
176

Sound and Reusable Components for Abstract Interpretation

SVEN KEIDEL and SEBASTIAN ERDWEG, JGU Mainz, Germany

Abstract interpretation is a methodology for defining sound static analysis. Yet, building sound static analyses

for modern programming languages is difficult, because these static analyses need to combine sophisticated

abstractions for values, environments, stores, etc. However, static analyses often tightly couple these abstrac-

tions in the implementation, which not only complicates the implementation, but also makes it hard to decide

which parts of the analyses can be proven sound independently from each other. Furthermore, this coupling

makes it hard to combine soundness lemmas for parts of the analysis to a soundness proof of the complete

analysis.

To solve this problem, we propose to construct static analyses modularly from reusable analysis components.

Each analysis component encapsulates a single analysis concern and can be proven sound independently from

the analysis where it is used. We base the design of our analysis components on arrow transformers, which

allows us to compose analysis components. This composition preserves soundness, which guarantees that a

static analysis is sound, if all its analysis components are sound. This means that analysis developers do not

have to worry about soundness as long as they reuse sound analysis components. To evaluate our approach,

we developed a library of 13 reusable analysis components in Haskell. We use these components to define a

k-CFA analysis for PCF and an interval and reaching definition analysis for a While language.
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1 INTRODUCTION

Abstract interpretation [Cousot and Cousot 1979] is a methodology for defining sound static
analysis. A static analysis is sound if it predicts, at compile time, all relevant dynamic behavior
of a program. For example, if a sound static nullness analysis claims a variable is not null, then
this variable may not store a null pointer in any execution of the program. Analysis soundness is
important whenever a developer or optimizing compiler acts on the analysis result [Knoop and
Rüthing 1999]. For example, when a developer or compiler omits a null check, only a sound nullness
analysis can provide the required guarantee that this check is indeed redundant.

Building sound static analyses for modern programming languages is difficult. Analysis develop-
ers must provide abstractions for all values (e.g., integers, strings, objects) as well as for all effects
(e.g., environments, stores, exceptions) supported by the analyzed language. The combination of
these abstractions forms the essence of a static analysis. However, a static analysis often closely cou-
ples different abstractions, which makes it harder to replace them. This coupling also complicates a
soundness proof, as it is not clear which parts of the analysis can be proven sound independently

Authors’ address: Sven Keidel; Sebastian Erdweg, JGU Mainz, Germany.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/10-ART176

https://doi.org/10.1145/3360602

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 176. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3360602
https://doi.org/10.1145/3360602
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3360602&domain=pdf&date_stamp=2019-10-10


176:2 Sven Keidel and Sebastian Erdweg

and which parts have to be proven together. Furthermore, the coupling makes it hard to establish
an end-to-end soundness proof, from soundness lemmas for each part of the analysis.

In this paper, we propose analysis components as modular building blocks for static analyses. An
analysis component is governed by an interface I that describes which concern of the analyzed
language the component implements. For example, an analysis component for stores will enlist
read and write operations in its interface I. The crucial feature of analysis components is that they
can be proven sound individually, and the soundness of the complete static analysis follows by
construction. To this end, each analysis provides both the canonical concrete semantics C and an
abstract semantics Ĉ for the operations enlisted in the interface. An analysis component is sound if
for each operation in I, the abstract semantics Ĉ approximates the concrete semantics C. Analysis
developers can use such analysis components as building blocks to construct sound static analyses.

In our approach, analysis developers define a static analysis as an interpreter against the interfaces
of analysis components. We call such an interpreter a generic interpreter because it is not specific
to the concrete or abstract semantics stipulated by the analysis components. Indeed, we can
instantiate the same generic interpreter to obtain a range of alternative language semantics by
selecting compatible components:

• We obtain a concrete interpreter using the canonical concrete semantics C of the components.
• We obtain an abstract interpreter using the abstract semantics Ĉ of the components.

A key theoretical result of this work is that the instantiated abstract interpreter is guaranteed to
soundly approximate the instantiated concrete interpreter if the used analysis components are
sound. That is, analysis developers do not need to worry about soundness as long as they combine
sound analysis components.

As consequence of our design, the same analysis component can be reused across analyses and
across languages without change. For example, when researchers discover a new abstraction for
stores, they can cast it as an analysis component implementing the Store interface and prove the
component sound. Afterwards, any existing analysis that uses a Store component can easily be
upgraded to use the new abstraction, without needing to revisit the soundness of the analysis.
Moreover, many analysis components like Store are actually language-independent and can
be reused across languages. Indeed, most language-specific behavior is captured by the generic
interpreter. Thus, to target a new language, an analysis developer can reuse existing analysis
components and only has to develop a generic interpreter for the new language.

We demonstrate that our design of analysis components is feasible by developing the component-
based analysis framework in Haskell. In our framework, we represent analysis components as a
pair of arrow transformers, a generalization of monad transformers. We can compose these arrow
transformers and use them to instantiate the generic interpreter, thus obtaining executable concrete
and abstract interpreters. We extend the arrow-based theory on compositional soundness proofs for
abstract interpreters by Keidel et al. [2018] to allow reasoning about isolated arrow transformers.
This forms the basis of our new theory about horizontal and vertical composability of analysis
components, and the proof obligations entailed thereby.
We evaluate our design by creating the open-source library Sturdy of 13 sound analysis com-

ponents in Haskell. We demonstrate the applicability of our analysis components by using them
to define well-known analyses: A k-CFA analysis [Shivers 1991] for PCF as well as an interval
analysis [Nielson et al. 1999] for a While language. We were able to define both analyses modularly
by describing generic interpreters and analysis components separately. We then changed theWhile

analysis in two different ways to study the impact on the analysis definition and soundness proof.
First, we changed the analysis to additionally compute reaching definitions [Nielson et al. 1999]
rather than intervals only. Second, we changed the While language to add exception handling.
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In both cases, changes were confined to a single analysis component and the generic interpreter,
whereas the rest of the analysis definition and soundness proofs remained stable.

In summary, we make the following contributions:

• We propose an approach for the modular construction of static analyses from reusable analysis
components, which are based on arrow transformers (Section 2).
• We define a soundness proposition for analysis components and demonstrate how they can be
shown sound in isolation (Section 3).
• We develop a theory that explains the horizontal and vertical composition of analysis compo-
nents and when their soundness is preserved (Section 4).
• We prove that a static analysis based on analysis components is sound, if all its analysis
components are sound (Section 5).
• We provide an open-source library of reusable analysis components in Haskell (Section 6).
• We evaluate the applicability and reusability of our components by defining a k-CFA analysis,
an interval analysis, and a reaching definitions analysis (Section 7).

2 ANALYSIS COMPONENTS BY EXAMPLE

Static analyses mix language concerns, which convolutes their implementation and soundness
proof. In this section, we first illustrate the problems that arise when analyses mix concerns, before
sketching our solution of analysis components.

2.1 Problem Statement

A static analysis is sound if it correctly approximates the concrete semantics. Analysis soundness
has been specifically well-studied for abstract interpreters, which need to approximate the concrete
interpreter. Unfortunately, the soundness criteria for abstract interpreters requires reasoning about
the whole interpreter definition. As we show here, such non-modular reasoning quickly becomes
unwieldy, even for simple languages.
For example, consider the following concrete interpreter run and abstract interpreter r̂un for a

simple While language implemented in Haskell. We only show the case for assignments Assign.

data Expr = . . .

data Statement = Assign Var Expr | If Expr [Statement] [Statement] | While Expr [Statement]

run :: Map Var Addr1 → Map Addr Val2 → [Statement] → Maybe3 (Map Addr Val2)

run env1 store2 (Assign var expr : rest) = case3 eval env1 store2 expr of

Just3 val → case lookup1 var env1 of

Just addr → run env1 (insert2 addr val store2) rest

Nothing → let addr = alloc env1 var

in run (insert1 var addr env1) (insert2 addr val store2) rest

Nothing3 → Nothing3

r̂un :: Map Var Addr1 → M̂ap Addr V̂al2 → Int4 → [Statement]→�Maybe3 (M̂ap Addr V̂al2)

r̂un _ _ fuel4 _ | fuel ≤ 04 = JustOrNothing3 ⊤2

r̂un env1 store2 fuel4 (Assign var expr : ss) = case3 �eval env1 store2 expr of

Just3 val → case lookup1 var env1 of

Just addr → r̂un env1 (insertWith2 (⊔) addr val store2) (fuel-14) ss

Nothing → let addr = �alloc env1 store2 var val

in r̂un (insert1 var addr env1) (insertWith2 (⊔) addr val store2) (fuel-14) ss

Nothing3 → Nothing3

JustOrNothing3 val → Nothing3 ⊔ (... same code as for Just3 val)
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The concrete interpreter run takes an environment (mapping variables to addresses) and a store
(mapping addresses to values), and yields a possibly updated store if the execution does not fail.
The interpreter code itself is standard, but we color-coded and enumerated the parts of the code
that relate to different concerns: environment1, store2, and failure3.

The abstract interpreter r̂un handles a fourth concern: termination4. In this simple example, we
use a fuel counter that we decrease on every recursive call, and we top out when no fuel is left. For
the environment1 concern, r̂un uses the same representation and operations as run, but addresses
may now be shared between variables. For the store2 concern, r̂un uses a representation that maps
addresses to an abstract value domain V̂al, and it uses insertWith to join values in the store. Finally,
for the failure3 concern, r̂un uses a representation with a third alternative JustOrNothing.

Even though the analysis r̂un is fairly simple, it highlights two key challenges when developing
sound static analyses:

Modular Implementation The code of r̂un fails to separate concerns and mixes them with
language-specific code. That is, all concerns are directly addressed in the analysis code and
there is high coupling. This entails the standard problems [Parnas 1972]: It becomes hard to
update the code of one concern without affecting other concerns.
Ideally, we would like to implement each concern separately and independent of r̂un as a
reusable component. That is, we would like to hide the implementation of each concern behind
an interface and only use that interface in r̂un. We could then instantiate r̂un by selecting
and composing appropriate components. This would allows us, for example, to exchange the
implementation for stores without having to think about environments or failures. This would
also make it easier to adapt the analysis when the analyzed language changes. Many existing
analysis frameworks separate concerns to some extent (e.g., call graph construction and transfer
functions), but in a way that precludes addressing the second challenge.

Modular Soundness Proof The entanglement of concerns in r̂un also complicates the soundness
proof significantly. In order to show that r̂un soundly approximates run, we have to reason
about all concerns at once. Moreover, a change to any of the concerns potentially invalidates
the entire soundness proof. Essentially, the problems from the implementation are reflected in
the soundness proof: It becomes hard to update the code of one concern without affecting the
other ones.
Ideally, we would like to prove the soundness of each component separately and independent
of r̂un. That is, we would like to find a soundness proposition that we can prove separately for
each component, and only use that proposition in the soundness proof of r̂un. We can then
obtain a provably sound analysis by instantiating r̂un with appropriate components, as long as
each component satisfies the soundness proposition. One of the key questions is how such a
soundness proposition may look like, and how sound components can be composed to yield
sound compound components.

