Lab 0: Introduction to TI MSP-EXP430F5438

ECE/CS
Due by Thursday Jan 20,2011 11:59 PM

This document is divided into 2 main sections. The first one is a tutorial explaining how to work with the Code
Composer Studio IDE. The second section pertains to the problem statement, questions and submission method.

1 Tutorial: Code Composer Studio (CCS)

The TI MSP-EXP430F5438 Experimenter Board will be used in the initial labs for this course. The aim of this
tutorial is to take you through the entire flow of writing, building and debugging using the CCS. For this purpose,
we will implement a simple LED blink program and then modify it. The CCS is a TI-custom extension of the
Eclipse-IDE. For the lab, we will be using the MSP430 Data Sheet and User’s Guide extensively.

1.1 Setting up the Project

Open the Code Composer Studio from Start Menu. You will be prompted to choose a workspace Figure 1.

«'» Workspace Launcher

Select a workspace

Code Composer Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace: Ch\Users\Hrishikesh'Desktop'Lab_0 -

[] Use this as the default and do not ask again

I§ TEXAS
INSTRUMENTS

Figure 1: Opening CCS

The next screen is the Welcome screen, Figure 2. You are encouraged to look through the options given in the
welcome screen.

s C/C++ - Code Composer Studio (Licensed) = 5

File Edit View Navigate Project Target Iools Scripts Window Help

O Welcome £3 = F

Startusing CCS

Click to and
goto the CCS
‘workbench

Welcome to

&3 TEXAS INSTRUMENTS

Figure 2: Welcome Screen

Once you close the Welcome screen, you will be taken to an empty project screen. From File — New, choose
CCS Project as shown in Figure 3.

5 s T EE——=—
.2l C/C++ - Code Composer Studio (Licensed) o | (T
Edit View Mavigate Project Target Tools Scripts Window Help
) : E
Mew File... [Standard Make Project t =155 oup =0
Open File... [RTSC Cenfiguration Project EECILITES
. An outline is not available.
* Folder
< SourceFile
Hi Header File
 File
@ Class
%/ Target Configuration File
22 DSP/BIOS vSox Configuration File
[¥ Other...
Refresh Fs
Convert Line Delimiters To ’

Switch Workspace..

i3 Import...

4 Export...

Figure 3: Create New Project

Enter the project name on the subsequent prompt and click Next.
Choose MSP430 if already not chosen at the next screen and proceed.

2

&7 New CCS Project =%

CCS Project)
Create a new CCS5 Project. @

Project name: Blink_led|

Use default location

Location: C:/Users/Hrishikesh/Desktop/Lab_0/Blink_led Browse...

@ <Back [Nea> [Finisn || Cancel

Figure 4: Create New Project - Project Name

-
&% New CCS Project [

Select a type of project)

Select the platform and configurations you wish te deploy on @

pijCt Type: b
C2000
Configuration [Sz 5l I

&% Debug seh
ct All
s
Deselect All

A

Show All Project Types
Show All Configurations

@ <Back |[Nea> || Fnisn || Cance

Figure 5: Create New Project - Choose the Configuration

Leave the next screen as it is. As this is our first project, we will not be referencing any other projects and use
the full C/C++ indexer. Click Nexzt and proceed to CCS Project Settings.

&% Mew CCS Project ==
Additional Project Settings ~
Define the inter-project dependencies, if any. \E

i Projects | C/Ce+ Indexer

Referenced Projects

® B][

Figure 6: Create New Project - Project Reference

Choose the Micro-controller variant. The MCU we will be using is the MSP430F5438. Leave the rest as defaults.
Your settings should match the values in Figure 7. Hit Finish. The project environment is up.

