {ok, ad}

[ε1: P1][ε2: P2] c1 || c2 [ε1: Q1][ε2: Q2]

s ∈ Chan(P ) ∩ Chan(A) ε1, ε2 ∈ {ok, ad}
Com

[ε1: P ][ε2: A] c1 || c2 [ε1: ∃v∃s′.P (s′/s) ∧ s = (s′\v)][ε2: ∃v∃s′.A(s′/s) ∧ s = (s′::v)]

(c) Adversarial Logic: knowledge rules between program and adversary

[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
PBV i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cn
p || cm

a [ok: ∃n.P (n)][ad: ∃m.A(m)]

[ok: P : ∃w.v1 = w]cp : if(Q)write(s, v1)[ok: P ′ :Q ∧ ∃w.s = (ls::w)]

[ad: A : ∃w.s = (w::la)]ca : read(s, v2)[ad: A′ : ∃w.s = la ∧ v2 = w]
Adv.Cons.

[ok: P ][ad: A] cp || ca [ok: P ′][ad: A′ ∧ ∃v1.Q ∧ v1 = v2]

Success
[ad: Q ∧ (Q ⇒ B)] adv_assert(B) [ad: Q ∧ true]

Failure
[ad: Q ∧ (Q ⇒ ¬B)] adv_assert(B) [ad: Q ∧ ¬B]
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4 Reasoning with Adversarial Logic

In this section, we put AL to work with three distinct examples. The simplest
example of Table 3 is sufficient to explain symbolic variable introduction, adver-
sarial consequence and assertion checking by the adversary. The oscillating bit
protocol example from Table 1 of Sect. 2 is then proved step-by-step, including
a proof showing the use of the parallel backward variant (PBV) rule for the
determination of the existence of attacks. In example 3, two pricing functions
are under-approximated to find common price boundaries through adversarial
assertions and combines usage of the PBV rule and the adversarial consequence
rule to perform equivalence testing.

4.1 Example 1: Trivial Case

Let us consider the example in Table 3 where an adversary wants to capture a
flag win with an input value n reaching value 10 million (10M for short).

Table 3. Simple example implementation. The adversary wishes to discover conditions
on symbolic variable val to satisfy assertion (res == 1)

// Precond: s channel established
program(int s)
{
uint32 n, win in
read(s, n);
if (n > 10M) win = 1;
else win = 0;
write(s, win);

}

// Precond: s channel established
adversary(int s)
{
uint32 val = α in
uint32 res = 0 in
write(s, val);
read(s, res);
adv_assert(res == 1);

}

An adversarial proof such as the one in Table 4 may contain several proof
phases corresponding to non-blocking subsequences of program or adversarial
derivations. A proof is typically divided into the following phases:

1. The bootstrap phase (P0 to P3 and A0 to A3) where program and adversary
have yet to be composed.

2. The initial phase (P3, A3) to (P9, A9) typically starts with application of the
Par rule until composed terms fail to make more progress other than Skip

3. Optionally, one or more intermediate phases separated by applications of the
Com rule used to communicate and unblock stuck terms, interleaved with
calls to AdvAssert failing to satisfy the attack contract.

4. The final phase ends with a call to Success where the adversarial assertion
is satisfied (A12), or when the adversarial program terminate otherwise.
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Table 4. Simplest example in Adversarial Logic. Unlike traditional program symbolic
execution, assertions and symbolic variables can only be introduced in the adversarial
part of the system.

→ Local Program(int s) { Adversary(int s) {
P0 = {ok: ∃sp.sp = ∅} A0 = {ad: ∃sa.sa = ∅}

→ Local uint32 n in uint32 val = α in → Local

P1 = {ok: P0 ∧ ∃u.n = u} A1 = {ad: A0 ∧ ∃α.val = α}
→ Local uint32 win in uint32 res = 0 in → Local

P2 = {ok: P1 ∧ ∃v.win = v} A2 = {ad: A1 ∧ res = 0}
→ Skip read(s, n); write(s,val); → Write

P3 = {ok: P2} A3 = {ad: ∃s2
a.A2(s

2
a/sa) ∧ sa = (s2

a::α)}
→ Par (P3, A3) = {ok: P3}{ad: A3}
→ Com read(s,n) || read(s,res)

(P4, A4) = {ok: ∃α∃s2
p.P3(s

2
p/sp) ∧ sp = (s2

p::α)}{ad: ∃s2
a.A3(s

2
a/sa) ∧ sa = (s2

a\α)}
→ Read read(s,n) || read(s, res)

(P5, A5) = {ok: ∃α∃s3
p∃n2.P4(s

3
p/sp, n2/n) ∧ sp = (s3

p\α) ∧ n = α}{ad: A4}
→ If, Assn if (n > 10M) win = 1 || read(s, res)

(P6, A6) = {ok: ∃w2.P5(w2/win) ∧ n > 10M ∧ win = 1}{ad: A5}
→ If, Assn else win = 0 || read(s, res)

(P7, A7) = {ok: ∃w3.P5(w3/win) ∧ n ≤ 10M ∧ win = 0}{ad: A6}
→ Disj (P8, A8) = {ok: P6 ∨ P7}{ad: A7}
→ Write write(s, win) || read(s, res)

(P9, A9) = {ok: ∃w∃s4
p.P8(s

4
p/sp) ∧ sp = (s4

p::w) ∧ win = w}{ad: A8}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com skip || read(s,res)

(P10, A10) = {ok: ∃s5
p.P9(s

5
p/sp) ∧ sp = (s5

p\w)}
{ad: ∃w∃s3

a.A9(s
3
a/sa) ∧ sa = (s3

a::w)}
→ Read skip || read(s, res)

(P11, A11) = {ok: P10}{ad: ∃s4
a∃r2∃w.A10(s

4
a/sa, r2/res) ∧ sa = (s4

a\w) ∧ res = w}
→ Adv.C. skip || adv_assert(res == 1)

(P12, A12) = {ok: P11}{ad: A11 ∧ ∃n∃x.((n > 10M ∧ x = 1) ∨ (n ≤ 10M ∧ x = 0))

∧ n = α ∧ res = x}
→ Success skip || adv_assert(res == 1)

Note how symbolic variable α is introduced by the adversarial interpretation
(A1) and propagated to the program’s logic (P4) using the communication rule.
Program and adversarial interpretations remain independent until the parallel
rule is used to compose terms. Note how P9 in insufficient to prove the assertion
res == 1 thus requiring the application of the adversarial consequence rule to
obtain additional knowledge (n = α) ∧ (n > 10M).

4.2 Example 2: Oscillating Bit Protocol

We now analyze the motivating example presented in Sect. 2. It is possible to
prove existence of an information disclosure attack in the oscillating bit proto-
col with or without the parallel backward variant rule. As we will show, use of
the PBV rule allows to significantly shorten the proof. Without it, the adver-
sarial interpretation goes through several instances of adversarial failures where
adv_assert(retcode == 0) cannot be satisfied. After a sufficient number of
guesses are performed and constraints over the secret are learned, the adver-
sary finally provides a value that matches the secret. In the OBP example,
cred == 160 is the secret value which cannot be inferred without performing
O(n) steps.
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Table 5. Oscillating Bit Protocol (OBT) in AL using disjunction and parallel backward
variant rules. Introduction of the PBV rule cut the number of needed steps and can be
used to deduce the existence of an attack without guessing the secret.

P1 = {ok: ∅} A1 = {ad: ∅}
→ Rand uint8 secret = rand8() in uint8 ret = 1 in → Loc

P2 = {ok: ∃s.secret == s} A2 = {ad: A1 ∧ ret = 1}
→ Loc uint8 err = 0 in uint8 guess = UINT8_MAX in → Loc

P3 = {ok: P2 ∧ err = 0} A3 = {ad: A2 ∧ guess = UINT8_MAX}
→ Loc uint8 cred = 0 in uint8 step = (guess / 2) + 1 in → Loc

P4 = {ok: P3 ∧ cred = 0} A4 = {ad: A3 ∧ step = (guess/2) + 1}
→ Wh while (true) do while (true) do → Wh

P5 = {ok: true ∧ P4} A5 = {ad: true ∧ A4}
→ Skip read(sock, cred); write(sock,guess); → Wr

P6 = {ok: P5} A6 = {ad: ∃s1
a∃g.A5(s

1
a/sa) ∧ guess = g

∧ sa = (s1
a::g)}

→ Par (P7, A7) = {ok: P6}{ad: A6}
→ Com read(sock, cred) || read(sock,ret)

(P8, A8) = {ok: ∃w∃s1p.P7(s
1
p/sp) ∧ sp = (s1p\w)}

{ad: ∃w∃s1a.A7(s
1
a/sa) ∧ sa = (s1a::w)}

→ Read read(sock, cred) || read(sock,ret)
(P9, A9) = {ok: ∃c∃s2p.P8(s

2
p/sp, c/cred) ∧ sp = (s2p\c) ∧ cred = c}{ad: A8}

→ If, Disj if (secret == cred) err = 0 || read(sock,ret)
(P10, A10) = {ok: P9 ∨ (secret = cred ∧ ∃e.P9(e/err) ∧ err = 0)}{ad: A9}

→ If, Disj else if (secret < cred) err = 1 || read(sock,ret)
(P11, A11) = {ok: P10 ∨ (secret < cred ∧ ∃e.P10(e/err) ∧ err = 1)}{ad: A10}

→ If, Fra. if (err == 0) do_serve(sock) || read(sock,ret)
(P12, A12) = {ok: (P11 ∧ err 
= 0) ∨ (P11 ∧ err = 0)}{ad: A11}

→ Write write(sock, err) || read(sock, ret)
(P13, A13) = {ok: ∃e∃s3p.P12(s

3
p/sp) ∧ err = e ∧ sp = (s3p::e)}{ad: A12}

−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
→ Com read(sock, cred) || read(sock, ret)

(P14, A14) = {ok: ∃w∃s4p.P13(s
4
p/sp) ∧ sp = (s4p\w)}

{ad: ∃w∃s2a.A13(s
2
a/sa) ∧ sa = (s2a::w)}

→ Read read(sock, cred) || read(sock, ret)
(P15, A15) = {ok: P14}{ad: ∃r∃r2∃s3a.A14(s

3
a/sa, r2/ret) ∧ sa = (s3a\r) ∧ ret = r}

→ If, Disj read(sock, cred) || if (ret == 1) guess = guess - step
(P16, A16) = {ok: P15}

{ad: (ret = 1 ∧ ∃g.A15(g/guess) ∧ guess = g − step) ∨ (ret 
= 1 ∧ A15)}
→ If, Disj read(sock, cred) || if (ret == 1) guess = guess - step

(P17, A17) = {ok: P16}
{ad: (ret = 2 ∧ ∃g.A16(g/guess) ∧ guess = g + step) ∨ (ret 
= 2 ∧ A16)}

→ Assn read(sock, cred) || step = (step / 2) + 1
(P18, A18) = {ok: P17}{ad: ∃s.A17(s/step) ∧ step = s/2 + 1)}

→ Fail read(sock, cred) || attack_assert(ret == 0)
(P19, A19) = {ok: P18}{ad: A18 ∧ ret 
= 0)}

→ PBV (P20, A20) = {ok: ∃n.Pn : (secret = cred) ∧ (err = 0)}{ad: ∃n.An : (ret = 0)}
→ Succ read(sock, cred) || attack_assert(ret == 0)

For brevity, we provide analysis of the example using PBV rule in Table 5,
while the version without PBV is given in appendix. A combination of PBV and
disjunction rules allows the adversary to find an iteration where the secret is
correctly guessed without executing the loop O(n) times. Recall the form of the
PBV rule with cp the program term and ca the adversarial term:
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[ok: P (n)][ad: A(m)] cp || ca [ok: P (n + i)][ad: A(m + j)]
i, j ∈ {0, 1} ∧ i + j ≥ 1

[ok: P (0)][ad: A(0)] cnp || cma [ok: ∃n.P (n)][ad: ∃m.A(m)]

In the oscillating bit protocol example, the PBV rule takes a simpler form
where n = m and i = j = 1 for all values of (n,m). Applying the PBV rule for
this example proceeds as such: P (0) is secret = v1, A(0) is guess = v2, P (n)
is secret = v1, A(n) is guess = v1, P (n + 1) is secret = cred and A(n + 1) is
ret = 0. Note how P (0) and P (n) are both s == v1 as the secret value does
not change across iterations. This condition is not strictly required and may not
be guaranteed in more complex examples, such as if the secret variable value
changes over time.

[ok: secret = v1][ad: guess = v1] cp || ca [ok: secret = cred][ad: ret = 0]

[ok: secret = v1][ad: guess = v2] cn
p || cn

a [ok: ∃Pn.secret = v1][ad: ∃An.guess = v1]

We distinguish adversarial proofs which do not appeal to the parallel back-
ward variant rule from those using PBV since the use of PBV allows to reach
adversarial success without guessing the secret. Adversarial proofs with PBV are
not sufficient to build a concrete attack, but they are sufficient to prove that an
attack exists.

4.3 Example 3: Equivalence Testing

Equivalence properties are relevant to security to prove compatibility or indis-
tinguishability of two programs. For example, comparing multiple parsing imple-
mentations of a given input language (network headers, ASN.1, etc.) can uncover
subtle program behaviors allowing exploitation or fingerprinting of systems [22].