In the remainder of this section, we will discuss two designs of components for modularly defined
and sound static analyses. The first component design is simple yet fails to address our challenges,
illustrating why a good component design is difficult to come by. We resolve these issues in our
second component design, which is based on arrow transformers.

2.2 A First Attempt to Design Analysis Components

In this subsection, we propose a preliminary design for analysis components that addresses parts of
the two challenges of the previous subsection. In this preliminary design, an analysis component
consists of four parts, as we illustrate in Figure 1: An interface describing the operations of the
component, a concrete and an abstract instance of the interface to define the concrete and abstract
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Interface Soundness Proof

class ExceptOps exc e where

throw :: e → exc e x

catch :: exc e y → (e → y) → y

throw Û⊑ �throw
catch Û⊑ �catch

Concrete Instance Abstract Instance

data Except e x =

Success x | Fail e

instance ExceptOps Except e where

throw e = Fail e

catch exc h = case exc of

Success x → x

Fail e → h e

data �Except e x =

�Success x | �Fail e | �SuccessOrFail x e

instance ExceptOps �Except e where

�throw e = �Fail e

�catch exc h = case exc of

�Success x → x

�Fail e → h e

�SuccessOrFail x e → x ⊔ h e

Fig. 1. Preliminary design of an analysis component for exceptions. We write f Û⊑ f̂ as a short-hand to say

that f̂ soundly approximates f.

semantics, and a proof that the abstract semantics soundly approximates the concrete semantics
for each operation.

We illustrate this design in Figure 1 for a component providing exception handling. The interface
is parameterized by an exception type exc e x, which describes a computation that throws an
exception e or terminates successfully with x. The catch operation takes a computation exc e y and
extracts the value y or handles the exception with (e→y). The concrete instance of the component
use data type Except as exception type and implements the operations in a standard way. The
abstract instance uses error type �Except that has an extra case �SuccessOrFail, representing a
computation that succeeded or failed. For �SuccessOrFail, the abstract�catch joins (⊔) the outcomes
of the success and fail cases. Finally, the component contains a soundness proof for �throw and
�catch (we skip the details for now). This preliminary design of analysis components addresses
parts of our design challenges, but not all of them:

Modular Implementation We succeeded in encapsulating analysis concerns in components,
and components can be exchanged with other components implementing the same interface.
However, our components do not compose. For example, consider the composition of the
exception component from above with a component for stores. The problem is that the exception
component describes computations of the form e→y (see the type of catch), where the store
component describes computations of type (store,x)→(store,y). To add stores, we would
need to change the type of the catch operation to thread a store:
catch :: (store,exc e y) → (e → (store,y)) → (store,y)

This is not modular because the interface for the exception component has changed in an
incompatible way and we cannot reuse previous implementations. To resolve this, we need
to make the exception component parametric in the shape of computations so that it can
accommodate effects (like store passing) imposed by other components.

Modular Soundness Proof We succeeded in making the soundness of each analysis component
separately provable. For example, we can show that �catch soundly approximates catch given
a standard Galois connection between Except and �Except. But as long as the composition
of components requires changes to the interface or instances to accommodate new effects,
previous soundness proofs become void. The question is what happens when we follow our
plan of making components parametric in the shape of computations. This will require us to
make the soundness proofs parametric, too, meaning we need to proof soundness independent
of effects imposed by other components.

In the following subsection, we refine our first design to address both challenges.
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Interface Soundness Proof

class ArrowExcept e c where

throw :: c e x

catch :: c x y → c (x,e) y → c x y

∀c⇆ ĉ,

throwc Û⊑�throwĉ
catchc Û⊑�catchĉ

Concrete Instance Abstract Instance

data Except e x =

Success x | Fail e

type ExceptT e c x y = c x (Except e y)

instance ArrowExcept e (ExceptT e c)

throw = proc e → returnA � Fail e

catch f h = proc x → do

exc ← f � x

case exc of

Success x → returnA � x

Fail e → h � (x,e)

data �Except e x =

�Success x | �Fail e | �SuccessOrFail x e

type �ExceptT e c x y = c x (�Except e y)

instance ArrowExcept e ( �ExceptT e c)

�throw = proc e → returnA � �Fail e

�catch f h = proc x → do

exc ← f � x

case exc of

�Success y → returnA � y

�Fail e → h � (x,e)

�SuccessOrFail y e → (returnA � y)

⊔ (h � (x,e))

Fig. 2. An arrow-based analysis component for exceptions.

2.3 Arrow-Based Analysis Components

In the previous subsection, we presented a preliminary design for analysis components that
supported separation of concerns but failed to support component composition. To make analysis
components composable, we abstract over the effects imposed by other components using a higher-
order type parameter c, which we add to each interface as illustrated in Figure 2 for exceptions. The
type parameter c has kind ∗→∗→∗ and describes computations, that is, c x y is a computation
with input x and output y. In the literature, this design is known as arrows [Hughes 2000]

Arrows abstract over effects of computations and are a generalization of monads. For example,
we can define an arrow Arr as Arr x y = (Store,x)→Except e (Store,y), which represents a
computation that threads a store and may yield an exception. But, importantly, we can define
parametric arrow computations without specifying the exact arrow type. This is similar to monads,
which provide return and bind operations for defining parametric monadic computations. The set
of operations for arrows is somewhat larger, but in this paper we will hide the details using the proc-
notation [Paterson 2001] that is similar to monadic do-notation. For example, the implementation
of catch in the concrete instance of Figure 2 uses proc x→... to introduce an arrow computation
that binds the input to x. Arrow statement exc←f � x runs f on input x and binds the result to
variable exc. Function returnA has type (c x x) and embeds its input as an arrow output.

Keidel et al. [2018] have previously explored the usage of arrows in the definition of abstract
interpreters. They showed that it is possible to define an arrow type for the concrete domain
and a separate arrow type for the abstract domain, such that a single generic interpreter can be
instantiated to yield the concrete and abstract semantics, respectively. They also showed that this
design allows compositional soundness proofs, where each operation of the arrows can be verified
independently and the soundness of the instantiated interpreters follows by construction. However,
Keidel et al. fail our goal: Their arrows only separate concrete from abstract domain but fail to
separate concerns like exceptions and storesÐthey did not consider analysis components.
Inspired by their work, we use arrows in the interface of our analysis components. However,

components can only be composable if their implementations permit effects from other compo-
nents. To this end, we define the concrete and abstract instances of our analysis components
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using arrow transformers. An arrow transformer wraps an arrow type to impose additional effects.
For example, the concrete instance in Figure 2 uses arrow transformer ExceptT e c, which adds
exceptions of type e to the output of a computation c. We do the same in the abstract instance
using arrow transformer �ExceptT e c. Using arrow transformers, the implementation of the con-
crete and abstract operations is parametric in the underlying arrow except for the locally added
effect (here: the propagation and representation of exceptions). From now on, we use the notation
⟨ExceptT, �ExceptT⟩ArrowExcept to refer to analysis components.
The revised design based on arrow-transformers addresses both of our design goals, where our

preliminary design fell short:

Modular Implementation Each component encapsulates a single analysis concern and is ex-
changeable with other components implementing the same interface. However, in contrast to
our preliminary design, analysis components based on arrow transformers are composable. For
example, we can compose the exception component ⟨ExceptT, �ExceptT⟩ArrowExcept with a store
component ⟨StoreT,�StoreT⟩ArrowStore to obtain a component which combines both effects:

⟨ExceptT, �ExceptT⟩ArrowExcept ◦ ⟨StoreT,�StoreT⟩ArrowStore
= ⟨ExceptT ◦ StoreT, �ExceptT ◦�StoreT⟩ArrowExcept+ArrowStore

Specifically, the composition of arrow transformers stacks their effects (ExceptT e (StoreT c)),
while the composition of interfaces combines all operations in a new interface. We do not need
to change the implementation of either component. Like monad transformers [Liang et al. 1995],
the composition of arrow transformers requires a lifting of the inner arrow transformer to the
outermost transformer. We show in our evaluation that these liftings are mostly boilerplate
and can be derived automatically.

Modular Soundness Proof Like in the preliminary design, we can prove soundness of an arrow-
based component by proving each operation of the interface sound. However, since we use
arrow transformers, components are parametric in the effects of other components and the
soundness proof must be parametric as well. That is, we must show that �throwĉ is sound with
respect to throwc for any related arrows ĉ and c. We found that such generic soundness proofs
are feasible and we provide a large library of provably sound analysis components in Section 6.
Sound analysis components following our design are freely composable and their composition
always remains sound. We provide the formal results in the upcoming sections.

2.4 Instantiating Concrete and Abstract Interpreters

Using the analysis components described in the previous subsection, we can refactor the concrete
and abstract interpreter of Section 2.1. First, we extract a generic interpreter as proposed by Keidel
et al. [2018] to capture the similarities of the concrete and abstract interpreter. In contrast to Keidel
et al., we parameterize the generic interpreter using the interfaces of analysis components:

runGeneric :: (ArrowEnv String addr c, ArrowStore addr val c, ArrowExcept e c, ArrowFix c)

⇒ c [Statement] ()

runGeneric = fix $ λrun' → proc stmts → case stmts of

Assign var expr : rest → do

val ← eval � expr

addr ← lookup id alloc � var

write � (addr,val)

local run' � (var,addr,rest)

...
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The second step of our refactoring is to compose analysis components implementing all required
interfaces of the generic interpreter:

⟨EnvT,�EnvT⟩ArrowEnv ◦ ⟨StoreT,�StoreT⟩ArrowStore ◦ ⟨ExceptT, �ExceptT⟩ArrowExcept ◦ ⟨Fix, F̂ix⟩ArrowFix
The order in which the analysis components are composed matters. For example, in the order
above, we obtain a language semantics in which store updates in a try block are reset whenever
an exception occurs. In contrast, if we swap the order of the store and exception component, we
obtain a language semantics in which store updates persist whenever an exception occurs.

The third and final step is to obtain the original concrete and abstract interpreters from Section 2.1
by instantiating the generic interpreter. The concrete slice of the composed analysis component
yields the concrete interpreter, the abstract slice yields the abstract interpreter. In Haskell it suffices
to specify the desired interpreter type and let the implicit type-class inference select the correct
component instances.

run :: EnvT (StoreT (ExceptT Fix)) [Statement] ()

run = runGeneric

r̂un :: �EnvT (�StoreT ( �ExceptT F̂ix)) [Statement] ()

r̂un = runGeneric

As we show in the following sections, we obtain that an abstract interpreter r̂un soundly
approximates a concrete interpreter run if they are instances of the same generic interpreter and
the fully-composed analysis component is sound. The fully-composed analysis component is sound
if all individual analysis components are sound. Thus, analysis soundness follows directly from
using sound analysis components.

