
High-level Programming
Models for Real-time

Jan Vitek

Programming Models for Concurrency and Real-time

Real-time embedded systems

Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

Facilities to interact with special purpose hardware — need to
be able to program devices in a reliable and abstract way

Extreme reliability and safe — embedded systems control their
environment; failure can result in loss of life, or economic loss

Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability is essential

Programming Models for Concurrency and Real-time

A new software crisis?

Development time, code & certification are increasingly criteria

For instance in the automotive industry:

90% of innovation driven by electronics and software — Volkswagen

80% of car electronics in the future will be software-based	

— BMW

80% of our development time is spent on software	

— JPL

Worst, software is often the source of missed project deadlines.

Programming Models for Concurrency and Real-time

A new software crisis?

Typical productivity

5 Line of Code / person / day

From requirements to testing: 1 kloc / person / year

Typical avionics “box”

100 kloc ⇒ 100 person years of effort

Costs of modern aircraft is ~$500M

Programming Models for Concurrency and Real-time

A new software crisis?

The important metrics are thus
Reusability

Software quality

Development time

The challenges are
Sheer number and size of systems
Poor programmer productivity

The solutions are
Better processes (software engineering)

Better tools (verification, static analysis, program generation)

Better languages and programming models

Programming Models for Concurrency and Real-time

The programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

Consequently real-time systems are not portable across platforms

What programming models?

Programming Models for Concurrency and Real-time

What programming model?

“Real-time systems require fine grained control over resources
and thus the language of choice is C or assembly”

...entails the software engineering drawbacks of low-level code

Consider the following list of defects that have to be eradicated
(c.f. “Diagnosing Medical Device Software Defects” Medical DeviceLink, May 2009):

Buffer overflow and underflow (does not occur in a HLL)

Null object dereference (checked exception in a HLL)

Uninitialized variable (does not occur in a HLL)

Inappropriate cast (all casts are checked in a HLL)

Division by zero (checked exception in a HLL)

Memory leaks (garbage collection in a HLL)

Programming Models for Concurrency and Real-time

What programming model?

Some of the guarantees can be retrofitted on legacy C programs.

[Implementation of the Memory-safe Full ANSI-C Compiler, PLDI 2009]

1
.0

2
2

1
.7

2
0

2
.2

1
7

7
.6

5
1

5
.7

9
0

4
.2

6
8

3
.5

6
3

2
.8

0
3

2
.7

0
2

2
.3

1
8

2
.3

8
0

6
.9

7
3

5
.5

7
7

5
.2

5
8

5
.2

4
9

5
.2

1
0 6

.4
6

8

5
.4

7
9

5
.3

0
4

5
.2

4
2

5
.2

1
3 6

.5
0

7

5
.4

9
8

5
.2

7
3

5
.1

8
2

5
.1

6
4

3
.1

6
6

1
.4

8
1

3
.6

0
3

1
.0

1
7

6
.1

0
0

2
.1

2
5

2
.1

7
9

2
.8

4
7

3
.4

4
7

1
1

.7
2

7

-

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

m
ic

ro
 fi

b
44

m
ic

ro
 su

m
up

m
ic

ro
 su

m
up

CA
ST

m
ic

ro
 q

so
rt

m
ic

ro
 q

so
rt

CA
ST

O
pe

nS
SL rs

a
51

2d

O
pe

nS
SL rs

a
51

2e

O
pe

nS
SL rs

a
10

24
d

O
pe

nS
SL rs

a
10

24
e

O
pe

nS
SL rs

a
20

48
d

O
pe

nS
SL rs

a
20

48
e

O
pe

nS
SL rs

a
40

96
d

O
pe

nS
SL rs

a
40

96
e

O
pe

nS
SL a

es
12

8
16

O
pe

nS
SL a

es
12

8
64

O
pe

nS
SL a

es
12

8
25

6

O
pe

nS
SL a

es
12

8
10

24

O
pe

nS
SL a

es
12

8
81

92

O
pe

nS
SL a

es
19

2
16

O
pe

nS
SL a

es
19

2
64

O
pe

nS
SL a

es
19

2
25

6

O
pe

nS
SL a

es
19

2
10

24

O
pe

nS
SL a

es
19

2
81

92

O
pe

nS
SL a

es
25

6
16

O
pe

nS
SL a

es
25

6
64

O
pe

nS
SL a

es
25

6
25

6

O
pe

nS
SL a

es
25

6
10

24

O
pe

nS
SL a

es
25

6
81

92

nb
en

ch
 n

um
so

rt

nb
en

ch
 st

rs
or

t

nb
en

ch
 b

itf
ie

ld

nb
en

ch
 fo

ur
ie

r

nb
en

ch
 e
m

flo
at

nb
en

ch
 a
ss

ig
nm

en
t

nb
en

ch
 id

ea

nb
en

ch
 h

uf
fm

an

nb
en

ch
 n

eu
ra

l

RATIO to Native C RATIO to ASM

1
4

.0
6

6

Figure 10. Performance of the current compiler.