Equivalence results are generally established by showing that the labeled
transition system of a program implementation is equivalent to the LTS of its
specification [23]. Bisimulation requires two LTS to be observationally equiva-
lent for all transitions. Proving such equivalence is out of reach in the under-
approximate framework, in which only some program executions must be ana-
lyzed. Take for example the epsilon-delta definition of the limit of a function:

∀ε > 0∃δ > 0 : |x − c| < δ =⇒ |f(x) − L| < ε

Universary quantified propositions like this one are unprovable in IL and AL,
which restricts us to under-approximate equivalence testing for certain inputs.
This is useful to prove that two programs are equivalent sometimes, and find
values for which programs agree. For f1 and f2 : ∃x : f1(x) = f2(x). Let us
assume that f1(x) and f2(x) can be written as:

f1(x) = ∃x.(P1(x) ⇒ Q1(x)) ∧ ... ∧ (Pn(x) ⇒ Qn(x))
f2(x) = ∃x.(R1(x) ⇒ T1(x)) ∧ ... ∧ (Rm(x) ⇒ Tm(x))

We use this general form where P1 to Pn (resp. R1 to Rm) represent the path
conditions associated to output values Q1 to Qn (resp. T1 to Tm). Existence of
a crossing point between f1 and f2 can now be written as:
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EquTst(f1, f2) = ∃x∃i∃j : (Pi(x) ⇒ Qi(x))∧(Rj(x) ⇒ Tj(x))∧(Qi(x) ⇔ Tj(x))

Testing equivalence of f1 and f2 is computable in adversarial logic even when
internal program variables (possibly random ones) are involved in the calculation
of f1 or f2. Equivalence testing does not require proving Pi ⇔ Rj (as required in
bisimulation) as internal computations Pi and Rj may be hidden to the adver-
sary. Hence equivalence testing is neither a bisimulation nor a simulation.

Table 6. Two pricing functions with user-supplied order number and random initial
price.

// Preprocessor definitions
1. define V1MIL 1000000
2. define V9MIL (V1MIL*9)
3. define V18MIL (V1MIL*18)
4. define V10MIL (V1MIL*10)
5. define V20MIL (V1MIL*20)
// Shared initial service state
// Between GetPrice and GetPrice2
6. float initp = rand();

// Precond: chan s1 established
7. void GetPrice(int s1)
8. {
9. float curp in
10. uint32 ord in
11. float dec in
12. while (true) do
13. read(s1, ord);
14 dec = ord / V10MIL;
15. if (ord <= V9MIL)
16. curp = initp * (1 - dec);
17. else
18. curp = initp / 10;
19. write(s1, curp);
20. done
21. }

// Client: Adversarial software
// Precond: chan s1 and s2 established
1. void Adv(int s1, int s2)
2. {
3. float guess = 0 in
4. float guess2 = 0 in
5. uint32 num = α in // Sym
6. write(s1, num); // Test GP1
7. read(s1, guess1);
8. write(s2, num); // Test GP2
9. read(s2, guess2);
10. adv_assert(guess1 == guess2);
11. }

// Precond: channel s2 established
22. void GetPrice2(int s2)
23. {
24. float curp2 in
25. uint32 ord2 in
26. float dec2 in
27. while (true) do
28. read(s2, ord2);
29. dec2 = ord2 / V20MIL;
30. if (ord2 <= V18MIL)
31. curp2 = initp * (1 - dec2);
32. else
33. curp2 = initp / 10;
34. write(s2, curp2);
35. done
36. }

Consider the code in Table 6 where a pricing service contains two functions
GetPrice and GetPrice2 reading on channels s1 and s2 to compute market price
based on a globally initialized random market value initp and ordered quantities
num. The first function converges faster than the other due to a different current
price calculation.

Adversarial logic can be used to prove that functions GetPrice and GetPrice2
meet at the same limit price (a tenth of the initial price) for certain input order
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Table 7. Equivalence testing: PBV and adversarial consequence rules are combined to
find an input for which two pricing functions have the same output.

A0 = {ad: ∅}
float guess1; → Loc

P0 = {ok: ∅} A1 = {ad: ∃v1.guess1 = v1 ∧ A0}
→ Rand float initp = rand(); float guess2; → Loc

P1 = {ok: ∃f.initp = f ∧ P0} A2 = {ad: ∃v2.guess2 = v2 ∧ A1}

→ Par (P2, A2) = {ok: P1}{ad: A2}
→ Dup float curp || uint32 num = α

(P2, A2, Q2) = {ok: P2}{ad: A2}{ok: P2}
→ Loc(×3) float curp || uint32 num = α || float curp2

(P3, A3, Q3) = {ok: ∃c.curp = c ∧ P2}{ad: ∃α.num = α ∧ A2}{ok: ∃w.curp2 = w ∧ Q2}
→ Loc, Wri, Loc uint32 ord || write(s1, num) || uint32 ord2

(P4, A4, Q4) = {ok: ∃o.ord = o ∧ P3}
{ad: ∃α∃s12a.A3(s1

2
a/s1a) ∧ num = α ∧ s1a = (s12a::α)}

{ok: ∃o′.ord = o′ ∧ Q3}
→ Loc, Loc float dec || read(s1,guess1) || float dec2 {

(P5, A5, Q5) = {ok: ∃d.dec = d ∧ P4}{ad: A4}{ok: ∃d2.dec2 = d2 ∧ Q4}
→ Whi, Whi while (true) do || read(s1,guess1) || while (true) do

(P6, A6, Q6) = {ok: true ∧ P5}{ad: A5}{ok: true ∧ Q5}
→ Com read(s1, ord) || read(s1, guess1) { || read(s2, ord2)

(P7, A7, Q7) = {ok: ∃α∃s12p.P6(s1
2
p/s1p) ∧ s1p = (s12p::α)}

{ad: ∃α∃s13a.A6(s1
3
a/s1a) ∧ s1a = (s13a\α)}{ok: Q6}

→ Read read(s1, ord) || read(s1, guess1) || read(s2, ord2)
(P8, A8, Q8) = {ok: ∃α∃x∃s13p.P7(x/ord, s13p/s1p) ∧ s1p = (s13p\α) ∧ ord = α}

{ad: A7}{ok: Q7}
→ Assn dec = ord / V10MIL || read(s1, guess1) || read(s2, ord2)

(P9, A9, Q9) = {ok: ∃d2.P8(d
2/dec) ∧ dec = ord/V 10M}{ad: A8}{ok: Q8}

→ If if (ord <= 9MIL) curp = initp * (1 - dec) || read(s1, guess) || read(s2, ord2)
(P10, A10, Q10) = {ok: ∃c2.P9[c

2/curp] ∧ ord ≤ V 9M ∧ curp = initp ∗ (1 − dec)}
{ad: A9}{ok: Q9}

→ If else curp = initp / 10 || read(s1, guess1) || read(s2, ord2)
(P11, A11, Q11) = {ok: ∃c2.P10[c

2/curp] ∧ ord > V 9M ∧ curp = initp/10}{ad: A9}{ok: Q9}
→ Disj write(s1,curp) || read(s1, guess1) || read(s2, ord2)

(P12, A12, Q12) = {ok: P11 ∨ P10}{ad: A9}{ok: Q9}
→ Wri write(s1,curp) || read(s1, guess1) || read(s2, ord2)

(P13, A13, Q13) = {ok: ∃u∃s14p.P12(s1
4
p/s1p) ∧ curp = u ∧ s1p = (s14p::u)}

{ad: A12}{ok: Q12}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s1, guess1) || read(s2, ord2)

(P14, A14, Q14) = {ok: ∃u∃s15p.P13(s1
5
p/s1p) ∧ s1p = (s15p\u)}

{ad: ∃u∃s14a.A13(s1
4
a/s1a) ∧ s1a = (s14a::u)}{ok: Q13}

→ Read read(s1,ord) || read(s1, guess1) || read(s2, ord2)
(P15, A15, Q15) = {ok: P14}{ok: Q14}

{ad: ∃g∃u∃s15a.A14(g/guess1, s15a/s1a) ∧ s1a = (s15a\u) ∧ guess1 = u}
→ PBV read(s1,ord) || read(s1,guess1) || read(s2, ord2)

(P16, A16, Q16) = {ok: ∃α∃f.α > V 9M ∧ initp = f ∧ (curp = initp/10)}
{ad: ∃u.guess1 = u}{ok: Q15}

→ Adv.Cons. read(s1,ord) || read(s1,guess1) || read(s2, ord2)
(P17, A17, Q17) = {ok: P16}{ad: ∃α∃f∃u.guess1 = u ∧ u = f/10 ∧ α > V 9M}{ok: Q16}

→ Wri read(s1,ord) || write(s2,num) || read(s2, ord2)
(P18, A18, Q18) = {ok: P17}{ad: ∃α∃s22a.A17[s2

2
a/s2a] ∧ num = α ∧ s2a = (s22a::α)}

{ok: Q17}
−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s2,guess2) || read(s2, ord2)

(P19, A19, Q19) = {ok: P18}{ad: ∃α∃s23a.A18[s2
3
a/s2a] ∧ s2a = (s23a\α)}

{ok: ∃α∃s22q.Q18[s2
2
q/s2q] ∧ s2q = (s22q::α)}

→ Read read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P20, A20, Q20) = {ok: P19}{ad: A19}

{ok: ∃α∃o2∃s23q.Q19[s2
3
q/s2q, o2/ord2] ∧ s2q = (s23q\α) ∧ ord2 = α}

→ Assn read(s1,ord) || read(s2,guess2) || dec2 = ord2 / V20MIL
(P21, A21, Q21) = {ok: P20}{ad: A20}{ok: ∃d2.Q20[d2/dec2] ∧ dec2 = ord2/V 20M}

→ If read(s1,ord) || read(s2,guess2) || if (ord2 ≤ V18M) curp2 = initp * (1 - dec2)
(P22, A22, Q22) = {ok: P21}{ad: A21}

{ok: ∃c2.Q21[c2/curp2] ∧ (ord2 ≤ V 18M) ∧ curp2 = initp ∗ (1 − dec2)}
→ If read(s1,ord) || read(s2,guess2) || else curp2 = initp / 10

(P23, A23, Q23) = {ok: P22}{ad: A22}
{ok: ∃c2.Q21[c2/curp2] ∧ (ord2 > V 18M) ∧ (curp2 = initp/10)}

→ Disj read(s1,ord) || read(s2,guess2) || else curp2 = initp / 10
(P24, A24, Q24) = {ok: P23}{ad: A23}{ok: Q22 ∨ Q23}

→ Wri read(s1,ord) || read(s2,guess2) || write(s2,curp2)
(P25, A25, Q25) = {ok: P24}{ad: A24}

{ok: ∃c∃s22q.Q24[s2
2
q/s2q] ∧ (curp2 = c) ∧ s2q = (s22q::c)}

−− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −→ Com read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P26, A26, Q26) = {ok: P25}{ad: ∃c∃s24a.A25[s2

4
a/s2a] ∧ s2a = (s24a::c)}

{ok: ∃c∃s23q.Q25[s2
3
q/s2q] ∧ s2q = (s23q\c)}

→ Read read(s1,ord) || read(s2, guess2) || read(s2, ord2)
(P27, A27, Q27) = {ok: P26}{ok: Q26}

{ad: ∃g2∃u2∃s25a.A26(g
2/guess2, s25a/s2a) ∧ s2a = (s25a\u2) ∧ guess2 = u2}

→ PBV read(s1,ord) || read(s2,guess2) || read(s2, ord2)
(P28, A28, Q28) = {ok: P27}{ad: ∃u2.guess2 = u2}

{ok: ∃α∃f.(α > V 18M) ∧ (initp = f) ∧ (curp2 = initp/10)}
→ Adv.Cons. read(s1,ord) || read(s2,guess2) || read(s2, ord2)

(P29, A29, Q29) = {ok: P28}{ad: ∃α∃f∃u2.(guess2 = u2) ∧ (u = f/10) ∧ (α > V 18M)}
{ok: Q28}

→ Succ read(s1,ord) || adv_assert(guess1 == guess2) || read(s2, ord2)
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quantities above which the price does not decrease anymore. In order to model
this example in adversarial logic, we define and use a derived rule Dup at step
(P2, A2) in Table 7. The Dup rule can be expressed solely based on the parallel
rule with parameters ε1= ε2= ok and P1 = P2 and Q1 = Q2 and c1 = c2.

[ok : P1]c1[ok : Q1] [ok : P1]c1[ok : Q1]Dup
[ok : P1][ok : P1] c1 || c1 [ok : Q1][ok : Q1]

The proof exhibits loop iterations at which the price converges, and symboli-
cally compares return values in the adversary. Combining the parallel backward
variant rule at (P16, A16, Q16) followed by the adversarial consequence rule at
(P17, A17, Q17) gather GetPrice conditions, while this happens at (P28, A28, Q28)
and (P29, A29, Q29) for function GetPrice2. This is possible without the adver-
sary having preliminary knowledge of internal program values and state (such
as the initial price), as long as the target program code is known.

5 Semantics

In this section, we develop a denotational semantics for adversarial logic. This
semantics is defined compositionally for each of the rules of AL (Table 8).

