
Model-Checking Behavioral Programs

David Harel, Robby Lampert, Assaf Marron∗

Weizmann Institute of Science
Rehovot 76100, Israel

firstname.lastname@weizmann.ac.il

Gera Weiss†

Ben Gurion University of the Negev
Beer Sheva 84105, Israel
geraw@cs.bgu.ac.il

ABSTRACT
System specifications are often structured as collections of
scenarios and use-cases that describe desired and forbid-
den sequences of events. A recently proposed behavioral
programming approach, which evolved from the visual lan-
guage of live sequence charts (LSCs), calls for coding soft-
ware modules in alignment with such scenarios. We present
a methodology and a supporting model-checking tool for
verifying behavioral Java programs, without having to first
translate them into a specific input language for the model
checker. Our method facilitates early discovery of conflict-
ing or under-specified scenarios, which can often be resolved
by adding new scenarios rather than by changing existing
code. Also, counterexamples provided by the tool are them-
selves event sequences that can serve directly for refinements
and corrections. Our tool reduces the size of the execution
state-space using an abstraction that focuses on behaviorally
interesting states and treats transitions between them as
atomic.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program verifi-
cation—Model Checking ; D.1 [Programming Techniques]:
Miscellaneous; D.2.2 [Software Engineering]: Design Tools
and Techniques; D.2.3 [Software Engineering]: Coding
Tools and Techniques; D.2.11 [Software Engineering]: Soft-
ware Architectures

∗The research of the first three authors was supported by
the John von Neumann Minerva Center for the Development
of Reactive Systems at the Weizmann Institute of Science,
and by an Advanced Research Grant from the European
Research Council (ERC) under the European Community’s
Seventh Framework Programme (FP7/2007-2013).
†The research of the fourth author was supported by the
Lynn and William Frankel Center for Computer Science at
Ben-Gurion University and by a reintegration (IRG) grant
under the European Community’s FP7 Programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

General Terms
Verification

Keywords
Behavioral Programming, Java

1. INTRODUCTION
Behavioral programming, originating in the language of

live sequence charts (LSCs) [7, 16], is a recently-proposed
approach for scenario-based development of reactive sys-
tems [18]. It calls for constructing systems from threads of
behavior, each of which independently represents (a part of)
an allowed, desired, or forbidden operating scenario of the
final system. The collective execution of behavior threads
is coordinated in a way that generates a combined sequence
of events, which constitutes cohesive system behavior. The
approach is described and illustrated as part of Section 2.
In [18], general advantages of behavioral programming, such
as incrementality in development and alignment with how
people often describe behaviors, are demonstrated using a
Java package called BPJ.

The current paper describes a methodology for model-
checking-assisted development of behavioral programs. To
support the methodology, we present a model checker for
behavioral programs that are written in Java with the BPJ
package. The main motivation for developing such a model-
checker is to find conflicts and under-specification as follows.

Since specifications for reactive systems are often mod-
eled with scenarios (e.g. in the form of Message Sequence
Charts), using behavior threads to encode them can create
a software system whose components are aligned with the
requirements, and reflect them directly. An obvious limita-
tion of this approach is that requirements sometime conflict,
or are not detailed enough, and composing them automat-
ically without consideration may yield a composition that
produces undesired joint behavior, the resolution of which
may be complicated and error-prone.

We first observe that behavioral programming suggests an
interesting way to resolve conflicts and underspecification:
refinements can be ed as new requirements, and be coded
as additional behavior threads or scenarios. E.g., when two
behaviors require that opposing actions take place following
a given event sequence, a conflict-resolving refinement may
provide the conditions under which each of the two behaviors
should prevail.

Nevertheless, the above leaves open the question of early
discovery of conflicts and underspecification, and in this pa-



per we demonstrate a proof-of-concept model-checker specif-
ically designed for this purpose.
In addition to the basic model-checking functionality, we

also show synergies between behavioral programming and
the proposed model-checking tool. Since the tool can verify
behavioral Java programs directly, without translating them
first into a model-checker-specific language, behavioral soft-
ware components can serve both as elements of a final exe-
cutable system, and as elements of an abstract system model
to be subjected to verification later on. In addition, the
full power of Java can be used to flexibly and conveniently
specify the properties to be verified. Lastly, the tool’s con-
struction is simplified by leveraging the inherent abstraction
in behavioral programs, where program execution between
event occurrences is treated as atomic.
The rest of the paper is structured as follows. In Section 2

we review the principles of behavioral programming and il-
lustrate, through a detailed example, how model-checking
can be used in the development of a behavioral application;
in Section 3 we review the design of the model-checking tool,
present summaries of initial experience and performance in
the context of well known problems, and explore possibili-
ties for leveraging the behavioral programming capabilities
as part of a more general methodology; and, in Section 4 we
review related approaches to development, synthesis, pro-
gram repair, verification and execution that include model-
checking.

2. EXAMPLE: MODEL-CHECKING AN
EVOLVING APPLICATION

In this section we describe the usage of our model-checker
in the development of a behavioral application for playing
Tic-Tac-Toe, with an emphasis on incremental development.
Along the way, we briefly review the basics of behavioral pro-
gramming. The way incrementality works is that following
an initial setup of the application, each program refinement,
developed in response to a counterexample provided by the
model checker, is programmed either as a new behavior
thread (abbreviated b-thread) or by changing configuration
parameters such as relative priorities of b-threads. This is in
contrast to the more common approach, in which discovery
of conflicts and underspecification often results in changes to
previously developed modules. Moreover, as counterexam-
ples represent scenarios (that should be avoided) they can
constitute the basis for the added b-threads. The example
is borrowed, with modifications, from [17, 18]. In our de-
scription of the application we omit some details, focusing
on those that are relevant in the context of model checking.
First, let us describe the (classical) game of Tic-Tac-Toe,

and the events that represent the expected behaviors. Two
players, X and O, alternately mark squares on a 3 × 3 grid
whose squares are identified by 〈row, column〉 pairs: 〈0, 0〉,
〈0, 1〉, . . . ,〈2, 2〉. The winner is the player who manages to
form a full horizontal, vertical or diagonal line with three
of his/her marks. If the entire grid becomes marked but no
player has formed a line, the result is a draw.
In our example, player X should be played by a human

user, and player O is played by the application. Each move
(marking of a square by a player) is represented by an event,
X〈row,col〉 or O〈row,col〉. The events XWin, OWin, and draw

represent the respective victories and a draw.
A play of the game may be described as a sequence of

events. E.g., the sequence X〈0,0〉, O〈1,1〉, X〈2,1〉, O〈0,2〉, X〈2,0〉,
O〈1,0〉, X〈2,2〉, XWin describes a play in which X wins, and
whose final configuration is:

