Debugging, Linting,
Grinding

SW Dev 2020
Lecture 5

Photo # NH 96566-KN (Color) First Computer “Bug, 1947
" -

- I ———
— —— e

/4 |

D o On A M {/-1700 7.032 gyy 015

/000 & 5‘9“_}4 aq(,lM‘ / 9.087 ¥YC ¢75 Wv"
137w (035 MP ~me m/rﬁ) 76/5 ?‘2.5057'(;.)

- 58 l}oqvéynf

————————

2. 130676” L § .
L ow . 124"

fglﬁo O;F‘\T.ST C\d"\a\ C.C{Se. o-{ buti Lclh‘ {oun,,l

How do we debug?

e What tools do we have?
e Depends on the situation!
e BIOS — oscilloscopes

e \WWe’re comparatively lucky

['IMES i

Y SOURCE FOR ENGINEERS & TECHNICAL MANAGERS WORLDWIDE e FEEDBACK

= ASIA | CHINA | FRANCE | GERMANY | KOREA | TRIWAN | UK |-:‘-|.lss-::r=:|ee | NEWSLETTER | cONTA

& SYSTEMS & SOFTWARE
The trouble with Rover is revealed
By Ron Wilson

EE Times
February 20, 2004 (6:32 p.m. ET) IR |

SAN MATEO, Calif. — When the Mars rover Spirit went da
Jan.21 a Jet Propulsion Laboratory team undertook to
reprogram the craft's computer only to find themselves
introducing an unpredictable sequences of events.

The trouble with the Mars rover Spirit started much earlie
the mission than the day the craft stopped communicatin
ground controllers.

"It was recognized just after [the June 2003] launch that
were some serious shortcomings in the code that had bee
into the launch load of software," said JPL data managem
engineer Roger Klemm. "The code was reworked, and a

< securtyFocus’

A PRINT EMAIL =\ COMMENT

Rebooting on Mars
Matthew Fordahl, The Associated Press 2004-02-15

It's a PC user's nightmare: You're almost done with a lengthy e-mail, or about to finish a report at the office, and the
computer crashes for no apparent reason. It tries to restart but never quite finishes booting. Then it crashes again. And
again.

Getting caught in such a loop is frustrating enough on Earth. But imagine what it's like when the computer is 200 million miles away
on Mars. That's what mission controllers faced when the Mars rover Spirit stopped communicating last month.

Ultimately, the fix that saved Spirit wasn't that different from how a PC would be repaired on Earth. It's just that the folks who have
their hardware on Mars -- and the eyes of the world on them -- are better prepared for disaster.

Tech support for an $820 million mission is a cautious affair. Tools to recover from and fix any problem must be built into the
system before launch. The systems' behaviors need to be completely understood and predictable.

"Luckily, during the design period, we anticipated that we might get into a situation like this," said Glenn Reeves, who oversees the
software aboard the Mars rovers Sprit and Opportunity at NASA's Jet Propulsion Laboratory.

For stability, reliability and predictability, mission designers did not bust the budget and design the hardware or software from
scratch. Instead, they turned to hardware and software that's been used in space before and has a proven track record on Earth as
well.

"The advantage of using commercial software is it's well-known, and it's well deployed," said Mike Deliman, an engineer at
Alameda-based Wind River Systems Inc., which made the rovers' operating system. "It has been used throughout the world in
hundreds of thousands of applications."

The operating system, VxWorks, has its roots in software developed to help Francis Ford Coppola gain more control over a film
editing system. But the developers, David Wilner and Jerry Fiddler, saw a greater potential and eventually formed Wind River,
named for the mountains in Wyoming. VxWorks became a formal product in 1987.

The operating system is embedded in systems that control jetliners and atomic colliders, anti-lock braking systems in cars and even
heart pacemakers. It's also been used successfully in the Mars Pathfinder lander, Mars Odyssey orbiter and Stardust comet probe.

"These are all things that can't afford to fail," Deliman said.