Table 8. Relational denotational semantics for AL with transitions from state pairs
(σp, σa) to (σq, σb) with ε, ε1, ε2 ∈ {ok, ad} and Σx ∈ {Σa, Σp}

�x = e�ok = {(σ, ((σp | x �→ �e�σp ), σa))}
�x = e�ad = {(σ, (σp, (σa | x �→ �e�σa )))}

�x = rand()�ok = {(σ, ((σp | x �→ v), σa))}
�x = rand()�ad = {(σ, (σp, (σa | x �→ v)))}

�adv_assert B�ok = ∅
�adv_assert B�ad = {((σp, σa), σ) | �B�σa = true } � {((σp, σa), σ) | �B�σa = false}

�skip�ε = {(σ, σ) | σ ∈ Π}
�assume B�ε = {(σ, σ) | �B�σ = true}

�C∗�ε = ∪i∈N�Ci�ε

�C1 + C2�ε = �C1�ε + �C2�ε

�local x = e in C�ok = {(((σp | x �→ �e�σp ), σa), ((σq | x �→ v), σa)) | x ∈ V ar, e ∈ Expr}
�local x = e in C�ad = {((σp, (σa | x �→ �e�σa )), (σp, (σb | x �→ v))) | x ∈ V ar, e ∈ Expr}

�C1;C2�ε = {(σ1, σ3) | (σ1,σ2) ∈ �C1�ε and (σ2,σ3) ∈ �C2�ε}
�C1||C2�(ε1, ε2) = {(σ1, σ′

1) | (σ1,σ′
1) ∈ �C1�ε1} ∪ {(σ2, σ′

2) | (σ2,σ′
2) ∈ �C2�ε2}

�read(s,x)�ε = {((σ | s �→ (l::v)), (σ | x �→ v, s �→ l)) | s ∈ Chan, x ∈ V ar}
�write(s,x)�ε = {((σ | s �→ l, x �→ v), (σ | s �→ (l::v))) | s ∈ Chan, x ∈ V ar}

�Com(C1,C2)�(ε1, ε2) = {(((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)),

((σ1 | s �→ l1), (σ2 | s �→ (l2::v)))) | s ∈ Chan}

Σa : [V ariables → V alues]

Σp : [V ariables → V alues]

Π = Σp × Σa

�B� : Σx → Bool

σ = (σp, σa) : Π

�C� ⊂ Π × Π
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We lay the groundwork to prove soundness of the logic and semantics by
reminding some standard definitions.

Definition 1 (Post Image and Semantic Triples). For any relation r ∈
Σ × Σ and predicate p ⊆ Σ:

– The post-image of r, post(r) ∈ P (Σ) → P (Σ): post(r)p = {(σ′ | ∃σ ∈
p. (σ, σ′) ∈ r}

– The over-approximate Hoare triple: {p}r{q} iff post(r)p ⊆ q
– The under-approximate incorrectness triple: [p]r[q] is true iff post(r)p ⊇ q

We then introduce adversarial semantic triples, which can be understood as
a composition of semantic relation between program states Σp and adversarial
states Σa where Π = Σp × Σa is the decomposed view of the state space.

Definition 2 (Adversarial Triples). For any composed relation (ok, ad) ∈
Π × Π and predicates (p, a) ⊆ Π with p the program predicate and a the adver-
sarial predicate:

– The post-image of (ok, ad) noted post((ok, ad)) ∈ P (Π) → P (Π):

post((ok, ad))(p, a) = {(σq, σb) | ∃(σp, σa) ∈ (p, a). ((σp, σa), (σq, σb)) ∈ (ok, ad)}

– The under-approximate adversarial triple:

[p][a](ok, ad)[q][b] is true iff post((ok, ad))(p, a) ⊇ (q, b)

Conditions for membership ((σp, σa), (σq, σb)) ∈ (ok, ad) are defined as:

1. (σp, σq) ∈ ok and (σa, σb) ∈ ad if V AR(σp) ∩ V AR(σa) = ∅
2. (ok, ad)((σp, σa)) = (σq, σb) otherwise.

The first formulation of membership is enough for the Par rule and all rules
where program and adversary are reduced independently. The second formu-
lation is needed for the Com, Backward variant and Adversarial conse-
quence rules as a channel s may ve involved to share information between
program and adversary.

Definition 3 (Incorrectness Principles in Adversarial Logic). Adversar-
ial logic preserves the symmetries of incorrectness logic:

– ∧∨ symmetry: [ε: p]c[ε: q1] ∧ [ε: p]c[ε: q2] ⇐⇒ [ε: p]c[ε: q1 ∨ q2]
– ⇑⇓ symmetry: [ε: p ⇒ p′] ∧ [ε: p]c[ε: q] ∧ [ε: q′ ⇒ q] ⇐⇒ [ε: p′]c[ε: q′]

Adversarial logic inherits the consequence and disjunction rules of incorrect-
ness logic, and therefore preserves incorrectness symmetries. Under-approximate
reasoning is similarly unchanged, preserving principles of agreement and
denial [1]. The central tool for soundness proof is the characterization lemma,
which relates the state transition system of the denotational semantics to the
inference system of adversarial logic.
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Lemma 1 (Characterization). The following statements are equivalent:

1. [pre_ok: p][pre_ad: a] C1 || C2 [post_ok: q][post_ad: b] is true.
2. Every state in the conclusion is reachable from a state in the premises:

∀(σq, σb) ∈ (q, b) ∃σp ∈ p ∃σa ∈ a : ((σp, σa), (σq, σb)) ∈ (ok, ad)

The characterization lemma in Adversarial Logic extends the one of Reverse
Hoare Logic of de Vries and Koutavas [18] as inherited by Incorrectness Logic [1].
Sufficient conditions for the characterization lemma to hold can be decomposed
into three subcases:

1. if σa = σb : ∀(σq, σb) ∈ (q, b) ∃σp ∈ p : (σp, σq) ∈ ok
2. if σp = σq : ∀(σq, σb) ∈ (q, b) ∃σa ∈ a : (σa, σb) ∈ ad
3. Otherwise: ∀(σq, σb) ∈ (q, b) ∃(σp, σa) ∈ (p, a) : ((σp, σa), (σq, σb)) ∈ (ok, ad)

Cases (1) and (2) yield from the fact that core incorrectness rules of adversar-
ial logic are the same as incorrectness logic. We shall provide additional proofs
for rules Read, Write, Success and Failure which are new to AL. Case (3)
is necessary when both program and adversary take steps together, as done in
parallel composition, communication, backward variant and adversarial conse-
quence rules.

Definition 4 (Interpretation of Specifications). [ok: p][ad: a](C1||C2)[ok:
q][ad: b] is true iff the adversarial triple [p][a](�C1||C2�(ok,ad))[q][b] holds.

Proving that this equivalence holds for AL requires proving the soundness
theorem of adversarial logic.

Theorem 1 (Soundness). Every adversarial logic proof is validated by the
rules of adversarial denotational semantics.

To prove soundness, we appeal to the following substitution lemma general-
ized from reverse hoare logic [18], which we hold true without proving it.

Lemma 2 (Substitution). σ ∈ P (n/x) ⇐⇒ (σ|x → n) ∈ P . That is:

– σp ∈ P (n/x) ⇐⇒ (σp|x → n) ∈ P if x ∈ σp

– σa ∈ A(n/x) ⇐⇒ (σa|x → n) ∈ A if x ∈ σa

The substitution lemma can be instantiated for the program relation as well
as the adversarial relation when x ∈ V ars. There is no ambiguity allowed since
AL forbids variable sharing. We also follow de Vries and Koutavas [18] by manag-
ing local variables using alpha-renaming, rather than using explicit substitution
like O’Hearn [1]. This changes the soundness proof for the local variable rule and
the assignment rule. For all symmetric cases involving ε, we may give the proof
one of these two cases and omit the identical proof for the other side.
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Proof. We prove soundness for each rule of Adversarial logic. For most cases,
we appeal to the characterization lemma of adversarial logic semantics to show
that for all post-states of semantic triples, there is a pre-state that satisfies the
adversarial precondition of the corresponding rule.

Proof (Unit). Assume (σp, σa) skip (σq, σb) and [ε : P ] skip [ε : Q]. Show that
∀(σq, σb) ∈ [ε: Q] ∃(σa, σp) ∈ [ε: P ] . By skip rule, P = Q, so [ε: P ] skip [ε: P ] is
true and (σp, σa) = (σq, σb). Since (σq, σb) ∈ [ε: P ] and (σp, σa) = (σq, σb) then
(σp, σa) ∈ [ε: P ].

Proof (Constancy). Show that ∀σ′ ∈ [ε: Q ∧ F ] ∃σ ∈ [ε: P ∧ F ]. By induction
hypothesis, ∃σ ∈ [ε : P ] such that σ → σ′ and [ε : σ′ ∈ Q]. Since Mod(c) ∩
Free(F ) = ∅, σ → σ′ preserves F . Therefore σ ∈ [ε: P ∧ F ].

Proof (Assume). Let (σp, σa) assume B (σp, σa) and [ε: P ] assume(B) [ε: P ∧B].
Show that ∀(σq, σb) ∈ [ε: P ∧ B] ∃(σp, σa) ∈ [ε: P ]. Since (σp, σa) = (σq, σb) by
assume rule, (σp, σa) ∈ P ∧ B. By consequence rule, (σp, σa) ∈ [ε: P ].

Proof (Rand). Assume (σp, σa) x = rand() (σq, σb) with (σq, σb) = (σp | x �→
r, σa). Let (σq, σb) ∈ [ε : P (x/x′) ∧ x = r] and show that ∀(σq, σb) ∃(σp, σa) ∈
[ε: P ]. Let us first cover the subcase where x ∈ σp and ε = ok. Take (σp | x �→
n) ∈ [ok : P ]. By the substitution lemma, σp ∈ [ok : P (n/x)]. By assign rule,
σq ∈ [ok: P (r/x)]. That is, σp ∈ [ok: ∃x′.P (x′/x) ∧ x′ = r]. The second subcase
where x ∈ σa and ε = ad can be proved similarly.

Proof (Assign). Take (σp, σa) x = e (σq, σb) with (σq, σb) = (σp | x �→ �e�σp
, σa).

Let (σq, σb) ∈ [ε : P (x/x′) ∧ x = e(x′/x)] and show that ∀(σq, σb) ∃(σp, σa) ∈
[ε : P ]. Let us first cover the subcase where x ∈ σp. Take (σp | x �→ n) ∈ [ok :
P ]. By the substitution lemma, σp ∈ [ok : P (n/x)]. By assign rule, σq ∈ [ok :
P (�e�σp|x�→n/x)]. Taking �e�σp|x�→n = m we obtain that σp ∈ [ok: ∃x′.P (x′/x) ∧
x′ = m]. The second subcase where x ∈ σa and ε = ad can be proved similarly.

Proof (Local). Let us first take the case where x ∈ σq. Show that ∀(σq | x �→
v, σa) ∈ [ok : ∃x.Q] there is (σp | x �→ �e�σp

, σa) ∈ [ok : P ]. By the substitution
lemma, σq ∈ [ok : ∃x.Q(v/x)], that is σq ∈ [ok : ∃x.Q] since x is bound. By
induction hypothesis and executing backward, we obtain σp ∈ [ok : P ∧ x = e].
By the substitution lemma, we have (σp | x �→ �e�σp

) ∈ [ok : P (e/x)]. Since
x /∈ Free(P ), we conclude (σp | x �→ �e�σp

) ∈ [ok: P ]. The second subcase where
x ∈ σb can be proved similarly.

Proof (Read). We first define σ′ = (σ | x �→ v, s �→ l) and prove that for all
σ′ ∈ [ε: ∃x′∃s′.P (s′/s, x′/x)∧(s = s′\v)∧x = v] there is (σ | s �→ (l::v)) ∈ [ε: P ].
By the substitution lemma: σ ∈ [ε : ∃x′∃s′.P (s′/s, x′/x) ∧ (s = s′\v) ∧ x =
v)(v/x)(l/s)] That is: σ ∈ [ε: ∃x′.∃s′.P (s′/s, x′/x) ∧ (l = (s′\v))]. By rewriting
s′, we obtain σ ∈ [ε : ∃x.P ((l::v)/s, x′/x)]. Executing read backward, we get
(σ | s �→ (l::v), x �→ x′) ∈ [ε : P ]. We can conclude since {σ | s �→ (l::v), x �→
x′} ⊆ {σ | s �→ (l::v)}
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Proof (Write). Let �write(s, x)�ε = {((σ | s �→ l, x �→ v), (σ | s �→ (l::v)))}
and [ε : P ∧ x = y ∧ s = l] write(s,x) [ε : ∃s′.P (s′/s) ∧ s = (s′::v)]. Define
σ′ = (σ | s �→ (l::v)) and show that ∀σ′ ∈ [ε : ∃s′.P (s′/s) ∧ s = (s′::v)] there
is a (σ | s �→ l, x �→ v) ∈ [ε: P ∧ x = v ∧ s = l] . By the substitution lemma,
σ ∈ [ε: ∃s′.P (s′/s)((l::v)/s) ∧ (l::v) = (s′::v)]. That is, σ ∈ [ε: P (s′/s) ∧ s′ = l].
By inlining s′ we get σ ∈ [ε: P (l/s) ∧ s = (l::v)]. By executing write backward,
we obtain σ ∈ [ε: P ∧ x = v ∧ s = l].

