High-level Programming
Models for Real-time

Jan Vitek

Programming Models for Concurrency and Real-time

Real-time embedded systems

e Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

e Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

e Facilities to interact with special purpose hardware — need to
be able to program devices In a reliable and abstract way

e Extreme reliability and safe — embedded systems control their
environment: faillure can result in loss of life, or economic loss

e Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability i1s essential

Programming Models for Concurrency and Real-time

A new software crisis?

e Development time, code & certification are increasingly criteria

e For Instance In the automotive Industry:

> 90% of innovation driven by electronics and software — Volkswagen
p 80% of car electronics in the future will be software-based — BMW

> 80% of our development time is spent on software— |PL

e Worst, software Is often the source of missed project deadlines,

Programming Models for Concurrency and Real-time

A new software crisis?

e Typical productivity
> 5 Line of Code / person / day

» From requirements to testing: | kloc / person / year

e Typical avionics “box”

> 00 kloc = 100 person years of effort

» Costs of modern aircraft is ~$500M

Programming Models for Concurrency and Real-time

A new software crisis?

e [he important metrics are thus
> Reusabllity
> Software quality

> Development time

e [he challenges are
> Sheer number and size of systems
> Poor programmer productivity

e [he solutions are
> Better processes (software engineering)
> Better tools (verification, static analysis, program generation)

> Better languages and programming models

Programming Models for Concurrency and Real-time

What programming models!?

e The programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

> Consequently real-time systems are not portable across platforms

Programming Models for Concurrency and Real-time

What programming model?

e “Real-time systems require fine grained control over resources
and thus the language of choice is C or assembly”

e ..entalls the software engineering drawbacks of low-level code

e Consider the following list of defects that have to be eradicated
(c.f."Diagnosing Medical Device Software Defects” Medical Devicelink, May 2009).

» Buffer overflow and underflow (does not occur in a HLL)

> Null object dereference (checked exception in a HLL)
> Uninitialized variable (does not occur in a HLL)

> Inappropriate cast (all casts are checked in a HLL)
> Division by zero (checked exception in a HLL)

> Memory leaks (garbage collection in a HLL)

Programming Models for Concurrency and Real-time

NS
AN N
- & -
F = ~
- ~
g 3 -
- N N % AN
o o S S
: g\ = < NS =
E N %o Q) o X QN o N !
g ™ N AN S = ¥ 2 NI S
s g T N AL o T o L T o~
C N N
C Y= S
g m 22 S S SR
g N 2 s 2 - om QR 2 g
2 % N I TENCIING ~ NN
RN B 2w S N R
C < ~
* S & S > > o > (2 > 2 © > © &) § v X) \o X ©) & > . VIS S NN
R F R P N N N » & & & 8 >
S & & T J’Q RN O & oo\@ %%\o, & g m@ f»°°® 2 ‘o\@, b%\q FEEFSTFSSS 3&& &
o oSS SR > D > &> S NN S o \ q o o % > NS X
BUE SR S < & & & & I F o A AN % & & &) & S &y G T
& & T S S S & AT F S “?% & o F FFFTFTS S TS
& S QQQ Qé\ @% é\% o“% \% é‘% > e% e% o%% ‘5%\) 2 é‘% @‘\% &\%% & & & @*\% 0%% %c"\) %%\) S DN & °
S & F FFFF K K F & & & & ¥ &FSFKFFE S S &
< oy O O O) o O R & OQQJ o KX & & Q R OQQ F
B RATIO to Native C ¢ RATIO to ASM

e Some of the guarantees can be retrofitted on legacy C programes.

[Implementation of the Memory-safe Full ANSI-C Compiler; PLDI 2009]

Pro Models for Concurrency and Real-time

Programming Models for Concurrency and Real-time

Java?

e Object-oriented programming helps software reuse

e Mature development environment and libraries

e Garbage collected & Memory-safe high-level language
e Portable, little implementation-specific behavior

e Concurrency built-in, support for SMP memory model

® Popular amongst educators and programmers

Programming Models for Concurrency and Real-time

Worst case = 114ms

Predictable!?

~
2
£
N’
>
(G
c
O
)
@©
—l

100 150 200
lteration Number

> Java Collision Detector running at 20Hz.

