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ABSTRACT
Programmers hoping to achieve performance improvements often
use custom memory allocators. This in-depth study examines eight
applications that use custom allocators. Surprisingly, for six of
these applications, a state-of-the-art general-purpose allocator (the
Lea allocator) performs as well as or better than the custom allo-
cators. The two exceptions use regions, which deliver higher per-
formance (improvements of up to 44%). Regions also reduce pro-
grammer burden and eliminate a source of memory leaks. How-
ever, we show that the inability of programmers to free individual
objects within regions can lead to a substantial increase in memory
consumption. Worse, this limitation precludes the use of regions
for common programming idioms, reducing their usefulness.
We present a generalization of general-purpose and region-based

allocators that we call reaps. Reaps are a combination of regions
and heaps, providing a full range of region semantics with the ad-
dition of individual object deletion. We show that our implemen-
tation of reaps provides high performance, outperforming other al-
locators with region-like semantics. We then use a case study to
demonstrate the space advantages and software engineering ben-
efits of reaps in practice. Our results indicate that programmers
needing fast regions should use reaps, and that most programmers
considering custom allocators should instead use the Lea allocator.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Dynamic storage management

General Terms
Algorithms, Experimentation, Performance, Reliability

1. Introduction
Programmers seeking to improve performance often incorporate
custom memory allocators into their applications. Custom allo-
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cators aim to take advantage of application-specific allocation pat-
terns to manage memory more efficiently than a general-purpose
memory allocator. For instance, 197.parser (from the SPECint2000
benchmark suite) runs over 60% faster with its custom allocator
than with the Windows XP allocator [4]. Numerous books and ar-
ticles recommend custom allocators as an optimization technique
[7, 25, 26]. The use of custom memory allocators is widespread,
including the Apache web server [1], the GCC compiler [13], three
of the SPECint2000 benchmarks [34], and the C++ Standard Tem-
plate Library [11, 32], all of which we examine here. The C++
language itself provides language constructs that directly support
custom memory allocation (by overloading operator new and
delete) [10].
The key contributions of this work are the following. We per-

form a comprehensive evaluation of custom allocation. We survey
a variety of applications that use a wide range of custom alloca-
tors. We compare their performance and memory consumption to
general-purpose allocators. We were surprised to find that, contrary
to conventional wisdom, custom allocation generally does not im-
prove performance, and in one case, actually leads to a performance
degradation. A state-of-the-art general-purpose allocator (the Lea
allocator [23]) yields performance equivalent to custommemory al-
locators for six of our eight benchmarks. These results suggest that
most programmers seeking faster memory allocation should use the
Lea allocator rather than writing their own custom allocator.
The custom allocators that do provide higher performance both

use regions. Regions provide high-performance but force the pro-
grammer to retain all memory associated with a region until the last
object in the region dies [14, 15, 17, 19, 30, 39]. We show that the
performance gains of regions (up to 44%) can come at the expense
of excessive memory retention (up to 230%). More importantly,
the inability to free individual objects within regions greatly com-
plicates the programming of server applications like Apache which
rely on regions to avoid resource leaks. Many programs cannot use
regions because of their memory allocation patterns. If programs
with intensive memory reuse, producer-consumer allocation pat-
terns, or dynamic arrays were to use regions, they could consume
very large or even unbounded amounts of memory.
We present a generalization of regions and heaps we call reaps.

Our implementation of reaps provides the performance and seman-
tics of regions while allowing programmers to delete individual ob-
jects. We show that reaps nearly match the speed of regions when
used in the same way, and provide additional semantics and gener-
ality. Reaps provide a reusable library solution for region allocation
with competitive performance, the potential for reduced memory
consumption, and greater memory management flexibility than re-
gions. We demonstrate individual object deletion using reaps with
a case study in which we add a new module to Apache. The orig-
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inal version of this program uses malloc/free. We show that
by modifying only a few lines to use the reap interface, we can get
region semantics with individual object deletion and thus reduce
memory consumption significantly.
The remainder of this paper is organized as follows. We discuss

related work in Section 2. We describe our benchmarks in Sec-
tion 3. In Section 4, we analyze the structure of custom memory
allocators used by our benchmark applications and explain why re-
gions do not provide sufficient support for many applications, in
particular server applications like Apache. In Section 5, we de-
scribe reaps and present our implementation in detail. We describe
our experimental infrastructure and methodology in Section 6. In
Section 7, we present experimental results, including a comparison
to previous allocators with region-like semantics, and present our
case study. We discuss our results in Section 8, explaining why we
believe programmers used custom memory allocators despite the
fact that these do not provide the performance they promise, and
we conclude in Section 9.
2. Related Work
Numerous articles and books have appeared in the trade press pre-
senting custom memory allocators as an optimization technique.
Bulka and Mayhew devote two entire chapters to the development
of a number of custom memory allocators [7]. Meyers describes in
detail the use of a freelist-based per-class custom allocator in “Ef-
fective C++” [24] and returns to the topic of custom allocators in
the sequel [25]. Milewski also discusses per-class allocators as an
optimization technique [26]. Hanson devotes a chapter to an im-
plementation of regions (“arenas”), citing both the speed and soft-
ware engineering benefits of regions as motivation [20]. Ellis and
Stroustrup describe the syntactic facilities that allow overloading
operator new, simplifying the use of custom allocators in C++
[10], and Stroustrup describes per-class allocators that use these fa-
cilities [37]. In all but Hanson’s work, the authors present custom
memory allocation as a widely effective optimization, while our
results suggest that only regions yield performance improvements.
We present a generalization of custom allocators (reaps) and show
that reaps capture the high performance of region allocators.
Region allocation, variously known as arenas, groups, and zones