Proof (Com). Assume �Com(C1, C2)�ε1,ε2 = {(((σ1 | s �→ (v::l1)), (σ2 | s �→
l2)), (σ′

1, σ
′
2))} with ε1, ε2 ∈ {ok, ad} and σ′

1 = (σ1 | s �→ l1) and σ′
2 = (σ2 | s �→

(l2::v)). Prove for all (σ′
1, σ

′
2) ∈ [ε1 : ∃s′.P (s′/s)∧s = (s′\v)][ε2 : ∃s′.A(s′/s)∧s =

(s′::v)] there exists ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 : P ][ε2 : A]. By the
substitution lemma, ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 : P ((v::l1)/s)][ε2 :
A(l2/s)]. Introducing s′, we have ((σ1 | s �→ (v::l1)), (σ2 | s �→ l2)) ∈ [ε1 :
∃s′.P (s′/s) ∧ s′ = (v::l1)][ε2 : ∃s′.A(s′/s) ∧ s′ = l2]. By �Com(C1, C2)� rule,
(σ′

1, σ
′
2) ∈ [ε1 : ∃s′.P (s′/s) ∧ s′ = (v::l1) ∧ s = l1] [ε2 : ∃s′.A(s′/s) ∧ s′ = l2 ∧ s =

(l2::v)]. Rewriting s using s′ we now have: (σ′
1, σ

′
2) ∈ [ε1 : ∃s′.P (s′/s) ∧ s =

(s′\v)][ε2 : ∃s′.A(s′/s) ∧ s = (s′::v)].

Proof (Iterate). Immediate by semantic definitions and Iterate rules.

Proof (Sequencing). Immediate by semantic definition and induction hypotheses.

Proof (Choice). Immediate by semantic definition and induction hypotheses.

Proof (Disjunction). Immediate by logical definition and ∧∨ symmetry [1] of
AL.

Proof (Consequence). Immediate by logical definition and ⇑⇓ symmetry [1] of
AL.

Proof (Par). Immediate by semantic definitions and induction hypotheses.

Proof (Success). Assume (σp, σa) adv_assert(B) {(σq, σb) | �B�σa
= true} by

� left subset. Success rule gives us that [ad : P ∧ (P ⇒ B)] adv_assert(B)
[ad : P ∧ true]. Show that ∀(σq, σb) ∈ P ∧ true ∃(σp, σa) ∈ P ∧ (P ⇒ B).
Success rule does not modify any variable of (σp, σa), therefore (σp, σa) = (σq, σb)
and (σp, σa) ∈ P ∧ B. Since (P ∧ B) ⇐⇒ P ∧ (P ⇒ B), we conclude that
(σp, σa) ∈ P ∧ (P ⇒ B).

Proof (Failure). Assume (σp, σa) adv_assert(B) {(σq, σb) | �B�σa
= false} by

� right subset. Failure rule gives us that [ad : P ∧ (P ⇒ ¬B)] adv_assert(B)
[ad: P ∧ ¬B]. Show that ∀(σq, σb) ∈ P ∧ ¬B ∃(σp, σa) ∈ P ∧ (P ⇒ ¬B). Failure
rule does not modify any variable of (σp, σa), therefore (σp, σa) = (σq, σb) and
(σp, σa) ∈ P ∧ ¬B. Since (P ∧ ¬B) ⇐⇒ P ∧ (P ⇒ ¬B), we conclude that
(σp, σa) ∈ P ∧ (P ⇒ ¬B).
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Proof (Adversarial Consequence). We know that (A′ ∧ ∃v1.Q ∧ v1 = v2) ⇒ A′.
Applying the consequence rule backwards, σb ∈ [ad: A′∧∃v1.Q∧v1 = v2] implies
σb ∈ [ad: A′]. Therefore by induction hypothesis, we know ∃σa ∈ [ad: A]. By the
second induction hypothesis, we also know that ∀σq ∈ [ok : P ′] ∃σp ∈ [ok : P ].
Applying the parallel rule backward, we obtain that ∀(σq, σb) ∈ [ok : P ′][ad :
A′] ∃(σp, σa) ∈ [ok: P ][ad: A].

Proof (Parallel Backward Variant). We show that ∀(σq, σb) ∈ [ok: ∃n.P (n)][ad:
∃m.A(m)] there exists (σp, σa) such as (σp, σa) → (σq, σb) and (σp, σa) ∈ [ok :
P (0)][ad: A(0)].

Proof (Case n = m = 0). Immediate by definition of Iterate Zero rule, with
(σp, σa) = (σq, σb).

Proof (Case n = m and i = j = 1). By inductive hypothesis, it holds that [ok:
P (n−1)][ad: A(m−1)]c1||c2[ok: P (n)][ad: A(m)] and there is a (σp(n−1), σa(m−1))
∈ [ok: P (n − 1)][ad: A(m − 1)]. We reuse the induction hypothesis several times
going backward until we reach (σp0, σa0) ∈ [ok: P (0)][ad: A(0)]

Proof (Case n �= m). By inductive hypothesis, it holds that [ok : P (n)][ad :
A(m)]c1||c2[ok : P (n + i)][ad : A(m + j)]. Therefore, ∃(σq(n−i), σb(m−j)) ∈ [ok :
P (n−i)][ad: A(m−j)]. Define δ(n,m) : (N×N) → (B×B) the function mapping
values of (n,m) to their corresponding values (in, jm) where i, j ∈ {0, 1}. We have
three subcases:

– δ(n,m) = (0, 1) and ∃(σq(n), σb(m−1)) ∈ [ok: P (n)][ad: A(m − 1)].
– δ(n,m) = (1, 0) and ∃(σq(n−1), σb(m)) ∈ [ok: P (n − 1)][ad: A(m)].
– δ(n,m) = (1, 1) and ∃(σq(n−1), σb(m−1)) ∈ [ok: P (n − 1)][ad: A(m − 1)].

Recursively going backward using one of the three subcases, we eventually reach
one of the two following termination conditions:

– The program reaches its initial condition before the adversary:
• (σq0, σb(m−j)) ∈ [ok: P (0)][ad: A(m − j)].
• For all remaining (m − j) steps, we have δ(0,m) = (0, 1)
• (σp0, σa0)

m−j−−−→ (σp0, σb(m−j)) ∈ [ok: P (0)][ad: A(m − j)]
– The adversary reaches its initial condition before the program:

• (σq(n−i), σb0) ∈ [ok: P (n − i)][ad: A(0)].
• For all remaining n − i steps, we have δ(n, 0) = (1, 0)
• (σp0, σa0)

n−i−−→ (σq(n−i), σa0) ∈ [ok: P (n − i)][ad: A(0)]

6 Alternative Presentation

Different representations of program semantics can encode much of the same
concepts as adversarial logic, albeit at different levels of abstractions. We briefly
mention a couple of such representations without deep-diving into their respec-
tive theory.



Adversarial Logic 443

6.1 Dynamic Logic

Many of the concepts put forward in this article can be expressed using the
dynamic logic of Harel [16]. Let an adversarial system S = (W,m, π) and its
specification AS = [fs0 , fs1 , ..., fsn

] with F ∈ AS a list of formulae to be satisfied
in order. A structure S can be defined as a triple (W,m, π) where W is a non-
empty set of states, m is the state transition function, and π is a labeling function
indicating in which state formulae in F hold.

S = (W,m, π) =̂

⎧

⎪

⎨

⎪

⎩

W = P × A

m : W → 2W×W

π : F → 2W

(1)

Satisfiability S � AS can then be defined as conditions on the structure S.

∃zs0, s1, ..., snz=̂

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

s0 = (σp0 , σa0) ∈ π(fs0)
sn = (σpn

, σan
) ∈ π(fsn

)
∀j < n : ((σpj

, σaj
), (σpj+1 , σaj+1)) ∈ m(p, a)

∀fk ∈ AS : ∃ j1 < j2 < n :
−σj1 /∈ π(fk) ∧ σj1+1 ∈ π(fk)
−σj2 /∈ π(fk+1) ∧ σj2+1 ∈ π(fk+1)

(2)

The correspondence between dynamic logic [18] and incorrectness reasoning
was remarked by O’Hearn [1]. This correspondence is preserved in adversarial
logic with the change that every states is a couple (p, a) representing the product
of the program state and the adversary state.

6.2 Information Systems

We now express adversarial logic concepts in the framework of domain the-
ory [17]. In this formalism, we understand adversarial systems as a special kind
of Scott’s information system. We define an adversarial system E = {D, ConD,�
,⊥} where D = Ψa × Σ × Δ × Ψp is the adversarial domain, ConD is the set
of all finite subsets of D, ⊥ is the least informative element of D and � is an
entailment relation on D. The entailment relation operates on a set of contexts
Ψa, Ψp, Δ, and Σ, where (Fig. 1 and 2):

– Σ is the program input to execute the program with adversarial conditions.
– Ψp is the program context holding the symbolic program P .
– Δ is the program output produced by interpreting P with program input.
– Ψa is the adversarial context containing facts known by the adversary.
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Fig. 1. Entailment relations for adversarial systems with P the program and A the
adversary. Σ is the program input, Δ is the program output, Ψa is the adversarial
context and Ψp is the program context.

Fig. 2. Expected shape of proof tree in adversarial systems

We distinguish Ψa and Ψp to enforce that program knowledge is not shared
to the adversary unless explicitly done so through the Ψa context. Entailment
relation � is further partitioned into three sub-relations to distinguish each case
of inference:

– �δ: Σ × Ψa → Σ is the adversarial entailment relation.
– �φ: Σ × Ψp → Δ is the program entailment relation.
– �θ: Δ × Ψp → Ψa is the knowledge entailment relation.

Adversarial entailment Σ × Ψa �δ Σ derives next symbolic program input
based on the previous input and the adversarial knowledge in context Ψa. Pro-
gram entailment Σ × Ψp �φ Δ allows the program to compute an output value
based on adversarial input (or from the program itself in case of recursive or inter-
nal procedures). Knowledge entailment Δ × Ψp �θ Ψa is the only rule which can
increase adversarial knowledge Ψa. For example, adversarial knowledge of pred-
icate P (A,B) can be obtained based on an observable program output C ∈ Δ
where �θ C =⇒ P (A,B) holds with P (A,B) ∈ Ψp, A ∈ Σ and B ∈ Ψp.
Reachability on E is defined as computing the least fixed point of the transitive
closure of � to discover if the adversarial specification AS is satisfiable. Formally,
D � AS ⇐⇒ ∃ g ∈ D such as {g} ⊆ lfpD(⊥D) and g � AS. The oscillating bit
protocol logic can be encoded in formula P as:

P = (s = 160) ∧ ((rn = 0) ⇒ (vn = s)) ∧ ((rn = 1) ⇒ (vn < s))
∧ ((rn = 2) ⇒ (vn > s))

The initial adversarial term can be encoded in formula A0 as:

A0 = (o = 0128) ∧ (s < vn ⇒ (vn+1 = vn − on ∧ on+1 = on/2))

∧ (s > vn ⇒ (vn+1 = vn + on ∧ on+1 = on/2))

Modeling the oscillating bit protocol in this framework is done in appendix.
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7 Related Work

Related work in extended static checking and formal verification of software
comes with a dense prior art, We enumerate a small fraction of the literature
which directly influenced our thinking behind adversarial logic.

Incorrectness logic [1] is used as the starting point to formalize adversarial
reasoning. In particular, AL borrows the backward variant rule of incorrectness
logic and extend it to the parallel setting, a feature left out of scope of concurrent
separation incorrectness logic by Raad et al. [14]. In the other hand, AL drops
short-circuiting rules of IL, as program errors in AL must be carried transitively
to determine the existence of attack paths. The characterization lemma used
in under-approximate reasoning in IL and AL was introduced in reverse Hoare
logic [18] and take its root in dynamic Logic [16].

Abstract Interpretation is a program analysis framework pioneered by Cousot
and Cousot [12] and considered a reference technique in the verification of the
absence of bugs. Abstract interpretation is practical [24] and comes with a rich
legacy of applications including the creation of abstractions for theorem prov-
ing [25], model checking [26], worst-case execution time analysis [27], thread-
modular analysis for concurrent programs [28], and input data tracking [29]. In
comparison, adversarial logic (and incorrectness logic before it) cannot guarantee
the absence of bugs due to its fundamentally under-approximate nature focused
on eliminating false positives at the expense of false negatives. Incorrectness
principles have been captured in the abstract interpretation framework by the
local completeness logic LCL [30], and algebras of correctness and incorrectness
can provide a unified formalism to connect both approaches [31].

Process calculus [23] is a well-established formalism to reason about paral-
lel communicating programs and program equivalence using bisimulation. Abadi
and Blanchet [32] designed the spi-calculus to verify secrecy properties of crypto-
graphic protocols in the symbolic model. To the same goal, the proverif [33] tool
by Blanchet et al. implements the Dolev-Yao model [2] with explicit attacker.
It may be possible to extend proverif to include arithmetic in its specifications
language, which is required to implement the examples of this paper.

Separation logic is a well-established logic to encode heap reasoning in pro-
gram analysis. Separation logic comes in both over-approximate [21] and under-
approximate [13] flavors. Combined with parallel constructs, separation logic
leads to concurrent separation logics [34] and concurrent incorrectness separa-
tion logic [14]. Adversarial Logic provides a limited kind of separation between
variables of parallel processes without requiring an explicit separating conjunc-
tion. Encoding separation expressiveness without the star operator is not unseen,
and was previously implemented in the framework of linear maps [35]. Adding
support for heap reasoning is a natural next step for adversarial logic.

Automated bug finding by symbolic execution [36,37], white-box fuzz test-
ing [38], and extended static checkers [39] using SMT solvers [40] are often
used to maximize code coverage in static and dynamic program analysis. These
tools typically focus on checking sequential properties of non-interactive parser-
like code [41], leaving concurrency out of scope. Symbolic execution using SMT
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solvers have known scalability issues with path explosions in loops and constraint
tracking in deep paths. Adversarial logic addresses these issues by only requiring
a subset of paths to be analyzed sufficient to prove the presence of exploitable
bugs. AL implements a flavor of concurrent symbolic execution where symbolic
variables are introduced by the adversary to drive attack search without requir-
ing knowledge of internal program state. As such, AL can express adversarial
symbolic execution [42] as used to detect concurrency-related cache timing leaks.