% New CCS Project [
CCS Project Settings »

Select the CCS project settings. @
OQutput type: |Executable V]

Project settings

Device Variant: [MspazoFsiox | [Mspazorsazs <[More.. |
Device Endianness: little

Code Generation tools: [T[v3.3.0 V] [More...]
Qutput Format: legacy COFF

Linker Command File: Ink_msp430f5438.cmd -
Runtime Support Library: <automatic> -

[] Treat as an Assembly-only project

Target content
@ MNene
() Enable RTSC support (required for BIOS vB.e, Codec Engine v3.x, etc)

@ Mext > [Finish J [Cancel

Figure 7: Create New Project - Choose Device

1.2 Programming the MSP-EXP430F5438 MCU

Now we are ready to start coding. For our program, a LED should glow when a switch is pressed and should stop
glowing when the switch is released. You will notice that there are 2 LEDs and 3 switches on the board. To begin
with, we need to know which GPIOs of the micro-controller control the LEDs and switches. A GPIO is a General
Purpose In/Out Pin. The board comes with peripherals connected to some GPIO of the MCU. Check chapter 4

4

of the MSP-EXP430F5438 Experimenter Board User’s Guide. It details the connections of the peripherals to the
ports of the MCU. For this lab, we want to use a switch and a light emitting diode.

Peripheral Pin Connection
5-directional joystick (LEFT) P2.1
S-directional joystick (RIGHT) pP2.2
5-directional joystick (CENTER) P2.3
5-directional joystick (UP) P2.4
Switch 1 (81) P2.6
Switch 2 (52) P2.7
RESET Switch (83) RST / NMI
LED1 P1.0
LED2 P1.1/TAO CCRO

Figure 8: Pin Map for Switches and LEDs - Experimenter Board (taken from Board User’s Guide)

In Figure 8, we can see that the switch S1 is connected to the GPIO 2.6 and the LED is connected to P1.0.
Therefore, the idea is to sample the signal from the switch through port 1.0 and depending upon the value of
the signal, control the value which is written out from port 2.6. That seems very straightforward. But, GPIOs
are "general purpose”’. Therefore, they may have multiple functions multiplexed onto the same pin. This in
turn,requires the programmer to configure the direction, the pull-up/pull-down resistors etc. depending upon the
choice of the function. In other words, we have to configure the MCU GPIOs in a particular way to complete the
connection with the LEDs or any other peripheral device on the experimenter board.

This subsection is Optional

Look at the MSP430F5438 Data Sheet. It is a 99-page document. We are only interested in the functions multiplexed
onto the GPIOs of the MCU. One can infer this information from either

1. Pin Designation diagram (For people familiar with MCU programming and data sheets).
2. Terminal Functions Table

I prefer the Terminal Functions Table. In the table, search for the ports P2.6 and P1.0 which are of immediate
interest to us. You will find that the port P2.6 also serves as an Auxiliary Clock (ACLK). The choice of functionality
on this GPIO, therefore depends upon some configuration. Similarly for P1.0.

Required: Configuration Registers

The way that we configure a GPIO to a certain functionality is through configuration registers. Open up the
MSP430 MCU User’s Guide. The User’s Guide is what you need to write software for the MCU and thus for the
board. We will be using this document extensively for the labs to come. Go to Chapter 10: Digital I/O. This
chapter provides all the information that you require to use a GPIO. Read Section 10.2. It is highly recommended
that you peruse through the entire chapter before continuing with this document.

Section 10.4 describes the registers used for conﬁguri%g different GPIO ports and their initial states.

Programming

Ok, so let us start writing our program. Open a new C source file as shown in Figure 9.

f:! C/C++ - Code Composer Studio (Licensed) =
Edit View MNavigate Project Target Tools Scripts Window Help
IR = CCS Project - =]
Mew File... Standard Make Project =5 == =5
Open File... RTSC Configuration Project EE LT e
5 Fold An outline is not available.
Close el +4 e
Close Al ol Shiferw
= -
b/ Header File
B Cirl+S +
Save A5 2
ave As..
(& Class
L EM 2l Gk o e e R
rt
o 23 DSP/BIOS vS.xx Configuration File
Move...
“ Other...
Rename... F2 = =
Refresh F5
Convert Line Delimiters Te 3
ol Frint... Ctrl+P

Switch Workspace...

£23 Import...
7 Export..

Properties Alt+Enter

Exit

4 n r

I /Blink_led
R — =

Figure 9: Open new C source file

Give a file name with the .c extension as in Figure 10.

