
Memory management and programming models

The choice of memory management affects productivity

Object-oriented languages naturally hide allocation behind 
abstraction barriers

Taking care of de-allocation manually is more difficult in OO style

Concurrent algorithms usually emphasize allocation

because freshly allocated data is guaranteed to be thread local

“transactional” algorithms generate a lot of temporary objects

… but garbage collection is a global, costly, operation that 
introduces unpredictability

Alternative 1: No Allocation

If there is no allocation, GC does not run.

This approach is used in JavaCard



Alt 2:  Allocation in Scoped Memory

RTSJ provides scratch pad memory regions which can be used for 
temporary allocation

Used in deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);
…  
shared = new LTMemory(s.getEstimate());
shared.enter(new Run(){ public void run(){
    ...d1 = new Decrypt() ...
}});

Alt 3: Real-time Garbage Collection

There are three main families of RTGC implementations

 Work-based

Aicas JamaicaVM

 Time-triggered, periodic

IBM Websphere

Time-triggered, slack

SUN Java Real Time System
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Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Incrementalizing marking

Collector marks object

Application updates 
reference field

Compiler inserted 
write barrier marks object

Incrementalizing compaction

Forwarding pointers refer to the current version of objects

Every access must start with a derefence

copy

original



Time-based GC Scheduling

GC thread

RT thread

Java thread

Slack-based GC Scheduling

GC thread
RT thread

Java thread
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Worst case = 114ms

‣GC pauses cause the collision detector to miss deadlines… 
and this is not a particularly hard problem should support KHz periods

18



CD with periodic RTGC
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(a) Java-GC: Latency. (b) RTGC: Latency.
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Figure 8. Evaluating the Collision Detector.

is small, no more than 10%. Moreover we can observe how

GC gradually free dead objects.

This benchmark is interesting as it has shown that RTGC

meets the application’s predictability requirements. In term

of median latencies, Java-GC and RTGC are the fastest with

a median latency of 1.5ms. Scopes are a bit slower with me-

dian latencies of 1.7ms (1.6ms without scope checks).

5.3.2. Collision Detector The collision detector is a

41KLoc RTSJ program with two real-time threads. One

thread is a periodic NoHeapRealtimeThread that de-

tects collisions in data generated by a simulator. The other

thread is a Java thread that interacts with the environ-

ment. The input is a complex simulation involving over

200 aircrafts. We record the latency of processing one in-

put frame.

As before, we begin with the mostly copying collec-

tor. Fig. 8(a) shows that the maximum latency for one in-

put frame is 114ms. Switching to RTGC dramatically de-

creases the worst-case latency, it drops to 18ms, shown in

Fig. 8(b). The RTGC is configured for 2ms of mutator activ-

ity for every 1ms of collector activity. The utilization trace

of Fig. 8(f) shows 60% utilization most of the the time.

The long period of collector activity at the beginning of

the utilization trace is due to the simulation initializing it-

self; this is not part of the mission phase and has no corre-

8

GC worst case: 120 ms  (median 9ms) 

RTGC worst case: 18 ms  (median 11ms)

Slack-based GC
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is small, no more than 10%. Moreover we can observe how

GC gradually free dead objects.

This benchmark is interesting as it has shown that RTGC

meets the application’s predictability requirements. In term

of median latencies, Java-GC and RTGC are the fastest with

a median latency of 1.5ms. Scopes are a bit slower with me-

dian latencies of 1.7ms (1.6ms without scope checks).

5.3.2. Collision Detector The collision detector is a

41KLoc RTSJ program with two real-time threads. One

thread is a periodic NoHeapRealtimeThread that de-

tects collisions in data generated by a simulator. The other

thread is a Java thread that interacts with the environ-

ment. The input is a complex simulation involving over

200 aircrafts. We record the latency of processing one in-

put frame.

As before, we begin with the mostly copying collec-

tor. Fig. 8(a) shows that the maximum latency for one in-

put frame is 114ms. Switching to RTGC dramatically de-

creases the worst-case latency, it drops to 18ms, shown in

Fig. 8(b). The RTGC is configured for 2ms of mutator activ-

ity for every 1ms of collector activity. The utilization trace

of Fig. 8(f) shows 60% utilization most of the the time.