Automated exploit generation (AEG [43]) leverages preconditioned symbolic
execution to craft a sufficient program condition to exploit stack-based buffer
overflow security vulnerabilities. Specific domains of heap vulnerabilities for
interpreted languages have been demonstrated practical to attack by Heelan
et al. [44]. Concepts of adversarial logic could possibly be added to extend AEG,
such as for tackling information disclosure vulnerabilities as illustrated by the
Oscillating Bit Protocol example in Sect. 2.

8 Conclusion and Future Work

Adversarial logic (AL) is a new under-approximate logic extending incorrectness
logic [1] to perform exploitability analysis of software bugs. Reasoning about
accumulated error in programs is critical to understand the severity of security
issues and prioritize bug fixing accordingly. This new logic can be used to discover
attacks which require a deeper level of interaction with the program, such as
subtle information disclosure attacks in interactive protocol loops. We provided
a denotational semantics and proved the soundness of adversarial logic showing
that all exhibited attack traces in AL are true positives. In the future, embedding
adversarial logic principles in concurrent incorrectness separation logic [14] will
extend adversarial logic with heap reasoning, so AL can also be used to perform
exploitability analysis of pointer bugs.

Acknowledgments. The author thanks Peter O’Hearn, Azalea Raad and Samantha
Gottlieb for their useful reviews of this paper.
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Abstract. Deep neural networks (DNNs) have achieved remarkable per-
formance in a myriad of complex tasks. However, lacking of robustness
and black-box nature hinder their deployment in safety-critical systems.
A large number of testing and formal verification techniques have been
proposed recently, aiming to provide quality assurance for DNNs. Gen-
erally speaking, testing is a fast and simple way to disprove—but not
to prove—certain properties of DNNs, while formal verification can pro-
vide correctness guarantees but often suffers from scalability and effi-
ciency issues. In this work, we present a novel methodology, CLEVEREST,
to accelerate formal verification of DNNs by synergistically combining
testing and formal verification techniques based on the counterexample
guided abstraction refinement (CEGAR) framework. We instantiate our
methodology by leveraging CEGAR-NN, a CEGAR-based neural network
verification method, and a representative adversarial attack method for
testing. We conduct extensive experiments on the widely-used ACAS
Xu DNN benchmark. The experimental results show that the testing
can effectively reduce the usage of formal verification in the check-refine
loop, hence significantly improves the efficiency.

1 Introduction

As a new programming paradigm, deep learning has achieved incredible per-
formance in a large number of complex tasks such as computer vision [31],
autonomous driving [1] and cyber-security [7,8,51]. Nevertheless, deep neural
networks (DNNs) have shown to be intrinsically vulnerable to perturbations [54],
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which significantly hinders their applications in safety-critical domains. Insofar
approaches on quality assurance of DNNs can be roughly classified into two
(complementary) categories: testing (e.g., [4,6,20,32,38,41,45,54,69]) and for-
mal verification (e.g. [15,18,21,23,24,26,28,33,35,39,40,49,50,59,60,67]). The
purpose of testing is to disprove the robustness of DNNs by providing adver-
sarial examples (i.e., counterexamples). In contrast, formal verification is often
used to provide theoretical guarantees of DNNs, and, once violated, counterex-
amples may be provided. Computationally, testing is able to scale up to large
DNN models, whereas formal verification is currently limited in scalability.

Early efforts on robustness verification reduce the problem to constraint solv-
ing (e.g., SMT [15,24,28,29,48], LP and MILP [5,14,34,55,61,68]). Such tech-
niques are often both sound (i.e., no false negative) and complete (i.e., no false
positive), but are limited in scalability. To improve the scalability, abstraction
techniques have been proposed including abstract interpretation [18,49,50,56,60,
63,65] and network abstraction [2,16,19,47,52]. Abstract interpretation approx-
imates the output ranges of neurons for a given input region while network
structure abstraction approximates the network via a smaller network which
could be verified using existing verification approaches. Unfortunately, abstrac-
tion techniques often compromise accuracy. Refinement techniques thus have been
adopted which, guided by counterexamples, refine either the estimated output
ranges [50,60,63,65] or the abstract network [16,44]. Despite these advances, scal-
ability remains a major challenge in formal verification of DNNs.

In this work, we propose CLEVEREST (CEGAR neural network verification
adversarial attacks), a novel methodology to accelerate robustness verification
of DNNs by synergistically combining robustness testing and formal verifica-
tion in the celebrated counterexample guided abstraction refinement (CEGAR)
framework [10]. To the best of our knowledge, this is the first attempt to syn-
ergistically integrate efficient testing with formal verification for DNN quality
assurance. We note that prior work [66] only utilizes testing methods to find
adversarial examples before the complete verification, which is to reduce time
overhead, but is simply a sequential composition of testing and verification and
cannot improve the verification itself.

The methodology of CEGAR follows an abstract-check-refine paradigm. To
verify a DNN N against a property, an over-approximation ̂N of N is built and
then the check-refine loop is executed. First, we check if the property holds for ̂N .
If ̂N satisfies the property, we can conclude that N satisfies the property as well
(because ̂N is an over-approximation) and stop. Otherwise a counterexample x

is found on ̂N . We check if x is also a counterexample for N . If it is, we conclude
that N does not satisfy the property and stop. Otherwise, the counterexample is
spurious and ̂N is refined to exclude the counterexample x. Note that the existing
CEGAR-based DNN verification utilizes computational expensive verification
techniques to check the abstract systems and to obtain counterexamples in the
check-refine loop [16,44].

Our insight of CEGAR in DNN verification is that the abstract systems in
early stages of the check-refine loop are often coarse-grained where counterex-
amples could be easily found by existing robustness testing techniques. Based
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on this observation, we propose to verify the robustness of DNNs by applying
an abstract-test-refine paradigm. The abstract-test-refine paradigm is similar to
the standard abstract-check-refine paradigm, except that the abstract systems
are to be checked by testing. If the testing fails to find a counterexample, the
check-refine is leveraged after which the test-refine loop is applied again.

Our framework can be instantiated by any robustness testing and CEGAR-
based verification technique. To evaluate its effectiveness, we implement a veri-
fication tool, named CLEVEREST-NN, by leveraging the preprocessing, abstrac-
tion, refinement and verification procedures from the CEGAR-NN framework [16]
and the PGD adversarial attack [38] for testing. In particular, we show how to
encode properties as loss functions so that an adversarial attack could be lever-
aged. We also propose an attack guided abstraction which allows us to avoid too
coarse abstract systems by leveraging an adversarial attack during the iterative
abstraction. We thoroughly conduct experiments on the widely used ACAS Xu
benchmark [27,28], an airborne collision avoidance system built for unmanned
aircraft. The experimental results based on 45 DNNs show that our tool is very
promising. For instance, compared with CEGAR-NN, CLEVEREST-NN solved 21
more (62 vs. 41 out of 90) clear-of-conflict related verification instances within
the same time limit. Furthermore, on the verification instances solved by both
tools, the average execution time (per verification instance) is reduced by 42%
(from 3,584s to 2,076s).

To summarize, our main contributions are as follows.

– We propose CLEVEREST, a methodology to accelerate DNN verification by
synergistically combining robustness testing and CEGAR-based verification.

– We implement our methodology based on CEGAR-NN and PGD adversarial
attack, giving rise to a new DNN verification tool CLEVEREST-NN.

– We conduct extensive experiments on ACAS Xu. The experimental results
show that our method significantly improve the performance of CEGAR-NN.

Outline. Section 2 presents the background for DNNs, their verification and
adversarial attacks. We propose our methodology in Sect. 3 and instantiate
the methodology for DNN verification in Sect. 4. Section 5 reports experimen-
tal results. Section 6 discusses related work. We conclude this work in Sect. 7.

2 Background

In this section, we introduce the background of DNNs as well as their verification
and adversarial attacks.

Deep Neural Networks. An �-layer (� ≥ 2) deep neural network (DNN) N is
a graph structured in layers (cf. Figure 1), where the first layer is called an input
layer, the last layer is called an output layer, and the � − 2 intermediate layers
are called hidden layers. All the nodes in these layers are called neurons and
neurons in hidden layers are called hidden neurons. Each neuron in a non-input
layer is associated with a bias and could be pointed to by other neurons via
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Fig. 1. A fully connected FNN with 2 input nodes (x1, x2), 2 output nodes (z1, z2) and
1 hidden layers, the activation function is not included. Each edge is associated with a
weight value and each node except for inputs is associated with a bias.

weighted, directed edges. The DNN is called a feed-forward deep neural network
(FNN) if all the weighted, directed edges are from the i-th layer to the (i+1)-th
layer. An FNN is fully connected if each neuron in the i-th layer is connected
from all the neurons in the (i−1)-th layer. Given an input, the DNN propagates
it through the network layer by layer and computes an output. In this work, we
consider (fully connected) FNNs, though our methodology is generic.

Formally, an �-layer FNN N is a function N : X → Y , which maps an input
vector �x ∈ X to an output vector �y = N(�x) ∈ Y . Here, N(�x) = �W��v�−1 +�b�,
and the output vector �vi of the i-th layer is recursively defined as follows:

�v1 = �x, �vi = σ( �Wi�vi−1 +�bi) for i = 2, · · · , � − 1,

where �Wi and �bi (for 2 ≤ i ≤ �) are the weight matrix and bias vector of the i-th
layer respectively, and σ is an activation function (e.g., ReLU, sigmoid, tanh)
applied to the input vector entrywise. For classification tasks, the output class
of a given input �x is the first index i such that N(�x) at the index i is of the
highest value. In this work, we denote by Nc(�x) the output class.

Neural Network Verification. The (neural network) verification query for a
given FNN N is often formalized as a triple 〈P,N,Q〉, where the pre-condition
P is a property on inputs and the post-condition Q is a property on outputs.
The verification query amounts to checking if N(�x) satisfies the post-condition
Q for all inputs �x ∈ X that fulfil the pre-condition P . A counterexample of
the verification query 〈P,N,Q〉 is an input �x ∈ X such that �x satisfies the
pre-condition P but N(�x) does not satisfy the post-condition Q. In practice,
pre-conditions (resp. post-conditions) are often given as conjunctions of linear
constraints on the input values (resp. output values).

Robustness, originated with the study of adversarial attacks [54], is a typical
property of DNNs which requires a DNN to produce the same classification
result for an input when a small perturbation is added. The perturbation range
of an input is usually represented as a ball centered at the input under the L-
norm distance. There are three widely-used L-norms: L0, L2 and L∞ norms [6].
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Given two inputs �x, �x′, the L0 norm distance ‖�x−�x′‖0 is the number of non-zero
elements in the vector �x − �x′, the L2 norm distance ‖�x − �x′‖2 is the Euclidean
distance between �x and �x′, and the L∞ norm distance ‖�x−�x′‖∞ is the maximal
entry in the vector |�x − �x′|. A DNN is (local) robust w.r.t. an input �x ∈ X and
a threshold ε > 0 if Nc(�x) = Nc(�x′) for any �x′ ∈ X such that ‖�x − �x′‖p ≤
ε. Counterexamples in this setting are often called adversarial examples. The
robustness property for any L-norm could be expressed as a neural network
verification query, where the constraints ‖�x−�x′‖p ≤ ε for p = 0,∞ and Nc(�x) =
Nc(�x′) for any �x′ ∈ X can be encoded as conjunctions of linear constraints.
Therefore, we define a robustness property as a verification query 〈P,N,Q〉,
where P is given by an input �x and a threshold ε > 0, and Q is given by a
conjunction of linear constraints on the output. Towards robustness of DNNs,
instead of qualitatively verifying if a given robustness property holds or not, one
may have an interest in computing a maximum robustness radius ε such that
〈(�x, ε), N,Q〉 holds but 〈(�x, ε′), N,Q〉 does not hold for any ε′ > ε.

Reachability is another property of DNNs which specifies that inputs from
a given input region must produce outputs that lie in a given output region.
For example, a DNN model controlling the velocity of an autonomous vehicle
may have a safety property specifying that the model never produces a desired
velocity value greater than the vehicle’s maximum physical speed for any input.

As a convention in neural network verification [16], we say the verification
query 〈P,N,Q〉 is satisfiable (SAT) if it has a counterexample, otherwise 〈P,N,Q〉
is unsatisfiable (UNSAT) indicating no counterexample can be found.

Adversarial Attacks. Consider a DNN N , an input �x ∈ X and a distance
threshold ε (based on Lp norms), an adversarial attack task is to find an adver-
sarial example �x′ ∈ X such that Nc(�x) 
= Nc(�x′) and ‖�x − �x′‖p ≤ ε. Note that it
is the same as finding a counterexample that violates the corresponding robust-
ness property. Since the discovery of adversarial examples [54], many adversar-
ial attacks have been invented as efficient methods for testing the robustness of
DNNs [4,6,20,32,38,41,45]. We only briefly recap one representative and promis-
ing attack, Project Gradient Descent (PGD) adversarial attack [38], which will
be used in our implementation.