Include the header file msp430£5438.h. The header file contains all the registers in our MCU which may be
used in the program. The following program is for demonstration of the flow. But it is not the solution. We shall
build it, run it on the board and then proceed to debug it. This document will only outline some of the methods

you may use to debug using the CCS and will not provide the full solution! Copy the following code into your
blink led.c file.

#include "msp430f£5438.h"

void main()

{
//Switch S1
P2SEL &= ~0x40; //I/0 Function
P2DIR &= ~0x40; //P2.6 as input
P2REN |= 0x40; //Enable pull resistor
P20UT |= 0x40; //Enable Pull-Up resistor
//LED 1
P1SEL &= ~0x01; //I/0 Function
PIDIR |= 0x01; //P1.0 as output
PiDS |= 0x01; //Enable Full drive strength
if (P2IN & 0x40) //If P2.6 is high
P10UT |= 0x01;
else //If P2.6 is low
P10UT |= 0x00;
}

r 3
s+ MNew Source File ﬁ

Create a new source file. C
1= |

Source Folder: Blink_led

Source File: blink_led.d

@ Finish l ’ Cancel

Figure 10: Name C file

Save the file. To build the code go to Project— Build All or hit Ctri+B. Your CCS window should look something
like Figure 11.

Debug

Now we have to run it on the board. Look at Figure 12 to run the debug session on the board.

You can see the program being loaded on a new pop-up window and subsequently the CCS switches into
Perspective Window Mode. Go ahead and hit the play button on the debug panel, Figure 13, to see what the
program does on the board. Try pressing the switch S1.

You would have seen that the LED is glowing all the time. There are multiple mistakes in the program. Pause
the run and hit the restart button on the debug panel. As promised, the program contains bugs and is not the
solution. Let us insert some break-points and start to debug. Insert break points at the lines 17, 20, and 21 -
also shown in Figure 14 by double clicking on the vertical bar to the left of the code. Now, we would like to view
the values of the registers we are using. Enable the register view by going to Window— Show View— Registers. 1
rearranged my Perspective View so that it becomes easy for me to view the code, registers and memory values. You
can rearrange your window to suit your needs. Open the tree for Port_1_2.

Now do a step by step debug and watch the values of registers. You will hit the end of the code pretty soon
which leads us to the most obvious error. You may also want to see the memory space if you are using any variables
inside the code. You can open up the Memory View in the same way as the Register View. The example program
is a simple one and thus does not use any variables. There are some redundant lines in the given program which
you can remove after understanding section 10.2 and going through 10.4.

Navigate Project Target Tools Scrpt: Window Help

B-ip i Bifin-FH-vora- sET
B C/Ces Projects 23 | = 6| [@ blink led.c 3 | = B & outine 31 | =8
@@ & 7|| * #include "msps3orsassa.nt B BR e 7

% Bink led [Active - Debug] U mopd30f5383h

-9 Binaries o main

& Includes

Debug

@-[2 blink ledc

8 MSPA30FS438A.comi [Active/Def

) Ink_msp430f5438a.cmd

void main()

5

B20UT |= 0x40; //Enable

//1ED 1
PISEL &= ~0x01;
PIDIR = Ox0 o ut

PIDS |= O0x01; //Emable Full drive strength

L£(P2IN & 0x40) //Tf P2.6 is high
P10UT = Ox01;

else //If £2.6 is low
BI0UT |= 0x00;

(ETEERBRIE proberms| BB r3--0
C-Build [Blink_led]

#x++ Build of configuration Debug for project Blink_led xxx

C:\Progran Files (x26)\Texas Instruments\ccsvé\utils\gmake\gmake -k all

‘Building file: ../blink _led.c'

‘Invoking: Compiler’
/Program Files (x86)/Texas tools/comps; -vmspx -g --include_pach=nC:/Program Files (x86)/Texas Instruments/ccsvd/mspé30/include”

--include_path=nC:/Program Files (x86)/Texas includen --diag_: --preproc_with_compile

-~-preproc_dependency="blink led.pp" "../blink led.c"

‘Finished building: ../blink led.c'