We have help!

* Hardware support (code & data breakpoints, trap)

e |anguage support (Type systems

e IDE & Tooling (Syntax checking

Coding Style Guidelines

e Google has one

e CMU SEI has one

e Nasa has one

e \We have one — (Cw(l)

https://google.github.io/styleguide/cppguide.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=494932
https://ntrs.nasa.gov/search.jsp?R=20080039927

Print-line debugging

The “Wolf Fence’’ Algorithm for Debugging

The “Wolf Fence” method of de-
bugging time-sharing programs in
higher languages evolved from the
“Lions in South Africa” method that
I have taught since the vacuum-tube
machine language days. It is a
quickly converging iteration that
serves to catch run-time errors.

The same faulty thinking that
produced the error in the first place
may recur during the use of dumps.

CR Categories and Subject Descriptors: D.2.5
[Software Engineering]: Testing and Debug-
ging—debugging aids

General Terms: None

Additional Key Words and Phrases.

Author’s present address: E.J. Gauss, Ameri-
can Bell, 307 Middleton-Lincroft Road, Lin-
croft, NJ 07738.

Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission. '

© 1982 ACM 0001-0782/82/1100-0780 75¢.

Ny

Edward J. Gauss
University of Alaska

If one knows where the error is lo-
cated, a dump can be quite useful.
The “Wolf Fence” method compels
attention to that portion of the pro-
gram containing the error. It is de-
scribed as follows: (1) Somewhere in
Alaska there is a wolf. (2) You may
build a wolf-proof fence partitioning
Alaska as required. (3) The wolf
howls loudly. (4) The wolf does not
move.
The procedure is then:

1. Let A be the territory known to
contain the wolf (initially all of
Alaska).

2. Construct a fence across 4, along
any convenient natural line that di-
vides A into B and C.

3. Listen for the howls; determine if
the wolf is in B or C.

4. Go back to Step 1 until the wolf
is contained in a tight little cage.

Any convenient PRINT instruction
will serve as a “wolf fence.” It must
display its location in order to iden-

tfy its output uniquely, e.g.,
PRINT, “Wolf fence at line 1234”

The program is run and the output
examined. The “howls of the wolf,”
the error indication, will be found in
either the territory before or after the
fence. Additional fences are con-
structed until the programmer
clearly sees the exact location of the
error. Convergence can be acceler-
ated by the addition of several fences
per iteration,

The best location for fences is
after the label of any program seg-
ment. Both Cobol and Pascal are
written so that a fence can also be
conveniently placed after the label
but before the procedure. Fortran,
BASIC, and APL can be written in
this manner. In Fortran, a CONTINUE
1s the only command that may carry
a statement number. In BASIC, a
REM 1is used for an identified loca-
tion, and in APL a lamp illuminates
the entry to a procedure.

The “Wolf Fence’’ Algorithm for Debugging

The “Wolf Fence” method of de-
bugging time-sharing programs in
higher languages evolved from the
“Lions in South Africa” method that
I have taught since the vacuum-tube
machine language days. It is a
quickly converging iteration that
serves to catch run-time errors.

The same faulty thinking that
produced the error in the first place
may recur during the use of dumps.

CR Categories and Subject Descriptors: D.2.5
[Software Engineering]: Testing and Debug-
ging—debugging aids

General Terms: None

Additional Key Words and Phrases.

Author’s present address: E.J. Gauss, Ameri-
can Bell, 307 Middleton-Lincroft Road, Lin-
croft, NJ 07738.

Permission to copy without fee all or part of
this material is granted provided that the cop-
ies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific per-
mission. '

© 1982 ACM 0001-0782/82/1100-0780 75¢.