The long period of collector activity at the beginning of

the utilization trace is due to the simulation initializing it-

self; this is not part of the mission phase and has no corre-

8

RTGC worst case: 18 ms  (median 11ms)

RTSJ worst case: 10 ms  (median 7ms) 

Scheduling GC
•Basic parameters needed to schedule a set of task that rely on a real-

time garbage collection
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Table I: Input parameters for schedulability analysis.

Ci [seconds] computation time task

Ti [seconds] period task

Ai [bytes] allocation task

Gi [seconds] GC work generated task

H [bytes] heap size system

Lmax [bytes] live memory system

Tgc [seconds] GC cycle duration (period) system

G0 [seconds] GC cycle overhead system

T1. mutator tasks meet their deadlines;

T2. GC meets its deadline and keeps up with tasks that use memory;

T3. the system does not run out of memory.

The conditions can be formalized as three tests that can be be checked based on the above

mentioned input parameters. The formulation of tests T1 and T2 is dependent on how the

GC is scheduled, but T3 can be formulated independently of GC scheduling. We can find

an upper bound on the GC cycle duration that ensures that all allocation requests can be

fulfilled. We use a bound based on that of Robertz and Henriksson [2003]:

Amax ≤
H −Lmax

2
(2)

In the above, Amax stands for the the maximum amount of allocation performed by the

application tasks during a GC cycle. It is easy to see that the condition is necessary for the

system not to run out of memory as objects that become unreachable during the GC cycle

in which they are allocated (they are called floating garbage) can only be freed by the end

of the subsequent GC cycle. Previous work has shown that this is a sufficient condition

[Robertz and Henriksson 2003; Schoeberl 2006]. The intuition behind the proofs is as

follows. The worst case occurs when the amount of live memory is Lmax for all cycles. The

maximum amount of floating garbage is the maximum allocatable memory in the previous

cycle (Amax) and the maximum permissible amount of memory (Amax) is allocated in the

present cycle. The system does not run out of memory as long as Amax +Amax +Lmax ≤ H,

and thus Equation (2) is sufficient.

The values of Amax and the related constant Gmax, which stands for the maximum GC

work, can be derived from the input parameters. When Tgc is a multiple of the hyper-period

(lcmi=1..n(Ti)) and all tasks are started simultaneously, a simplified equation can be used:

Gmax = G0 +
n

∑
i=1

Tgc

Ti

Gi

Amax =
n

∑
i=1

Tgc

Ti

Ai

Aligning Tgc to the hyper-period may lengthen GC cycles and thus lead to higher memory

requirements. The following equations consider the general case. Making no assumptions

about how the generation of GC work is distributed within each task, any task that runs,

ACM Journal Name, Vol. V, No. N, Month 20YY.



Traditional response time analysis
•C and T are the traditional task WCET and deadline
•Computing the response time analysis can be done as usual by:

22
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assume that the task’s period and deadline are identical. The response time of task, Ri, is

the longest duration between the time a task becomes runnable and the time it completes

executing. Thus for a schedulable task set Ci ≤ Ri ≤ Ti. The response time of a task i can

be computed by assuming that all tasks of higher priority than i are released for execution

simultaneously with task i and is computed by Equation (1):

Ri =Ci +
i−1

∑
j=1

��
Ri

Tj

�
Cj

�
(1)

Thus the response time Ri is the cost of the task i and the sum of the preemption costs

of higher priority tasks. Note that the term

�
Ri

Tj

�
is the maximum number of times task j

could be released during a single computation of task i. As all tasks j,1 ≤ j ≤ i−1 have a

higher priority than i, they will preempt i at each of their release, hence prolonging Ri by

Cj at each release. The recurrence is solved iteratively as follows:

R
0

i
:= 0

R
n+1

i
:= Ci +

i−1

∑
j=1

��
R

n

i

Tj

�
Cj

�
.

The system is schedulable if and only if for every task i the equation converges to a finite

fixed point Ri, such that Ri < Ti.