3 ANALYSIS COMPONENTS AND THEIR SOUNDNESS

To be able to rely on the results of an analysis, the analysis has to be proven sound. In this section,
we describe our analysis components formally and how to prove them sound.

To set the stage, let us first recall the definition of soundness [Cousot 1999]: A concrete function
f : A → B is sound with respect to an abstract function f̂ : Â → B̂, if all behavior of f is
overapproximated by f̂ . More formally, let αA : PA ⇆ Â : γA and αB : PB ⇆ B̂ : γB be Galois
connections between concrete and abstract domains, then

f is sound w.r.t. f̂ iff ∀X ∈ PA. αB { f (x) | x ∈ X } ⊑ f̂ (αA(X )).

Here the powersets PA and PB describe properties of the concrete domain. Given such a property
X ∈ PA about the inputs of f , the set { f (x) | x ∈ X } describes the strongest post-condition of f
for the pre-condition X .
This soundness proposition is relative to the Galois connection (αA,γA) and (αB,γB ). These

Galois connections describe how concrete properties PA and PB correspond to abstract values Â
and B̂. Choosing a Galois connection and an ordering of the abstract domains Â and B̂ is part of the
analysis design and different Galois connections provide different soundness guarantees. In the
following subsection, we describe how to construct Galois connections for analysis components.

3.1 Galois Connections between Analysis Components

Proving soundness requires a Galois connection that relates a concrete domain A to an abstract
domain Â. A Galois connection [Ore 1944] between two preorders A and Â consists of a pair of
monotone functions (α,γ ), where α : A→ Â is called the abstraction function and γ : Â→ A is
called the concretization function, such that

∀x ∈ A, x̂ ∈ Â. α(x) ⊑Â x̂ iff x ⊑A γ (x̂).
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Our analysis components consist of operations over a pair of arrow transformers. To relate
these operations in a soundness proof, we need to define a Galois connection between these arrow
transformers. However, we first describe the shape of Galois connections for regular arrows, because
this will guide the design of Galois connections for arrow transformers.

In the following, we use the notation G(A, Â) to denote the set of all Galois connections between
the typesA and Â. An arrow C is a function that constructs the type of a computation C(A,B), whose
input type is A and output type is B. Analogously, a Galois connection between two arrows [Keidel
et al. 2018] C and Ĉ is a function that takes a Galois connection between the inputs G(PA, Â) and
outputs G(PB, B̂) and constructs Galois connection between the arrow types:

∀A, Â,B, B̂. G(PA, Â) × G(PB, B̂) → G(C(A,B), Ĉ(Â, B̂)).

Since our analysis components consist of arrow transformers, we need to generalize the construc-
tion further. A Galois connection between arrow transformers T and T̂ maps a Galois connection
between the underlying arrow types C and Ĉ to a Galois connection between the transformed
arrow types T (C) and T̂ (Ĉ).

Definition 3.1. A Galois connection for an analysis component ⟨T , T̂ ⟩ is a Galois connection
between the two arrow transformers T and T̂ . It has the following type:

∀C, Ĉ. [∀A, Â,B, B̂.G(PA, Â) × G(PB, B̂) → G(C(A,B), Ĉ(Â, B̂))]

→ [∀A, Â,B, B̂.G(PA, Â) × G(PB, B̂) → G(T (C)(A,B), T̂ (Ĉ)(Â, B̂))] .

That is, given a Galois connection between the underlying arrow types C and Ĉ, the function
constructs a Galois connection between the arrows T (C) and T̂ (Ĉ).

The design of an analysis component crucially depends on the choice of Galois connection.
The Galois connection dictates how the component’s abstract arrow transformer needs to ap-
proximate the concrete transformer. Moreover, the Galois connection is not uniquely determined;
different Galois connections provide different soundness guarantees. Therefore, the developer of
an analysis component also has to specify the corresponding Galois connection in accordance with
Definition 3.1.

Example 3.2. For example, a Galois connection between two exception arrow transformers
ExceptTE (C)(A,B) = C(A, Error E B) and �ExceptTÊ (C)(A,B) = C(A,�Error Ê B) has the type

∀C, Ĉ. [∀A, Â,B, B̂.G(PA, Â) × G(PB, B̂) → G(C(A,B), Ĉ(Â, B̂))]

→ [∀A, Â,B, B̂.G(PA, Â) × G(PB, B̂) → G(ExceptE (C)(A,B), ExceptÊ (Ĉ)(Â, B̂))] .

To construct this Galois connection, we extend the Galois connections for domain and codomain
to include the extra data of the exception arrow transformer. From a Galois connection (αE ,γE )
between the exception types and a Galois connection (αB,γB ) between the codomains, we can
easily derive Galois connections (αError,γError) ∈ G(P(Error E B),�Error Ê B̂) for the codomain
of the exception transformers. Then from the Galois connection (αC,γC) between the underlying
arrows and (αA,γA) between the domains, we construct the Galois connection of the underlying
exception transformer types:

αExceptT = αC((αA,γA), (αError,γError)) γExceptT = γC((αA,γA), (αError,γError))

Importantly, all Galois connections of analysis components have the same type shown in Defini-
tion 3.1. This allows us to compose these Galois connections with regular function composition.
This becomes important, when we compose analysis components, which we discuss in Section 4.
With Galois connections between arrow transformers, we can develop the soundness proposition
of analysis components.
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3.2 Soundness of Analysis Components

In this subsection, we describe how to prove soundness of analysis components, and what soundness
means exactly. In particular, we develop a theory for analysis components and their soundness
proofs that allows us to express soundness of arrow operations of arbitrary arity and type. To this
end, we first describe our analysis components more formally.

An analysis component consists of a type class describing the interface of the component and two
instances for two arrow transformers. Type classes and their instances can be described by algebras
for a functor [Hamana and Fiore 2011]. The functor describes the codomain of each operation of

the type class. For arrow type classes, this functor has type SetU×U → Set
U×U , i.e., it maps arrow

types to arrow types. For example, we can describe the type class ArrowExcept in Figure 2 with the
functor

ArrowExceptE (C)(X ,Y ) = [X ≡ E] + [C(X ,Y ) × C(X × E,Y )] .

The first operand of the coproduct describes the type ofthrow and the second operand the arguments
of catch. An algebra over a functor F is a function of type ∀X ,Y . F (C)(X ,Y ) → C(X ,Y ). This
function combines all operations of the type class. In case of ArrowExcept, the algebra combines
a computation C(E,Y ) for throw and a function C(X ,Y ) × C(X × E,Y ) → C(X ,Y ) for catch. In
addition, the functor is parameterized by other arguments of the type class. For example, the functor
ArrowExceptE is parameterized by the type of exceptions E.

With this theory, we define our analysis components formally as follows:

Definition 3.3 (Analysis Component). An analysis component ⟨f , f̂ ⟩ : ⟨T , T̂ ⟩F is a pair of al-

gebras ⟨f , f̂ ⟩ over a functor F : SetU×U → Set
U×U , where ⟨f , f̂ ⟩ is a pair of functions fC :

F (T (C))(X ,Y ) → T (C)(X ,Y ) and f̂ Ĉ : F (T̂ (Ĉ))(X ,Y ) → T̂ (Ĉ)(X ,Y ).

In this definition, F defines the interface of the analysis components, f and f̂ implement the
interface for arrow transformers T and T̂ .
This formal definition of analysis components allows us to define their soundness proposition

precisely:

Definition 3.4 (Soundness of Analysis Components). Given an analysis component ⟨f , f̂ ⟩ : ⟨T , T̂ ⟩F
and a Galois connection for the arrow transformers of this analysis component, then the analysis
component ⟨T , T̂ ⟩F is sound iff all operations of F are pair-wise sound in f and f̂ according to the
Galois connection. More formally, let F = F1 + . . . + Fn be the functor representing a type class,
f = f1 . . . fn be the algebra representing the concrete operations, and f̂ = f̂ 1 . . . f̂ n be the algebra
representing the abstract operations. Then f is sound w.r.t. f̂ iff

∀x, x̂ . αF (T )(x) ⊑ x̂ =⇒ αT (fi (x)) ⊑ f̂ i (x̂) for all 1 ≤ i ≤ n.

In other words, an analysis component is sound if each operation preserves soundness of their
arguments. For example, in the case of the ArrowExcept component in Figure 2 we have to prove
the following two lemmas.

α(throw) ⊑�throw
∀f , f̂ ,д, д̂. α(f ,д) ⊑ ( f̂ , д̂) =⇒ α(catch(f ,д)) ⊑�catch( f̂ , д̂)

That is, we prove that throw is sound w.r.t. �throw and catch(f ,д)w.r.t. �catch( f̂ , д̂) given sound con-
tinuations f , f̂ ,д, д̂. In contrast to Keidel et al. [2018], these soundness lemmas for the ArrowExcept
component are reusable because of the following reasons.

• The operations are defined over arrow transformers ExceptE (C) and ExceptÊ (Ĉ) and the proofs
are universal in the underlying arrows C and Ĉ, which allows us to swap out the underlying
arrows when we compose this component.
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• The proofs are universal in the exception types E and Ê, which allows us to use this component
and proofs in languages with different exception types.

But how do we actually prove these lemmas if we do not know the underlying arrows C and
Ĉ? We need to establish a base-line, which allows us to reason about generic arrows in these
soundness proofs. Fortunately, arrows already provide a basic reasoning tool-kit: the algebraic arrow
laws [Hughes 2000]. To illustrate how such a proof works, we include proofs in the supplementary
material accompanying this paper. These proofs show that it is feasible to reason about soundness
of arrow operations over arrow transformers without knowing the underlying arrows C and Ĉ.
The only assumptions we had to make about the arrow operations of C and Ĉ, was they are sound,
monotone and obey the arrow laws in Appendix A. We demonstrate in the following section how
these assumptions are preserved under composition of components.
To summarize, in this section, we developed a generic theory to prove soundness of analysis

components once and for all. These soundness proofs are reusable, because they are specific to
arrow transformers rather than specific to monolithic arrows. In the following section, we explain
a different way to define sound analysis components from existing analysis components.

4 SOUND COMPOSITION OF ANALYSIS COMPONENTS

In Sections 2.2 and 2.3 we showed that we need to compose analysis components to combine their
effects and to explain how their effects interact. In this section, we describe three different ways for
composing analysis components and prove them sound.