Before proceeding with the development of the example
application, we briefly review the BPJ principles and oper-
ation described in [18]. Each b-thread is coded as a Java
thread. The code of each b-thread uses API method calls to
induce synchronization with all other b-threads; i.e., when-
ever a b-thread reaches a synchronization API call, it waits
for all other b-threads to reach such points in their own code.
At each synchronization point, each b-thread specifies three
sets of events: (1) requested events — the thread proposes
that these events be considered for triggering, and asks to be
notified when any of them occurs; (2) watched or waited-for
events — the thread does not request these events, but asks
to be notified when any of them is triggered; and (3) blocked
events — the thread currently forbids these events.

When all b-threads are at a synchronization point, a cen-
tral mechanism uses the specified sets to determine the next
triggered event, as follows. It iterates over all b-threads in
the order of their priorities, and for every b-thread it it-
erates over the ordered set of its requested events. Each
event is checked as to whether it is blocked (i.e., belongs
to the blocked-events set of some b-thread). If indeed it
is blocked, the event-selection mechanism moves on to the
next event. Otherwise, the event is triggered by resuming
all the b-threads that either requested or waited for this
event. The resumed b-threads proceed with their execution
to their next synchronization point, while each of the other
b-threads remains at its last synchronization point, oblivi-
ous to the triggered event, until an event it requested or is
waiting for, is selected. When all b-threads are again at a
synchronization point the process repeats. When there are
no requested events that are not blocked, no event is trig-
gered and the program waits indefinitely. BPJ allows the
dynamic addition of b-threads (by non-behavioral compo-
nents), and these, in turn, may request events that cause
the behavioral program to resume its operation. When it is
known that no such b-threads will appear, the program is
considered to be in a deadlock.

Note that the total order between the b-threads and be-
tween the requested events of each b-thread implies that the
standard execution of a behavioral program by BPJ is de-
terministic. That is, the specified event sets of all b-threads
uniquely determine the triggered event (if any are possible).
As detailed in Section 3 below, in developing the model-
checking tool for behavioral programming, we replaced the
standard BPJ event-selection mechanism with one that is
tailored for model-checking runs, in that it allows b-threads
to request sets of events nondeterministically. This enables
model-checking an application with respect to all possible
environment behaviors.

We now describe the incremental development of the ap-
plication with the assistance of our proof-of-concept model-



checking tool, referred to here as BPmc (for behavioral pro-
gramming model checker). Suppose that the developer first
creates the b-threads that enforce the rules of the game:

• SquareTaken: block further marking of a square already
marked by X or O.

• EnforceTurns: alternately block O moves while waiting
for X moves, and vice versa (we assume that X always
plays first).

• DetectXWin (resp. DetectOWin): wait for placement of
three X marks (resp. O marks) in a line and request
XWin (resp. OWin).

• DetectDraw: wait for nine moves and request draw event.

Due to the ordering considerations mentioned above, the
b-threads DetectXWin and DetectOWin are given higher prior-
ity than DetectDraw. If this is not done, then if X wins in
the ninth move, draw will be triggered instead of XWin. A
behavioral program including only the above b-threads can-
not trigger any move event, since none of the b-threads ever
requests any; they only wait for and/or block such events.
To enable the application to really play, the developer now
adds to the program components that request these events:

• A GUI component that translates each user-click on a
selected square to a corresponding X event (this com-
ponent also displays the game-board to reflect the X

and O move events).

• DefaultMoves: a b-thread that repeatedly requests all
nine possible O moves in the following order of center,
corners and edges: O〈1,1〉,O〈0,0〉,O〈0,2〉,O〈2,0〉,O〈2,2〉,
O〈0,1〉,O〈1,0〉,O〈1,2〉,O〈2,1〉.

Now, we wish to use the model checker to gradually and
incrementally enhance the program until it never loses.
In order to verify that there is no strategy for X to win

against the program, we first replace the user-driven entry
of X moves with the b-thread XAllMoves, which repeatedly,
nondeterministically, requests all nine possible X moves (this
will be the only nondeterminism in the program).
We also have to specify that the desired safety property is

that O never loses. This is done by modifying the b-thread
DetectXWin, where it requests the XWin event, to call an API
method that declares the next state of the program as bad.
This causes BPmc to announce that the verification failed,
and to print the relevant event sequence as a counterexample
(see Section 3, below, for more details).
Finally, before verifying an application with BPmc, ad-

ditional small modifications are sometimes required. In our
case, several b-threads were modified not to terminate before
the termination of the program.
The program is now ready to be model-checked with BPmc,

which is done by running it with appropriate run-time pa-
rameters.1

Model-checking the behavioral program consisting of the
above b-threads immediately shows that the application may
lose. The counterexample trace printed by BPmc is:

1One can try the process by commenting-out lines of
TicTacToe.java (in [17]) that add b-threads to the behav-
ioral program, leaving only already-developed b-threads,
and then running the model-checker.

X(0,0), O(1,1), X(0,1), O(0,2), X(2,0), O(2,2), X(1,0).

The victory of X could have been easily avoided if the
application had played O〈1,0〉 in its last turn, preventing
the completion of three Xs in a line. An obvious resolution,
therefore, is to add the following b-thread to serve as a basic
tactic:

• PreventThirdX: when two Xs are noticed in a line, add
an O in that line (and prevent an immediate loss).