4.1 Schedulability and Garbage Collection

Incorporating the garbage collector task into schedulability analysis requires enriching the

execution model because the cost and period of the collector is dependent on the behavior

of other tasks. So, in addition to the costs Ci and deadlines Ti of individual tasks, infor-

mation about the amount of work created by the application and the characteristics of the

GC must be provided. Under a fixed priority scheduling regime, the priority of the garbage

collection task is a key design decision. In slack-based GC, the collector runs at the lowest

priority. It can thus be preempted by all other tasks. On the other hand, a periodic GC

runs at the highest priority, preempting all other tasks in the system. To bound the pe-

riodic GC’s impact on other tasks, it voluntarily yields the processor at regular intervals.

For both slack-based and periodic GC, the GC task is triggered periodically. We assume

that the period of the GC task, Tgc, is provided by the user. It must be sufficiently large

to allow for a complete GC cycle. The work to be done during any GC cycle depends on

the memory operations performed by mutator tasks, such as allocations, and loads/stores

to reference variables. The constant Gi captures the worst-case amount of GC work that a

single instance of task i can generate. The constant G0 is the upper bound on the per-cycle

GC work that is not dependent on the operations performed by the application. This covers

operations such as scanning of stacks and global variables. The maximum heap size, H,

is a parameter chosen by the user. Lmax is the maximum amount of live memory at exe-

cution. It can be obtained either by program analysis or through measurement. The upper

bound on allocation per invocation of a task is Ai. The input parameters are summarized

in Table I.

Schedulability of a set of tasks with GC requires that the application tasks and the GC

meet the following three conditions:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Schedulability analysis with GC
•The period of the GC task Tgc must be chosen so that it larger than a 

GC cycle (from start collection to finish)

•The constant Gi is the upper bound on the amount of GC work that a 
user task i can generate in release

•The constant G0 is the task independent work performed during each 
GC cycle

•The maximum heap size L is a chosen by the user

•The maximum amount of live memory Lmax depend on the program

•The upper bound on allocation Ai per release of task i

23

Schedulability tests
•In the presence of GC two new tests are added to the schedulability 

equations:

•T1  The mutator tasks meet their deadline  (modified)

•T2  The system does not run out of memory

•T3  The GC task meets its deadline and keeps with up mutator tasks

24



•If an object is freed during one GC cycle, the earliest time it can be 
found and freed is during the following GC cycle

•Assume that we compute Amax, the maximum amount allocated by all 
mutators during one GC cycle

•The maximum of floating garbage is Amax, plus the maximum allocated 
in the cycle Amax and the maximum live memory Lmax must be less than 
the heap size  H

T2 Memory test
25
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Table I: Input parameters for schedulability analysis.

Ci [seconds] computation time task

Ti [seconds] period task

Ai [bytes] allocation task

Gi [seconds] GC work generated task

H [bytes] heap size system

Lmax [bytes] live memory system

Tgc [seconds] GC cycle duration (period) system

G0 [seconds] GC cycle overhead system

T1. mutator tasks meet their deadlines;

T2. GC meets its deadline and keeps up with tasks that use memory;

T3. the system does not run out of memory.

The conditions can be formalized as three tests that can be be checked based on the above

mentioned input parameters. The formulation of tests T1 and T2 is dependent on how the

GC is scheduled, but T3 can be formulated independently of GC scheduling. We can find

an upper bound on the GC cycle duration that ensures that all allocation requests can be

fulfilled. We use a bound based on that of Robertz and Henriksson [2003]:

Amax ≤
H −Lmax

2
(2)

In the above, Amax stands for the the maximum amount of allocation performed by the

application tasks during a GC cycle. It is easy to see that the condition is necessary for the

system not to run out of memory as objects that become unreachable during the GC cycle

in which they are allocated (they are called floating garbage) can only be freed by the end

of the subsequent GC cycle. Previous work has shown that this is a sufficient condition

[Robertz and Henriksson 2003; Schoeberl 2006]. The intuition behind the proofs is as

follows. The worst case occurs when the amount of live memory is Lmax for all cycles. The

maximum amount of floating garbage is the maximum allocatable memory in the previous

cycle (Amax) and the maximum permissible amount of memory (Amax) is allocated in the

present cycle. The system does not run out of memory as long as Amax +Amax +Lmax ≤ H,

and thus Equation (2) is sufficient.