4.1 Horizontal Composition

The simplest way of composition occurs when the arrow transformers of a component implement
multiple interfaces ⟨T , T̂ ⟩F and ⟨T , T̂ ⟩G . For example, the transformersExceptT and �ExceptT defined
in Figure 2 do not support a finally f g operation that executes g no matter if f succeeds or fails.
We capture this operation in a new interface:

class ArrowFinally c where finally :: c x y → c x () → c x y

We implement this operation in another component ⟨ExceptT, �ExceptT⟩ArrowFinally with the same
arrow transformers. We horizontally compose ⟨ExceptT, �ExceptT⟩ArrowExcept with the component
⟨ExceptT, �ExceptT⟩ArrowFinally to obtain the functionality of both components in a new component
⟨ExceptT, �ExceptT⟩ArrowExcept+ArrowFinally. More formally:

Definition 4.1 (Horizontal Composition). The horizontal composition ⟨T , T̂ ⟩F ⊕ ⟨T , T̂ ⟩G of two
analysis components ⟨f , f̂ ⟩ : ⟨T , T̂ ⟩F and ⟨д, д̂⟩ : ⟨T , T̂ ⟩G is defined as ⟨f + д, f̂ + д̂⟩ : ⟨T , T̂ ⟩F+G .

Furthermore, this composition preserves soundness of components:

Theorem 4.2 (Horizontal composition preserves soundness). Given sound analysis compo-

nents ⟨T , T̂ ⟩F and ⟨T , T̂ ⟩G , their horizontal composition ⟨T , T̂ ⟩F ⊕ ⟨T , T̂ ⟩G is sound.

Proof. Follows directly by Theorem 3.4, because we can separately prove soundness of each
operation in the interface F and in G. □

To summarize, horizontal composition allows us to compose components with the same arrow
transformers that implement different interfaces.

4.2 Component Lifting

In general, analysis components use different arrow transformers to implement different interfaces
⟨T , T̂ ⟩F and ⟨U , Û ⟩G . We detail how to compose such components using vertical composition in
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the next subsection. Vertical composition means that we stack one component on top of the other,
effectively wrapping the nested component. Here, we discuss an important preliminary for vertical
composition, namely the lifting of operations of the nested component through the wrapping.
To compose components vertically, we need to compose their arrow transformers: T ◦ U =
∀C. T (U (C)). Similar to monad transformers [Liang et al. 1995, Section 8], to make the operations
of U available for the composed arrow transformers T ◦ U , we need to lift them through T . The
reason is that we cannot interact with the inner arrow transformer U directly; all interaction with
U has to go through T .

For example, to make theArrowExceptoperations defined byExceptT available inStoreT◦ExceptT,
we need to lift throw and catch through StoreT. This lifting explains how store passing interacts
with exception handling. To this end, we have to implement a lifting instances that explains how
and when StoreT provides ArrowExcept operations:

instance ArrowExcept e (StoreT (ExceptT e c)) where

throw = Store (proc (_,e) → throw � e)

catch (Store f) (Store g) = Store $ catch f (proc ((s,x),e) → g � (s,(x,e)))

This instance allows Store to provide ArrowExcept operations whenever Store is applied to Except.
The lifting then delegates to the operations of the nested Except transformer.

But this lifting is not reusable, because it is coupled to the composition StoreT ◦ ExceptT. If we
want to replace one of the transformers or if there is another transformer in between StoreT and
ExceptT, the lifting fails to work. Therefore, we generalize the lifting definition to precisely capture
when StoreT can provide ArrowExcept operations:

instance ArrowExcept e c ⇒ ArrowExcept e (StoreT c)

That is,StoreTprovidesArrowExceptoperationswhenever the underlying arrowcprovidesArrowExcept
operations. The implementation of the operations stays the same. This lifting is more reusable
because it is neither coupled to the arrow transformer Except nor its position in the transformer
stack.
Formally, a lifting of operations in ⟨U , Û ⟩F through the transformers ⟨T , T̂ ⟩ corresponds to a

pair of functions ⟨δU , δ̂ Û ⟩ : ⟨U , Û ⟩F → ⟨T ◦ U , T̂ ◦ Û ⟩F , where δU lifts the concrete part of the
component and δ̂ Û the abstract part of the component. As discussed above, to make this lifting
reusable, δU needs to be parametric in U and δ̂ Û parametric in Û .
A lifting of components is sound if the functions ⟨δ , δ̂⟩ preserve soundness:

Definition 4.3 (Soundness of Component Liftings). A lifting ⟨δ , δ̂⟩ : ⟨U , Û ⟩F → ⟨T ◦ U , T̂ ◦ Û ⟩F
is sound iff the component ⟨δ (f ), δ̂ ( f̂ )⟩ : ⟨T ◦ U , T̂ ◦ Û ⟩F is sound for all sound components
⟨f , f̂ ⟩ : ⟨U , Û ⟩F .

In general, each lifting has to be shown sound separately. In particular, because liftings are
not unique for a pair of arrow transformers, we cannot formulate a generic soundness theorem.
However, in many cases we obtain a proof with less or no effort, which we discuss in the following.

Reusable liftings. As described above, we can make liftings reusable by abstracting over the
underlying arrow and only specifying minimal requirements. We use this technique extensively
to limit the number of lifting instances and soundness arguments needed.

Generic liftings. First-order operations of type c x y often can be lifted with a generic lift
operation:

class ArrowLift t c where

lift :: c x y → t c x y
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For example, the throw operation that throws an exception can be lifted through the Store
arrow transformer with this generic lift operation:

instance ArrowExcept e c ⇒ ArrowExcept e (StoreT c) where

throw = lift throw

It suffices to show the soundness of the generic lift operation to ensure all its use cases are
sound.

Derivable liftings. Often concrete and abstract arrow transformer are implemented with the
same arrow transformer. For example, the StoreT and �StoreT arrow transformers are both
implemented with the StateT arrow transformer:

newtype StateT s c x y = StateT (c (s,x) (s,y))

newtype StoreT c = StoreT (StateT Store c x y)

newtype �StoreT c = �StoreT (StateT Store c x y)

In this case, a lifting for the StoreT and �StoreT arrow transformers can be derived automatically
by Haskell [Gibbons 2010] from the lifting defined on the underlying StateT arrow transformer.

deriving instance ArrowExcept e (StoreT c)

deriving instance ArrowExcept e (�StoreT c)

Furthermore, the liftings for both arrow transformers share the same implementation and all
differences of concrete and abstract store type are universally quantified. Therefore, soundness of
this component lifting follows as a free theorem of parametricity [Keidel et al. 2018, Theorem 5].

We evaluate how many of these liftings fall into either of these categories in Section 7.
To summarize, to compose two analysis components with differing arrow transformers, we need

to lift the operations of the inner arrow transformers through the outer arrow transformers. Such a
lifting is sound if it preserves soundness of the underlying component. In general, soundness of
these liftings needs to be proven manually, however, often we obtain a soundness proof with less
or no effort if we can reuse the same lifting operation or share the implementation of the lifting.
Equipped with component lifting, we can support the vertical composition of analysis components.

4.3 Vertical Composition of Analysis Components

In the remainder of this section, we discuss how to combine independent analysis components
⟨T , T̂ ⟩F and ⟨U , Û ⟩G using vertical composition. Our goal is to obtain a new analysis component that
implements both interfaces F and G based on the functionality of all involved arrow transformers.
The key idea of vertical composition is to first lift one component and then to use horizontal lifting
on the result.
For example, to obtain an analysis for store passing and exception handling, we compose the

components ⟨StoreT,�StoreT⟩ArrowStore and ⟨ExceptT, �ExceptT⟩ArrowExcept. The order in which we
compose these components matters. For example, the order StoreT ◦ ExceptT determines that store
updates are reset while the order ExceptT ◦ StoreT determines that store updates propagate when
an exception occurs.
The composition ⟨StoreT,�StoreT⟩ArrowStore ◦ ⟨ExceptT, �ExceptT⟩ArrowExcept of these two compo-

nents requires a combination of techniques we presented in the previous two subsections:

(1) We lift the operations of ⟨ExceptT, �ExceptT⟩ArrowExcept through ⟨StoreT,�StoreT⟩ to obtain a
component ⟨StoreT ◦ ExceptT,�StoreT ◦ �ExceptT⟩ArrowExcept.

(2) We specialize the generic arrow transformer types of ⟨StoreT,�StoreT⟩ArrowStore to obtain a
component ⟨StoreT ◦ ExceptT,�StoreT ◦ �ExceptT⟩ArrowStore.
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(3) Finally, we horizontally compose the components ⟨StoreT ◦ ExceptT,�StoreT ◦ �ExceptT⟩ArrowExcept
and ⟨StoreT ◦ ExceptT,�StoreT ◦ �ExceptT⟩ArrowStore to obtain a component with the operations
of both interfaces: ⟨StoreT ◦ ExceptT,�StoreT ◦ �ExceptT⟩ArrowStore+ArrowExcept.

The lifting in this composition is glue code which describes how the two components interact.
More formally, we define vertical composition of analysis components with glue code as follows:

Definition 4.4 (Vertical Composition). The vertical composition ⟨T , T̂ ⟩F ◦∆ ⟨U , Û ⟩G of two anal-
ysis components ⟨f , f̂ ⟩ : ⟨T , T̂ ⟩F and ⟨д, д̂⟩ : ⟨U , Û ⟩G and a lifting ∆ = ⟨δ , δ̂⟩ : ⟨U , Û ⟩G →
⟨T ◦ U , T̂ ◦ Û ⟩G is defined as

⟨T , T̂ ⟩F ◦∆ ⟨U , Û ⟩G : ⟨T ◦ U , T̂ ◦ Û ⟩F+G

⟨f , f̂ ⟩ ◦∆ ⟨д, д̂⟩ = ⟨f , f̂ ⟩ ⊕ (∆⟨д, д̂⟩) = ⟨f + δ (д), f̂ + δ̂ (д̂)⟩.

That is, we lift the operations of ⟨U , Û ⟩G through ⟨T , T̂ ⟩ and horizontally compose the result-
ing components. This brings us to the main soundness theorem for the composition of analysis
components.

Theorem 4.5 (Vertical composition preserves soundness). Given sound analysis compo-

nents ⟨T , T̂ ⟩F and ⟨U , Û ⟩G and a sound lifting ∆ : ⟨U , Û ⟩G → ⟨T ◦ U , T̂ ◦ Û ⟩G , then the vertical

composition ⟨T , T̂ ⟩F ◦∆ ⟨U , Û ⟩G is sound.

Proof. The lifted component ⟨T ◦ U , T̂ ◦ Û ⟩G is sound because the lifting ∆ preserves sound-
ness (Theorem 4.3) and its input ⟨U , Û ⟩G is sound. Furthermore, the specialized component
⟨T ◦ U , T̂ ◦ Û ⟩F is sound because ⟨T , T̂ ⟩F is parametric in the underlying arrow. Then by Theo-
rem 4.2 the horizontal composition ⟨T ◦ U , T̂ ◦ Û ⟩F ⊕⟨T ◦ U , T̂ ◦ Û ⟩G is sound and hence ⟨T , T̂ ⟩F ◦∆
⟨U , Û ⟩G is sound. □

To summarize, in this section we discussed how to soundly compose analysis components to
obtain a complete analyses. The composition of two components with differing arrow transformers
and different interfaces requires some glue code that explains how the effects of these components
interact. As for the components themselves, the definition and soundness proof of glue code can be
reused, facilitating the easy construction of provably sound static analyzers.