® RBartlett's Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

» GC pauses cause the collision detector to miss up to three
deadlines...this is not a particularly hard should support KHz periods

Programming Models for Concurrency and Real-time

The Real-time Specification for Java (RTS])

® Java-like programming model:

> Shared-memory, lock-based synchronization, first class threads.

e Main real-time additions:

Physical memory access (memory mapped I/O, devices, ...)
Real-time threads (heap and no-heap)

Synchronization, Resource sharing (priority inversion avoidance)
Memory Management (region allocation + real-time GC)

High resolution Time values and Clocks

Asynchronous Event Handling and Timers

> Asynchronous Transfer of Control

The Real-time Java
experience

Programming Models for Concurrency and Real-time

Ovm

e Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTS) implementation.

e Developed the Ovm virtual machine
framework, a clean-room, open source
RT Java virtual machine.

e Fall 2005, first flight test with Java on a plane.

Duke’s Choice
Award

Programming Models for Concurrency and Real-time

Programming Models for Concurrency and Real-time

ScanEagle

Programming Models for Concurrency and Real-time

ScanEagle

e Flight Software:

> 953 Java classes, 6616 methods.
Multiple Priority Processing:
® High (20Hz) - Communicate with Flight Controls
® Medium (5 Hz) - Computation of navigation data

® |ow (I Hz) - Performance Computation

Mission Control

Payload Card ScanEagle » Embedded Planet 300 Mhz PPC,
qaticly 256MB memory, Embedded Linux

!‘
{ e Java performed better than C++

elative Time

Event
‘ NoHeapRealtimeThread

Event Channel S AsyncEvent
BoundAsyncEventHandle
Object Reference
Broker

:I ImmortalMemory

Serial I/0 Device I. Flight Threats, No Fly Zones
ig A I Ground

Real-time JAVA Control Flight Data Station
Virtual Machine Card

Programming Models for Concurrency and Real-time

® Team

> | Baker, T. Cunei, C. Flack, D. Holmes, C. Grothof}, K. Palacz,
F. Pizlo, M. Prochazka and also |. Thomas, K. Grothoff, E. Plq,
H.Yamauchi, E McGachey, |. Manson, A. Madan, B. Titzer

® Funding: DARPA, NSF, Lockheed Martin, Boeing

e Availability: open source, http://www.cs.purdue.edu

e Paper trail

s A Real-time Java Virtual Machine for Avionics. RTAS, 2006
Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006
A New Approach to Real-time Checkpointing. VEE, 2006
Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004
Subtype tests in real time. ECOOP, 2003
Engineering a customizable intermediate representation. IVME, 2003

IU‘,QJ.IJ‘.'.\‘.“\‘. ey bR

TR S YT

sl e 00 o -t Sade 2

> . LL> : s e
i(.ﬂ.% <% ~ 2k Dughin 'Y,
z TP 4 0 TR0 3 e s WA i T v 1 o

/19(&..,'L
Mt ~pelde

L wthem

e Ittt el |
T AE Tl e
9 I

LMt ™~ e

Programming Models for Concurrency and Real-time

\4""90.00 >
|
et o S w v el il LR e LA T Ll 25 S e s sbbd tida e Loy oo o
v - |1
,.l. .,..ti!lran e - . —_— <) 3 2 TR L T T~ e
L eam - T
T THUPREND .

ARt el e

- - -y W 2l e I v Dt T (D ey el VD
L wwmewm '

TP PVETID ST = "M
- A . LA Comam v M T N
< Ve | B o e e et e L evd 2 R - e
- —— L - .- " e TV .. ————
s T - 'q’illﬂ'.\"“\c. e
- T W e-—- 7y

[s & & =

o SRR ro sl .

A T LN G

LTIV Wiwti v ~yuefe Santl T Der-il

L

P AT S BRSNS

Ml ~uelBe
- - P
- aar i

J o

“l._ NAE T el

V%.s‘h‘ &

LMt ™~ e

~ PRI TTR - AR cagls TS

Programming Models for Concurrency and Real-time

Fiji VM technology

® Proprietary ahead-of-time compiler
> Java bytecode to portable ANSI C

> high-performance, predictable execution

> Multi-core ready

® Proprietary real-time garbage collection
> easy-to-use, fully preemptible, small overhead
> zero pause times for RT tasks

e Current platforms
> OS X, Linux, RTEMS

> x86 and x64, SPARC, LEONZ2/3, ERC32, and PowerPC
> 200KB footprint

The Fiji VM Overview

Java Application > Fiji VM compiler > Fast Native Code

Fiji Runtime

everything _ FijiVM CI

Transform & | Fiiil IR =

Optimize C Code Gen

OCFA barrier inling Dead Code elim.