[19, 30] has recently attracted attention as an alternative to garbage
collection. Following the definitions in the literature, programmers
allocate objects within a region and can delete all objects in a region
at once but cannot delete individual objects [14, 15, 17, 19, 30, 39].
Tofte and Talpin present a system that provides automatic region-
based memory management for ML [39]. Gay and Aiken describe
safe regions which raise an error when a programmer deletes a re-
gion containing live objects and introduce the RC language, an ex-
tension to C that further reduces the overhead of safe region man-
agement [14, 15]. While these authors present only the benefits of
regions, we investigate the hidden memory consumption cost and
limitations of regions and present an alternative that avoids these
drawbacks and combines individual object deletion with the bene-
fits of regions.
To compute the memory cost of region allocation, we measure

the memory consumed using regions and when objects are freed
immediately after their last reference. We use binary instrumenta-
tion to determine when objects are last referenced and post-process
a combined allocation-reference trace to obtain peak memory con-
sumption and object drag, the elapsed time between last use and
reclamation of an object. Our definition of drag differs slightly
from the original use of the term by Runciman and Rojemo [31]. In
their work, drag is the time between last use and unreachability of
an object, which in a garbage-collected environment defines avail-
ability for reclamation. Shaham, Kolodner and Sagiv measure drag

by performing periodic object reachability scanning in the context
of Java, a garbage-collected language [33].
The literature on general-purpose memory allocators is extensive

(see Wilson’s survey for a comprehensive description [43]). Here
we describe the Windows XP and Lea allocators [23, 28], which we
use in this study because of their widespread use (the Lea allocator
forms the basis of the Linux memory allocator [16]). The Windows
allocator is a best-fit allocator with 127 exact-size quicklists (one
linked list of freed objects for each multiple of 8 bytes), which
optimize for the case when many requests are for small same-sized
objects. Objects larger than 1024 bytes are obtained from a sorted
linked list, sacrificing speed for a good fit. The Lea allocator is
an approximate best-fit allocator with different behavior based on
object size. Small objects (less than 64 bytes) are allocated using
exact-size quicklists. Requests for a medium-sized object (less than
128K) and certain other events trigger the Lea allocator to coalesce
the objects in these quicklists (combining adjacent free objects) in
the hope that this reclaimed space can be reused for the medium-
sized object. For medium-sized objects, the Lea allocator performs
immediate coalescing and splitting (breaking objects into smaller
ones) and approximates best-fit. Large objects are allocated and
freed using mmap. The Lea allocator is the best overall allocator
(in terms of the combination of speed and memory usage) of which
we are aware [22].
In addition to the standard malloc/free interface, Windows

also provides a Windows-specific memory allocation interface that
we refer to as Windows Heaps (all function calls begin with Heap).
The Windows Heaps interface is exceptionally rich, including mul-
tiple heaps and some region semantics (but not nested regions)
along with individual object deletion [28]. Vmalloc, a memory al-
location infrastructure, also provides (non-nested) regions that per-
mit individual object deletion [41]. We show in Section 7.3 that
neither of these implementations match the performance of regions
or reaps, and reaps capture the same semantics.
The only previous work evaluating the impact of custommemory

allocators is by Zorn (one of the authors). Zorn compared custom
(“domain-specific”) allocators to general-purpose memory alloca-
tors [44]. He analyzed the performance of four benchmarks (cfrac,
gawk, Ghostscript, and Perl) and found that the applications’ cus-
tom allocators only slightly improved performance (from 2% to
7%) except for Ghostscript, whose custom allocator was outper-
formed by most of the general-purpose allocators he tested. Zorn
also found that custom allocators generally had little impact on
memory consumption. His study differs from ours in a number
of ways. Ours is a more comprehensive study of custom alloca-
tion, including a benchmark suite covering a wide range of custom
memory allocators, while Zorn’s benchmarks include essentially
only one variety.1 We also address custom allocators whose se-
mantics differ from those of general-purpose allocators (e.g., re-
gions), while Zorn’s benchmarks use only semantically equivalent
custom allocators. Our findings therefore differ from Zorn’s, in
that we find that certain custom allocators (especially regions) con-
sistently yield performance improvements over existing general-
purpose memory allocators, despite the fact that the general-purpose
allocators are much faster now.
While previous work has either held that custom memory alloca-

tors are a good idea (articles in the trade press), or a waste of time
(Zorn), we find that both are true. Most custom allocators have
no impact on performance, but regions in particular have both high
performance and some software engineering benefits. We show that
the inability of programmers to delete objects within regions may
1These allocators are all variants of what we call per-class allocators in
Section 4.2.
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Benchmarks
custom allocation

197.parser English parser [34] test.in
boxed-sim Balls-in-box simulator [8] -n 3 -s 1
C-Breeze C-to-C optimizing compiler [18] espresso.c
175.vpr FPGA placement & routing [34] test placement
176.gcc Optimizing C compiler [34] scilab.i
apache Web server [1] see Section 3
lcc Retargetable C compiler [12] scilab.i
mudlle MUD compiler/interpreter [14] time.mud

general-purpose allocation
164.gzip GNU zip data compressor [34] test/input.compressed 2
181.mcf Vehicle scheduler [34] test-input.in
186.crafty Chess program [34] test-input.in
252.eon Ray tracer [34] test/chair.control.cook
253.perlbmk Perl interpreter [34] perfect.pl b 3
254.gap Groups language interpreter [34] test.in
255.vortex Object-oriented DBM [34] test/lendian.raw
300.twolf CAD placement & routing [34] test.net
espresso Optimizer for PLAs [35] test2
lindsay Hypercube simulator [43] script.mine

Table 1: Benchmarks and inputs. We include the general-
purpose benchmarks for comparison with custom allocation in
Section 7.3. All programs are written in C except C-Breeze and
252.eon, which are written in C++.

lead to a substantial increase in memory consumption and limits
their applicability. We develop a generalized memory allocator that
preserves the high performance of regions while providing greater
flexibility and a potential reduction in memory consumption.
Regions have also been incorporated into Real-Time Java to al-

low real-time guarantees that cannot be provided by any existing
garbage collector algorithm or implementation [5]. These regions,
while somewhat different from traditional region-based allocators
in that they are associated with one or more computations [2], suffer
from the same problems as traditional regions. In particular, threads
in a producer-consumer relationship cannot use region allocation
without causing unbounded memory consumption. We believe that
adapting reaps to the setting of Real-Time Java is a fruitful topic
for future research.