5 SOUNDNESS OF COMPONENT-BASED STATIC ANALYSES

The focus in the paper so far has been on analysis components themselves. However, analysis
components alone do not describe complete static analyses. In this section, we describe how to use
analysis components to define complete static analyses. Finally, we prove that any static analysis,
that is based on sound analysis components, is sound.
To use analysis components to describe a static analysis, we need to describe the semantics of

the analyzed language with an arrow-based generic interpreter [Keidel et al. 2018] that captures the
similarities of concrete and abstract semantics. For example, Listing 2 and Listing 1 in Section 7
show the generic interpreters for PCF and a While language. A generic interpreter does not
describe the concrete semantics nor a particular abstract semantics. Instead it is a template of the
language semantics, that we need to instantiate with suitable arrow instances to obtain the concrete
semantics or a particular abstract semantics
To instantiate a generic interpreter with an analysis component, we first compose an analysis

component ⟨ConT,�AbsT⟩I which matches the interface I of the generic interpreter. However, we
cannot instantiate the generic interpreter with ⟨ConT,�AbsT⟩ directly because the generic interpreter
expects arrows, where the analysis component ⟨ConT,�AbsT⟩ consists of arrow transformers. To
obtain a pair of arrow instances, we apply the analysis component ⟨ConT,�AbsT⟩ to a pair of base
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arrows ⟨P_→ P_, _→ _⟩. From this application we get the collecting semantics [Cousot 1999]
ConT (P_ → P_) of the concrete interpreter and the abstract function space �AbsT (→) of the
abstract interpreter. More importantly, the abstract interpreter run�AbsT (→) soundly approximates
the concrete collecting semantics runConT (P_→P_), which we prove below.

In fact, any generic interpreter instantiated with any sound analysis component with a compatible
interface is sound, which leads us to our main soundness theorem:

Theorem 5.1 (Soundness of component-based analyses). Let evalC : I(C) ⇒ C(X ,Y ) be

a generic interpreter with an arrow-based interface I. Furthermore, let ⟨ConT ,�AbsT ⟩I be a sound

analysis component. Then the abstract semantics eval�AbsT (→) is sound with respect to the concrete

collecting semantics evalConT (P_ → P_).

Proof. The soundness lemma of the analysis component ⟨ConT ,�AbsT ⟩I (Definition 3.4) guar-
antees that the pair of arrow instances ConT (P_→ P_) and �AbsT (→) are sound. Furthermore,
the main soundness theorem for arrow-based generic interpreters [Keidel et al. 2018, Theorem 3]
guarantees that the generic interpreter eval�AbsT (→) is sound w.r.t. evalConT (P_→P_). □

Note that the arrows P_→ P_ and (→) implement the Arrow and ArrowChoice type classes. This
requires one extra sound lifting of these operations through the ConT and �AbsT arrow transformers.
Theorem 5.1 can be easily extended to account for this lifting, which we omitted for a cleaner
presentation.

To summarize, in this section we have shown how to define a complete static analysis based on
analysis component and how to prove it sound. This requires a generic interpreter for the analyzed
language, which captures the similarities of concrete and abstract interpreter. We proved that this
generic interpreter instantiated with a sound analysis component is sound.

6 STURDY: A LIBRARY OF SOUND AND REUSABLE ANALYSIS COMPONENTS

We developed the Sturdy library of 13 sound and reusable arrow-based analysis components in
Haskell.1 We use some of these components to implement two static analyses in Section 7, to
demonstrate the reusability of these components. In this section, we briefly describe selected
components and then discuss measures to counter their performance overhead.

6.1 Analysis Components

Single Transformer Components A good source for components are single arrow transform-
ers that are used both for the concrete and the abstract interpreter. For example, the arrow
transformer ReaderT r c adds data of type r to the input of the arrow computation c. It can
be easily turned into an analysis component ⟨ReaderT,ReaderT⟩ArrowReader that adds data to both
the concrete and abstract interpreter. Furthermore, because the concrete and abstract imple-
mentation of the ArrowReader operations is exactly the same, only differing in the type of data r,
and hence can be proved sound trivially with a soundness theorem for parametricity [Keidel
et al. 2018, Theorem 5].

This way we defined 5 analysis components for reading and writing state, for constant data,
and for continuation-passing style.

⟨ReaderT,ReaderT⟩ArrowReader ⟨StateT,StateT⟩ArrowState ⟨WriterT,WriterT⟩ArrowWriter
⟨ConstT,ConstT⟩ArrowConst ⟨ContT,ContT⟩ArrowCont

1https://gitlab.rlp.net/plmz/sturdy/
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These arrow transformers are well-known and we borrowed their definition from the arrow
transformer libraries arrows and atl on Hackage.2 Furthermore, some of these arrow trans-
formers appeared in form of monad transformers in [Darais et al. 2017, 2015], which we took
inspiration from.

Environment Components To implement environment components, we created the type class
ArrowEnvwith an operation getEnv to fetch an environment, localEnv to set a new environment
in a local context, extendEnv to extend the given environment with a new binding and lookup
to look up a binding in the current environment:

class ArrowEnv var val env c where

getEnv :: c () env localEnv :: c x y → c (env,x) y

extendEnv :: c (var,val,env) env lookup :: c (val,x) y → c x y → c (var,x) y

Based on this interface, we created two components for environments. The first component
⟨EnvT,�EnvT⟩ArrowEnv implements the standard abstraction for environments [Cousot 1999], i.e., a
mapping from variables to abstract values.

The second component ⟨EnvT, �BoundedEnvT⟩ArrowEnv implements a finite abstraction for envi-
ronments for languages with closures [Shivers 1991]. In this component abstract environments
consist of a pair of mappings (Map Var�Addr, Map�Addr V̂al) from variables to abstract addresses
to values. By limiting the amount of abstract addresses, the abstract domain of environments
and abstract closures becomes finite.
All arrow transformers of the environment components are implemented with the ReaderT

arrow transformer. This gives us the soundness proof for getEnv and localEnv proofs for
free [Keidel et al. 2018] because they are implemented with the same ArrowReader operations.

Store Components To implement store components, we created the type class ArrowStorewith
operations to read from and write to a store:

class ArrowStore var val c where

read :: c (val,x) y → c x y → c (var,x) y

write :: c (var,val) ()

Based on this interface we defined a store component ⟨StoreT,�StoreT⟩ArrowStore, which im-
plements a path-insensitive store abstraction. The abstract store is a mapping from variables to
abstract values. Each binding indicates if the binding must be present in the store or may not
be present in the store. When we read a may-binding, the operation �read f g joins results of
the success and failure continuations f and g.
Furthermore, we implemented a component ⟨ReachingDefsT, �ReachingDefsT⟩ArrowStore for

tracking reaching definitions [Nielson et al. 1999], which uses the store interface. This com-
ponent calculates which variable definitions reach a certain program point without being
overwritten. We implemented this analysis as a lifting of the store operations, by recording the
label of the current assignment alongside the value in the store in the abstract run. After the
analysis has run, we read out the store at each program point from the fixpoint cache to obtain
the reaching definition information.

Failure and Exception Components For failure and exceptions, we created two components
⟨FailureT, �FailureT⟩ArrowFail and ⟨ExceptT, �ExceptT⟩ArrowExcept that employ two different ab-
stractions for error.

The abstract �FailureT transformer wraps the output with an error type in whichSuccess x ⊑

Fail e. With this ordering, erroneous branches of computation overwrite successful branches

2http://hackage.haskell.org/
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of computation: Fail e ⊔ Success x = Fail e. This abstraction is useful when we want to
propagate information about failures in programs.
The abstract �ExceptT transformer wraps the output with an error type (Figure 2) in which

Success x ⊑ SuccessOrFail x e ⊒ Fail e. This abstraction is more precise than the error type
of FailureT, because the case Success describes computation that must succeed and cannot fail.

Fixpoint Components To implement fixpoint components, we created a type class with a fix
operation that calculates the fixpoint over an arrow computation:

class ArrowFix x y c where

fix :: (c x y → c x y) → c x y

Based on this interface we implemented a fixpoint component ⟨Fix, F̂ix⟩ArrowFix, whose
concrete fix operation calculates the standard fixpoint fix f = f (fix f). The abstract fix
operation implements a parallel/sequential fixpoint algorithm [Darais et al. 2017]. We param-
eterized this fixpoint algorithm by a widening operator [Cousot and Cousot 1992] for the
codomain y that ensures that the fixpoint iteration terminates and a second operator on the
domain x that joins recursive calls to avoid infinitely deep chains of recursive calls. The fixpoint
component ⟨Fix, F̂ix⟩ is the only component which does not consist of arrow transformers and
hence has to be placed at the bottom of the component stack. This ensures that the function f

we fix over is a pure function and no side effects interfere when we iterate on fmultiple times.
Additionally, the abstract f̂ix operation detects computations which potentially do not

terminate. Non-terminating computations are usually represented with the bottom element ⊥
of the abstract domain for values and add a lot of boilerplate to the abstract interpreter. Instead,
we capture the bottom element with a component ⟨TerminatingT, �TerminatingT⟩ that wraps
the output with a Maybe-like type:

data Terminating a = NonTerminating | Terminating a

This transformer allows us to remove the bottom element from the abstract domain of values
and the boilerplate of propagating bottom values.
Based on the same ArrowFix interface we implemented a component ⟨ContourT, �ContourT⟩

that tracks the call context of the abstract interpreter. This call context consists of a list of
recursive calls to the abstract interpreter and is useful, for example, in a k-CFA analysis [Shivers
1991]. We implement this component as a lifting of the fix operation:

fix f = �ContourT $ proc (δ,x) → fix ( �runContourT ⌊x : δ⌋k ◦ f ◦ �ContourT) �� x

On each recursive call we push the argument x of the abstract interpreter onto the current call
string δ and limit it size to at most k .