The values of Amax and the related constant Gmax, which stands for the maximum GC

work, can be derived from the input parameters. When Tgc is a multiple of the hyper-period

(lcmi=1..n(Ti)) and all tasks are started simultaneously, a simplified equation can be used:

Gmax = G0 +
n

∑
i=1

Tgc

Ti

Gi

Amax =
n

∑
i=1

Tgc

Ti

Ai

Aligning Tgc to the hyper-period may lengthen GC cycles and thus lead to higher memory

requirements. The following equations consider the general case. Making no assumptions

about how the generation of GC work is distributed within each task, any task that runs,

ACM Journal Name, Vol. V, No. N, Month 20YY.

•If we assume that the GC period is a multiple of the hyperperiod of 
the mutator tasks, then we can compute:

T2 Memory test
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Table I: Input parameters for schedulability analysis.

Ci [seconds] computation time task

Ti [seconds] period task

Ai [bytes] allocation task

Gi [seconds] GC work generated task

H [bytes] heap size system

Lmax [bytes] live memory system

Tgc [seconds] GC cycle duration (period) system

G0 [seconds] GC cycle overhead system

T1. mutator tasks meet their deadlines;

T2. GC meets its deadline and keeps up with tasks that use memory;

T3. the system does not run out of memory.

The conditions can be formalized as three tests that can be be checked based on the above

mentioned input parameters. The formulation of tests T1 and T2 is dependent on how the

GC is scheduled, but T3 can be formulated independently of GC scheduling. We can find

an upper bound on the GC cycle duration that ensures that all allocation requests can be

fulfilled. We use a bound based on that of Robertz and Henriksson [2003]:

Amax ≤
H −Lmax

2
(2)

In the above, Amax stands for the the maximum amount of allocation performed by the

application tasks during a GC cycle. It is easy to see that the condition is necessary for the

system not to run out of memory as objects that become unreachable during the GC cycle

in which they are allocated (they are called floating garbage) can only be freed by the end

of the subsequent GC cycle. Previous work has shown that this is a sufficient condition

[Robertz and Henriksson 2003; Schoeberl 2006]. The intuition behind the proofs is as

follows. The worst case occurs when the amount of live memory is Lmax for all cycles. The

maximum amount of floating garbage is the maximum allocatable memory in the previous

cycle (Amax) and the maximum permissible amount of memory (Amax) is allocated in the

present cycle. The system does not run out of memory as long as Amax +Amax +Lmax ≤ H,

and thus Equation (2) is sufficient.

The values of Amax and the related constant Gmax, which stands for the maximum GC

work, can be derived from the input parameters. When Tgc is a multiple of the hyper-period

(lcmi=1..n(Ti)) and all tasks are started simultaneously, a simplified equation can be used:

Gmax = G0 +
n

∑
i=1

Tgc

Ti

Gi

Amax =
n

∑
i=1

Tgc

Ti

Ai

Aligning Tgc to the hyper-period may lengthen GC cycles and thus lead to higher memory

requirements. The following equations consider the general case. Making no assumptions

about how the generation of GC work is distributed within each task, any task that runs,

ACM Journal Name, Vol. V, No. N, Month 20YY.

T3 GC test for Slack-scheduled
•For a slack-scheduled RTGC, the response time of the GC is the 

maximal amount of GC work that has to be performed per cycle plus 
the sum of the interruptions of all other tasks.

•The response time of the mutator tasks (T1) is computed as usual

27

Scheduling Real-Time Garbage Collection on Uni-Processors · 11

even partly, during a GC cycle, will contribute its entire GC work to that cycle:

Gmax = G0 +
n

∑
i=1

��
Tgc

Ti

�
+1

�
Gi (3)

Amax =
n

∑
i=1

��
Tgc

Ti

�
+1

�
Ai (4)

The benefit of these equations is that Tgc can be smaller than the hyper-period, which
reduces the memory requirement H.

