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Real-time embedded systems

e Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

e Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

e Facilities to interact with special purpose hardware — need to
be able to program devices In a reliable and abstract way

e Extreme reliability and safe — embedded systems control their
environment: faillure can result in loss of life, or economic loss

e Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability i1s essential
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A new software crisis?

e Development time, code & certification are increasingly criteria

e For Instance In the automotive Industry:

> 90% of innovation driven by electronics and software — Volkswagen
p 80% of car electronics in the future will be software-based — BMW

> 80% of our development time is spent on software— |PL

e Worst, software Is often the source of missed project deadlines,
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A new software crisis?

e Typical productivity
> 5 Line of Code / person / day

» From requirements to testing: | kloc / person / year

e Typical avionics “box”

> 00 kloc = 100 person years of effort

» Costs of modern aircraft is ~$500M
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A new software crisis?

e [he important metrics are thus
> Reusabllity
> Software quality

> Development time

e [he challenges are
> Sheer number and size of systems
> Poor programmer productivity

e [he solutions are
> Better processes (software engineering)
> Better tools (verification, static analysis, program generation)

> Better languages and programming models
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What programming models!?

e The programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

> Consequently real-time systems are not portable across platforms
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What programming model?

e “Real-time systems require fine grained control over resources
and thus the language of choice is C or assembly”

e ..entalls the software engineering drawbacks of low-level code

e Consider the following list of defects that have to be eradicated
(c.f."Diagnosing Medical Device Software Defects” Medical Devicelink, May 2009).

» Buffer overflow and underflow  (does not occur in a HLL)

> Null object dereference (checked exception in a HLL)
> Uninitialized variable (does not occur in a HLL)

> Inappropriate cast (all casts are checked in a HLL)
> Division by zero (checked exception in a HLL)

> Memory leaks (garbage collection in a HLL)
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e Some of the guarantees can be retrofitted on legacy C programes.

[Implementation of the Memory-safe Full ANSI-C Compiler; PLDI 2009]
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Java?

e Object-oriented programming helps software reuse

e Mature development environment and libraries

e Garbage collected & Memory-safe high-level language
e Portable, little implementation-specific behavior

e Concurrency built-in, support for SMP memory model

® Popular amongst educators and programmers
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Worst case = 114ms

Predictable!?
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> Java Collision Detector running at 20Hz.

® RBartlett's Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

» GC pauses cause the collision detector to miss up to three
deadlines...this is not a particularly hard should support KHz periods
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The Real-time Specification for Java (RTS])

® Java-like programming model:

> Shared-memory, lock-based synchronization, first class threads.

e Main real-time additions:

Physical memory access (memory mapped I/O, devices, ...)
Real-time threads (heap and no-heap)

Synchronization, Resource sharing (priority inversion avoidance)
Memory Management (region allocation + real-time GC)

High resolution Time values and Clocks

Asynchronous Event Handling and Timers

> Asynchronous Transfer of Control




The Real-time Java
experience
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Ovm

e Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTS) implementation.

e Developed the Ovm virtual machine
framework, a clean-room, open source
RT Java virtual machine.

e Fall 2005, first flight test with Java on a plane.

Duke’s Choice
Award
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ScanEagle
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ScanEagle

e Flight Software:

> 953 Java classes, 6616 methods.
Multiple Priority Processing:
® High (20Hz) - Communicate with Flight Controls
® Medium (5 Hz) - Computation of navigation data

® |ow (I Hz) - Performance Computation

Mission Control

Payload Card ScanEagle » Embedded Planet 300 Mhz PPC,
qaticly 256MB memory, Embedded Linux

!‘
{ e Java performed better than C++

elative Time

Event
‘ NoHeapRealtimeThread

Event Channel S AsyncEvent
BoundAsyncEventHandle
Object Reference
Broker

:I ImmortalMemory

Serial I/0 Device I. Flight Threats, No Fly Zones
ig A I Ground

Real-time JAVA Control Flight Data Station
Virtual Machine Card
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® Team