6.2 Reducing the Performance Overhead of Analysis Components

Every analysis component adds some overhead to the runtime of the analysis. We identified two
main sources for this performance overhead: Inefficient arrow code and dynamic dispatch. In the
rest of this section, we explain how we addressed these issues to reduce the performance overhead
of analysis components in our library.
The first issue was an inefficient pattern of arrow code that occured frequently in the imple-

mentation of arrow transformers: The composition of a pure function f with an effectful arrow
computation g as in g ◦ arr f. The problem with this pattern is that the composition operation ł◦ž
does not know that arr f is a pure computation and hence has to consider all possible effects of
both operations. For example, if the arrow type supports exceptions, the composition operation
ł◦ž has to check if an exception occured in arr f, even though arr f cannot cause an exception.
Fortunately, we can eliminate this inefficient pattern by using a type class which captures the
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Transformer No Opts. Profunctor Inline Prof. + Inline

ConstT 261 µs 233 µs (1) 5 µs (56) 5 µs (56)
ReaderT 907 µs 874 µs (1) 8 µs (119) 8 µs (117)
StateT 435 µs 433 µs (1) 13 µs (33) 13 µs (33)
WriterT 1506 µs 1490 µs (1) 13 µs (118) 13 µs (119)
ErrorT 664 µs 664 µs (1) 14 µs (48) 14 µs (47)
ExceptT 827 µs 804 µs (1) 15 µs (56) 15 µs (55)
TerminatingT 515 µs 502 µs (1) 14 µs (38) 14 µs (37)

Stack 209408 µs 18085 µs (12) 27 µs (7730) 26 µs (7978)

Fig. 3. Benchmark results for individual arrow transformers without optimizations and with the profunctor

and inlining optimization. Each column shows the average runtime in microseconds and in parentheses

the speed up compared to the unoptimized version. The bottom row shows benchmark results for an arrow

transformer stack which combines all transformers above.

composition of pure functions with effectful computations. The Profunctor type class3 defines an
operation dimapwhich pre- and post-composes two pure functions with an effectful computation:

dimap :: (x → x') → (y → y') → c x' y → c x y'

The implementation of dimap for arrows is more efficient than effectful composition, because it
can exploit that the functions it composes with are pure. For example, in contrast to g ◦ arr f, the
operation dimap f id g does not have to check that f cause an exceptions.
As a second source of performance overhead we identified the dynamic dispatch of type class

methods. Without any optimization options the GHC Haskell compiler, converts type classes
to dictonaries (records of functions) [Hall et al. 1996]. Calling functions from these dictonaries
entails a dynamic dispatch, which causes a performance overhead. We counter this issue by
annotating the arrow type class methods with INLINE, such that GHC retains a copy of the source
code of the type class methods. Furthermore, we annotated the complete type of the generic
interpreter in the file where we compose an analysis. This allows GHC to specialize the definition
of the generic interpreter, inline arrow operations and eliminate any form of dynamic dispatch.
Furthermore, because all arrow operations are inlined, GHC can optimize some redundent pre- and
post-processing in arrow transformer liftings.

We evaluated how these two optimizations affect the performance of arrow transformers with a
benchmark.4 The benchmark instantiates an arrow-based concrete interpreter with different arrow
transformers and measures the runtime for an example program. Figure 3 shows the runtimes
for each transformer in microseconds with and without optimizations. The results show that the
profunctor optimization does not significantly improve the performance of individual transformers,
but it does improve the performance by 12x if multiple transformers are combined into a stack. The
inlining optimization improves the performance of individual transformers and the transformer
stack by several orders of magnitude. Lastly, combining the profunctor and inlining optimization
does not significantly improve the performance over just the inlining optimization.

To summarize, in this section we presented a library of analysis components for different analysis
concerns. Furthermore, we described two techniques that we used to reduce the performance
overhead of arrow transformers. In Section 7, we will use some of these components to implement
static analyses, to demonstrate their reusability.

3http://hackage.haskell.org/package/profunctors
4https://gitlab.rlp.net/plmz/sturdy/blob/benchmark/lib/bench/ArrowTransformerBench.hs
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7 EXPERIMENTAL EVALUATION AND CASE STUDIES

In this paper, we presented an approach to reduce the effort of defining and proving soundness of
static analyses with the help of sound and reusable analysis components. To evaluate our approach,
we answer the following research questions:

(RQ1) Modular implementation: Are analysis components reusable and do they compose?
(RQ2) Modular soundness proofs: Are analysis components separately verifiable and do their

soundness proofs compose?
(RQ3) Liftings: Is the effort of implementing liftings and proving their soundness acceptable?

To answer these research questions, we conducted two experiments. The first experiment starts
with an interval analysis for the While language. We explore how analysis components support
modular analysis development and soundness proofs by building a reaching definitions analysis on
top of the interval analysis. We then challenge our approach by extending the While language
with exceptions and observe how the interval and reaching definitions analyses change.

In our second experiment we build a control-flow analysis (k-CFA) for PCF. The analysis predicts
the control flow of calls to first-class function values, which is not statically decidable. The goal of
this experiment is to test if our approach is specific to some languages or analyses.

Across both experiments we were able to answer our research questions affirmatively. In partic-
ular, the implementation and soundness proofs of most liftings comes for free.

7.1 Experiment 1: Analyses for a While Language

We implement an interval analysis for a statically-scopedWhile language. This interval analysis
will serve as a base-line as we extend this analysis in two different ways to study the impact of these
changes. First, we add a reaching definition [Nielson et al. 1999] analysis to the interval analysis.
Second, we extend the While language with exceptions.

7.1.1 Interval Analysis for the While Language. We start by defining an arrow-based generic
interpreter for our While language (Listing 1 in Appendix B). The interpreter is basically a more
complete version of the one we presented in Section 2.4. To implement an interval analysis for this
language, we need to instantiate the generic interpreter with a "super-component" that implements
all required interfaces. Our first research question RQ1 asks if we can separate concerns in the
implementation of this super-component. Indeed, we were able to implement each interface in
a separate component and to compose the super-component from these using the techniques
described in Section 4.
We display the involved components and their composition in Figure 4, which introduces a

novel notation we devised for this paper. Each box n in the table indicates a separate analysis
component ⟨RowL, RowR⟩Col. The column label indicates the component’s interface; the left and
right row labels indicate the used concrete and abstract arrow transformers; the boxed number

indicates how many operations of the interface had to be implemented. For example, box 4 in
Figure 4 indicates an analysis component ⟨EnvT,�EnvT⟩ArrowEnv that implements 4 operations.
Our notation in Figure 4 also displays how components are composed. Components that ap-

pear on the same row compose horizontally without any extra effort. Components that appear
on different rows require vertical composition based on one or more liftings. We display liftings
as upward arrows, yet distinguish two kinds: A straight arrow ↑ represents a lifting whose im-
plementation and soundness proof was trivial because the lifting was (i) reusable, (ii) generic,
or (iii) derivable (Section 4.2). In contrast, a squiggly arrow ⇝ represents a lifting that required a
non-trivial implementation and soundness proof. Regarding the research questions, we conclude
the following:
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ConcreteT 12 1 ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT

RandomT 1 ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ �EnvT
StoreT 2 ↑ ↑ ↑ �StoreT
FailureT 1 ↑ ⇝

�FailureT
TerminatingT ↑ ⇝

�TerminatingT

Fix 1 4 F̂ix

Fig. 4. Interval analysis of the While language: Boxes n represent components, straight arrows ↑ represent

trivial liftings, squiggly arrows ⇝ represent non-trivial liftings.

(RQ1) Modular implementation: We successfully separated concerns of the analysis into 7
analysis components: 6 reusable analysis components from our library and 1 language-specific
analysis component ⟨ConcreteT, �IntervalT⟩ for values, conditionals, and allocation.

(RQ2) Modular soundness proofs: We successfully decomposed the soundness proof into sound-
ness lemmas about the individual components: Each soundness lemma proves a single concern
of the analysis, while it is independent of other concerns. For example, the soundness proofs
of the conditional if_ in IsVal is independent of the store and fixpoint cache, even though
these are threaded through the branches of the conditional. This is possible because the IsVal
component is parametric in the underlying arrow c, which contains the store and fixpoint cache
after composition.

(RQ3) Liftings: We required 22 liftings to compose all 7 analysis components. Of these liftings,
20 liftings are trivial. Only 2 liftings required an explicit implementation and soundness proof.
We conclude that the effort for liftings is modest and acceptable.

7.1.2 Reaching Definitions Analysis for the While Language. We want to refine our previous
interval analysis to also keep track of reaching definitions [Nielson et al. 1999]. A definition (here:
assignment) reaches another statement if there is at least one control-flow path where the assigned
variable was not reassigned in between. Since the language syntax remains unchanged, no change
occurs to the generic interpreter run or its required interfaces. The challenge is this: Can we reuse
the implementation and soundness proofs of all previously used components unchanged?

(RQ1) Modular implementation: We encapsulate the concern of reaching definitions in its own
analysis component ⟨ReachingDefsT, �ReachingDefsT⟩ArrowStore as described in Section 6. Tech-
nically, the reaching definitions component piggybacks on another component implementing
the ArrowStore interface, but stores additional data in the abstract run. In the concrete run,
reaching definitions has no effect and uses the identity transformer. Figure 5 shows how the
new component (gray background) neatly integrates with the existing components; no changes
to other components were necessary.

(RQ2) Modular soundness proofs: We only had to prove soundness of the reaching definitions
component, while all other soundness lemmas remain valid. Except for the reaching definitions
component, there is no additional proof effort.

(RQ3) Liftings: Since the reaching definitions was realized as a non-trivial lifting, we additionally
obtain 2 such liftings in our final composition. None of the other liftings were (or could have
been) influenced. Thus, we retain that the lifting effort is modest and acceptable.
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ConcreteT 12 1 ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT

RandomT 1 ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ �EnvT
ReachingDefsT ⇝ ↑ ⇝ ↑ �ReachingDefsT

StoreT 2 ↑ ↑ ↑ �StoreT
FailureT 1 ↑ ⇝

�FailureT
TerminatingT ↑ ⇝

�TerminatingT

Fix 1 4 F̂ix

Fig. 5. Reaching definitions analysis of the While language
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Abstract Stack

ConcreteT 12 2 1 ↑ ↑ ↑ ↑ ↑ ↑ ↑ �IntervalT

RandomT 1 ↑ ↑ ↑ ↑ ↑ ↑ �RandomT
EnvT 4 ↑ ↑ ↑ ↑ ↑ �EnvT
ReachingDefsT ⇝ ↑ ↑ ⇝ ↑ �ReachingDefsT

StoreT 2 ↑ ↑ ↑ ↑ �StoreT
ExceptT 3 ↑ ↑ ⇝

�ExceptT
FailureT 1 ↑ ⇝

�FailureT
TerminatingT ↑ ⇝

�TerminatingT

Fix 1 4 F̂ix

Fig. 6. Reaching definitions and interval analysis of theWhile language with exceptions.

7.1.3 Extending the While Language with Exceptions. Finally, we study the effort to update an
analysis when a language evolves. In particular, we add exceptions to the While language and
observe how this affects the interval and reaching definitions analyses.

This time we have to change the generic interpreter, because we are adding new syntax:

data Expr = ... | Throw ExceptName Expr

data Stmt = ... | TryCatch Stmt ExceptName String Stmt Label | Finally Stmt Stmt Label

The generic interpreter implements these new expressions and statements with operations of the
ArrowExcept interface, that we now depend on. The rest of the generic interpreter stays the same.
The challenge is this: Can we reuse our analysis components unchanged given that exception
handling has a cross-cutting effect on the control flow of the language?