The PGD adversarial attack is an iterative attack with a randomized start
seed. It first adds a Gaussian noise to the input �x, resulting in a randomized
seed �x0 ∈ X such that ‖�x − �x0‖∞ ≤ ε. After that, it iteratively computes
a sequence of input samples �x1, �x2, · · · , �xm until an adversarial example is suc-
cessfully found or the number of iterations exceeds a given threshold m. Namely,
�xi+1 = clipε,�x(�xi + α · sign(∇�xJ(�xi, y))) where

– 0 < α < ε is a small step size;
– y is the ground-truth class Nc(�x) of the input �x;
– sign(·) is a sign function such that sign(z) is +1 if z > 0, −1 if z < 0 and 0

if z = 0; (it is used in the entry-wise way.)
– clipε,�x(�x′) is a clip function which performs per-entry clipping of the sample

�x′ to ensure that ‖�x − �x′‖∞ ≤ ε;
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– J(�x, y) is a loss function (e.g., the mean-squared error or the categorical cross-
entropy of the DNN);

– ∇�x is the partial derivative of the loss function J(�x, y) at �x.

Intuitively, the attack is to search an input sample �x′ ∈ X to maximize the loss
function. To prevent the attack from trapping in local optima, the above search
of an adversarial example is often repeated multiple times. The details of the
PGD adversarial attack algorithm are given in Appendix A.1.

Example 1. Consider the illustrative example shown in Fig. 1. we can obtain the
computational flow of the neural network in terms of the specific weights and
biases. Suppose we want to verify if z1 > z2, from the neural network verification
point of view, we can treat these equations and properties as constraints for
SMT solving [28], or perform symbolic interval analysis from the input layer-
by-layer [59], etc. From the adversarial attack point of view, we simply need
to find a counterexample in the input interval to disprove z1 > z2. When this
problem is easy to disprove, the use of attack algorithm saves substantial time
over formal verification. We explore how to synergistically combine SMT-based
formal verification and adversarial attacks in this work.

3 Methodology

In this section, we present our methodology based on counterexample-guided
abstraction refinement (CEGAR). We start by presenting the standard CEGAR
in literature, and then explain how to integrate it with testing.

3.1 The Standard CEGAR Framework

The standard CEGAR framework based on the abstract-check-refine paradigm
is shown in Algorithm 1 (without the blue-colored code at lines 3–9). Given a
verification query 〈P,N,Q〉, upon termination Algorithm 1 returns either UNSAT
indicating that the verification query 〈P,N,Q〉 holds, or (SAT,cex) indicating
that the query 〈P,N,Q〉 does not hold where cex is a counterexample. In detail,
Algorithm 1 first builds an initial abstract model ̂N via invoking the procedure
abstract (line 1). It then iteratively verifies and refines ̂N until the verification
query is proved UNSAT or a genuine counterexample cex in the target system N
is found (lines 10–15). In each iteration, the verification query 〈P, ̂N,Q〉 with
the up-to-date abstract system ̂N is verified by invoking the underlying verifica-
tion engine verify (line 10). If it is proved UNSAT, Algorithm 1 returns UNSAT

and the verification query 〈P,N,Q〉 holds. In case 〈P, ̂N,Q〉 is proved SAT, a
counterexample cex is returned by verify whose feasibility in the target system
N is checked (line 12). If cex is a genuine counterexample in the target system
N , Algorithm 1 returns (SAT,cex) (line 13); otherwise the abstract system ̂N is
refined via invoking the refinement procedure refine (line 14).

Remark that it is implicitly assumed that the abstraction abstract and the
refinement refine procedures only generate over-approximations of the target
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Algorithm 1: Our CEGAR framework
Input : a verification query 〈P, N, Q〉
Output: verification result UNSAT, or SAT with a counterexample cex

1 ̂N ← abstract(P,N,Q); /* Generate an initial abstract system */

2 while True do

3 cex ←test(P, ̂N, Q); /* Test the abstract system */

4 if cex �= NULL then /* Find a counterexample by testing */

5 if cex is a counterexample of 〈P, N, Q〉 then
6 return (SAT, cex); /* Find a genuine counterexample */

7 else

8 ̂N ← refine( ̂N, cex); /* Refine the abstract system */

9 continue; /* Skip verify and back to test */

10 cex ←verify(P, ̂N, Q); /* Verify the abstract system */

11 if cex �= NULL then /* Find a counterexample by verification */

12 if cex is a counterexample of 〈P, N, Q〉 then
13 return (SAT, cex); /* Find a genuine counterexample */

14 else ̂N ← refine( ̂N, cex); /* Refine the abstract system */

15 else return UNSAT

system N and the underlying verification engine verify is sound. Otherwise,
one cannot conclude that verification query 〈P,N,Q〉 holds even if Algorithm 1
returns UNSAT. Furthermore, the underlying verification engine is often required
to be complete and has the capability for producing a counterexample if the
verification query is SAT, namely, the verification of 〈P, ̂N,Q〉 returns either
UNSAT or a counterexample cex if SAT.

3.2 Our CEGAR Framework

Our CEGAR framework is based on the key observation that it is fast to find
counterexamples in the coarse-grained, abstract systems via testing techniques.
As a result, we propose an abstract-test-refine paradigm, where check-refine is
applied only when the testing fails to find a counterexample. Our CEGAR frame-
work is shown in Algorithm 1, where the blue-colored code (lines 3–9) follows the
abstract-test-refine paradigm while the other code is the same as in the standard
CEGAR framework.

Given a verification query 〈P,N,Q〉, after building the initial abstract system
̂N (line 1), Algorithm 1 first repeatedly tests and refines the abstract system ̂N

until either a counterexample found in the abstract system ̂N is genuine in the
target system N ; or the procedure test fails to find a counterexample in the
abstract system ̂N (within a given test budget) (lines 3–9). It is easy to see that
the test-refine (lines 3–9) is the same as the original check-refine (lines 10–15),
except that the verify procedure is replaced by the test procedure. When the
testing fails to found an adversarial example, check-refine is applied as in the
de facto CEGAR scheme except that the refined system ̂N is retested again in
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the test-refine loop. At this moment, the abstract system ̂N may have already
been significantly refined by the test-refine loop so that computational expensive
verification of many coarse-grained abstract systems could be avoided. Ideally, if
the testing method is powerful enough, it would be able to find a counterexample
in most cases. Consequently, for the verification query that does not hold, the
test-refine loop could more likely find a genuine counterexample and avoid calls
to verification, thus, the verify procedure would be rarely invoked. We note that
for the verification query that holds, verify would be invoked at least once.

Proposition 1. If Algorithm 1 returns (SAT,cex), then cex is a counterexam-
ple of the verification query 〈P,N,Q〉. If Algorithm 1 returns UNSAT, then the
verification query 〈P,N,Q〉 holds. �

Remark that, the new CEGAR scheme may not be effective in verifying
general software/hardware systems, as finding counterexamples is still non-trivial
via testing. However, for neural networks, counterexamples (adversarial attacks)
are pervasive and there have been advanced techniques to find them (cf. Sect. 2).

4 DNN Verification in Our CEGAR Scheme

In this section, we first recall the preprocessing, abstraction and refinement pro-
cedures provided in CEGAR-NN based on which we show how to instantiate our
CEGAR framework by leveraging the PGD adversarial attack [38] for testing
due to its effectiveness and efficiency. We should emphasize that our CEGAR
scheme can be used on any de facto CEGAR-based DNN verification approaches
and leverage any promising testing methods such as BIM [32], DeepFool [41],
C&W [6] and DeepXplore [46].

4.1 CEGAR-NN

CEGAR-NN instantiates the abstract, verify and refineprocedures inCEGAR,
where verify is implemented by the Marabou DNN verification engine [29].

Preprocessing. CEGAR-NN first preprocesses a verification query 〈P,N,Q〉,
by transforming it into an equivalent verification query 〈P,N ′, Q′〉 such that
the post-condition Q′ is a conjunction of linear inequalities of form y > c for
some constant c. Furthermore, each hidden neuron should be classified as a
pos/neg neuron, and a dec/inc neuron. A hidden neuron is pos (resp. neg)
if all the weights on its outgoing edges are positive (resp. negative), while a
hidden neuron is inc (resp. dec) if increasing the value of this neuron while
keeping all the inputs unchanged increases (resp. decreases) the values of the
output neurons. As stated by Elboher et al. [16], these restrictions are for the
sake of simplicity, and can be achieved by adding a few neurons (at most 4×
increase in network size) during preprocessing. From now on, we assume the
verification query 〈P,N,Q〉 has already been preprocessed and satisfies the above
assumptions.
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The abstract and refine Procedures. CEGAR-NN has two abstraction
strategies, called abstraction-to-saturation and indicator-guided abstraction. Both
strategies are based on the merge operator, which merges a pair of hidden neu-
rons in a same layer that share the same pos/neg and inc/dec attributes, result-
ing in an over-approximated DNN. The abstraction-to-saturation strategy iter-
atively applies the merge operator, producing the smallest abstract DNN. How-
ever, this strategy may obtain DNNs that are too coarse so that multiple rounds of
refinement are required. The indicator-guided abstraction strategy is proposed to
address this issue by estimating when the abstraction has become too coarse using
a finite set of chosen inputs XI . After each abstraction step, the post-condition Q
is checked in the abstract DNN using the chosen inputs. If the post-condition Q
is violated by some input in XI , the abstraction is then stopped.

Generally speaking, the refine procedure is the inverse of abstract, which
refines an abstract DNN by iteratively recovering two merged neurons from the
corresponding abstract neuron until the counterexample is excluded.

4.2 Instantiating Our CEGAR Scheme

To instantiate our CEGAR framework, we show how to disprove a verification
query 〈P,N,Q〉 and improve the abstract procedure, both via an adversarial
attack based testing.

Disproving Verification Query. Given a verification query 〈P,N,Q〉, we
assume that P is a conjunction of linear constraints

∧m
i=1 lpi ≤ xi ≤ upi on

the input values and Q is a conjunction of linear inequalities of
∧n

i=1 yi > ci,
where the variables xi’s and yi’s correspond to the values of input neurons and
output neurons respectively, and lpi’s, upi’s and ci’s are constants. Such proper-
ties are widely considered in the DNN verification community, e.g., [18,28,58,66].
To leverage an adversarial attack for testing, we encode the pre-condition P by
transforming a conjunction of linear constraints

∧m
i=1 lpi ≤ xi ≤ upi into a non-

standard L∞ epsilon ball, and encode the post-condition Q in a loss function J
which is maximized by the adversarial attack to find a counterexample.

– Encoding the pre-condition P . From the pre-condition P , we let �̂x be an
input such that for every 1 ≤ i ≤ m, �̂x[i] = upi+lpi

2 , and �ε be a vector such
that �ε[i] = upi−lpi

2 for every 1 ≤ i ≤ m. Clearly, for each �x′ ∈ X, |�̂x−�x′| ≤ �ε iff
�x′ satisfies P . We denote by encode(P ) the pair (�̂x,�ε). For example, suppose
m = 2 and the constraints lpi and upi are [0, 0.5] and [1, 1] for i = 1, 2,
respectively, then we can obtain �̂x = [0.5, 0.75], �ε = [0.5, 0.25].

– Encoding the post-condition Q. From the post-condition Q, we define
the loss function J as

J(�x) := −
n

∏

i=1

(

max(N(�x)[i] − ci, 0)
)

where N(�x)[i] denotes the value of the output neuron yi. The output property
Q in general can be an arbitrary Boolean structure and involve multiple
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Algorithm 2: PGD adversarial attack based testing
Input : a verification query 〈P, N, Q〉, restart times n, number of steps per

time m, a small step size α
Output: an adversarial example cex or NULL

1 (�̂x,�ε) ← encode(P );
2 J ← encode(Q);
3 for i ← 1 to n do

4 Generate a vector of Gaussian noises �δ such that |�δ| ≤ �ε;

5 �x′ ← �̂x + �δ; /* Create a randomized seed */

6 for j ← 1 to m do
7 �y ← N(�x′); /* Get the output */

8 if �y does not satisfy the post-condition Q then
9 return �x′; /* Find a counterexample */

10 else
11 ∇ ← back propagate(N, J(�x′)); /* Get gradient of J(�x′) */

12 �x′ ← clip�ε,̂�x(�x′ + α × sign(∇)); /* Compute a new sample */

13 return NULL;

neurons which can be transformed into a conjunction of linear inequalities
(cf. [16]). Recall that an adversarial attack attempts to maximize J(�x), hence
to minimize each term max(N(�x)[i] − ci, 0) until it is 0. When J(�x′) is 0 for
some input �x′, there exists some i such that N(�x′)[i] > ci does not hold, hence
the output N(�x′) does not satisfy Q. This input �x′ is a counterexample. We
denote by encode(Q) the loss function J . We should emphasize that our loss
function J is different from the cross-entropy loss function used in the PGD
adversarial attack [38], which is not applicable when the output property
involves lower or upper bounds. Our loss function is constructed for each
output property given as a conjunction of linear inequalities, and can be
applied in a variety of verification problems [18,28,58,66].

Based on the above encodings, we implement the test procedure for Algo-
rithm 1 via a PGD adversarial attack based testing (cf. Algorithm 2). Given a
verification query 〈P,N,Q〉, the number of restart times n, the number of iter-
ation steps per time m, a small step size α, Algorithm 2 returns either a coun-
terexample �x′ that satisfies the pre-condition P but violates the post-condition
Q, or NULL indicating that no counterexample can be found. Note that the pair
of the parameters (n,m) is regarded as the test budget.