3. Benchmarks
We list the benchmarks we use in this paper in Table 1, including
general-purpose allocation benchmarks that we use for comparison
with custom allocation in Section 7.3. Most of our benchmarks
come from the SPECint2000 benchmark suite [34]. For the custom
allocation benchmarks, we include a number of programs used in
prior work on memory allocation. These programs include those
used by Gay and Aiken (Apache, lcc, and mudlle) [14, 15], and
boxed-sim, used by Chilimbi [8]. We also use the C-Breeze com-
piler infrastructure [18]. C-Breeze makes intensive use of the C++
Standard Template Library (STL), and most implementations of the
STL use custom allocators, including the one we use in this study
(STLport, officially recommended by IBM) [11, 32].
We use the largest inputs available to us for most of the cus-

tom allocation benchmarks, except for 175.vpr and 197.parser. For
these and the general-purpose benchmarks from SPEC2000, we
used the test inputs. The overhead imposed by our binary instru-
mentation made runtimes for the reference inputs and the resul-
tant trace files intractable. We excluded just one SPEC benchmark,
256.bzip2, because we could not process even its test inputs.
We describe all of the inputs we used to drive our benchmarks in

Table 1 except for Apache. To drive Apache, we follow Gay and
Aiken and run on the same computer a program that fetches a large
number of static web pages. While this test is unrealistic, it serves
two purposes. First, it isolates performance from the usual network
and disk I/O bottlenecks, magnifying the performance impact of
custom allocation. Second, using the same benchmark as Gay and
Aiken facilitates comparison with their work.

3.1 Emulating Custom Semantics
Custom memory allocators often support semantics that differ from
the C memory allocation interface. In order to replace these custom
allocators with malloc and free, we must emulate their seman-
tics on top of the standard allocation calls. We wrote and tuned a
region emulator to provide the full range of region semantics used
by our benchmark applications, including nesting and obstacks (see
Section 4.2). The region emulator uses the general-purpose alloca-
tor for each allocated object, but records a pointer for each object
so that when the application deletes a region, the region emula-
tor can call free on each allocated object. We record the pointer
information for allocated objects in an out-of-band dynamic array
associated with each region, rather than within the allocated ob-
jects. This method ensures that the last access to any allocated
object is by the client program and not by our region emulator. Us-
ing this technique means that our region emulator has no impact
on object drag, the elapsed time between last use and reclamation
of an object, which we measure in Section 7.3. However, region
emulation has an impact on space. Every allocated object requires
4 bytes of memory (for its record in the dynamic array) in addition
to per-object overhead (4–8 bytes). Eliminating this overhead is
an advantage of regions, but the inability to free individual objects
may have a much greater impact on space, which we explore in
Section 6.1.

4. Custom Allocators
In this section, we explain exactly what we mean by custom mem-
ory allocators. We discuss the reasons why programmers use them
and survey a wide range of custom memory allocators, describing
briefly what they do and how they work.
We use the term custom memory allocation in a proscribed way

to denote anymemory allocation mechanism that differs from general-
purpose allocation in at least one of two ways. First, a custom allo-
cator may provide more than one object for every allocated chunk
of memory. Second, it may not immediately return objects to the
system or to the general-purpose allocator. For instance, a custom
allocator may obtain large chunks of memory from the general-
purpose allocator which it carves up into a number of objects. A
custom allocator might also defer object deallocation, returning ob-
jects to the system long after the object is last used or becomes
unreachable.
Our definition of custom memory allocators excludes wrappers

that perform certain tests (e.g., for null return values) before re-
turning objects obtained from the general-purpose memory man-
ager. We also exclude from consideration memory allocators that
serve primarily as infrastructures for implementing object layout
optimizations [9, 40].

4.1 Why Programmers Use Custom Allocators
There are a variety of reasons why programmers use custom mem-
ory allocators. The principal reason cited by programmers and
authors of books on programming is runtime performance [7, 20,
24, 25, 26, 37]. Because the per-operation cost of most general-
purpose memory allocators is an order of magnitude higher than
that of custom allocators, programs that make intensive use of the
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(a) Time spent in memory management operations for eight custom
allocation benchmarks, with their allocators replaced by theWindows
allocator (see Section 3.1). Memory management operations account
for up to 40% of program runtime (on average, 16%), indicating a
substantial opportunity for optimization.
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(b) Memory consumption for eight custom allocation benchmarks,
including only memory allocated by the custom allocators. Most of
these consume relatively small amounts of memory on modern hard-
ware, suggesting little opportunity for reducing memory consump-
tion.

Figure 1: Runtime and space consumption for eight custom allocation benchmarks.

allocator may see performance improvements by using custom al-
locators.

Improving performance
Figure 1(a) shows the amount of time spent in memory manage-
ment operations on eight applications using a wide range of custom
memory allocators, with the custom memory allocator replaced by
the Windows allocator. We use the region emulator from Sec-
tion 3.1 for 176.gcc, Apache, lcc, and mudlle. Many of these ap-
plications spend a large percentage of their runtime in the memory
allocator (16% on average), demonstrating an opportunity to im-
prove performance by optimizing memory allocation.
Nearly all of our benchmarks use custom allocators to improve

performance. This goal is often explicitly stated in the documen-
tation or source code. For instance, the Apache API (application-
programmer interface) documentation claims that its custom allo-
cator ap palloc “is generally faster than malloc.” The STLport
implementation of STL (used in our runs of C-Breeze) refers to
its custom allocator as an “optimized node allocator engine,” while
197.parser’s allocator is described as working “best for ’stack-like’
operations.” Allocation with obstacks (used by 176.gcc) “is usu-
ally very fast as long as the objects are usually small”2 and mudlle’s
region-based allocator is “fast and easy.” Because Hanson cites per-
formance benefits for regions in his book [20], we assume that they
intended the same benefit. Lcc also includes a per-class custom al-
locator, intended to improve performance, which had no observable
performance impact.3 The per-class freelist-based custom allocator
for boxed-sim also appears intended to improve performance.