4.1.1 Slack GC. Under slack-based scheduling, the GC does not interfere with the
other tasks in the system. This simplifies test T1 because mutator task deadlines can be
checked as if there was no GC. More precisely, since the GC is the lowest priority task, it
will not influence their response time and Equation (1) can be used as is. Computing the
response time of the GC tasks, Rgc, is required to check that test T2 holds. Equation (5)
simply states that Rgc depends on the maximum amount of GC work per cycle and the time
required by all other tasks.

Rgc = Gmax +
n

∑
i=1

��
Rgc

Ti

�
·Ci

�
(5)

This recurrence is similar to the tests for mutator periodic tasks. The iterative process to
find Rgc is also similar, except that we can start with R

0
gc := ∑n

i=1 Ci.

4.1.2 Periodic GC. Under periodic scheduling, the GC runs as the highest priority task
in the system, but rather than doing all of its work at once it cooperatively yields the CPU
to the mutator task. The GC cycle is divided into fixed size time quanta. Each quantum
may be allocated either to the mutator tasks or to the collector. The allocation is done
statically, independently of the underlying real-time scheduler, and gives rise to what we
refer to as an MC schedule as it is expressed by a a sequence such as CMCMCMCMM where
M represents a mutator quantum and C a collector quantum. The choice of quantum size
and MC schedule are key parameters for schedulability analysis. A typical implementation
will block the collector thread at the start of a mutator quantum, and unblock it at the end
of the quantum. When there is no GC work to be done, the mutator may be allowed to use
a collector quantum.

To determine the response time of mutator tasks, it necessary to account for the GC
interruptions, and conversely the response time of the GC requires accounting for the time
yielded to the mutator. We do this with the notion of minimum utilization devised by Cheng
and Blelloch [2001]. The function mmu(t) gives the minimum mutator utilization (MMU)
for any window of length t; that is to say, what percentage of the CPU time is given to
mutator tasks in any interval of t seconds. The function mcu(t) is the minimum collector
utilization for a window t. Both functions depend on the MC schedule and can be computed
by a brute force algorithm. Consider the MC schedule CMM with a quantum size of 100µs,
the mmu(t) for a window t = 200µs is 200−100

200 = 50% because the worst case is that the
collector interrupts the mutator for one quantum. But mcu(200) = 0 because the worst case
for the collector occurs when the mutator runs for two consecutive quanta. As t grows, the
functions will converge to mmu(t) = 1−mcu(t) = u, where u (target utilization) is the ratio
of mutator quanta Ms in a cycle. mcu(t) and mmu(t) are linear functions within each time
quantum. The task response time depends on mmu and on the maximum amount of work

ACM Journal Name, Vol. V, No. N, Month 20YY.



T1 for Periodic
•A periodic GC is run according to a pattern, e.g.

                    CMMCMM...
•For any window of time t the minimum mutator utilization is the least 

ratio of time available to the mutator threads, written mmu(t)
•mcu(t) = 1-mmu(t) is the ratio used by the collector during that window
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per cycle for T1:

Ri = Ci +
i−1

∑
j=1

��
Ri

Tj

�
·Cj

�
+min

�
(1−mmu(Ri)) ·Ri,

�
Ri

Tgc

�
·Gmax

�
(6)

The time added by GC (the last term) is the maximum time the GC can take during Ri,

which is (1−mmu(Ri))Ri. However, as expressed by the second argument of min, if the

GC cycle is shorter than Ri and the GC does all its work in a cycle, it will no longer be

taking time from the mutator.

The worst-case response time for the GC, needed for test T2, can be calculated as:

Let Rgc be the smallest t such that t ·mcu(t)≥ Gmax and t ≤ Tgc (7)

The recurrence cannot directly be solved iteratively, because mcu is not a monotone

function over its full range.