In detail, Algorithm 2 first computes the pair (�̂x,�ε) that encodes the inputs
fulfilling the pre-condition P (line 1) and the loss function J that encodes the
post-condition Q (line 2). Then, it iteratively executes the outer for-loop (lines 3–
12) up to n times. During each iteration, a randomized seed �x′ is obtained by
adding Gaussian noises �δ to �̂x (lines 4–5) and then the inner for-loop (lines 6–
12) is executed, which iteratively computes a series of new samples (up to m
samples) starting from the randomized seed �x′.
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During each iteration of the inner for-loop (lines 6–12), Algorithm 2 first
computes the output �y = N(�x′) of the DNN N by forward propagating the
input �x′. If �y does not satisfy the post-condition Q, then �x′ is a counterexample
and Algorithm 2 returns �x′. Otherwise, Algorithm 2 performs a backward prop-
agation to get the gradient ∇ of J using J(�x′) (line 11) from which a new sample
�x′ is created (line 12), where the clip function clip

�ε,̂�x
ensures that |�̂x − �x′| ≤ �ε

after updating, hence the new sample �x′ still satisfies the pre-condition P .

Lemma 1. If Algorithm 2 returns cex for the verification query 〈P,N,Q〉, then
cex is a counterexample of the verification query 〈P,N,Q〉.

One may be wondering how to choose hyper-parameters such as restart
times n, number of steps per time m, and step size α, and how to handle non-
differentiable layers when leveraging adversarial attacks. According to our exper-
iments, the time consumed by attacks is marginal compared to that used in the
complete verification method, and the parameters can be selected as in the prior
work [32,38]. For non-differentiable layers, gradient estimation methods (e.g. [9])
can be used to approximate the gradient of J .

Improving abstract via Attacks. We exploit the adversarial attack based
testing in the building of the initial abstract system, i.e., the abstract procedure
in Algorithm 1.

Recall that Elboher et al. [16] proposed two abstraction strategies in CEGAR-
NN: abstraction-to-saturation and indicator-guided abstraction, where the for-
mer may produce DNNs that are too coarse so that multiple rounds of refinement
are required, while the latter is proposed to address this issue by checking if the
abstraction has become too coarse using a finite set of chosen inputs XI , all
of which satisfy the pre-condition P . It was mentioned that the set XI can be
generated randomly (adopted in their tool), or according to some coverage cri-
terion of the input region. In this work, we present a more effective way, i.e.,
attack-guided abstraction, to generate the set XI via an adversarial attack based
testing which are more likely to be counterexamples in abstract systems.

We first adjust Algorithm 2 to return all generated n × m samples, named
Algorithm 2*. Our attack-guided abstraction is formalized in Algorithm 3. Given
a verification query 〈P,N,Q〉, and the parameters (restart times n, number of
steps per time m, step size α) for the adversarial attack (cf. Algorithm 2*),
Algorithm 3 returns an abstract DNN ̂N .

In detail, the abstract DNN ̂N is initialized with the given DNN N (line 1)
and a set XI of samples is created by applying Algorithm 2* to 〈P, ̂N,Q〉 (line 2).
After that, we check if the post-condition Q holds using the samples from XI

(line 3). If Q is violated by some sample �x ∈ XI , Algorithm 3 returns ̂N (line 4).
Otherwise, it iteratively performs the merge operation to compute a less accurate
abstract DNN ̂N ′ and tests ̂N ′ against Q until either no neurons that can be
merged or 〈P, ̂N ′, Q〉 becomes SAT, i.e., a counterexample is found (lines 5–15).

During each iteration of the while-loop (lines 5–15), Algorithm 3 first chooses
a mergeable pair (vi, vj) of neurons (line 6), for which we adopt an approach
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Algorithm 3: Attack-guided abstraction
Input : a verification query 〈P, N, Q〉, restart times n, number of steps per

time m, step size α
Output: an abstract DNN ̂N

1 ̂N ← N ;

2 XI ← the set of samples created by applying Algorithm 2* to 〈P, ̂N, Q〉;
3 if ∃�x ∈ XI . ̂N(�x) does not satisfy Q then

4 return ̂N ;

5 while ∃ a pair of neurons that can be merged do

6 (vi, vj) ←ChooseBestMergeablePair( ̂N);

7 ̂N ′ ← merge( ̂N, vi, vj);

8 if ∃�x ∈ XI . ̂N ′(�x) does not satisfy Q then

9 return ̂N ;

10 else

11 X ′ ← the set of samples created by applying Algorithm 2* to 〈P, ̂N ′, Q〉;
12 if ∃�x ∈ X ′. ̂N ′(�x) does not satisfy Q then

13 return ̂N ;

14 else XI ← XI ∪ X ′

15 ̂N ← ̂N ′;

16 return ̂N ;

by Elboher et al. [16]. Next, we build a less accurate abstract DNN ̂N ′ by
merging (vi, vj) in ̂N (line 7) and test if there exists some counterexample �x ∈ XI

for 〈P, ̂N ′, Q〉 (line 8). If so, we return the previous abstract DNN ̂N (line 9).
Otherwise, we create a new set X ′ of samples by applying Algorithm 2* to the
query 〈P, ̂N ′, Q〉 (line 11). After that, the query 〈P, ̂N ′, Q〉 is tested again using
the new samples from X ′ (line 12). If a counterexample �x ∈ X ′ for 〈P, ̂N ′, Q〉
exists, we return the previous abstract DNN ̂N (line 13); otherwise the set XI

and the abstract DNN ̂N are updated accordingly for the next iteration.

Lemma 2. For any verification query 〈P,N,Q〉, if Algorithm 3 returns an
abstract DNN ̂N , then either 〈P, ̂N,Q〉 or 〈P, ̂N ′, Q〉 has a counterexample, where
̂N ′ is the abstract DNN obtained from ̂N by merging a pair of neurons in the
while-loop of Algorithm 3. Furthermore, ̂N is an over-approximation of the DNN
N according to soundness of the merge operator [16].

CLEVEREST-NN. By instantiating the abstract and test procedures in Algo-
rithm 3 and Algorithm 2 respectively, as well as the refine and verify pro-
cedures implemented as in CEGAR-NN, we obtain a concrete CEGAR-based
neural network verification algorithm, named CLEVEREST-NN. Thanks to the
completeness of verify in CEGAR-NN and the termination guarantee of the
refinement, CLEVEREST-NN is both sound and complete.
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Fig. 2. An illustrating scenario of the ACAS Xu system

In addition to solving verification queries, CLEVEREST-NN also features a
binary-search based approach to approximate the maximum robustness radius ε
such that 〈(�x, ε), N,Q〉 holds for a given DNN N , an input �x ∈ X and a post-
condition Q. To this end, for each candidate ε, we leverage the CEGAR-based
approach to verify 〈(�x, ε), N,Q〉.

5 Implementation and Evaluation

We have implemented our method in the tool CLEVEREST-NN, where the verify
and refine modules are the same as CEGAR-NN [16]. (Indeed, verify is the
Marabou DNN verification engine [29].) The input of CLEVEREST-NN is a DNN
in the NNet format, pre- and post-conditions, forming a verification query, and
the parameters (n,m,α) for adversarial attack based testing. When computing
a maximal robustness radius, the pre-condition should be an input sample, the
lower bound and upper bound of the radius, instead of a linear constraint.

We conduct experiments on 45 ACAS Xu DNNs for airborne collision avoid-
ance [27,28]. ACAS Xu is a system (cf. Figure 2) designed for an unmanned
aircraft (called Ownship) to produce horizontal turning advisories in order to
prevent a collision with another nearby aircraft (called Intruder). Each ACAS
Xu DNN has 310 neurons, 5 inputs, 6 hidden layers and 5 outputs. The five
inputs are normalized data from airborne sensors, indicating the distance ρ
between Intruder and Ownship, the relative angles θ, ψ between Ownship and
Intruder, the speeds vown and vint of Ownship and Intruder. The five outputs
represent turning advisories: strong left, weak left, strong right, weak right, or
clear-of-conflict (i.e., safe to continue along the current trajectory). The ACAS
Xu system selects one of 45 DNNs according to the data reading from the air-
borne sensors and the turning advisory of the selected DNN with the lowest
score is the final turning advisory of the system.

In our experiments, we consider two groups of verification queries and one
group of queries for computing maximal robustness radii, where the former two
groups are provided by CEGAR-NN and the latter one is obtained from Relu-
plex [28]. The first group, called COC-queries, consists of 2 verification queries
for each ACAS Xu DNN, which ensure that the DNN always advises clear-of-
conflict for distant intruders, i.e., the output of clear-of-conflict is always smaller
than the other labels (e.g., the previous runner-up operation). The second group,
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called ROB-queries, consists of 20 robustness properties with ε = 0.1 which
ensure that the DNN is robust against small input perturbations.

The third group, called MR-queries, consists of 5 queries for one chosen
ACAS Xu DNN, which are used to compute maximal robustness radii, where
the five inputs are Points 1–5 of Reluplex [28].

We first evaluate the effectiveness of our attack-guided abstraction strategy
(i.e., Algorithm 3), and then evaluate the effectiveness of our CEGAR scheme
(cf. Sect. 3.2) using the PGD adversarial attack based testing (i.e., Algorithm 2)
both for solving verification queries, and finally evaluate the performance of
the overall framework for computing maximal robustness radii. For the sake
of presentation, we refer to the different CEGAR schemes with two different
abstraction strategies as follows.

– SAT-CLEVEREST-NN = CLEVEREST-NN + abstraction-to-saturation,
– SAT-CEGAR-NN = CEGAR-NN + abstraction-to-saturation,
– ATT-CLEVEREST-NN = CLEVEREST-NN + attack-guided abstraction,
– ATT-CEGAR-NN = CEGAR-NN + attack-guided abstraction.

The experiments were conducted on a machine with Intel Xeon CPU E5-
2690 2.60GHz CPU, 64-bit Ubuntu 18.04 LTS operating systems, 256G RAM,
with a 3 h timeout per query unless stated explicitly. Note that all experiments
were performed on the CPU only for a fair comparison with CEGAR-NN. We
remark that the adversarial attack in our CLEVEREST-NN could be accelerated
using GPU. The restart times n, number of steps per time m and step size α
of the PGD adversarial attack based testing are 10, 10 and up−lp

4 , respectively,
where up and lp are the upper bound and lower bound of the inputs. Note that
we compare with [16] only because it is the only publicly available CEGAR-
based tool that abstracts/refines network structures. We expect to verify more
properties and datasets in the future, with the development and implementation
of the CEGAR-based neural network verification framework.

5.1 Performance of Our Attack-guided Abstraction

To evaluate the effectiveness of our attack-guided abstraction strategy, we com-
pare it with the abstraction-to-saturation strategy in both the CEGAR-NN
and CLEVEREST-NN frameworks (i.e., ATT-CEGAR-NN vs. SAT-CEGAR-NN
and ATT-CLEVEREST-NN vs. SAT-CLEVEREST-NN) for solving 90 (2 × 45)
COC-queries. We exclude the indicator-guided abstraction strategy, as it was
shown in [16] that the indicator-guided abstraction strategy is significantly worse
than the abstraction-to-saturation strategy in the CEGAR-NN framework.

SAT-CEGAR-NN vs. ATT-CEGAR-NN. Figure 3(a) depicts a compari-
son between ATT-CEGAR-NN and SAT-CEGAR-NN. The blue marks above the
red dashed line are the verification queries where ATT-CEGAR-NN (i.e., the
attack-guided abstraction strategy) is faster. The red marks on the top are the
verification queries where SAT-CEGAR-NN time-outs, while those on the right



CLEVEREST 463

Fig. 3. (a) Comparison between SAT-CEGAR-NN and ATT-CEGAR-NN and (b) com-
parison between SAT-CLEVEREST-NN and ATT-CLEVEREST-NN, for solving the 90
COC-queries, where the scatter plots compare execution time (log-scale, in seconds);
TO denotes timeout; ERR denotes erroneous results on abstract DNNs; the curve plots
the number of solved queries with the increased time limit per query.

are where ATT-CEGAR-NN time-outs. The yellow marks on the top are verifica-
tion queries where SAT-CEGAR-NN reported incorrect results on abstract DNNs.
SAT-CEGAR-NN reported UNSAT on 28 abstract DNNs that are indeed SAT.1

In summary, ATT-CEGAR-NN solved 55 out of 90 verification queries while
SAT-CEGAR-NN solved 41. On those solved by both tools, ATT-CEGAR-NN
is faster than SAT-CEGAR-NN on 75.68% verification queries and the average
speed-up is 2.23×. From the curve plot in Fig. 3(a), we can observe that ATT-
CEGAR-NN constantly solve more verification queries than SAT-CEGAR-NN with
the increased time limit per query. We conclude that our attack-guided abstrac-
tion strategy outperforms the abstraction-to-saturation strategy in CEGAR-NN.

SAT-CLEVEREST-NN vs. ATT-CLEVEREST-NN. Figure 3(b) depicts
a comparison between ATT-CLEVEREST-NN and SAT-CLEVEREST-NN on solv-
ing the 90 COC-queries.

In summary, ATT-CLEVEREST-NN solved 62 out of 90 verification queries
while SAT-CLEVEREST-NN solved 61. On those solved by both tools, ATT-
CLEVEREST-NN is faster than SAT-CLEVEREST-NN on 76.92% of the verifica-
tion queries and the average speed-up is 2.17×. From the curve plot in Fig. 3(b),
we can observe that ATT-CLEVEREST-NN can solve more verification queries

1 This issue has been reported to and confirmed by some authors of Marabou and
CEGAR-NN; they replied that this problem is triggered by networks having both
very small and very large weights. ATT-CEGAR-NN avoided these errors because
these abstract DNNs were proved SAT via our adversarial attack based testing. We
have performed differential verification using another sound and complete tool on
all intermediate abstract DNNs to confirm our findings.
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than SAT-CLEVEREST-NN with the increased time limit per query up to 5,500 s,
while SAT-CLEVEREST-NN becomes slightly better than ATT-CLEVEREST-NN
when the time limit per query is greater than 5,500 s.