Running BPmc again after adding this b-thread, we get
the same error trace. A closer look (which can be done,
e.g., using the trace visualizer in [10]) reveals the cause: the
priority assigned to the new b-thread is lower than that of
DefaultMoves, which then prevails with its request to play
O〈2,2〉. To overcome this problem, we assign PreventThirdX

a higher priority and model-check again. This time we get
the trace:

X(0,0), O(1,1), X(2,1), O(0,2), X(2,0), O(1,0), X(2,2).

Here, the source of the problem is that once X plays his/her
third move at 〈2, 0〉, a ‘fork’ is created (with 〈0, 0〉 on one
hand and 〈2, 1〉 on the other). In this situation, a victory for
X is inevitable. To avoid this situation, we add the b-thread:

• PreventXFork: when two Xs are noticed, in all configu-
rations symmetric to the one shown in the counterex-
ample, mark an O in the intersection corner of the
potential fork, thus preventing its creation.

This b-thread’s priority is higher than DefaultMoves’s, but
lower than PreventThirdX’s, as it is more important to pre-
vent an immediate loss.

When we run the tool again, we get the following trace:

X(0,0), O(1,1), X(2,2), O(0,2), X(2,0), O(1,0), X(2,1).

Apparently, there is another kind of a fork that should be
prevented — one that consists of three corners. We thus add
a new b-thread:

• PreventAnotherXFork: when the first two Xs are marked
in two opposite corners and the first O is marked at
the center, request O〈0,1〉. In the spirit of “the best
defense is a good offense”, this move creates an attack
that forces X to play X〈2,1〉, and seems to avoid the
immediate fork threat.

It may appear that our code includes an assumption that
this strategy is needed only at the beginning of the game,
and hence does not check that squares 〈0, 1〉 and 〈2, 1〉 are
empty. Further model checking shows that in the final pro-
gram this assumption is indeed correct.

When running the model-checker at this stage, we still get
a counterexample:

X(0,0),O(1,1),X(2,2),O(0,1),X(1,2),

O(0,2),X(2,0),O(1,0),X(2,1).

This trace reminds us that the goal of the game is to win
(rather than not to lose. . . ). It seems that while we are busy
with defense, we miss (twice in this trace) the opportunity
to win. Thus, we add the b-thread:



• AddThirdO: when two Os are located on a single line,
add a third O (and win).

Clearly, this b-thread should get the highest priority, since
winning the game is always the best move. After adding it,
we may hope we are done, but the model checker comes up
with another counterexample:

X(1,2),O(1,1),X(2,1),O(0,0),X(2,2),O(2,0),X(0,2).

We are surprised to find that there is yet another kind of a
fork to be prevented; this time, one that consists of a corner
and its two adjacent edge squares. In order to prevent it,
we add the b-thread:

• PreventYetAnotherXFork: when two Xs are noticed in
two edge squares that are adjacent to a common cor-
ner, mark an O in that corner.

Now, finally, the model checker confirms that we are done.

This Tic-Tac-Toe example shows how a model checker
may be used in developing a behavioral program. Here it
was accompanied by some knowledge-based effort by the de-
veloper: identify the source of the problem presented in the
counterexample, and design a solution. However, a coun-
terexample supplied by the model-checker may often be di-
rectly used in improving the solution, as follows. Treat the
counterexample as a scenario, and prevent its occurrence
by creating a corresponding ‘anti-scenario’ — a b-thread
that waits for all but the last application-driven event in
the counterexample, and blocks the last event choice. Other
b-threads should then take care of requesting the correct
move. This approach, which has been used also in the de-
velopment of a model for the vulva precursor cells of the
C. elegans nematode [23], may become useful in partially
automated ways to patch programs (c.f. [22]).

3. BPMC: A PROOF-OF-CONCEPT TOOL
This section provides an overview of our proof-of-concept

tool, BPmc. The tool can be viewed as enabling a sort
of “in vivo” model-checking for behavioral programs, since
the Java programs constituting the b-threads continue to
execute with the native JVM. BPmc is integrated into the
BPJ execution control mechanism described in [18], and the
code is posted in [17].
To the existing standard execution control, which consists

of deterministic progression along a single path in the be-
havioral program state graph, we add two model-checking
execution modes: safety and liveness. Safety mode explores
the different paths in the graph to search for a state that vio-
lates the given safety property, while liveness mode looks for
cycles that violate the given liveness property. Our graph
traversal techniques follow the algorithms described, e.g.,
in [2] and use the Apache javaflow package to save and re-
store continuations — objects that hold the states of partici-
pating threads — for the backtracking required during these
traversals. All three execution modes (standard, and model
checking of safety/liveness properties) rely on transitions de-
fined by the enabled events — events that are requested and
not blocked. Further details are provided below, explaining
terms used, features and capabilities (as well as limitations)
of the tool, and how the application being verified can in-
teract with it.

3.1 Features, interfaces, internals
BT-states: In line with the definitions of b-threads in [18],

which are based on transition systems, we chose an ab-
straction in which a state of a b-thread (abbr. BT-state)
is defined only at the point where the Java thread exe-
cuting the b-thread calls the API method bSync, declar-
ing a synchronization point (see Figure 1). Specifically, we
do not explore intermediate transitions in the code that
b-threads execute between exiting one bSync and entering
the next. This abstraction provides for reducing the size
of the state-space, based on the assumption that b-threads
interact only through events, which means that, for the pur-
poses of model-checking, their activities between calls to
bSync are considered atomic and are independent of each
other. We believe that this assumption is reasonable, and
does not unduly constrain the capabilities of behavioral pro-
grams.

BP-states: The state of a behavioral programming sys-
tem (abbr. BP-state) when all its constituent b-threads are
at a synchronization point is the Cartesian product of the
BT-states of all b-threads.