Reducing memory consumption
While programmers primarily use custom allocators to improve
performance, they also occasionally use them to reduce memory

2From the documentation on obstacks in the GNU C library.
3Hanson, in a private communication, indicated that the only intent of the
per-class allocator was performance. In the results presented here, we dis-
abled this custom allocator to isolate the impact of its region-based alloca-
tors.

consumption. One of our benchmarks, 175.vpr, uses custom allo-
cation exclusively to reduce memory consumption, stating that its
custom allocator “should be used for allocating fairly small data
structures where memory-efficiency is crucial.”4 The use of ob-
stacks in 176.gcc might also be partially motivated by space consid-
erations. While the source documentation is silent on the subject,
the documentation for obstacks in the GNU C library suggests it as
a benefit.5 Figure 1(b) shows the amount of memory consumed by
custom allocators in our benchmark applications. Only 197.parser
and 176.gcc consume significant amounts of memory on modern
hardware (30MB and 91MB, respectively). However, recall that
we use small input sizes in order to be able to process the trace
files.

Improving software engineering
Writing custom code to replace the general-purpose allocator is
generally not a good software engineering practice. Memory al-
located via a custom allocator cannot be managed by another al-
locator, including the general-purpose memory manager. Inadver-
tently calling free on a custom-allocated object can corrupt the
heap and lead to a segmentation violation. The result is a signifi-
cant bookkeeping burden on the programmer to ensure that objects
are freed by the correct allocator. Custom allocators also can make
it difficult to understand the sources of memory consumption in a
program. Using custom allocators often precludes the use of mem-
ory leak detection tools like Purify [21]. Use of custom allocators
also precludes the option of later substituting a parallel allocator to
provide SMP scalability [3], a garbage collector to protect against
memory leaks [29], or a shared multi-language heap [42].
However, custom memory allocators can provide some impor-

tant software engineering benefits. The use of region-based cus-
tom allocators in parsers and compilers (e.g., 176.gcc, lcc, and
mudlle) simplifies memory management [20]. Regions provide
separate memory areas that a single call deletes in their entirety.

4See the comment for my chunk malloc in util.c.
5“And the only space overhead per object is the padding needed to start
each object on a suitable boundary. ”
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Motivation Policy Mechanism
performance space software same API region- nested multiple chunks stack same-type

Benchmark Allocator engineering Delete lifetimes areas optimized optimized
197.parser custom pattern
boxed-sim per-class
C-Breeze per-class (STL)
175.vpr region
176.gcc obstack region
apache nested region
lcc region
mudlle region

reaps

Table 2: Characteristics of the custom allocators in our benchmarks, including reaps. Performance motivates all but one of the
custom allocators, while only two were (possibly) motivated by space concerns (see Section 4.1). “Same API” means that the allocator
allows individual object allocation and deallocation, and “chunks” means the custom allocator obtains large blocks of memory from
the general-purpose allocator for its own use (see Section 4.2).

Multithreaded server applications use regions to isolate the mem-
ory spaces of separate threads (sandboxing), reducing the likeli-
hood that one thread will accidentally or maliciously overwrite an-
other thread’s data. Server applications like the Apache web server
also use regions to prevent memory leaks. When a connection is
terminated or fails, the server tears down all memory associated
with the connection simply by freeing the associated region. How-
ever, regions do not allow individual object deletion, so an entire
region must be retained as long as just one object within it remains
live. This policy can lead to excessive memory consumption and
prevents the use of regions for certain usage patterns, as we explore
in Section 4.3.

4.2 A Taxonomy of Custom Allocators
In order to outperform the general-purpose memory allocator, pro-
grammers apply knowledge they have about some set of objects.
For instance, programmers use regions to manage objects that are
known to be dead at the same time. Programmers also write cus-
tom allocators to take advantage of object sizes or other allocation
patterns.
We break down the allocators from our custom allocation bench-

marks in terms of several characteristics in Table 2. We divide these
into three categories: the motivation behind the programmer’s use
of a custom allocator, the policies implemented by the allocators,
and the mechanisms used to implement these policies. Notice that
in all but one case (175.vpr), performance was a motivating factor.
We explain the meaning of each characteristic in the descriptions
of the custom allocators below.

Per-class allocators. Per-class allocators optimize for allocation
of the same type (or size) of object by eliding size checks
and keeping a freelist with objects only of the specific type.
They implement the same API as malloc and free, i.e.,
they provide individual object allocation and deletion, but
optimize only for one size or type.

Regions. Regions allocate objects by incrementing a pointer into
large chunks of memory. Programmers can only delete re-
gions in their entirety. Allocation and freeing are thus as fast
as possible. A region allocator includes a freeAll func-
tion that deletes all memory in one operation and includes
support for multiple allocation areas that may be managed
independently. Regions reduce bookkeeping burden on the
programmer and reduce memory leaks, but do not allow in-
dividual objects to be deleted.









   

 

Figure 2: An example of region-based memory allocation. Re-
gions allocate memory by incrementing a pointer into succes-
sive chunks of memory. Region deletion reclaims all allocated
objects en masse by freeing these chunks.

Two of the custom allocators in this survey are variants of re-
gions: nested regions and obstacks. Nested regions support
nested object lifetimes. Apache uses these to provide regions
on a per-connection basis, with sub-regions for execution of
user-provided code. Tearing down all memory associated
with a connection requires just one regionDelete call on
the memory region.
An obstack is an extended version of a region allocator that
adds deletion of every object allocated after a certain object
[43]. This extension supports object allocation that follows a
stack discipline (hence the name, which comes from “object
stack”).

Custom patterns. This catch-all category refers to what is essen-
tially a general-purpose memory allocator optimized for a
particular pattern of object behavior. For instance, 197.parser
uses a fixed-size region of memory (in this case, 30MB) and
allocates after the last block that is still in use by bumping a
pointer. Freeing a block marks it as free, and if it is the last
block, the allocator resets the pointer back to the new last
block in use. This allocator is fast for 197.parser’s stack-like
use of memory, but if object lifetimes do not follow a stack-
like discipline, it exhibits unbounded memory consumption.