Ny

Edward J. Gauss
University of Alaska

If one knows where the error is lo-
cated, a dump can be quite useful.
The “Wolf Fence” method compels
attention to that portion of the pro-
gram containing the error. It is de-
scribed as follows: (1) Somewhere in
Alaska there is a wolf. (2) You may
build a wolf-proof fence partitioning
Alaska as required. (3) The wolf
howls loudly. (4) The wolf does not
move.
The procedure is then:

1. Let A be the territory known to
contain the wolf (initially all of
Alaska).

2. Construct a fence across 4, along
any convenient natural line that di-
vides A into B and C.

3. Listen for the howls; determine if
the wolf is in B or C.

4. Go back to Step 1 until the wolf
1s contained 1in a tight little cage.

Any convenient PRINT instruction
will serve as a “wolf fence.” It must
display its location in order to iden-

tfy its output uniquely, e.g.,
PRINT, “Wolf fence at line 1234”

The program is run and the output
examined. The “howls of the wolf,”
the error indication, will be found in
either the territory before or after the
fence. Additional fences are con-
structed until the programmer
clearly sees the exact location of the
error. Convergence can be acceler-
ated by the addition of several fences
per iteration,

The best location for fences is
after the label of any program seg-
ment. Both Cobol and Pascal are
written so that a fence can also be
conveniently placed after the label
but before the procedure. Fortran,
BASIC, and APL can be written in
this manner. In Fortran, a CONTINUE
1s the only command that may carry
a statement number. In BASIC, a
REM 1is used for an identified loca-
tion, and in APL a lamp illuminates
the entry to a procedure.

Interactive Debugging

GDB is the venerated, venerable tool
LLDB, etc are descendants
Some w/GUI front-end

Many bells, whistles: read the friendly manual

Automatic Tools

Static Analysis Tools

Exercise all possible pathways through source
Speedy
Different analyses catch different classes of errors

E.g. check conformance to style guidelines

Static Analysis, ctd.

Conformity to coding standards, inconsistent formatting
syntax errors
undeclared variables

Type mismatches

C++ Static Analysis Tools

e flawfinder
e cppcheck
e clang-tidy

e G++ & Clang++ address-sanitizer

Dynamic Analysis

Dynamic Analysis

e EXposes bugs too subtle for static analysis to find
e Execution of instrumented code

e Actual running of actual program

Valgrind

Memory analyzer

Do not use with optimized builds (doesn’t work)

Do not use with -fsanitize=address

Slower execution, might notice on big, slow programs

(Apparently) does not run under OS/X

http://drmemory.org/

Helsenbugs

heisenbug: /hi: €@ zen€pbuhg/, n.

[from Heisenberg's Uncertainty Principle in quantum physics] A bug that disappears or alters its behavior when one attempts to
probe or isolate it. (This usage is not even particularly fanciful; the use of a debugger sometimes alters a program's operating
environment significantly enough that buggy code, such as that which relies on the values of uninitialized memory, behaves quite
differently.) Antonym of Bohr bug; see also mandelbug, schroedinbug. In C, nine out of ten heisenbugs result from uninitialized
auto variables, fandango on core phenomena (esp. lossage related to corruption of the malloc arena) or errors that smash the

stack.

Heisenbugs - entry “Jargon File”

Heisenbugs, ctd.

e for 1 1n {1..1000}; do ./a.out; done;

e “Chaos mode” in rr

Time traveling debugger

e Elm (Click)

o 'y for C++

e |DE support:
e \/S Code
e ClLion

e Emacs

https://robert.ocallahan.org/2016/02/introducing-rr-chaos-mode.html
https://www.youtube.com/watch?v=RUeLd7T7Xi4

Beyond ...

e ... Correctness — Profiling (time, space, hot-spot)
e ... Interactivity — Automated bug-fixing!!! (Research)

e ... Test suites —Fuzzing

And vyet, there are still
bugs!

Formal Methods

TLA+

Liquid Haskell
Verilog

HOL (Light)

e Pentium Bug, anyone?

Between Scylla and Charybdis

Demo GDB & Valgrind

Bonus: GDB Power
Use Video

https://www.youtube.com/watch?v=PorfLSr3DDI