Transitions: BPmc discovers the state transitions “on-
the-fly”. State-space traversal is carried out by executing
all Java behavior modules per the collective execution algo-
rithm of behavioral programming, as described above, and
as defined formally in [18]. The BT-states of the individual
b-threads are used to determine the next BP-state. Specif-
ically, the set of successors of a BP-state bps are all the
BP-states reachable by resuming and executing all b-threads
with each of the possible nondeterministic selections of trig-
gered events, as described in the nondeterminism paragraph
below. The b-threads are resumed at the BT-states com-
prising bps, and are stopped when each of them reaches its
next BT-state.

Nondeterminism: In the standard execution mode of
BPJ, all event requests are subjected to a total order, to
ensure the deterministic execution that at each synchroniza-
tion point chooses the first event that is requested and not
blocked. With our model-checking tool we relax the require-
ment of a total order and introduce nondeterminism by al-
lowing the optional specification of b-threads and/or subsets
of requests that have equal priorities. The requested events
are examined in priority order as in the standard execution
mode, but when one is found that is not blocked, all other
requests of the same priority that are not blocked are con-
sidered nondeterministic alternatives.

Simulating environment behavior: Model-checking
requires a closed system, hence events driven by the envi-
ronment, and randomness, need to be simulated. In our ap-
proach, this“environment simulation”is done with b-threads
dedicated for this purpose. Specifically, these can be very
simple b-threads, which, repeatedly, at every synchroniza-
tion point, request all possible environment-driven events,
or may reflect other assumptions. For example, in model-
checking the Tic-Tac-Toe application, since we focus on the
strategy, we chose not to simulate user clicks, and instead,
repeatedly request all nine X moves. Note that the b-thread
SquareTaken ensures that only legal X moves are selected.
The approach used for environment simulation may be ex-
tended towards a more general methodology, as described in
Section 3.4.

Backtracking with javaflow: The design of BPmc de-
pends on the ability to backtrack an executing Java thread



Figure 1: Behavior-thread states. Application behavior

threads are coded as Java methods, and include general Java

code and calls to the API method bSync, which synchro-

nizes with other behaviors and waits for the next event. In

the proposed abstraction, states of a behavior are the pro-

gram states (in an operating-systems sense) at synchroniza-

tion points (entries to bSync). When an event occurs, the

b-threads waiting for it are resumed, and can examine it in

the variable lastEvent. The execution constituting the tran-

sition between states is considered atomic. The abstraction

assumes that b-threads communicate only via events. The

state of the entire behavioral program is the Cartesian prod-

uct of the states of its constituent behavior threads.

to a previous state. This is done with the help of the Apache
javaflow package [1]. The javaflow package enables saving
copies of a thread’s execution stack at a any point during
its execution, in objects called continuations. One can then
resume the thread’s execution as needed from the saved con-
tinuations.
State-space exploration and state hashing: The al-

gorithm used by BPmc for model-checking explores the state
space by execution of the participating b-threads. During
the search, the tool keeps track of visited BP-states, and
when it reaches previously visited BP-states it backtracks
to explore new paths in the state space. In order to back-
track to a previous BP-state, the execution stack of each
of the behavior threads is restored to its state in that BP-
state, using javaflow. In order to proceed to the next BP-
state, an event is selected, and each b-thread that requested,
or waited for, this event is resumed and is then suspended
again at the next synchronization point. BPmc supports
both breadth-first and depth-first searches (for safety prop-
erties), as well as nested DFS (for liveness properties), and
can apply unconditional, strong, and weak fairness assump-
tions/constraints in the process, as elaborated upon below.
Safety properties: During the state-graph traversal, the

running behavior threads can call an API method to mark
BP-states as bad. For example, in the Tic-Tac-Toe program,
when X completes a winning triple, the b-thread DetectXWin

marks the next state as bad, which causes the printing of
the game lost by O as a path (i.e., an event-trace) that
leads to the bad state. In addition to handling bad states,
the tool detects deadlock states without b-thread assistance:

when there are no requested events in a BP-state, or all re-
quested events are blocked, the BP-state has no successors,
and BPmc identifies a deadlock. Recall that external envi-
ronment events are simulated by b-threads, so that there are
no additional events that can cause the system to exit from
this BP-state.

Liveness properties: Liveness properties are defined
and verified as follows. Similarly to safety, and inspired by
the multi-modality of LSCs [7], behavior threads can mark
BP-states as hot. The model checker verifies liveness prop-
erties by looking for cycles in the state graph that contain
only hot states (this search uses a nested DFS algorithm
similar to the one suggested in [2, page 211] for verification
of liveness). In other words, the verified liveness property is
that always eventually, the system is not in a hot state.

Fairness assumptions: BPmc may also be used to ver-
ify liveness properties subject to fairness constraints that
may be unconditional, strong, or weak, as defined, e.g.,
in [28, 30]. Fairness assumptions accompany liveness verifi-
cation in BPmc, by eliminating from consideration ”unfair”
cycles, as follows. We maintain three sets of events for every
cycle: those that are enabled in the cycle (requested and not
blocked in at least one state), those that are continuously
enabled in the cycle (enabled in every state of the cycle),
and those that are actually triggered in the cycle.

Below, we list the three types of fairness constraints sup-
ported by BPmc. For each type, we cite the intuitive de-
scription from [2, page 129] and briefly describe our imple-
mentation in the context of behavioral programming:

• For unconditional fairness (“Every process gets its turn
infinitely often”): a set of events is provided as input.
Only cycles that contain an event from the set in their
set of triggered events are considered fair and partici-
pate in the liveness verification.

• For strong fairness (“Every process that is enabled in-
finitely often gets its turn infinitely often”): a set of
events is provided as input. A cycle is unfair if it con-
tains events from the input set in its set of enabled
events, but none of the events from the input set is in
its set of triggered events.

• For weak fairness (“Every process that is continuously
enabled from a certain time instant on gets its turn
infinitely often”): a set of events is provided as input.
A cycle is unfair if it has an event from the input set
in its set of continuously-enabled events, but none of
the events from the input set is triggered in the cycle.