(RQ1) Modular implementation: We encapsulate the core functionality of exception handling in
the language-specific interface IsExc and the reusable exception analysis component (Section 6),
which provides the operations throw, catch, and finally. But, since ArrowExcept is a new
interface, we also need to add liftings for its operations through the other components used,
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ConcreteT 3 2 ↑ ↑ ↑ ↑ �IntervalT

EnvT 4 ↑ ↑ ↑ �BoundedEnvT

ContourT ↑ ⇝ ↑ �ContourT
FailureT 1 ↑ ⇝

�FailureT
TerminatingT ↑ ⇝

�TerminatingT

Fix 1 4 F̂ix

Fig. 7. k-CFA analysis of PCF: Components n and liftings ↑/ ⇝ .

such that throw, catch, and finally are available after full composition. Figure 6 shows how
the new component (row with gray background) and the new liftings (column with gray
background) neatly integrate with the existing components. No other changes unrelated to
exceptions were necessary.

(RQ2) Modular soundness proofs: We only had to prove soundness lemmas for the exceptions
component and for the liftings of exception operations. All other soundness lemmas remain
valid.

(RQ3) Liftings: Our extension requires 8 new liftings, of which only 1 lifting was non-trivial and
required an explicit soundness proof. In total, we now have 34 liftings of which 29 are trivial
and 5 are non-trivial.

To summarize, we extended the interval analysis with a reaching definitions analysis and added
exceptions to our While language. In both cases, our design allowed us to capture the extension as
a separate analysis component, while reusing all other analysis components unchanged. We were
also able to reuse all previous soundness lemmas unchanged. For the reaching definitions analysis,
we only needed to prove the new component sound. For exception handling, we additionally
had to prove a few new liftings sound. However, the vast majority of liftings (85%) has a trivial
implementation and soundness proof that is reusable, generic, or derivable.

7.2 Experiment 2: Control-Flow Analysis for PCF

To confirm that the succesful application of analysis components was not particular to the analysis
or language of the first experiment, we define a k-CFA analysis [Shivers 1991] for PCF [Plotkin
1977]. PCF is a language with first-class functions and numbers and the main purpose of the k-CFA
is to approximate which function values may be called at any function application.

To implement this analysis, we first need to describe the semantics of PCF with an arrow-based
generic interpreter that captures the similarities between concrete and abstract semantics. Our case
study builds on an existing generic interpreter for PCF and an existing k-CFA analysis [Keidel et al.
2018]. The goal of our case study is to modularize this analysis by using analysis components. As
first step, we refactor the generic interpreter to depend on individual interfaces, each encapsulating
a different concern (Listing 2 in Appendix B). Except for the use of arrows, the generic interpreter
is fairly standard and requires no further explanation.
k-CFA imposes different challenges than those encountered in the first experiment. In particular,

environments are embedded in to closure values and therefore must be abstracted to a finite domain
if we want our analysis to terminate [Horn and Might 2010]. Let us revisit our research questions
to see if they are affected by this.
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(RQ1) Modular implementation: Again we succeeded in decomposing the analysis into several
independent analysis components as shown in Figure 7. Each analysis component encapsulates
a single concern, which simplifies its implementation. Furthermore, the composition cleanly
combines the analysis components as they need to work in concert, and the liftings explain
how different components interact. For example, the environment component asks the contour
component for the current call context to allocate new addresses. However, the environment
component is not tightly coupled to the contour component as these components communicate
through an interface and are combined with component composition.

(RQ2) Modular soundness proofs: Again we were able to prove each analysis component sound
independently and composition preserves soundness. We included the soundness proofs of the
analysis components for the environments, exceptions, fixpoints, and values in the supplemen-
tary material accompanying this paper. Because of the separation of concerns, each soundness
lemma can be verified independently, which makes it easier to prove compared to a monolithic
proof. For example, when proving environment operations sound, we do not have to reason
about failure or fixpoint caches. Similarly, the proof of the value operations also became easier
because the operations are independent of effects in the language.

(RQ3) Liftings: The composition of analysis components for this analysis requires in total 14 lift-
ings. Of these 14 liftings, we were able to derive the soundness proof of 11 liftings automatically
using the techniques of Section 4.2. Only 3 liftings required an explicit implementation and
soundness proof: The Arrow/ArrowChoice liftings of the failure and termination component and
the ArrowFix lifting of the contour component.

To summarize, we modularized the implementation and soundness proof of a k-CFA analysis for
PCF using analysis components. Each analysis component encapsulates a single concern, which
simplifies the implementation and soundness proof and increases its reusability. Furthermore, the
composition of these analysis components required 14 liftings of which 11 could be derived and
proven sound automatically and only 3 required an explicit implementation and soundness proof.
Analysis components appear to be applicable to a wider range of languages and analyses.

8 RELATED WORK

Proving soundness of static analyzers for real-world languages is a difficult endeavor. Some dynamic
language features such as Java’s reflection [Smaragdakis et al. 2015] or JavaScript’s dynamic
evaluation [Meawad et al. 2012] complicate static analysis and its soundness proof. As a consequence,
static analyzers [Flanagan et al. 2002] and bug finders [Rutar et al. 2004] often either unsoundly
approximate these language features or ignore them all together [Jourdan et al. 2015]. Unsound
analyses still provide valuable information about program behavior, however, this information
might not be reliable. For static analyzers that have been proven sound, the proof effort is significant.
For example, Verasco [Jourdan et al. 2015] is a static analyzer for C, whose soundness has been
formally verified in the proof assistant Coq. The implementation of the abstract interpreter consists
of 17k lines of Coq code, as do the proof scripts (17k LOC). This shows that a soundness proof of a
static analysis for a real-world language requires significant effort and expertise. In this work, we
aim to reduce the effort and complexity of soundness proofs by separating analysis concerns with
analysis components. We hope that with our technique the soundness proof of static analyses for
real-world languages becomes more approachable.
Sergey et al. [2013] showed that analysis aspects such as context-sensitivity, polyvariance and

flow-sensitivity can be captured by monads. A monadic abstract interpreter has the benefit, that
it allows to change these analysis aspects by changing the underlying monad, while the rest of
the analysis definition stays the same. This is possible because the monadic abstract interpreter
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abstracts over the underlying monad with interfaces, which are similar to the interfaces of our
analysis components. However, Sergey et al. did not develop a theory to prove monadic abstract
interpreters sound. In this work, we demonstrate that arrows, a generalization of monads, are also
capable of capturing different analysis aspects. We improve upon the work of Sergey et al. [2013]
by developing a theory that simplifies and reduces the effort of proving soundness static analyses.
In this work, we describe abstract interpreters with arrows instead of monads. The benefit of

using arrows is that they form an algebra and hence provide the reasoning principle of structural
induction over arrow expressions [Keidel et al. 2018]. This induction principle decomposes the
soundness proof of arrow-based abstract interpreters into smaller soundness lemmas of the arrow
operations. We use this induction principle in Theorem 5.1 in Section 5 to prove soundness of
generic interpreters instantiated with analysis components. In contrast, monadic expressions do
not support an induction principle and hence a generic interpreter based on monads requires a
manual soundness proof. We are not aware of any inherent disadvantages of arrows over monads,
however, one important difference between arrows and monads is that arrows also capture the
input of computations. In particular, higher-order arrow operations need to pass arguments to inner
computations explicitly. For example, in lookup (proc var→alloc � var) � var the argument of
allocneed to be passed in as argument tolookup. This explicit argument passing can be cumbersome
and sometimes might not be possible if the higher-order arrow operation does not pass along the
argument to the inner computation. In contrast, monads lift this restriction and arguments can be
passed freely into higher-order monad operations.
As discussed in the introduction, we build on the theory of compositional soundness proofs

of abstract interpreters by Keidel et al. [2018]. We improve upon this work by composing the
arrow instances of the concrete and abstract interpreter from modular and reusable components
based on arrow transformer. Our work simplifies the implementation and soundness proof of
arrow instances, because existing analysis functionality can be reused and does not need to be
reinvented. Furthermore, the implementation and soundness proof of our analysis components
themselves is simpler compared to monolithic arrows, because each component captures only a
single concern of an analysis instead of mixing them. Moreover, we retain the benefit of arrow-based
abstract interpreters, namely, analysis creators do not need to reason about the code of the generic
interpreter.

The idea of composing static analyses frommodular components has also been explored by Darais
et al. [2015]. The authors also propose to share code between concrete and abstract interpreter.
But the code of the generic interpreter is parameterized by a monad instead of by an arrow. To
recover the concrete and abstract interpreter, the generic interpreter is instantiated with two
monads composed from monad transformers. These monad transformers capture reusable analysis
functionality and are called Galois Transformers. A short-coming of this approach is that monads are
missing a reasoning principles to compose a soundness proof and hence a generic interpreter based
on monads still requires an explicit soundness proof. We improve upon this work by describing
static analyses with analysis components based on arrow transformers. The benefit of using arrows
is that arrows provide the reasoning principle of structural induction, which makes the soundness
proof of static analyses compositional [Keidel et al. 2018]. This means that when we instantiate an
arrow-based generic interpreter with sound analysis components, the resulting abstract interpreter
is sound and no extra reasoning about the generic interpreter is required.

Defining abstract interpreters from components has been revisited recently by Darais et al. [2017].
Core of their approach is a definitional interpreter (generic interpreter) that is parameterized by a
monad. Instantiating the interpreter with monads composed of monad transformers, yields the
concrete and abstract semantics. The authors describe several analysis components, such as a
fixpoint algorithm for big-step semantics, a trace collecting or dead code collecting semantics. We
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took inspiration of these components, especially of the fixpoint algorithm. We improve upon this
work by describing a theory that modularizes the soundness proof of analysis components. This
means we can prove analysis components sound independently and the composition of analysis
components preserves soundness.

There are several techniques to compose different abstract domains to improve the precision of
the analysis such as reduced products [Cousot and Cousot 1979] and cofibered products [Venet 1996].
For example, the reduced product P(Z) ⇆ Interval × Parity combines the abstract domains
of intervals to rule out interval bounds with a wrong parity. While techniques such as reduced
products compose different abstractions for data (e.g. values, environments, stores), in contrast,
our paper describes a technique to modularly define and modularly prove sound the semantics
for different cross-cutting aspects of the analysis (e.g. values, exceptions, mutable state, fixpoint
computations). In the future, we want to explore if we can combine the technique of this paper and
the techniques for composing abstract domains, by creating a component that combines two value
components and computes their reduced product.
Madsen and Lhoták [2018] proposed an approach that reduces the soundness proof burden of

static analyses. The approach uses SMT solvers to prove soundness of operations over some abstract
domains automatically. Annotations in the code aid the SMT solver in the proving process. These
annotations contain mathematical properties, such as monotonicity, required to prove soundness.
The authors evaluate their approach by proving soundness of value operations over abstract domains
for booleans, strings and integers. However, the authors have not explored if their verification
technique scales to a soundness proof of a complete static analysis. Compared to our work, we
currently do not use proof automation to prove soundness of our analysis components. However,
our technique guarantees that a complete static analysis is sound if all its analysis components are
sound. In the future, we want to explore how we can incorporate proof automation to simplify the
soundness proof of analysis components.