5.2 Performance of Our CEGAR Framework CLEVEREST-NN

To evaluate the effectiveness of CLEVEREST-NN, we compare CLEVEREST-NN
and CEGAR-NN configured with the same abstraction strategy, i.e., SAT-CEGAR-
NN vs. SAT-CLEVEREST-NN and ATT-CEGAR-NN vs. ATT-CLEVEREST-NN.
We use the 90 (2 × 45) COC-queries and 900 (20 × 45) ROB-queries.

Fig. 4. (a) Comparison between SAT-CEGAR-NN and SAT-CLEVEREST-NN and (b)
comparison between ATT-CEGAR-NN and ATT-CLEVEREST-NN, for solving the 90
COC-queries.

SAT-CEGAR-NN vs. SAT-CLEVEREST-NN on COC-queries.
Figure 4(a) depicts a comparison between SAT-CEGAR-NN and SAT-
CLEVEREST-NN for solving the 90 COC-queries.

In summary, SAT-CLEVEREST-NN solved 61 out of 90 verification queries,
while SAT-CEGAR-NN solved 41 and reported erroneous results on abstract
DNNs for 28 verification queries. On those solved by both tools, SAT-
CLEVEREST-NN is faster than SAT-CEGAR-NN on 53.66% verification queries
and the average speed-up is 1.09×.

ATT-CEGAR-NN vs. ATT-CLEVEREST-NN on COC-queries.
Figure 4(b) depicts a comparison between ATT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 90 COC-queries. ATT-CLEVEREST-NN solved
62 out of 90 verification queries, while ATT-CEGAR-NN solved only 55 verifi-
cation queries without reporting erroneous results on abstract DNNs. On those
solved by both tools, ATT-CLEVEREST-NN is faster than SAT-CEGAR-NN on
74.54% verification queries and the average speed-up is 1.64×. From the curve
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plot in Fig. 4(a) (resp. Figure 4(b)), we can observe that SAT-CLEVEREST-NN
(resp. ATT-CLEVEREST-NN) constantly solved more verification queries than
SAT-CEGAR-NN (resp. ATT-CEGAR-NN) with the increased the time limit per
query with just a handful of exceptions. These results suggest that our CEGAR
framework CLEVEREST-NN is more effective than CEGAR-NN for both the
abstraction-to-saturation and attack-guided-saturation strategies.

Fig. 5. (a) Comparison between SAT-CEGAR-NN and ATT-CLEVEREST-NN for solv-
ing the 90 COC-queries, and (b) Comparison between ATT-CEGAR-NN and ATT-
CLEVEREST-NN, for solving the 900 (20 × 45) ROB-queries.

SAT-CEGAR-NN vs. ATT-CLEVEREST-NN on COC-queries.
Figure 5(a) depicts a comparison between SAT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 90 COC-queries. ATT-CLEVEREST-NN solved
62 out of 90 verification queries, while SAT-CEGAR-NN solved only 41 verifica-
tion queries and reported erroneous results on abstract DNNs for 28 verification
queries. On those solved by both tools, ATT-CLEVEREST-NN is faster than SAT-
CEGAR-NN on 81.58% verification queries and the average speed-up is 3.75×.
From the curve plot in Fig. 5(a), we can observe that ATT-CLEVEREST-NN
solved more verification queries than SAT-CEGAR-NN with the increased time
limit per query. These results reveal the improvement brought by this work over
CEGAR-NN.

ATT-CEGAR-NN vs. ATT-CLEVEREST-NN on ROB-queries.
Figure 5(b) depicts a comparison of between ATT-CEGAR-NN and ATT-
CLEVEREST-NN for solving the 900 (20 × 45) ROB-queries.

ATT-CLEVEREST-NN solved 877 out of 900 verification queries, while ATT-
CEGAR-NN solved 860 verification queries without reporting any incorrect results
on the abstract DNNs. On those solved by both tools, ATT-CLEVEREST-NN
is faster than SAT-CEGAR-NN on all the verification queries and the average
speed-up is 29.52×. These results indicate that our CEGAR framework is signif-
icantly more efficient in verifying robustness properties. We found that almost all
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Table 1. #Call per query to the
verification engine

Tool #Call

SAT-CEGAR-NN 2.24

SAT-CLEVEREST-NN 1.09

ATT-CEGAR-NN 2.49

ATT-CLEVEREST-NN 1.00

Table 2. #Binary search step

Index 1 Index 2 Index 3 Index 4 Average

Noc Noa Noc Noa Noc Noa Noc Noa Noc Noa

Point 1 1 3 1 8 4 9 2 2 2.0 5.5

Point 2 1 2 1 3 1 3 1 3 1.0 2.75

Point 3 1 3 1 2 1 1 1 1 1.0 1.75

Point 4 1 5 1 6 1 6 1 6 1.0 5.75

Point 5 1 1 1 1 1 1 1 1 1.0 1.0

ROB-queries are non-robust on which ATT-CLEVEREST-NN is able to disprove
most of the verification queries without invoking the verification engine.

Understanding the Improvements. To understand why ours can improve
the performance, we analyze the usage of the underlying verification engine and
compare the execution time of test and verify operations on abstract DNNs,
for verifying the 90 COC-queries.

Table 1 reports the number of average calls to the verification engine per
verification query (where the verification queries on which CEGAR-NN reported
erroneous results on abstract DNNs are excluded). We can observe that both
our attack-guided abstraction and abstract-test-refine paradigm can reduce the
usage of formal verification (except for SAT-CEGAR-NN vs. ATT-CEGAR-NN),
which play a major role in improving the efficiency. When ATT-CLEVEREST-NN
is used, the verification engine is invoked only once per verification query. (Note
that the only verification is unavoidable, because all the 90 COC-queries are
UNSAT, so the verification engine has to be used to prove UNSAT.) The number of
calls to the verification engine for SAT-CEGAR-NN and ATT-CEGAR-NN is some-
how counter-intuitive. We found it is because SAT-CEGAR-NN often performs
a large number of merge operations in one refinement step to exclude a coun-
terexample, while ATT-CEGAR-NN only performs few merge operations in one
refinement step to exclude a counterexample. The execution time is improved
by reducing the number merge operations.

Fig. 6. Comparison of test and verify operations on abstract DNNs between
CLEVEREST-NN and CEGAR-NN.
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Figure 6 depicts the execution time of test and verify operations on
abstract DNNs between CLEVEREST-NN and CEGAR-NN using both abstrac-
tion strategies, where the last calls to the verification engine are executed. We
can observe that testing is significantly faster than formal verification. Indeed,
the average testing time used by CLEVEREST-NN is 0.26s while the average ver-
ification time used by CEGAR-NN is 1006.94s, with average speed-up 31,513×
per verification query.

5.3 Approximating Maximum Robustness Radii

To evaluate CLEVEREST-NN for approximating maximum robustness radii, we
compare the number of binary-search steps of ATT-CLEVEREST-NN and ATT-
CEGAR-NN within 6 h on the 20 MR-queries, where the larger number indi-
cates better capability for approximating maximum robustness radii. The 20
MR-queries are obtained from the Points 1–5 of Reluplex [28] each of which has
four queries (named Index 1–4) for approximating maximum robustness radii
without changing the clear-of-conflict output advisory.

The results are shown in Table 2, where columns (Noc) and (Noa) give the
number of binary search steps of ATT-CEGAR-NN and ATT-CLEVEREST-NN
respectively. We can observe that ATT-CLEVEREST-NN excels in this case.

6 Related Work

CLEVEREST proposes a synergy between testing and CEGAR-based formal ver-
ification for neural networks. As there is a vast amount of literature regarding
these topics, we discuss here the most relevant ones.

Robustness Testing. The robustness of neural networks have received exten-
sive attention over the past few years. Many adversarial attacks under the white-
box setting have been proposed [6,12,20,32,38,45], where white-box means that
all information about the network is available. White-box adversarial attacks
often find counterexamples by leverage gradient information, therefore are highly
efficient. There also exist black-box adversarial attacks [4,9] that use only the
inputs and outputs of the network to find counterexamples. We instantiate our
methodology by leveraging the PGD adversarial attack which is a white-box one,
as it is generally assumed that all network details are known during network ver-
ification. Remarkably, both black-box and white-box adversarial attacks could
be leveraged in our CEGAR scheme thanks to the generality of our methodology.

Neural networks have also received attention from the perspective of tra-
ditional software testing. For example, DeepXplore [46] proposes the notion of
neuron coverage to guide the testing process. Following their idea, a series of
coverage criteria have been suggested for neural network testing [30,36]. Con-
ventional testing techniques have also been adapted to test neural networks, such
as concolic testing [53] and mutation testing [37]. We did not use neuron cov-
erage to guide testing in this work, as several coverage metrics are not related
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to robustness [13] and coverage-guided testing is mainly used to improve the
coverage, instead of quickly finding counterexamples.

Neural Network Verification. Various formal verification techniques have
been proposed to verify neural networks including robustness and fairness prop-
erties, based on abstract interpretation [18,21,33,40,42,49,50,56,57,59,60,62,
63,65], and constraint solving (e.g., SMT [15,24,28,29,48], LP and MILP [5,
14,34,55,61]). Although these approaches feature theoretical guarantees, they
usually suffer limitations in either scalability or efficiency, hence are difficult to
be applied to precisely verify large models in practice. To address the issue,
different approaches have emerged. A few approaches, such as proof reuse [17],
input quantization [26], divide-and-conquer [5], eager falsification [23] and net-
work abstraction [2,16,19,47,52], have been proposed to accelerate the veri-
fication while some others were proposed to refine either the estimated output
ranges [50,60,63,65] or the abstract network [16,44]. We instead offer an alterna-
tive solution by integrating the efficient yet inaccurate testing techniques into the
CEGAR-based verification framework. As mentioned before, we did not compare
with these approaches, as our main goal is to push the frontier of CEGAR-based
verification approaches towards which this work makes a significant step.

Our methodology is general and can leverage any testing methods, iterative
abstractions, CEGAR-based schemes and back-end verification engines. As these
continue to improve, it is expected that our method will become more scalable.

Combination of Testing and Verification. There also exist techniques in
the conventional software verification field combining testing and verification to
mitigate the high complexity of verification. For instance, the authors in [11,25]
combine both techniques together but the techniques do not assist each other.
Instead, they test and verify different subprograms separately by program par-
titioning or constructing residual programs. The approaches proposed in [43,64]
leverage testing techniques to choose a good abstraction for verification, whilst
the authors utilize the information from testing to refine the abstraction in the
case spurious counterexamples are found [3,22]. Our methodology CLEVEREST
presents the first attempt to synergistically combine these two complementary
techniques under the neural network setting, specifically, accelerating the de
facto CEGAR framework by integrating the abstract-test-refine paradigm.

7 Conclusion

In this paper, we have proposed a new CEGAR-based framework CLEVEREST
for DNN verification by synergistically combining testing and CEGAR-based ver-
ification techniques, which brings the best of both worlds. We have instantiated
and implemented our methodology by leveraging the CEGAR-NN verification
approach and the PGD adversarial attack, giving rise to the tool CLEVEREST-
NN. Extensive experiments on the ACAS Xu DNN benchmark demonstrated the
efficacy of our methodology.
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A Appendix

A.1 PGD Adversarial Attack Algorithm

Algorithm 4 describes the process of the PGD adversarial attack. Given a DNN
N , an input �x ∈ X, the number of restart times n, the number of iteration steps
per time m, a step size α, a L∞ norm distance threshold ε, Algorithm 4 returns
either an adversarial example �x′ such that Nc(�x) 
= Nc(�x′) and ‖�x − �x′‖∞ ≤ ε,
or NULL indicating that no adversarial example can be found.

In detail, the outer for-loop (lines 1–11) performs up to n times of iterations,
each of which has a randomized seed �x′ obtained by adding a Gaussian noise
δ onto the input �x (lines 2–3). During each iteration of the outer for-loop, the
inner for-loop (lines 4–10) iteratively computes a seises of new samples (up to
m samples) starting from the randomized seed �x′.

During each iteration of the inner for-loop (lines 4–10), Algorithm 4 first com-
putes the classification result y = Nc(�x′) of the DNN N by forward propagating
the input �x′ and then compares the result with the ground-truth class Nc(�x). If
they are different, �x′ is an adversarial example and Algorithm 4 returns �x′. If
they are the same, then �x′ not is an adversarial example. Algorithm 4 performs a
backward propagation to get the gradient ∇�x (line 9) from which a new sample
�x′ is created (line 10).

Algorithm 4: PGD adversarial attack
input : a DNN N , an input �x, restart times n, number of steps per time m,

step size α, L∞ norm distance threshold ε
output: adversarial example �x′ or NULL

1 for i ← 1 to n do

2 Generate a Gaussian noise �δ such that ‖�δ‖∞ ≤ ε;

3 �x′ ← �x + �δ; /* Create a randomized seed */

4 for j ← 1 to m do
5 y ← Nc(�x

′); /* Get the model output */

6 if y �= Nc(�x) then
7 return �x′; /* Find an adversarial example */

8 else
9 ∇�x ← back propagate(N, J(�x′, Nc(�x))); /* Get gradient */

10 �x′ ← clipε,�x(�x′ + α × sign(∇�x)); /* Compute a new sample */

11 return NULL;
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