BP-state labeling: The search process backtracks when-
ever it reaches a BP-state that was previously visited. Vis-
ited BP-states are identified according to a BP-state name,
computed as the ordered concatenation (or Cartesian prod-
uct) of the names of its constituent BT-states. Indirectly,
state names are our way for allowing programmers to specify
equivalence relation over states. Behavior threads can use
an API method call to assign a name to their next BT-state.
When a b-thread does not label its states, its component in
the BP-state name is ignored when comparing BP-states.

BT-state caching: BPmc takes advantage of the fact
that each of the many possible BP-states belongs to the
Cartesian product of a relatively small set of BT-states.
Each BT-state, with its corresponding thread stack (javaflow



continuation), is saved at most once. BP-states only point
to the constituent BT-states.
Application-assisted search pruning: In addition to

pruning the search and backtracking automatically when re-
visiting a BP-state, b-threads can call an API method to
explicitly force the tool to abandon the current search path
and, by backtracking, continue the search in other paths.
This is done, for example, by the b-thread DetectDraw after
nine moves were completed with none of the players winning.
Counterexamples as scenarios: As is the case with

any model checker, counterexamples include the path to the
bad state. This sequence of events can be directly trans-
lated to a b-thread that follows (waits for) the events in
the sequence. Thus, in the context of behavioral program-
ming, counterexamples provide readily usable guidance for
constructing corrections or refinements. For example, in a
näıve approach, a b-thread can be written to wait for a se-
quence of events that appears in a prefix of the counterex-
ample, and then, with a higher priority than the rest of the
application, to take different actions. Of course, a program-
mer considering one or more counterexamples can generalize
the required correction, and perhaps also leverage the BT-
state information available with the sequence of BP-states
leading to the failure.

3.2 Initial experience and performance
To further illustrate the capabilities of BPmc, we now de-

scribe our initial experience in programming several exam-
ples, emphasizing the modeling of different problem types
and the usage of BPmc interfaces for application-assisted
model checking.
We tested and compared the functionality of the tool against

a published industrial case-study and the familiar dining
philosophers and bridge-crossing problems, as provided on
the Spin benchmark web site at [21]. We also provide initial
performance results. The code for these and other examples
is available on-line at [17].

An industrial case study
We now describe the application of BPmc in the context
of an industry case study of scheduling memory access in
a signal processing board; see [11, 32]. The memory of a
radar system is connected to several I/O buffers, which are,
in turn, connected to input and output data streams that
cannot be stopped. An arbiter component schedules the
transfer from input buffers to memory and from memory to
output buffers. For a given setup that includes the number
of buffers, their sizes, their data rates, and a fixed memory
transfer schedule, we wish to verify that input buffers never
overflow and that output buffers are never exhausted.
With BPmc we were able to validate the schedule pro-

posed in [32], by reproducing the original model-checking
results obtained using SMV.
In [11] the model includes a complicating factor of a memory-

refresh cycle every certain large number of clock ticks, during
which memory transfers cannot occur. With BPmc, we were
able to show that if the memory-refresh cycles are scheduled
so that they occasionally interfere with scheduled memory
transfers, then eventually an overflow occurs.
The model/code included the following main independent

behaviors: The data-flow behavior from each buffer’s point
of view, the memory transfer schedule, and the scheduling of

the occasional memory-refresh that may interfere with the
above transfers.

Note that if behavioral programming idioms are incor-
porated in the (microcode) language of the final hardware
system, and BPmc or a similar model checker are available
for that environment, then the code used for modeling could
be considered also for use “as is” in the developed hardware.

Dining philosophers
In the dining philosophers problem [9] several philosophers
are sitting at a circular table, and are either eating or think-
ing. At the center is a large bowl of spaghetti, which requires
two forks to serve and to eat. A fork is placed in between
each pair of adjacent philosophers. Each philosopher may
only use the fork to her left and the fork to her right. When a
philosopher finishes eating, she puts down the two forks and
begins thinking again. Our present goal is to check whether
deadlocks, or other starvation conditions, may occur under
various philosopher behaviors.

The problem is programmed/modeled behaviorally with
the events of the picking up and the putting down of a given
fork by a given philosopher (e.g. PickUp-F2-by-P2 or PutDown
-F1-by-P2), a b-thread for the behavior of each philosopher
and a b-thread for each fork. In the classical version, each
philosopher’s b-thread repeatedly requests the sequence of
events representing her picking up the fork to her right, pick-
ing up the fork to her left, putting down the right-hand
fork, and then putting down the left-hand one. Each fork’s
b-thread repeatedly waits for an event of picking up the fork
by either of its two adjacent philosophers and then blocks
its picking up (again) until the fork is put down.

The application assists the search by labeling the four
philosopher behavior states T (thinking – forks down), 1 (one
fork up), E (eating – two forks up) and F (finished eating –
one fork down). The fork b-thread states are D (down) and
U (up). BPmc uses its basic algorithms and state-hashing
capabilities to look for violations of liveness properties, and
detect the deadlock conditions that are possible under this
classical behavior. For example, a path to a deadlock state
in the case of 3 philosophers is displayed as:

Verification failed:
init->[T, D, T, D, T, D]
PickUp-F2-by-P2->[T, D, T, D, 1, U]
PickUp-F1-by-P1->[T, D, 1, U, 1, U]
PickUp-F0-by-P0->[1, U, 1, U, 1, U]
[1, U, 1, U, 1, U] is a deadlock state

where each line of the form <event> -> <BP-State> describes
a BP-state along the path and the event whose triggering
led the program to transition from the preceding BP-state
to the current.

As in the symmetry-breaking approach in [9], one of the
philosophers is left-handed, and thus first picks up the fork
to her left, rather than the one to her right. As expected,
this setup is then proven by the tool to be deadlock-free,
following checking of all possible states.

For liveness testing, the philosopher behavior b-thread
marks the non-eating states as hot, and BPmc is then able to
detect the starvation conditions that are possible if fairness
is weak.