4.3 Problems with Regions
As the above description shows, many custom allocators are based
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(a) A lattice of APIs, showing how reaps combine the
semantics of regions and heaps.

Sbrk

ClearOptimizedHeap

NestedHeap

CoalesceableHeap

RegionHeap

LeaHeap

(b) A diagram of the heap layers that comprise our implementa-
tion of reaps. Reaps adapt to their use, acting either like regions
or heaps (see Section 5). The CoalesceableHeap layer adds per-
object metadata that enable a heap to subsequently manage mem-
ory obtained from a region.

Figure 3: A description of the API and implementation of reaps.

on regions. Regions can have both performance and software en-
gineering advantages over general-purpose memory allocation, but
can considerably increase memory consumption. More importantly,
regions cannot be used for many allocation patterns. In particu-
lar, regions cannot be used when implementing unbounded buffers,
dynamic arrays, or producer-consumer patterns. Because program-
mers cannot reclaim individual objects within regions, programs
using any of these allocation patterns would consume unbounded
amounts of memory. These limitations are a practical problem. For
instance, the Apache API manages memory with regions (“pools”)
to prevent resource leaks. Programmers add functionality to Apache
by writing modules compiled into the Apache server. Regions con-
strain the way programmers write modules and prevent them from
using natural allocation patterns like producer-consumer. In gen-
eral, programmers must rewrite applications that were written using
general-purpose allocation. This restriction is an unintended con-
sequence of the use of regions to satisfy Apache’s need for heap
teardown and high performance.
Ideally, we would like to combine general-purpose allocation

with region semantics, allowing for multiple allocation areas that
can be cheaply deleted en masse. This extension of region seman-
tics with individual object deletion would satisfy the needs of appli-
cations like Apache while increasing their allocation pattern cov-
erage. This interface comprises all of the semantics provided by
the custom allocators we surveyed, excluding obstack deletion. A
high-performance implementation would reduce the need for con-
ventional regions and many other custom allocators. These are the
goals of the allocator that we describe in the next section.
5. Reaps: Generalizing Regions and Heaps
We have designed and implemented a generalization of regions
and general-purpose memory allocators (heaps) that we call reaps.
Reaps provide a full range of region semantics, including nested
regions, but also include individual object deletion. Figure 3(a)
depicts a lattice of API’s, showing how reaps combine the seman-
tics of regions and heaps. We provide a C-based interface to reap










   










Figure 4: An example of reap allocation and deallocation.
Reaps add metadata to objects so that they can be freed onto a
heap.

allocation, including operations for reap creation and destruction,
clearing (freeing of every object in a reap without destroying the
reap data structure), and individual object allocation and dealloca-
tion:

void reapCreate (void ** reap, void ** parent);
void reapDestroy (void ** reap);
void reapFreeAll (void ** reap); // clear
void * reapMalloc (void ** reap, size_t size);
void reapFree (void ** reap, void * object);

We built our implementation of reaps using Heap Layers [4]. The
Heap Layers infrastructure allows programmers to compose allo-
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cator “layers” to build high-performance memory allocators much
more easily than by modifying the code of an existing memory al-
locator. These layers are C++ implementations of mixins [6], using
classes whose superclass is a template argument. With mixins, the
programmer creates allocators from composable layers that a com-
piler implements efficiently.

5.1 Design and Implementation
Our implementation of reaps includes both a region-like alloca-
tor and support for nested reaps. Reaps adapt to their use, be-
having either like regions or like heaps. Initially, reaps behave
like regions. They allocate memory by bumping a pointer through
geometrically-increasing large chunks of memory (initially 8K),
which they thread onto a doubly-linked list. Unlike regions, how-
ever, reaps add object headers to every allocated object. These
headers (“boundary tags”) contain metadata that allow the object to
be subsequently managed by a heap. Reaps act in this region mode
until a call to reapFree deletes an individual object. Reaps place
freed objects onto an associated heap. Subsequent allocations from
that reap use memory from the heap until it is exhausted, at which
point it reverts to region mode. An example of reap allocation ap-
pears in Figure 4.
Figure 3(b) depicts the design of reaps in graphical form, using

Heap Layers. Memory requests (malloc and free) come in from
below and proceed upwards through the class hierarchy. We adapt
LeaHeap, a heap layer that approximates the behavior of the Lea
allocator, in order to take advantage of its high speed and low frag-
mentation. In addition, we wrote three new layers: NestedHeap,
ClearOptimizedHeap, and RegionHeap.
The first layer, NestedHeap, provides support for nesting of heaps.

The second layer, ClearOptimizedHeap, optimizes for the case when
no memory has yet been freed by allocating memory very quickly
by bumping a pointer and adding necessary metadata. ClearOpti-
mizedHeap takes two heaps as arguments and maintains a boolean
flag, nothingOnHeap, which is initially true. While this flag
is true, ClearOptimizedHeap allocates memory from its first heap,
bumping a pointer and adding per-object metadata as a side effect
of allocating through CoalesceableHeap. We require this header
information so that we can subsequently free this memory onto a
heap. Bypassing the LeaHeap for this case has little impact on
general-purpose memory allocation, speeding up only the initial
allocation of heap items, but it dramatically improves the perfor-
mance of region allocation. When an object is freed, it is placed on
the heap and the nothingOnHeap flag is set to false. ClearOpti-
mizedHeap then allocates memory from its second heap. When the
heap is empty, or when the region is deleted, the nothingOnHeap
flag is reset to true.
The last layer, RegionHeap, maintains a linked list of allocated

objects and provides a region deletion operation (clear()) that
iterates through this list and frees the objects. We use the Region-
Heap layer to manage memory in geometrically-increasing chunks
of at least 8K, making reapFreeAll efficient.