destination types of cast operations or do not protect pointers stored
in memory overwritten by integers via a cast.

Safe languages There are already plenty of languages (both stat-
ically and dynamically typed) that ensure complete memory safety.
Some of these, such as ML and Lisp, are accepted by some pro-
grammers for writing programs in a memory-safe way. However,
although these languages are good for new programs, it is hard to
reuse existing C programs on those systems. The syntax of Java
seems to have been designed intentionally to be similar to C, for
acceptance in the real world. Thanks to this, porting C programs to
Java is a little bit easier than porting them to other languages, but it
still requires heavy rewriting of the code.

Some other safe imperative languages resemble C more closely.
For example, Cyclone [9, 11] is designed to ease the porting of C
programs so that they become type safe. For common C programs
to conform to Cyclone, however, about 10% of the program code
must still be rewritten [9, 11], which is a considerable task.

CCured Necula et al. have designed and implemented CCured [16,
5], a sound type system that can support C programs that include
cast operations. The approach of CCured is to analyze the en-
tire program and then split it into two parts: the “type-safe part”
that does not use cast operations and the “type-unsafe part” that
could be contaminated by cast operations. However, to the best
of our knowledge, the designers did not focus on perfect source-
level compatibility with existing programs, and the system does in
fact support only a subset of the ANSI-C semantics. The reported
amount of code that must be rewritten is less than 1% of the source
code, which is much smaller than for other proposals such as Cy-
clone, but still a significant amount. Our work was designed with
a greater focus on complete compatibility with the ANSI-C spec-
ification and on the highest possible compatibility with existing
programs.

The main technical difference between CCured and our pro-
posal is that CCured is based mainly on static analysis of cast oper-
ations, while ours uses dynamic handling as its main tool. CCured
statically determines which variables might have a cast pointer, and
“quarantines” the wild part from the pure part of the program. The
pure part will then behave almost like a program of a pure statically
typed language; e.g., there will be no type information inside. The
weakness of this method is that the system cannot allow any point-
ers in the wild part to point to values in the pure part. In addition,
as value types are completely determined statically, a pointer that
could point to wild values must always point to wild values. This
means that wild pointers have a “pollution” problem: if one pointer

in a variable is found to have a cast in some case, all the data struc-
tures that might be pointed to by the same variable, and even all the
data structures that could be indirectly traversed from the variable,
must be in the wild part. Thus, the relative size of the program’s
wild part is likely to increase with program size.

In our scheme, on the other hand, a cast pointer does not infect
any other data because each memory block has a representation
type: even if there is a cast pointer pointing to a memory block, the
pointers in that block can still be typed (not cast).

Another problem with CCured is conflicts between the system
library and the pointer-type pollution described above. As system
libraries are compiled beforehand, a library must have a single
static type. However, in CCured, one wild pointer may pollute other
values by forcing them to be the wild type, including data to be
passed to the system library. If a library has already been compiled
as a non-wild type, the program cannot be linked safely. This makes
it harder to compile the large programs used in the real world.

Extensions to our work Kamijima and Sumii [13] have imple-
mented a C-to-Java translator which supports pointer arithmetic
and arbitrary pointer cast based on our scheme. They have intro-
duced local static to reduce additional overhead imposed by the
representation of Fail-Safe C’s data structure on Java.

Furuse proposed VITC [8], an extension of our scheme with
analysis and enforcement of information flow restriction. As our
compiler enforces basic memory safety and runtime conformity to
the defined language semantics, it can be combined with various
static/dynamic analysis to ensure stronger safety/security proper-
ties on the C language.

7. Conclusion
We have designed a completely memory-safe implementation of
the full ANSI-C language that can support all of the features of
ANSI-C, including casts and unions. We have introduced several
techniques to support C language features that most safe languages
do not have. We also exploited several implementation tricks to
reduce the runtime overhead as much as possible.