Bridge crossing
In the bridge-crossing problem, four persons cross a bridge
that can hold up to two people simultaneously. They have a



single torch that must be used when crossing. The persons
p1, p2, p3, and p4 can cross the bridge in 25, 20, 10, and
5 minutes, respectively. When two people cross together,
they move at the slower person’s pace. The torch cannot
be tossed over the bridge. The question is: can all four get
across the bridge in 60 minutes or less?
We modeled the problem as a Java program using BPJ,

as follows. The events p1Go,p1Ret,...,p4Go,p4Ret,tGo,tRet

respectively represent each of the persons, or the torch,
going over the bridge in one direction, or returning. Person-
crossing events followed by a torch-crossing event model
these persons crossing holding the torch; e.g., the event se-
quence p1Go,p2Go,tGo,p1Ret,tRet means that persons p1 and
p2 crossed with the torch, and p1 returned with the torch.
The model/program includes several classes of b-threads.

The first has an instance for each of the persons, which re-
peatedly requests the events of that person crossing and
returning, ignoring the constraints. Another b-thread re-
peatedly requests the events of the torch being taken over
and being returned, and blocks persons from walking in the
opposite direction. Another b-thread models the constraints
that the torch can cross only with a person, and that at most
two persons can cross together (the b-thread blocks torch
events that are not separated by one or two person events,
as well as sequences of three consecutive person events).
Finally, the b-thread Watcher ‘awakes’ as the result of any

event and keeps track of all persons’ positions and the to-
tal elapsed time as implied by the identity of the crossing
persons. This b-thread turns the search into “branch-and-
bound” by pruning it and forcing backtracking when the
total time exceeds 60 minutes, or when a previously ob-
served person configuration is reached and the total time is
not better than the previously observed best time to reach
that person configuration. When all persons are together on
the desired side of the bridge, and the elapsed time is not
greater than 60 minutes, Watcher marks the state as “bad”,
forcing BPmc to output the solution as an event sequence
that constitutes a counterexample, e.g.,

Verification failed:
p3Go,p4Go,tGo,p3Ret,tRet,p1Go,p2Go,tGo,p4Ret,tRet,
p3Go,p4Go,tGo

Performance table
The table in Figure 2 lists performance results of initial test-
ing of the BPmc tool — before any substantial performance
optimization — compared with the performance benchmark
results published on the Spin web site at [21]. The purpose
of the table here is only to illustrate the basic capabilities
of the tool, while further optimization (perhaps application-
specific) and detailed benchmarking are a subject for future
research.

3.3 Limitations
As mentioned earlier, the purpose of our proof-of-concept

BPmc tool is to demonstrate the viability of using model
checking in the development of behavioral programs. The
tool itself has limitations, some derived from our limited
experience with it while others are more inherent in the ap-
proach itself.
The tool focuses on the behavioral programming facets

of the models encoded in the Java programs, and does not
explore alternate Java execution paths, thread scheduling

alternatives or other nondeterministic choices of the Java
code as may be done, for example, using JavaPathfinder [31].
The tool also assumes that b-threads do not share data, and
communicate only via the BPJ event-selection mechanism.
Nevertheless, the tool’s narrower focus opens up opportu-
nities for improvements in performance and scalability, as
well as flexible incorporation into run-time environments of
behavioral programs.

The tool relies on state labeling by the application. Auto-
matic detection of BT-state equality based on thread stack
contents remains as a future endeavor.

In BPJ, for standard application execution, each b-thread
executes in a separate Java thread, enabling parallelism and
exploitation of multi-core hardware for the execution be-
tween synchronization points. For simplicity of our initial
implementation, and as we have not yet fully explored the
capabilities and limitations of the javaflow package, the cur-
rent version of our tool executes as a single Java thread.

The javaflow package is presently a dormant project in
Apache. We hope that this or a similar package will become
an integral part of Java, and that similar capabilities will be
available in other languages where behavioral programming
concepts can be readily implemented.

BPmc presently requires that all participating b-threads
be registered at the beginning of the run, and does not sup-
port BPJ’s ability to handle dynamic addition of b-threads.
BPmc also requires that the Java threads of the b-threads do
not terminate. Applications that were not designed in this
way may require some changes — e.g., instead of terminat-
ing, a b-thread should wait for an event that by convention
is never requested by other b-threads.

Finally, while BPmc supports model-checking of arbitrary
behavioral Java programs, its performance depends on that
of the application at hand. Thus, the programmer may be
required to optimize the application’s performance in order
to model-check it in a reasonable mount of time. We hope
that certain practices, such as when to reuse event objects
rather than instantiating them, will eventually be developed
in this context.

3.4 Some methodological comments on
blocking and compositional verification

The approach described above in Section 3.1 under Sim-
ulating environment behavior, can be extended as follows.

First, a behavioral component comprised of one or more
b-threads may optionally be verified separately from other
b-threads, by adding (simple) b-threads that repeatedly, non-
deterministically, request all possible events that are known
in the application, or at least those that may be requested
by the external environment or collectively by the rest of the
application.

Second, one may then be able to accelerate verification by
using b-threads that eliminate certain events, or sequences
thereof, from the rest-of-the-system behavior, with event
blocking. These b-threads express assumptions about the
behavior of the rest of the system or implement partial order
reduction, when certain sequences are known to be equiva-
lent. They may be added especially for this purpose, or may
already be a part of the verified system, as is the case in the
Tic-Tac-Toe application with the b-thread SquareTaken.