9 CONCLUSION

We propose a novel approach to constructing static analyses modularly from reusable analysis
components. Each analysis component covers one aspect of the analyzed language, can be proven
sound independently, and their composition preserves soundness. Our analysis components consist
of pairs of arrow transformers, for which we develop a Galois connection and soundness proposition.
We use analysis components to instantiate arrow-based generic interpreters [Keidel et al. 2018]
to obtain complete sound static analyses. A key result of our work is that a static analysis based
on analysis components is sound, if all their analysis components are sound. We demonstrate the
applicability and usefulness of our approach by creating a library of 13 reusable analysis components
that allow us to define a k-CFA analysis for PCF and an interval and reaching definition analysis
for a While language.
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A ARROW LAWS

The following algebraic arrow laws [Hughes 2000], allow generic reasoning about the arrows.

arr id = id

arr (f ≫ д) = arr f ≫ arr д

first (arr f ) = arr (first f )

first (f ≫ д) = first f ≫ first д

first f ≫ arr fst = arr fst ≫ f

first f ≫ arr (id ∗∗∗д) = arr (id ∗∗∗д)≫ first f

first (first f )≫ arr assoc× = arr assoc×≫ first f

left (arr f ) = arr (left f )

left(f ≫ д) = left f ≫ left д

f ≫ arr Left = arr Left≫ left f

left f ≫ arr (id+++д) = arr (id+++д)≫ left f

left (left f )≫ arr assoc+ = arr assoc+≫ left f

where

assoc× (a, (b, c)) = ((a,b), c) assoc+ e =




Left x e = Left (Left x)

Right (Left y) e = Left (Right y)

Right (Right z) e = Right z

B GENERIC INTERPRETERS FOR THE WHILE LANGUAGE AND PCF

data Expr = ...

data Statement = Assign String Expr Label | If Expr Statement Statement Label

| While Expr Statement Label | Begin [Statement] Label

run :: (IsVal v c, ArrowAlloc (Var,v,Label) addr c, ArrowRand v c,

ArrowEnv Var addr env c, ArrowStore addr v c, ArrowFail e c,

ArrowFix [Statement] () c, ArrowChoice c) ⇒ c [Statement] ()

run = fix $ λrun' → proc stmts → case stmts of

Assign x e l:ss → do

v ← eval � e

addr ← lookup (proc (addr,_) → returnA � addr) alloc � (x,(x,v,l))

write � (addr,v)

extendEnv' run' � (x, addr, ss)

If cond s1 s2 _:ss → do

b ← eval � cond

if_ run' run' � (b,([s1],[s2]))

run' � ss

While cond body l:ss →

run' � If cond (Begin [body,While cond body l] l) (Begin [] l) l : ss

Begin ss _:ss' → do

run' � ss; run' � ss'

[] → returnA � ()

Listing 1. Generic interpreter for statements of the While language.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 176. Publication date: October 2019.



Sound and Reusable Components for Abstract Interpretation 176:27

data Expr = Var Text | Lam String Expr eval :: (IsNum v c, IsClosure v env c,

| App Expr Expr | Y Expr | Zero | Succ Expr ArrowChoice c, ArrowFix Expr v c,

| Pred Expr | IfZero Expr Expr Expr ArrowEnv Text v env c,ArrowFail String c)

⇒ c Expr v

class IsNum v c where eval = fix $ λev → proc e → case e of

succ, pred :: c v v Var x → lookup' � x

zero :: c () v Lam x e1 → do

if_ :: c x z → c y z env ← getEnv � ()

→ c (v, (x, y)) z closure � (Lam x e1, env)

App e1 e2 → do

class IsClosure v env c where fun ← ev � e1

closure :: c (Expr, env) v arg ← ev � e2

applyClosure :: c ((Expr,env),v) v applyClosure' ev � (fun, arg)

→ c (v, v) v Zero → zero � ()

Succ e1 → do

applyClosure' ev = applyClosure $ v ← ev � e1; succ � v

proc ((e,env),arg) → case e of Pred e1 → do

Lam x body → do v ← ev � e1; pred � v

env' ← extendEnv � (x,arg,env) IfZero e1 e2 e3 → do

localEnv ev � (env', body) v1 ← ev � e1

Y e' → do if_ ev ev � (v1, (e2, e3))

fun' ← localEnv ev � (env, Y e') Y e1 → do

applyClosure' ev � (fun',arg) fun ← ev � e1

_ → fail � show e env ← getEnv � ()

arg ← closure � (Y e1, env)

applyClosure' ev � (fun, arg)

Listing 2. Generic interpreter for PCF and its language specific interface.

ACKNOWLEDGEMENTS

This research was supported by DFG grant "Evolute". We thank Arjen Rouvoet and Peter Mosses
who provided helpful feedback.

REFERENCES

P. Cousot. 1999. The Calculational Design of a Generic Abstract Interpreter. In Calculational System Design, M. Broy and R.

Steinbrüggen (Eds.). NATO ASI Series F. IOS Press, Amsterdam.

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proceedings of Symposium

on Principles of Programming Languages (POPL). ACM, 269ś282.

Patrick Cousot and Radhia Cousot. 1992. Comparing the Galois Connection and Widening/Narrowing Approaches to

Abstract Interpretation. In Programming Language Implementation and Logic Programming, 4th International Symposium,

PLILP’92, Leuven, Belgium, August 26-28, 1992, Proceedings. 269ś295.

David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. 2017. Abstracting definitional interpreters (functional

pearl). PACMPL 1, ICFP (2017), 12:1ś12:25.

David Darais, Matthew Might, and David Van Horn. 2015. Galois transformers and modular abstract interpreters: reusable

metatheory for program analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October

25-30, 2015. 552ś571.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 176. Publication date: October 2019.



176:28 Sven Keidel and Sebastian Erdweg

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata. 2002. Extended

Static Checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and

Implementation (PLDI ’02). ACM, New York, NY, USA, 234ś245.

Jeremy Gibbons (Ed.). 2010. Proceedings of the 3rd ACM SIGPLAN Symposium on Haskell, Haskell 2010, Baltimore, MD, USA,

30 September 2010. ACM.

Cordelia V Hall, Kevin Hammond, Simon L Peyton Jones, and Philip L Wadler. 1996. Type classes in Haskell. ACM

Transactions on Programming Languages and Systems (TOPLAS) 18, 2 (1996), 109ś138.

Makoto Hamana and Marcelo P. Fiore. 2011. A foundation for GADTs and inductive families: dependent polynomial functor

approach. In Proceedings of the seventh ACM SIGPLAN workshop on Generic programming, WGP@ICFP 2011, Tokyo, Japan,

September 19-21, 2011. 59ś70.

David Van Horn and Matthew Might. 2010. Abstracting abstract machines. In Proceeding of the 15th ACM SIGPLAN

international conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010. 51ś62.

John Hughes. 2000. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3 (2000), 67ś111.

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A Formally-Verified

C Static Analyzer. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 247ś259.

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional Soundness Proofs of Abstract Interpreters.

PACMPL ICFP (2018).

Jens Knoop and Oliver Rüthing. 1999. Optimization Under the Perspective of Soundness, Completeness, and Reusability.

In Correct System Design, Recent Insight and Advances, (to Hans Langmaack on the occasion of his retirement from his

professorship at the University of Kiel). 288ś315.

Sheng Liang, Paul Hudak, and Mark P. Jones. 1995. Monad Transformers and Modular Interpreters. In Conference Record of

POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Francisco, California,

USA, January 23-25, 1995. 333ś343.

Magnus Madsen and Ondrej Lhoták. 2018. Safe and Sound Program Analysis with Flix. In Proceedings of the 27th ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA’18).

Fadi Meawad, Gregor Richards, Floréal Morandat, and Jan Vitek. 2012. Eval Begone!: Semi-automated Removal of Eval

from Javascript Programs. In Proceedings of the ACM International Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA ’12). ACM, New York, NY, USA, 607ś620.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer.

Oystein Ore. 1944. Galois connexions. Trans. Amer. Math. Soc. 55, 3 (1944), 493ś513.

David Lorge Parnas. 1972. On the Criteria To Be Used in Decomposing Systems into Modules. Communication of the ACM

15, 12 (1972), 1053ś1058.

Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of International Conference on Functional Programming

(ICFP). ACM, 229ś240.

Gordon D. Plotkin. 1977. LCF Considered as a Programming Language. Theor. Comput. Sci. 5, 3 (1977), 223ś255.

Nick Rutar, Christian B. Almazan, and Jeffrey S. Foster. 2004. A Comparison of Bug Finding Tools for Java. In 15th International

Symposium on Software Reliability Engineering (ISSRE 2004), 2-5 November 2004, Saint-Malo, Bretagne, France. 245ś256.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic Abstract Interpreters. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’13). ACM, New York, NY, USA, 12.

Olin Shivers. 1991. Control-flow analysis of higher-order languages. Ph.D. Dissertation. Carnegie Mellon University.

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. 2015. More Sound Static Handling

of Java Reflection. In Programming Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang, South Korea,

November 30 - December 2, 2015, Proceedings. 485ś503.

Arnaud Venet. 1996. Abstract Cofibered Domains: Application to the Alias Analysis of Untyped Programs. In Static Analysis,

Third International Symposium, SAS’96, Aachen, Germany, September 24-26, 1996, Proceedings. 366ś382.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 176. Publication date: October 2019.


	Abstract
	1 Introduction
	2 Analysis Components By Example
	2.1 Problem Statement
	2.2 A First Attempt to Design Analysis Components
	2.3 Arrow-Based Analysis Components
	2.4 Instantiating Concrete and Abstract Interpreters

	3 Analysis Components And Their Soundness
	3.1 Galois Connections between Analysis Components
	3.2 Soundness of Analysis Components

	4 Sound Composition Of Analysis Components
	4.1 Horizontal Composition
	4.2 Component Lifting
	4.3 Vertical Composition of Analysis Components

	5 Soundness Of Component-Based Static Analyses
	6 Sturdy: A Library Of Sound And Reusable Analysis Components
	6.1 Analysis Components
	6.2 Reducing the Performance Overhead of Analysis Components

	7 Experimental Evaluation And Case Studies
	7.1 Experiment 1: Analyses for a While Language
	7.2 Experiment 2: Control-Flow Analysis for PCF

	8 Related Work
	9 Conclusion
	A Arrow Laws
	B Generic Interpreters For The While Language And PCF
	References