The Metronome collector [Bacon et al. 2003b] and its commercial implementations use

the following approach for specifying the MC schedule. Rather than defining a schedule

for the entire GC cycle, they define MC patterns, which are then repeated to cover the

entire running time of the application. The length of the pattern and the quantum defines a

window w. Since our implementation mimics Metronome, we can leverage this to compute

Rgc. Because the MC schedule is constructed by repeating the MC pattern, mcu(t) is

constant for any t being a multiple of the window size w. The constant is equal to the ratio

of collector quanta within the MC pattern. To calculate Rgc, we thus first find a solution tw

in multiples of the window size w:

tw = w

�
1

w

Gmax

1−u

�
(8)

We now know that the smallest t such that t ·mcu(t) ≥ Gmax is in the interval (tw −w, tw].
Given that mcu(t) is linear within time quanta and that mcu(tw) = mcu(tw −w), it follows

that the solution t is a multiple of the quantum size. There is only a limited small number

of quanta per window, so we can easily enumerate t ·mcu(t) for all such t and choose the

best one.

4.1.3 Hybrid GC. Hybrid scheduling is an attempt to combine the periodic and slack-

based scheduling approaches by allowing the collector task to take additional quanta when

all mutator tasks are idle. Response time of mutator tasks is computed by Equation (6), as

with periodic GC scheduling. The intuition is that when the GC takes a mutator quantum,

its priority is decreased to be lower than that of mutator tasks and thus if the mutator needs

the CPU it can simply preempt the collector. The advantage of hybrid GC scheduling is

that when there is slack, Tgc and Gmax can be smaller than with periodic, because the GC

work can finish earlier for the same heap size. The GC response time for test T2 is defined

as follows:

Let Rgc be the smallest t such that t ·mcu(t)+ slp(t)≥ Gmax and t ≤ Tgc (9)

where slp(t) is the guaranteed amount of slack in any window of length t provided that a

hybrid collector takes all quanta it can during this time, which is in turn reflected by the

term t ·mcu(t). The function slp(t) is as follows:

Let slp(t) be the largest g such that ∃r ≤ t and (10)
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per cycle for T1:

Ri = Ci +
i−1

∑
j=1

��
Ri

Tj

�
·Cj

�
+min

�
(1−mmu(Ri)) ·Ri,

�
Ri

Tgc

�
·Gmax

�
(6)

The time added by GC (the last term) is the maximum time the GC can take during Ri,

which is (1−mmu(Ri))Ri. However, as expressed by the second argument of min, if the

GC cycle is shorter than Ri and the GC does all its work in a cycle, it will no longer be

taking time from the mutator.

The worst-case response time for the GC, needed for test T2, can be calculated as:

Let Rgc be the smallest t such that t ·mcu(t)≥ Gmax and t ≤ Tgc (7)

The recurrence cannot directly be solved iteratively, because mcu is not a monotone

function over its full range.

The Metronome collector [Bacon et al. 2003b] and its commercial implementations use

the following approach for specifying the MC schedule. Rather than defining a schedule

for the entire GC cycle, they define MC patterns, which are then repeated to cover the

entire running time of the application. The length of the pattern and the quantum defines a

window w. Since our implementation mimics Metronome, we can leverage this to compute

Rgc. Because the MC schedule is constructed by repeating the MC pattern, mcu(t) is

constant for any t being a multiple of the window size w. The constant is equal to the ratio

of collector quanta within the MC pattern. To calculate Rgc, we thus first find a solution tw

in multiples of the window size w:

tw = w

�
1

w

Gmax

1−u

�
(8)

We now know that the smallest t such that t ·mcu(t) ≥ Gmax is in the interval (tw −w, tw].
Given that mcu(t) is linear within time quanta and that mcu(tw) = mcu(tw −w), it follows

that the solution t is a multiple of the quantum size. There is only a limited small number

of quanta per window, so we can easily enumerate t ·mcu(t) for all such t and choose the

best one.