6. Evaluating Custom Memory Allocators
We provide allocation statistics for our benchmarks in Table 3.
Many of the general-purpose allocation benchmarks are not allocation-
intensive, but we include them for completeness. In particular,
181.mcf, 186.crafty, 252.eon and 254.gap allocate only a few ob-
jects over their entire lifetime, including one or more very large
objects. Certain trends appear from the data. In general, programs
using general-purpose allocators spend relatively little time in the
memory allocator (on average, around 3%), while programs using
custom allocators spend on average 16% of their time in memory
operations. Programs that use custom allocators also tend to allo-

cate many small objects. This kind of allocation behavior stresses
the memory allocator, and demonstrates that programmers using
custom memory allocators were generally correct in pinpointing
the memory manager as a significant factor in the performance of
their applications.

6.1 Evaluating Regions
While we have identified four custom memory management poli-
cies (same API, regions, nesting, and multiple areas), regions are
unique in requiring the programmer to tailor their program to their
choice of allocation policy.6 By using regions, programmers give
up the ability to delete individual objects. When all objects in a
region die at the same time, this restriction does not affect mem-
ory consumption. However, the presence of just one live object ties
down an entire region, potentially leading to a considerable amount
of wasted memory. We explore the impact on memory consump-
tion of this inability to reclaim dead objects in Section 7.3.
We measure the impact of using regions by using a binary in-

strumentation tool we wrote using the Vulcan binary instrumenta-
tion system [38]. We link each program with our region emulator
and instrument them using our tool to track both allocations and
accesses to every heap object. When an object is actually deleted
(explicitly by a free or by a region deletion), the tool outputs a
record indicating when the object was last touched, in allocation
time. We post-process the trace to compute the amount of mem-
ory the program would use if it had freed each individual object
as soon as possible. This highly-aggressive freeing may be rea-
sonable, as we show below with measurements of programs using
general-purpose memory allocators.

7. Results
This section compares execution times of different memory allo-
cation policies on a number of programs; it compares the origi-
nal custom allocators with general purpose allocation and reaps.
We find that only region allocators consistently outperform the Lea
general-purpose allocator. We also compare the space consumption
of these options, and find that regions may unnecessarily consume
additional space. A few other systems provide similar semantics
to reaps, and we show that our implementation of reaps is faster.
Finally, we present a case study that shows that by combining ob-
ject deletion and region semantics, reaps can yield reduced memory
consumption while maintaining the software engineering and pro-
tection benefits of regions.
All runtimes are the best of three runs at real-time priority after

one warm-up run; variation was less than one percent. All pro-
grams were compiled with Visual C++ 6.0 and run on a 600 MHz
Pentium III system with 320MB of RAM, a unified 256K L2 cache,
and 16K L1 data and instruction caches, under Windows XP. We
compare the custom allocators to the Windows XP memory alloca-
tor, which we refer to in the graphs as “Win32”, to version 2.7.0
of Doug Lea’s allocator, which we refer to as “DLmalloc”, and to
our implementation of reaps. For the non-region applications and
176.gcc, we use reaps as a substitute for malloc and free (with
region emulation for 176.gcc). For the remaining benchmarks, we
use reaps as a direct replacement for regions.

7.1 Runtime Performance
To compare runtime performance of custom allocation to general-
purpose allocation, we simply reroute custom allocator calls to the
general-purpose allocator or reaps, using region emulation when
needed. For this study, we compare custom allocators to the Win-

6Nesting also requires a different programming style, but in our
experience, nesting only occurs in conjunction with regions.
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Benchmark Statistics
Benchmark Total objects Max objects Average object size Total memory Max in use Total/max Mem mgmt. ops.

in use (in bytes) (in bytes) (in bytes) (% of runtime)
custom allocation
197.parser 9,334,022 230,919 38 351,772,626 3,207,529 109.7 41.8%
boxed-sim 52,203 4,865 15 777,913 301,987 2.6 0.2%
C-Breeze 5,090,805 2,177,173 23 118,996,917 60,053,789 1.9 17.4%
175.vpr 3,897 3,813 44 172,967 124,636 1.4 0.1%
176.gcc 9,065,285 2,538,005 54 487,711,209 112,753,774 4.3 6.7%
apache 149,275 3,749 208 30,999,123 754,492 41 0.1%
lcc 1,465,416 92,696 57 83,217,416 3,875,780 21.5 24.2%
mudlle 1,687,079 38,645 29 48,699,895 662,964 73.5 33.7%
general-purpose allocation
espresso 4,483,621 4,885 249 1,116,708,854 373,348 2991.1 10.8%
lindsay 108,861 297 64 6,981,030 1,509,088 4.6 2.8%
164.gzip 1,307 72 6108 7,983,304 6,615,288 1.2 0.1%
181.mcf 54 52 1,789,028 96,607,514 96,601,049 1.0 1.5%
186.crafty 87 86 10,206 887,944 885,520 1.0 0.0%
252.eon 1,647 803 31 51,563 33,200 1.6 0.4%
253.perlbmk 8,888,870 5,813 16 144,514,214 284,029 508.8 12.6%
254.gap 50 48 1,343,614 67,180,715 67,113,782 1.0 0.0%
255.vortex 186,483 53,087 357 66,617,881 17,784,239 3.7 1.9%
300.twolf 9,458 1,725 56 532,177 66,891 8.0 0.9%

Table 3: Statistics for our benchmarks, replacing custom memory allocation by general-purpose allocation. We compute the runtime
percentage of memory management operations with the default Windows allocator.

dows XP memory allocator, version 2.7.0 of the Lea allocator, and
our implementation of reaps.
In Figure 5(a), the second bar shows that the Windows allocator

degrades performance considerably for most programs. In particu-
lar, 197.parser and mudlle run more than 60% slower when using
the Windows allocator than when using the original custom allo-
cator. Only boxed-sim, 175.vpr, and Apache run less than 10%
slower when using the Windows allocator. These results, taken on
their own, would more than justify the use of custom allocators for
most of these programs.
However, the picture changes when we look at the third bar,

showing the results of replacing the custom allocators with the Lea
allocator (DLmalloc). For six of the eight applications, the Lea
allocator provides nearly the same performance as the original cus-
tom allocators (less than 2% slower on average). The Lea alloca-
tor actually slightly improved performance for C-Breeze when we
turned off STL’s internal custom allocators. Only two of the bench-
marks, lcc and mudlle, still run much faster with their region-based
custom allocators than with the Lea allocator. This result shows
that a state-of-the-art general-purpose allocator eliminates most of
the performance advantages of custom allocators.
The fourth bar in Figure 5(a) shows the results for reaps. The

results show that even when reaps are used for general-purpose al-
location, which is not their intended role, they perform quite well,
nearly matching the Lea allocator for all but 197.parser and C-
Breeze. However, for the two remaining benchmarks (lcc and mudlle),
reaps nearly match the performance of the original custom alloca-
tors, running under 8% slower (as compared with the Lea allocator,
which runs 21–47% slower). These results show that reaps achieve
performance comparable to region-based allocators while provid-
ing the flexibility of individual object deletion.