We have implemented both the compiler system and the runtime
library, which contains over 500 standard library functions defined
in the ANSI-C and POSIX specifications. The system accepts many
existing, well-used server programs such as OpenSSL, OpenSSH,
and BIND9.

A performance evaluation showed that, on average, the safe
programs compiled by Fail-Safe C take two to four times as long to
compute as unsafe programs compiled by native compilers.

268

Programming Models for Concurrency and Real-time

1

Programming Models for Concurrency and Real-time

Java?

Object-oriented programming helps software reuse

Mature development environment and libraries

Garbage collected & Memory-safe high-level language

Portable, little implementation-specific behavior

Concurrency built-in, support for SMP, memory model

Popular amongst educators and programmers

Programming Models for Concurrency and Real-time

Java?

Predictable?

Java Collision Detector running at 20Hz.

• Bartlett’s Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

GC pauses cause the collision detector to miss up to three
deadlines…this is not a particularly hard should support KHz periods

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

Worst case = 114ms

Programming Models for Concurrency and Real-time

The Real-time Specification for Java (RTSJ)

Java-like programming model:

Shared-memory, lock-based synchronization, first class threads.

Main real-time additions:

Physical memory access (memory mapped I/O, devices, …)

Real-time threads (heap and no-heap)

Synchronization, Resource sharing (priority inversion avoidance)

Memory Management (region allocation + real-time GC)

High resolution Time values and Clocks

Asynchronous Event Handling and Timers

Asynchronous Transfer of Control

JavaOvm
The Real-time Java

experience

Programming Models for Concurrency and Real-time

Java

Ovm

Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTSJ implementation.

Developed the Ovm virtual machine
framework, a clean-room, open source
RT Java virtual machine.

Fall 2005, first flight test with Java on a plane.

 Duke’s Choice
 Award

R202? t H7BtArD
• - EN B2rv21 . B = 711:2w. r2 fAr BA27? g’B

S0. ? E. g:2 . ? C? = . ? ? 21 . r7. : v2570:2 (UAV)

• PrAv7121 r2. :-t7= 2 0A= = C? 70. t7A? w7t5
grAC? 1 Bt. t7A?

• BCt 0A? 02r? r2= . 7? 21 . bACt Av2r52. 1 Af - EN

Programming Models for Concurrency and Real-time

Case Study: ScanEagle

Programming Models for Concurrency and Real-time

ScanEagle

Programming Models for Concurrency and Real-time

ScanEagle
Flight Software:

953 Java classes, 6616 methods.
Multiple Priority Processing:
• High (20Hz) - Communicate with Flight Controls

• Medium (5 Hz) - Computation of navigation data

• Low (1 Hz) - Performance Computation

Embedded Planet 300 Mhz PPC,
256MB memory, Embedded Linux

Java performed better than C++

Mission Control

Payload Card

Real-time JAVA

Virtual Machine

Serial I/O Device

Object Reference

Broker

Event Channel

Event Queues

Frame Controller

Application

Components

ScanEagle

 Patform

Flight

Control

Card

PeriodicParameters

RelativeTime

NoHeapRealtimeThread

AsyncEvent

BoundAsyncEventHandle

ImmortalMemory

Ground

Station

Threats, No Fly Zones

Flight Data

Navigation

PassThrough

Programming Models for Concurrency and Real-time

References and acknowledgements

Team

J. Baker, T. Cunei, C. Flack, D. Holmes, C. Grothoff, K. Palacz,
F. Pizlo, M. Prochazka and also J. Thomas, K. Grothoff, E. Pla,
H. Yamauchi, P. McGachey, J. Manson, A. Madan, B. Titzer

Funding: DARPA, NSF, Lockheed Martin, Boeing

Availability: open source, http://www.cs.purdue.edu

Paper trail

A Real-time Java Virtual Machine for Avionics. RTAS, 2006
Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006
A New Approach to Real-time Checkpointing. VEE, 2006
Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004
Subtype tests in real time. ECOOP, 2003
Engineering a customizable intermediate representation. IVME, 2003

Programming Models for Concurrency and Real-time

2

Programming Models for Concurrency and Real-time

Fiji VM technology
Proprietary ahead-of-time compiler

Java bytecode to portable ANSI C

high-performance, predictable execution

Multi-core ready

Proprietary real-time garbage collection

easy-to-use, fully preemptible, small overhead

zero pause times for RT tasks

Current platforms

OS X, Linux, RTEMS

x86 and x64, SPARC, LEON2/3, ERC32, and PowerPC

200KB footprint

The Fiji VM Overview

Java Application Fiji VM compiler Fast Native Code

Fiji Runtime

Fiji VM C1 GCC

Bytecode Parser Fiji IR Transform &
Optimize

Fiji IR C Code Gen

register
allocation

everything
else

Whole Program
0CFA

Lock, allocation,
barrier inling

Whole Program
Dead Code elim.