4.1.3 Hybrid GC. Hybrid scheduling is an attempt to combine the periodic and slack-

based scheduling approaches by allowing the collector task to take additional quanta when

all mutator tasks are idle. Response time of mutator tasks is computed by Equation (6), as

with periodic GC scheduling. The intuition is that when the GC takes a mutator quantum,

its priority is decreased to be lower than that of mutator tasks and thus if the mutator needs

the CPU it can simply preempt the collector. The advantage of hybrid GC scheduling is

that when there is slack, Tgc and Gmax can be smaller than with periodic, because the GC

work can finish earlier for the same heap size. The GC response time for test T2 is defined

as follows:

Let Rgc be the smallest t such that t ·mcu(t)+ slp(t)≥ Gmax and t ≤ Tgc (9)

where slp(t) is the guaranteed amount of slack in any window of length t provided that a

hybrid collector takes all quanta it can during this time, which is in turn reflected by the

term t ·mcu(t). The function slp(t) is as follows:

Let slp(t) be the largest g such that ∃r ≤ t and (10)

ACM Journal Name, Vol. V, No. N, Month 20YY.

Example 1
30

14 · T. Kalibera et al.

i Ti Ci Ai Gi

1 10 3 72 1
2 50 9 302 5
3 95 21 256 4

Lmax G0 H Tgc
300 10 25500 730

Quantum size: 0.5
Window size: 10
MC pattern: MCMCMCMCMCMCMMMMMMMM
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(a) Slack GC does not cause a deadline miss
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(b) Periodic GC causes a deadline miss

Fig. 2: Slack. Task 3 with periodic GC misses a deadline at 1045ms.

Next, we test if GC can keep up with the mutator tasks. We compute the bound on the GC
work Gmax, which, in turn, requires the GC cycle overhead G0, Gi, and the period of the
GC task, Tgc. From Equation (3) we get

Gmax = 10+74 ·1+16 ·5+9 ·4 = 200

Solving Equation (5) (T2) we get Rgc = 719. As this is less than the GC’s period of 730,
the GC can keep up with mutator. Last, we must check that the system does not run out
of memory (T3). For this we need to know the available heap size H, the allocation rate
of the tasks, Ai, and the upper bound on live memory Lmax. From Equation (3) we get
Amax = 12464, which satisfies Equation (2):

12464 <
25500−300

2
= 12600

The system thus does not run out of memory. With periodic GC, test T1 fails because
task 3 is not able to complete its work before its deadline, Equation (6). The same test
fails for the hybrid approach. Figures 2a and 2b show simulations of this workload with a
slack-scheduled and periodic GC. Figure 2a clearly shows how the slack-based GC’s work
is bunched towards the end of the period after tasks 2 and 3 are done with their work. It
ACM Journal Name, Vol. V, No. N, Month 20YY.
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also shows the slack-based GC being preempted by task 1 and 2. In this example the CPU
is fully utilized. Figure 2b shows that periodic GC is active most of the time (according
to its MC schedule). The deadline miss occurs quite late in the run because there is no
garbage at the start of the simulation and thus the GC only kicks in once some work has
been generated. The deadline miss occurs at time 1045. The periodic GC runs frequently,
interrupting the mutator’s progress, and decreasing the response time of the mutator tasks:
tasks 1 and 3 get less work done, and task 3 misses its deadline.

4.2.2 Periodic. Now, consider our second case study described in Figure 3. We start
with a periodic GC, test T1, so Equation (6) gives task response times of 14 and 927. The
mutator tasks are thus schedulable. The upper bound on Tgc is 150 given the available
heap size. The system thus will not run out memory during the GC cycle. For T2 we
need to solve Equation (7): Rgc = 128, which is well within the GC cycle length. This
configuration is not schedulable by a slack-based GC because the GC cycle Tgc = 140 is
smaller than the cost of task 2, C2 = 490. This means that even if there is enough slack, that
slack comes too late — the system will have run out of memory before the slack-based GC
could help. Figure 3a shows the critical part of the schedule. The GC misses its deadline

i Ti Ci Ai Gi

1 50 9 302 5
2 980 490 65 4

Lmax G0 H Tgc
300 10 3000 140

Quantum size: 0.5
Window size: 10
MC pattern: MCMCMCMCMCMCMMMMMMMM
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(a) Slack GC misses its deadline, cannot keep up with application
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(b) Periodic GC does not miss a deadline

Fig. 3: Periodic. The slack GC misses a deadline at 280ms (does not run at all in this cycle).
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