Our feeling is that this sculpting of environment behav-
ior, by combining “generator” b-threads that repeatedly re-
quest all possible events and other b-threads that only block



Time (seconds) States

Spin/BEEM
database

BPmc
counterexample

BPmc
no deadlock

Spin/BEEM
database

BPmc
counterexample

BPmc
no deadlock

4 dining
philosophers

0 0.031 0.063 80 50 80

6 dining
philosophers

0 0.063 0.0172 729 528 728

12 dining
philosophers

4.26 3.812 342 531440 46632 531440

4 persons
crossing bridge

0 0.547 N/A 96194 24 N/A

Figure 2: Initial performance results for BPmc, both with and without deadlock, using a Lenovo T410 laptop. Published Spin

data is shown for general reference, noting that it is not always clear whether the Spin data include deadlock or not, and that

they were carried out on a different processor. Entries showing 0 were copied from Spin data, and apparently reflect rounding.

events, is a promising approach in terms of code succinct-
ness. For illustration, to print prime numbers in this pro-
gramming style, one can use a generator b-thread that re-
quests events labeled with all integers in ascending order
starting with 2. Whenever such an event occurs, a listener
b-thread prints its label, and starts a b-thread that imme-
diately blocks all events associated with multiples of this
label. Though there is a potential for a very large number
of b-threads (hence the example is only for illustration of
the principle) there are only three b-thread classes, and all
but two of the instances vary only by a parameter.
This intuition is supported by a work (to be published sep-

arately) in which we were able to prove that explicit blocking
allows for constructing systems with smaller building blocks
(exponentially smaller, in some cases) than those possible
when blocking, or some equivalent thereof, is not allowed.
Finally, the set of all runs of the composition of compo-

nents verified as described above, is contained in the in-
tersection of the verification runs of each individual com-
ponent. Formalizing this, and demonstrating when imple-
menting it with event blocking reduces the overall cost of
system verification, is also a topic for future research. It
will also be interesting to explore whether there are bene-
fits to be derived from incorporating blocking idioms into
model-checkers other than BPmc.

4. RELATED WORK
Our model-checking of behavioral programs follows the re-

search on application of formal methods for analysis of live
sequence-chart specifications (LSCs), which we now summa-
rize briefly. In [14] an execution mechanism for LSCs is pro-
posed, called smart-play-out, which applies a model checker
to the problem of searching for executions that avoid (certain
kinds of) deadlocks and failures. A similar execution mecha-
nism is also possible using AI planning techniques [19]. One
facet of our work here can be viewed as a natural continua-
tion of this idea: in smart play-out a counterexample to the
statement that there is no good execution is used to drive
an actual execution of the system, whereas earlier we men-
tioned the use of output traces of BPmc as new forbidden
scenarios that help improve the system under construction.
In both cases model checking is used to discover better ways
to execute a program rather than just to prove properties
thereof.
In [26], a translation of properties specified in LSCs to

temporal logic is proposed. In [6], the above tools for the

analysis of LSCs are applied to case-studies in the field
of telecommunication. In [15], more case studies are de-
scribed and conclusions regarding methodologies and mod-
eling strategies are drawn. In [8], LSCs are used as a lan-
guage for specifying properties of UML models. In [12]
model-checking is used to prove certain equivalence prop-
erties between different executions of a collection of scenar-
ios and [24, 25] extend the results to scenarios that specify
aspects.

The present paper can be viewed as contributing a tool
that can be used in the context of the work mentioned. In
these kinds of uses, and in contrast to approaches that trans-
late the specification into a model that can be analyzed by a
conventional model-checker, the main advantage of the pro-
posed model-checking approach is that the translation step
is bypassed, reducing practical limitations and possibilities
for inconsistencies. The direct approach advocated here also
allows “automatic” support for the idioms in the specifica-
tion language, which may be rich, as in the case of BPJ and
Java. In addition, the choice to implement the model check-
ing algorithms inside the verification engine (and not include
a model-checker as a black box), facilitates optimization of
the search for the specific purpose of finding conflicts and
deadlocks in behavioral specifications. This choice also al-
lows special-purpose algorithms for the domain of interest,
such as synthesis of reactive strategies. It remains to be seen
if and how our approach can be extended to incorporate also
symbolic model-checking [4, 29].

Besides being inspired by the ideas behind smart play-out,
our approach is influenced by Java Pathfinder (JPF) [31],
a Java virtual machine that explores alternative execution
paths of Java programs, looking for safety property viola-
tions like deadlocks or exceptions. We adopted the idea of
directly executing all possible paths as a method for explor-
ing the state space, instead of explicitly constructing the
transition relation graph. However, our tool is not a vir-
tual machine but a Java program that applies javaflow [1]
for executing a set of b-threads in a controlled environment.
Moreover, BPmc does not explore all possible executions of
multi-threaded Java code, but only all possible selections
of events in behavioral programs. This focus yields an ab-
straction that reduces the search space and allows for more
efficient search strategies, especially when a large number of
threads is involved.

In fact, before embarking on the development of BPmc
we attempted to apply JPF to the Tic-Tac-Toe application.



We believe that the slow performance we experienced (over
80 minutes), was due to JPF’s attempts to explore alter-
native thread schedules for the more than 200 threads in
this implementation. This is despite efforts to adapt JPF,
both through parameter setting, and by modifying the code
of the scheduling mechanism. With BPmc, we were even-
tually able to verify the application in eight seconds. It is
reasonable to assume, though, that with more experience
with JPF one would be able to obtain additional significant
improvements in performance. A more detailed comparison
of our approach with JPF and possible applications of JPF
to improve performance and functionality of model-checking
behavioral programs are left for future research.
The proposed iterative use of our tool in development,

as described by the example in Section 2, is inspired by
techniques and methodologies that leverage iterative model-
checking and refinement for development, synthesis, and
program repair, such as [3, 5, 20, 22]. In addition to the
proposed“manual”usage of BPmc in development of behav-
ioral programs, this tool may be useful also in applying the
above methods systematically in the context of behavioral
programming.
The discussion in Section 3.4 is related to compositional

and assume-guarantee reasoning, described, e.g., in [13]. In
our behavioral programming framework, the system is com-
posed naturally of multiple relatively small processes that
run in parallel. Thus, compositional reasoning may be used
to reduce the complexity of the verification.
In [27], a computational model is proposed where the“nor-

mal” execution of scenario-based programs is carried out
nondeterministically — concurrently across multiple paths.
This approach to execution may be applicable also to be-
havioral Java programs.

5. CONCLUSION
We have demonstrated a method, and a supporting tool,

for the direct model checking of behavioral Java programs.
We have shown that besides using the tool for verifying
nearly-completed applications, model-checking can be used
during development for early identification of conflicts and
underspecification. The behavioral programming approach
is particularly suitable for such iterative, incremental refine-
ment, since it accommodates refinement by addition of new
behavior components rather than by changing existing code.
The integration of the tool with the behavioral execution
mechanism makes it possible to use a single interface for
defining both the transition system and its desired prop-
erties, further enabling alignment of implementation with
requirements. Finally, the modular incrementality of be-
havioral programs suggests the future possibility of compo-
sitional verification that combines succinct modeling with
efficient execution.