The Runtime

Code generated by
Fiji Compiler

Fiji Runtime

OS threads OS locks

Libraries

Memory

Full Java:
2.2MB

Fiji Core:
500 KB

Thin OS interface

Linux Mac OS X RTEMS NetBSD

Better view of Fiji C1
Bytecode

Parser

Fiji IR

Make SSA

Fiji SSA

Const & Copy
Propagation +

CFG
Simplification

Intrinsics

Inlining

Global Value
Numbering

Kill SSA

Unroll and Peel
Loops

Make SSA

Const & Copy
Propagation +

CFG
Simplification

Fiji IR

Fiji SSA

Allocation, Lock,
Barrier Inlining

Global Value
Numbering

Whole-program
Dead Code
Elimination

Representational
Lowering

Calling
Convention
Lowering

Kill Types

Const & Copy
Propagation +

CFG
Simplification

Kill SSA

Const & Copy
Propagation +

CFG
Simplification

Generate C Code

C code

Whole-program
0CFA

Fiji IR

(some
optimizations

omitted to save
space)

local assignments,
simple arithmetic,
casts, conditionals

loops,
method invocation,
field/array access,
static initialization

allocation, locking,
exceptions

condition variables,
threading, I/O

same performance as
C/C++

slightly slower than
C/C++

faster than C/C++

identical to C/C++

Performance/Predictability

CDx Benchmark

• Representative Real-time benchmark

• Aircraft detection based on simulated
radar frames

• CDc - written in idiomatic C

• CDj - written in idiomatic Java

• Uses many arrays and is computationally
intensive

CDx Benchmark

• The algorithm detects a collision whenever the
distance between aircraft is smaller than a
specified “proximity radius”

• Step 1:

• split aircraft into clusters

• Step 2:

• for each cluster determine actual collisions

eliminates planes at large distances

closer examinations of potential collisions

• What if we run CDx on a real-time setup?

• RTEMS 4.9.1 (hard RTOS microkernel: no
processes or virtual memory)

• 40MHz LEON3 with 64MB RAM (radiation-
hardened SPARC)

• This is the platform used by ESA and NASA

CDx Benchmark

CDx Configuration

• 6 airplanes in our airspace

• execute over 10,000 radar frames

• runs take on average 45 minutes

• slight modification to generate frames

• 300ms period for the collision detector task

• between 145ms - 275ms

• leaves less than 50% of the schedule for the GC

2000 2050 2100 2150 2200

100

150

200

250

300

Worst case Fiji VM
Worst case C

10% slower

Frame Number vs. Execution Time (ms)

100 150 200 250 300
1

5
10

50
100

500
1000

Time (ms)

N
um

be
r

of
 It

er
at

io
ns

CDc Summary

Iterations w/ potential
Collisions

100 150 200 250 300
1

5
10

50
100

500
1000

N
um

be
r

of
 It

er
at

io
ns

Time (ms)

CDj Summary

Iterations w/ potential
Collisions

30% slower on
average

Source of overheads

• Expect to see larger Java overheads when
potential collisions are detected

• Array bounds checks

• Type checks

• Null checks

measured using RTBx data logger

www.rapitasystems.com

1100 1200 1300 1400 1500 1600

150

200

250

Array Bounds Checks

Number of Checks correlated against execution time

6 “modes”

more work
when clusters are
large or frequent

Null Checks

1200 1300 1400 1500 1600 1700 1800

150

200

250

Number of Checks correlated against execution time

6 “modes”

more work
when clusters are
large or frequent

Type Checks

500 550 600 650 700 750

150

200

250

Number of Checks correlated against execution time

6 “modes”

more work
when clusters are
large or frequent

Java Iteration Execution Time

C
 It

er
at

io
n

Ex
ec

ut
io

n
T

im
e

Correlation Java vs C when
running on RTEMS/LEON3

10,000 samples

no outliers

15 Full GC collection
cycles!