> | Baker, T. Cunei, C. Flack, D. Holmes, C. Grothof}, K. Palacz,
F. Pizlo, M. Prochazka and also |. Thomas, K. Grothoff, E. Plq,
H.Yamauchi, E McGachey, |. Manson, A. Madan, B. Titzer

® Funding: DARPA, NSF, Lockheed Martin, Boeing

e Availability: open source, http://www.cs.purdue.edu

e Paper trail

s A Real-time Java Virtual Machine for Avionics. RTAS, 2006
Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006
A New Approach to Real-time Checkpointing. VEE, 2006
Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004
Subtype tests in real time. ECOOP, 2003
Engineering a customizable intermediate representation. IVME, 2003
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Fiji VM technology

® Proprietary ahead-of-time compiler
> Java bytecode to portable ANSI C

> high-performance, predictable execution

> Multi-core ready

® Proprietary real-time garbage collection
> easy-to-use, fully preemptible, small overhead
> zero pause times for RT tasks

e Current platforms
> OS X, Linux, RTEMS

> x86 and x64, SPARC, LEONZ2/3, ERC32, and PowerPC
> 200KB footprint




The Fiji VM Overview

Java Application > Fiji VM compiler > Fast Native Code

Fiji Runtime

everything _ FijiVM CI

Transform & | Fiiil IR =

Optimize C Code Gen

OCFA barrier inling Dead Code elim.

Whole Program _, Lock,allocation, .5 Whole Program




The Runtime

Full Java:

Code generated by his Libraries 2.2MB
Fiji Compiler

!

Fiji Runtime

_¢_¢;§ Thin OS interface

OS threads OS locks Memory

Linux Mac OS X RTEMS NetBSD

Fiji Core:
500 KB




Better view of Fiji

Bytecode
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Performance/Predictability

local assignments,
: : : same performance as
simple arithmetic, |

n C/C++
casts, conditionals

loops,
method invocation, P slightly slower than
field/array access, | ClC+d
static initialization

allocation, locking, * faster than C/C++
exceptions |

condition variables
i identi ++
threading, 11O * identical to C/C




CDx Benchmark

® Representative Real-time benchmark

® Aircraft detection based on simulated
radar frames

® CDoc - written in idiomatic C
® CDj - written in idiomatic Java

® Uses many arrays and is computationally
Intensive




CDx Benchmark

The algorithm detects a collision whenever the
distance between aircraft is smaller than a
specified “proximity radius”

Step |: <— eliminates planes at large distances

® split aircraft into clusters

® Step 2: < closer examinations of potential collisions

® for each cluster determine actual collisions




CDx Benchmark

® What if we run CDx on a real-time setup?

® RTEMS 4.9.1 (hard RTOS microkernel: no
processes or virtual memory)

® 40MHz LEON3 with 64MB RAM (radiation-
hardened SPARC)

® This is the platform used by ESA and NASA




CDx Configuration

® 6 airplanes in our airspace

® execute over 10,000 radar frames
® runs take on average 45 minutes
® slight modification to generate frames

® 300ms period for the collision detector task
® between 145ms - 275ms

® |eaves less than 50% of the schedule for the GC




Worst case Fiji VM

Worst case C \
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Frame Number vs. Execution Time (ms)




CDc Summary

Iterations w/ potential
Collisions
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CD] Summary

30% slower on
average

Iteratlons w/ potentlal
Collisions |

=
‘ )




Source of overheads

measured using RTBx data logger

Expect to see larger Java overheads when
potential collisions are detected

Array bounds checks
Type checks
Null checks

o

- . B3

%

www.rapitasystems.com - ‘ ‘




Array Bounds Checks

more work
when clusters are
large or frequent

6 “modes -

1100 1200 1300 1400 1500 1600

Number of Checks correlated against execution time




Null Checks

more work
when clusters are
large or frequent

6 “modes -

1200 1300 1400 1500 1600 1700 1800

Number of Checks correlated against execution time




Type Checks

more work
when clusters are
large or frequent

6 “modes -

500 550 600 650 700

Number of Checks correlated against execution time




Correlation Java vs C when
running on RTEMS/LEON3

250

|5 Full GC collection
cycles!

10,000 samples

no outliers
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