Acknowledgments
We thank Michael Bar-Sinai for identifying the suitability
of javaflow continuations for this project, Guy Wiener for
insightful comments on a draft of this paper, and the anony-
mous reviewers for their valuable comments.

6. REFERENCES
[1] Apache Commons. The Javaflow component.

commons.apache.org/sandbox/javaflow/.

[2] C. Baier and J.-P. Katoen. Principles of Model
Checking. The MIT Press, 2008.

[3] T. Ball and S. Rajamani. Automatically validating
temporal safety properties of interfaces. Model
Checking Software, pages 102–122, 2001.

[4] J. Burch, E. Clarke, K. McMillan, D. Dill, and
L. Hwang. Symbolic model checking: 1020 states and
beyond. Information and Computation, 98(2):142–170,
1992.

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In
Proc. 12th Int. Conf. on Computer Aided Verification
(CAV), LNCS 1855, pages 154–169, 2000.

[6] P. Combes, D. Harel, and H. Kugler. Modeling and
verification of a telecommunication application using
live sequence charts and the play-engine tool. Software
and System Modeling, 7(2):157–175, 2008.

[7] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. J. on Formal Methods in
System Design, 19(1):45–80, 2001.

[8] W. Damm and B. Westphal. Live and let die: LSC
based verification of UML models. Sci. Comput.
Program., 55(1-3):117 – 159, 2005.

[9] E. W. Dijkstra. Hierarchical ordering of sequential
processes. Acta Inf., 1:115–138, 1971.

[10] N. Eitan, M. Gordon, D. Harel, A. Marron, and
G. Weiss. On visualization and comprehension of
scenario-based programs. In Proc. 19th IEEE Int.
Conf. on Program Comprehension (ICPC), pages
189–192, 2011.

[11] J. P. Ernits. Memory arbiter synthesis and verification
for a radar memory interface card. Nord. J. Comput.,
12(2):68–88, 2005.

[12] M. Glusman and S. Katz. Model checking
conformance with scenario-based specifications. In
Proc. 15th Int. Conf. on Computer Aided Verification
(CAV), LNCS 2725, pages 328–340, 2003.

[13] O. Grumberg and D. E. Long. Model checking and
modular verification. ACM Trans. Program. Lang.
Syst., 16:843–871, 1994.

[14] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart
play-out of behavioral requirements. In Proc. 4th Int.
Conf. on Formal Methods in Computer-Aided Design
(FMCAD), LNCS 2517, pages 378–398, 2002.

[15] D. Harel, H. Kugler, and G. Weiss. Some
methodological observations resulting from experience
using LSCs and the play-in/play-out approach. In
Scenarios: Models, Transformations and Tools, pages
26–42, 2003.

[16] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

[17] D. Harel, A. Marron, and G. Weiss. The BPJ package.
www.cs.bgu.ac.il/~geraw.

[18] D. Harel, A. Marron, and G. Weiss. Programming
coordinated scenarios in Java. In Proc. 24th European
Conf. on Object-Oriented Programming (ECOOP),
LNCS 6183, pages 250–274, 2010.

[19] D. Harel and I. Segall. Planned and traversable
play-out: A flexible method for executing
scenario-based programs. In Proc. 13th Int. Conf. on



Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), LNCS 4424, pages
485–499, 2007.

[20] T. Henzinger, R. Jhala, and R. Majumdar.
Counterexample-guided control. Automata, Languages
and Programming, pages 188–188, 2003.

[21] G. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.
spinroot.com/spin/whatispin.html.

[22] B. Jobstmann, A. Griesmayer, and R. Bloem.
Program repair as a game. In Proc. 17th Int. Conf. on
Computer Aided Verification (CAV), LNCS 3576,
pages 226–238, 2005.

[23] N. Kam, D. Harel, H. Kugler, R. Marelly, A. Pnueli,
E. J. A. Hubbard, and M. J. Stern. Formal modeling
of C. elegans development: A scenario-based
approach. In Proc. 1st Int. Workshop on
Computational Methods in Systems Biology (CMSB),
LNCS 2602, pages 4–20, 2003.

[24] E. Katz. Verifying Scenario-Based Aspect
Specifications. PhD thesis, Technion - Israel Institute
of Technology, Computer Science Department, 2006.

[25] E. Katz and S. Katz. Verifying scenario-based aspect
specifications. In Proc. Int. Symp. of Formal Methods
Europe (FM), LNCS 3582, pages 432–447, 2005.

[26] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and
Y. Bontemps. Temporal logic for scenario-based
specifications. In Proc. 11th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), LNCS 3440, pages 445–460, 2005.

[27] H. Kugler, C. Plock, and A. Roberts. Synthesizing
biological theories. In Proc. 23rd Int. Conf. on
Computer Aided Verification (CAV), LNCS 6806,
pages 579–584, 2011.

[28] D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality,
justice and fairness: The ethics of concurrent
termination. In Proc. 8th Int. Colloq. on Automata,
Languages, and Programming (ICALP), LNCS 115,
pages 264–277, 1981.

[29] A. Pnueli, Y. Sa’ar, and L. D. Zuck. Jtlv: A
framework for developing verification algorithms. In
Proc. 22nd Int. Conf. on Computer Aided Verification
(CAV), LNCS 6174, pages 171–174, 2010.
jtlv.ysaar.net/.

[30] J. Queille and J. Sifakis. Fairness and related
properties in transition systems – a temporal logic to
deal with fairness. Acta Inf., 19:195–220, 1983.

[31] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs. Automated
Software Engineering, 10:203–232, 2003.

[32] G. Weiss. Optimal scheduler for a memory card.
Technical report, IST-2001-35304 AMETIST Project,
Weizmann Institute of Science, 2002.