Whole Program _, Lock,allocation, .5 Whole Program

The Runtime

Full Java:

Code generated by his Libraries 2.2MB
Fiji Compiler

!

Fiji Runtime

¢¢;§ Thin OS interface

OS threads OS locks Memory

Linux Mac OS X RTEMS NetBSD

Fiji Core:
500 KB

Better view of Fiji

Bytecode

Fiji IR
v

Make SSA

\/
Fiji SSA
\/

Const & Copy
Propagation +
CFG
Simplification

A

\

Intrinsics

v

Whole-program
OCFA

v

Inlining

\/

Global Value
Numbering

\

Kill SSA
\
Fiji IR
v

Unroll and Peel
Loops

\

\

\EVCESISTA

v
Fiji SSA
\/

Const & Copy
Propagation +
CFG
Simplification

\/

Allocation, Lock,
Barrier Inlining

\/

Global Value
Numbering

\/

Whole-program
Dead Code
Elimination

\

(\ Representational
Lowering

A

Calling
Convention
Lowering

\

Kill Types

\/

Const & Copy
Propagation +
CFG
Simplification

\/

Kill SSA

Cl

Fiji IR
\ 4

Const & Copy
Propagation +
CFG
Simplification

v

Generate C Code

\/

(some
optimizations

Performance/Predictability

local assignments,
: : : same performance as
simple arithmetic, |

n C/C++
casts, conditionals

loops,
method invocation, P slightly slower than
field/array access, | ClC+d
static initialization

allocation, locking, * faster than C/C++
exceptions |

condition variables
i identi ++
threading, 11O * identical to C/C

CDx Benchmark

® Representative Real-time benchmark

® Aircraft detection based on simulated
radar frames

® CDoc - written in idiomatic C
® CDj - written in idiomatic Java

® Uses many arrays and is computationally
Intensive

CDx Benchmark

The algorithm detects a collision whenever the
distance between aircraft is smaller than a
specified “proximity radius”

Step |: <— eliminates planes at large distances

® split aircraft into clusters

® Step 2: < closer examinations of potential collisions

® for each cluster determine actual collisions

CDx Benchmark

® What if we run CDx on a real-time setup?

® RTEMS 4.9.1 (hard RTOS microkernel: no
processes or virtual memory)

® 40MHz LEON3 with 64MB RAM (radiation-
hardened SPARC)

® This is the platform used by ESA and NASA

CDx Configuration

® 6 airplanes in our airspace

® execute over 10,000 radar frames
® runs take on average 45 minutes
® slight modification to generate frames

® 300ms period for the collision detector task
® between 145ms - 275ms

® |eaves less than 50% of the schedule for the GC

Worst case Fiji VM

Worst case C \
T T T T T T { T T T T

Frame Number vs. Execution Time (ms)

CDc Summary

Iterations w/ potential
Collisions

(7))
c
O
)
()
L
)
s
G—
o
&
)
0O
&
)
Z

(7))
c
O
)
()
L
)
s
G—
o
&
)
0O
&
)
Z

CD] Summary

30% slower on
average

Iteratlons w/ potentlal
Collisions |

=
‘)

Source of overheads

measured using RTBx data logger

Expect to see larger Java overheads when
potential collisions are detected

Array bounds checks
Type checks
Null checks

o

- . B3

%

www.rapitasystems.com - ‘ ‘

Array Bounds Checks

more work
when clusters are
large or frequent

6 “modes -

1100 1200 1300 1400 1500 1600

Number of Checks correlated against execution time

Null Checks

more work
when clusters are
large or frequent

6 “modes -

1200 1300 1400 1500 1600 1700 1800

Number of Checks correlated against execution time

Type Checks

more work
when clusters are
large or frequent

6 “modes -

500 550 600 650 700

Number of Checks correlated against execution time

Correlation Java vs C when
running on RTEMS/LEON3

250

|5 Full GC collection
cycles!

10,000 samples

no outliers

()
£
I—

c

o
=

>

O

()

X
L

-

o
=

(4]

|

Q
=
O

Scoaiataas
Java lteration Execution Time

