e The choice of memory management affects productivity

e Object-oriented languages naturally hide allocation behind
abstraction barriers

» Taking care of de-allocation manually is more difficult in OO style

e Concurrent algorithms usually emphasize allocation

> because freshly allocated data is guaranteed to be thread local

P “transactional” algorithms generate a lot of temporary objects

e ... but garbage collection is a global, costly, operation that
introduces unpredictability

e If there is no allocation, GC does not run.

» This approach is used in JavaCard

o RTS) provides scratch pad memory regions which can be used for
temporary allocation

» Used in deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator
s.reserve(Decrypt.class, 2);

shared = new LTMemory(s.getEstimate())
shared.enter (
dl = new Decrypt() ...

)i

e There are three main families of RTGC implementations

e Work-based

v Aicas JamaicaVM

e Time-triggered, periodic

» [BM Websphere
e Time-triggered, slack

» SUN Java Real Time System

Phases

e Mutation

IREENNENA

thread#l

©
e, o0
o =
c
2 c
[0)
< 3
;
-
w. o
9 o]
A s
[

® Marking

00
c
<
<
5]
>
L

o

=

T

©

o

, 5
5

il

Sweeping
e Sweeping

000?00

Qedpe9o,
0 O@O|

2080®O

o
T
©
o
I
5
kil

Phases

Q00000
0000000

e Compaction

thread#l thread#2

e Forwarding pointers refer to the current version of objects

e Every access must start with a derefence

original

GC thread
RT thread

Java thread

GC thread
RT thread

Java thread

720 | B

Worst case = 114ms
100 + —

80 1

60 | 1

Latency (milis)

40 []

SN v

0 50 100 150 200 250 300
Iteration Number

» GC pauses cause the collision detector to miss deadlines...
and this is not a particularly hard problem should support KHz periods

25

RTGC worst case: 18 ms (median | Ims)
20 -

GC worst case: 120 ms (median 9ms)

Latency (millis)

0 50 100 150 200 250 300
Iteration Number

25
20 -
RTGC worst case: |18 ms (median | Ims)

o
= 15 |
E RTS) worst case: 10 ms (median 7ms)
3
g
= 10+
1

5+

0 50 100 150 200 250 300
lteration Number

Scheduling GC

* Basic parameters needed to schedule a set of task that rely on a real-
time garbage collection

C; [seconds] computation time task
T; [seconds] period task
A; [bytes] allocation task
G [seconds] GC work generated task
H [bytes] heap size system
Linax [bytes] live memory system
Tyc [seconds] GC cycle duration (period) system

Gy [seconds] GC cycle overhead system

Traditional response time analysis
| 22 |
* C and T are the traditional task WCET and deadline

» Computing the response time analysis can be done as usual by:

i—1 Ri
R, =C;+ Z F Cj
j=1 J

Schedulability analysis with GC
Ex

* The period of the GC task Tgc must be chosen so that it larger than a
GC cycle (from start collection to finish)

* The constant G;is the upper bound on the amount of GC work that a
user task i can generate in release

* The constant Go is the task independent work performed during each
GC cycle

* The maximum heap size Lis a chosen by the user
* The maximum amount of live memory Lmax depend on the program

* The upper bound on allocation A; per release of task i

Schedulability tests

JRE
* In the presence of GC two new tests are added to the schedulability
equations:

*T1 The mutator tasks meet their deadline (modified)
*T2 The system does not run out of memory

* T3 The GC task meets its deadline and keeps with up mutator tasks

T2 Memory test
25 |

* If an object is freed during one GC cycle, the earliest time it can be
found and freed is during the following GC cycle

* Assume that we compute Anmax, the maximum amount allocated by all
mutators during one GC cycle

* The maximum of floating garbage is Anax, plus the maximum allocated
in the cycle Amax and the maximum live memory Lmax must be less than
the heap size H

Amax < H—_zL max

T2 Memory test
2]

* If we assume that the GC period is a multiple of the hyperperiod of
the mutator tasks, then we can compute:

n
Gmax = Go+ Z

n
Amax - ZTAi

T3 GC test for Slack-scheduled
Ea

* For a slack-scheduled RTGC, the response time of the GC is the
maximal amount of GC work that has to be performed per cycle plus
the sum of the interruptions of all other tasks.

* The response time of the mutator tasks (T1) is computed as usual

n Rgc
Rgc = Gmax + 2 _T -G
i=1 i

T1 for Periodic

a4 |
* A periodic GC is run according to a pattern, e.g.
CMMCMM...
* For any window of time t the minimum mutator utilization is the least
ratio of time available to the mutator threads, written mmu(t)
* mcu(t) = 1-mmu(t) is the ratio used by the collector during that window

R = c,~+;:211 d% -C,-) + (1 — mmu(R;)) - R;

T3 GC test for Periodic

-] |
* The response time for the GC is computed by finding:

Let Ry be the smallest # such that 7 - mcu(t) > Gmax and t < Ty

Lom G0 H T

E I] % 300 10 25500 730
qup € 2 50 9 302 5 Quantum size: 0.5
[5 2 26 Window iz 10
MC pattern: MCMCHCMCHCHCMMMMMMMM
* Release ® Computation M Completion | Deadline miss

8

o ¥ [———

] F — K — .

1

ol B o T B o T B L B

NONE

950 960 970 980 990 1000 1010 1020 1030 1040 1045

(a) Slack GC does not cause a deadline miss

'
*
:
:
'
:
.

Fereol feerem eeoom feesr

NONE

950 960 970 980 990 1000 1010 1020 1030 1040 1045

Lmax_ Go H Ty
Exomp|e 2 i T G A G 300 10 3000 140
50 9 302 5 Quantum size: 0.5
298 490 65 4 Window size: 10
MC pattern: MCHCHCMCMCMCHMMMMMMM
k¥ Release e Computation M Completion | Deadline miss
81 * !
[— [— P
H
g
10 10 10 70 10 10 200 2l0 20 230 20 20 20 20 20
() Slack GC misses its deadline, cannot keep up with application
I Rusensmppp——SOR———
- P FHBNEY —n
H
1o 10 10 1m0 10 10 a0 zio 20 20 20 20 20 zo 20
(b) Periodic GC does not miss a deadline

J. Baker, T. Cunei, T. Kalibera, T. Hosking, F. Pizlo, M. Prochazka

o Paper trail

Scheduling Real-time Garbage Collection on Uni-processors. TOCS / RTSS, 2009

Accurate Garbage Collection in Uncooperative Environments. CC:P&E, 2009

Memory Management for Real-time Java: State of the Art. ISORC, 2008

Garbage Collection for Safety Critical Java. JTRES, 2

Hierarchical Real-time Garbage Collection. LCTES, 200

Scoped Types and Aspects for Real-time Java Memory management. RTS, 2007

Accurate Garbage Collection in Uncooperative Environments with Lazy Stacks. CC, 2007

An Empirical Evaluation of Memory Management Alternatives for Real-time Java. RTSS, 200¢