7.2 Memory Consumption
We measure the memory consumed by the various memory allo-
cators by running the benchmarks, with custom allocation, the Lea
allocator and with reaps, all linked with a slightly modified version

of the Lea allocator. We modify the sbrk and mmap emulation
routines to keep track of the high water mark of memory consump-
tion. We do not include the Windows XP allocator in this study be-
cause it does not provide an equivalent way to keep track of mem-
ory consumption. In these experiments, the reap versions do not
use individual object deletion but rather each reap acts as a region.
Modifying all the programs to use deletion requires application-
specific information and is very labor-intensive. Section 7.5 shows
a case study for reaps that uses individual object deletion thus re-
ducing the memory requirement for a new Apache module.
Figure 5(b) shows our results for memory consumption, which

are quite mixed. Neither custom allocators, the Lea allocator, nor
reaps consistently yield a space advantage. 176.gcc allocates many
small objects, so the per-object overhead of both reaps and the Lea
allocator (8 bytes) leads to increased memory consumption. De-
spite their overhead, reaps and the Lea allocator often reducemem-
ory consumption, as in 197.parser, C-Breeze and Apache. The cus-
tom memory allocator in 197.parser allocates from a fixed-sized
chunk of memory (a compile-time constant, set at 30MB), while
the Lea allocator and reaps use just 15% of this memory. Worse,
this custom allocator is brittle; requests beyond the fixed limit result
in program termination. Apache’s region allocator is less space-
efficient than reaps or our region emulator, accounting for the dif-
ference in space consumption. On the other hand, our use of in-
creasing chunk sizes in reaps causes increased memory consump-
tion for mudlle.
Of the two allocators implicitly or explicitly intended to reduce

memory consumption, 176.gcc’s obstacks achieves its goal, sav-
ing 32% of memory compared to the Lea allocator, while 175.vpr’s
provides only an 8% savings. Custom allocation does not necessar-
ily provide space advantages over the Lea allocator or reaps, which
is consistent with our observation that programmers generally do
not use custom allocation to reduce memory consumption.
Our results show that most custom allocators achieve neither per-

formance nor space advantages. However, region-based allocators
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(a) Normalized runtimes (smaller is better). Custom allocators often
outperform the Windows allocator, but the Lea allocator is as fast as
or faster than most of the custom allocators. For the region-based
benchmarks, reaps come close to matching the performance of the
custom allocators.

Space - Custom Allocator Benchmarks
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(b) Normalized space (smaller is better). We omit the Windows al-
locator because we cannot directly measure its space consumption.
Custom allocators provide little space benefit and occasionally con-
sume much more memory than either general-purpose allocators or
reaps.

Figure 5: Normalized runtime and memory consumption for our custom allocation benchmarks, comparing the original allocators
to the Windows and Lea allocators and reaps.
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Figure 6: Normalized runtimes (smaller is better). Reaps are
almost as fast as the original custom allocators and much faster
than previous allocators with similar semantics.

can provide both advantages (see lcc and mudlle). These space ad-
vantages are somewhat misleading. While the Lea allocator and
reaps add a fixed overhead to each object, regions can tie down ar-
bitrarily large amounts of memory because programmers must wait
until all objects are dead to free their region. In the next section,
we measure this hidden space cost of using the region interface.

7.3 Evaluating Region Allocation
Using the binary instrumentation tool we describe in Section 6.1,
we obtained two curves over allocation time [22] for each of our
benchmarks: memory consumed by the region allocator, and mem-
ory required when dead objects are freed immediately after their
last access. Dividing the areas under these curves gives us total
drag, a measure of the average ratio of heap sizes with and without

immediate object deallocation. A program that immediately frees
every dead object thus has the minimum possible total drag of 1.
Intuitively, the higher the drag, the further the program’s memory
consumption is from ideal.
Figure 7(a) shows drag statistics for a wide range of benchmarks,

including programs using general-purpose memory allocators. Pro-
grams using non-region custom allocators have minimal drag, as do
the bulk of the programs using general-purpose allocation, indicat-
ing that programmers tend to be aggressive about reclaiming mem-
ory. The drag results for 255.vortex show either that some program-
mers are not so careful, or that some programming practices may
preclude aggressive reclamation. The programs with regions con-
sistently exhibit more drag, including 176.gcc (1.16), and mudlle
(1.23), and lcc has very high drag (3.34). This drag corresponds to
an average of three times more memory consumed than required.
In many cases, programmers are more concerned with the peak

memory (footprint) consumed by an application rather than the av-
erage amount of memory over time. Table 4 shows the footprint
when using regions compared to immediately freeing objects af-
ter their last reference. The increase in peak caused by using re-
gions ranges from 6% for 175.vpr to 63% for lcc, for an average of
23%. Figure 7(b) shows the memory requirement profile for lcc,
demonstrating how regions influence memory consumption over
time. These measurements confirm the hypothesis that regions can
lead to substantially increased memory consumption. While pro-
grammers may be willing to give up this additional space in ex-
change for programming convenience, we believe that they should
not be forced to do so.

7.4 Experimental Comparison to Previous Work
In Figure 6, we present results comparing the previous allocators
that provide semantics similar to those provided by reaps (see Sec-
tion 2). Windows Heaps are a Windows-specific interface provid-
ing multiple (but non-nested) heaps, and Vmalloc is a custom al-
location infrastructure that provides the same functionality. We
present results for lcc and mudlle, which are the most allocation
intensive of our region benchmarks. Using Windows Heaps in
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(a) Drag statistics for applications using general-purpose memory al-
location (average 1.1), non-regions (average 1.0) and region custom
allocators (average 1.6, 1.1 excluding lcc).
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(b) Memory requirement profile for lcc. The top curve shows mem-
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Figure 7: The effect on memory consumption of not immediately freeing objects. Programs that use region allocators are especially
draggy. Lcc in particular consumes up to 3 times as much memory over time as required and 63% more at peak.

Peak memory
Benchmark With regions Immediate free % Increase
175.vpr 131,274 123,823 6%
176.gcc 67,117,548 56,944,950 18%
apache 564,440 527,770 7%
lcc 4,717,603 2,886,903 63%
mudlle 662,964 551,060 20%

Table 4: Peak memory (footprint) for region-based applica-
tions, in bytes. Using regions leads to an increase in footprint
from 6% to 63% (average 23%).

place of regions makes lcc take twice as long, and makes mudlle
take almost 68% longer to run. Using Vmalloc slows execution
for lcc by four times and slows mudlle by 43%. However, reaps
slow execution by just under 8%, showing that reaps are the best
implementation of this functionality of which we are aware.
For six of our eight benchmarks, replacing the custom alloca-

tor with the Lea allocator yields comparable performance. Using
reaps imposes a runtime penalty from 0% to 8% compared to the
original region-based allocators. In addition, reaps provide a more
flexible interface than regions that permits programmers to reclaim
unused memory. We believe that, for most applications, the greater
flexibility of reaps justifies their small overhead.

7.5 Reaps in Apache
As a case study, we built a new Apache module to demonstrate the
space consumption advantages provided by allowing individual ob-
ject deletion within a region allocation framework. Using Apache’s
module API [36], we incorporated bc, an arbitrary-precision cal-
culator language [27] that uses malloc/free. Apache implements
its own pool (region) API, including pool allocation, creation, and
destruction. We reroute these calls to use reap (reapMalloc,
reapCreate, and reapDestroy) and add a ap pfree call
routed to reapFree, thus enabling Apache modules to utilize the
full range of reap functionality. In this way, all existing Apache
modules use reap, but naturally do not yet take advantage of indi-
vidual object deletion.

Using preprocessor directives, we redefined the calls to malloc
and free in bc to ap palloc and ap pfree. This modification
affected just 20 lines out of 8,000 lines total in bc. We then incorpo-
rated bc into a module called mod bc. Using this module, clients
can execute bc programs directly within Apache, while benefiting
from the usual memory leak protection provided by pools. We then
compared memory consumption with and without ap pfree on a
few test cases. For example, computing the 1000th prime consumes
7.4 megabytes of memory without ap pfree. With ap pfree,
this calculation consumes only 240 kilobytes.
This experiment shows that we can have the best of both ap-

proaches. The reap functionality prevents memory leaks and offers
module protection, as does the region interface currently in Apache,
and furthermore, reaps enable a much richer range of application
memory usage paradigms. Reaps make it practical to use standard
malloc/free programs within Apache modules with only minor
modifications.

8. Discussion
We have shown that performance frequently motivates the use of
custom memory allocators and that they do not provide the perfor-
mance they promise. Below we offer some explanations of why
programmers used custom allocators to no effect.

Recommended practice
One reason that we believe programmers use custom allocators to
improve performance is because it is recommended by so many
influential practitioners and because of the perceived inadequacies
of system-provided memory allocators. Examples of this use of
allocators are the per-class allocators used by boxed-sim and lcc.

Premature optimization
During software development, programmers often discover that cus-
tom allocation outperforms general-purpose allocation in micro-
benchmarks. Based on this observation, they may put custom al-
locators in place, but allocation may eventually account for a tiny
percentage of application runtime.
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Drift
In at least one case, we suspect that programmers initially made
the right decision in choosing to use custom allocation for perfor-
mance, but that their software evolved and the custom allocator no
longer has a performance impact. The obstack allocator used by
176.gcc performs fast object reallocation, and we believe that this
made a difference when parsing dominated runtime, but optimiza-
tion passes now dominate 176.gcc’s runtime.

Improved competition
Finally, the performance of general-purpose allocators has contin-
ued to improve over time. Both the Windows and Lea allocators
are optimized for good performance for a number of programs and
therefore work well for a wide range of allocation behaviors. For
instance, these memory allocators perform quite well when there
are many requests for objects of the same size, rendering per-class
custom allocators superfluous (including those used by the Stan-
dard Template Library). While there certainly will be programs
with unusual allocation patterns that might lead these allocators
to perform poorly, we suspect that such programs are increasingly
rare. We feel that programmers who find their system allocator to
be inadequate should try using reaps or the Lea allocator rather than
writing a custom allocator.

9. Conclusions
Despite the widespread belief that custom allocators improve per-
formance, we come to a different conclusion. In this paper, we
examine eight benchmarks using custom memory allocators, in-
cluding the Apache web server and several applications from the
SPECint2000 benchmark suite. We find that the Lea allocator is
as fast as or even faster than most custom allocators. The excep-
tions are region-based allocators, which often outperform general-
purpose allocation.
We show that regions can come at an increased cost in mem-

ory consumption and do not support common programming id-
ioms. We present reaps, a generalization of general-purpose and
region-based allocators. Reaps are a combination of regions and
heaps, providing a full range of region semantics with the addition
of individual object deletion. We demonstrate that reaps combine
increased flexibility with high performance, outperforming other
allocators with region-like semantics. We show that using reaps
can yield significant reductions in memory consumption.
We plan to build on this work in several ways. Because reaps are

currently limited to single-threaded use, we plan to integrate reaps
with our Hoard scalable memory allocator [3]. We believe that such
an extended and scalable memory allocator would eliminate the
need for most custom memory allocators. We are also investigating
the integration of reaps into a garbage-collected setting.

10. Acknowledgements
Thanks to Stephen Chenney for making the boxed-sim benchmark
available to us, to both Sam Guyer and Daniel A. Jiménez for pro-
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