‘Buslding terger: Blink led.out’
*Invoking: Linker'

"C:/Program Files (x66)/Texas ~vmspx ~g ~-diag_warning=225 ~-printf_supporcminimal -z -m"Blink_led.map" -—-stack_size=160
—-heap_size=160 -—-use_hw_mpy=F5 —-warn_sections -i"C:/Program Files (x86)/Texas Instruments/ccsvé/msp30/include” -1i"Ci/Program Files (x86)/Texas

Inscrumenta/cosve/tools/ compilex/mapdso/Lib” - rogran Files (x86) /Texas —-reread_libs —-zom model ~o "Blink_led.ouc”
" /blink 1ed.ob3"| ~1"1ibc.an 7./ lnk mepi30£5i3sa. cudn
<Linkings

‘Finished building carges: Blink_led.ouc’

Build complete for project Blink_led

Figure 11: Build completed

:lf; C/C++ - blink_led.c - Code Composer Studio (Licensed) =
File Edit View Mavigate Project

| ® - 035

Tools Scripts Window Help

G- E [ETe]

BRI =8
BR C/Cr+ Projects 52 % Launch T1Debugger BE Outline 2
P | 5438a.n" - LR e ¥
: Debug Histary 3 N T T N
(== Blink_led [Active - Debug] Debu L] msp420f3438a.h
& Binaries 9‘--5 . -~ ® main
5 //Switch 51
3 P25SEL &= ~0x%0; //I/0 Function
[blink_led.c 7

P2DIR &= ~0x40:; //P2.6 as input
[#] MSP430F5438A.comml [Active/Def: |
|

8 B2REN |= 0x40; //Enable pull resistor
B Ink_msp430f5438a.cmd] P20UT |= 0x40: //Enable Pull-Up resistor

F/LED 1

PL1SEL &= ~0x01; //I/C Function

PIDIR |= 0x01; //P1.0 as output

P1DS |= 0x01; //Enable Full drive strength

if(P2IN & 0x40) //If PZ.6 is high
P10OUOT |= 0x01;

else //If P2.6 is law

20 P1OUT |= Ox00;
21 1}
< r
B Console o4 | Problems | @& BE~r5r=0
C-Build [Blink_led]
#%% Build of configuration Debug for project Blink led ***¥
C:\Program Files (x86)\Texas Instruments\ccsvd\utils\gmake\gmake -k all
C:\Program Files (x86)\Texas Instruments\ccsv4\utils\gmake\gmake: Nothing to be done for “all'.
Build complete for project Blink led
4 [0 r -

Figure 12: Run the debug session on the board

| %5 Debug 52 | LA MEEEETIEX W1
=-¥g Blink_led [Debug] - TI MSP430 USBL/MSPA30 [Pro et BwheaSassion]
= [Device
J-gf® Thread [main] (Suspended)
0 main() at blink_led.c:6 0x05c22
= 1 c_intD0_noinit_noexit() at boot.c:162 0x05cle
gl TIMSP430 USBL/MSP430 (6:03:34 PM)
gl TIMSP430 USBL/MSP430: CIO (6:03:34 PM)

Figure 13: Debug buttons

ebug - blink_led.c
File Edit View Navigate Project Terget Jools Scripts Window Help

alka BB WY iF B A B e 5 (35 Debug | “
Dissssembly (main)| @ Memory () 53 | = 5 [binklede &3 = B Locat @) waten [t Regrersy 5| 1 HE [o 85 @[5 778
< #include "map430£s43ea.n” < || Name Value =
Enter location here ~ |PROGRAM 36void main() #ih Core Registers
& apcr2
e - SE A H ;‘ @ i CRCI6
@ s i [/1/0 Function 8 oma
- 2.6 as input &4 Flash
P2REN |- 0wi0) : 54 MPY_16_Multiplier.
P20UT |= ox20: 5 MPY_32_Muttiplier.
5 PortA
LED 1 = & Port12
PISEL &= ~0x01: @, P [
PIDIR |= 0x01; [ProuT x01
PIDS |= ox01: (3 PLOR ox00 =
(3, PLREN ax00
1£(P2IN & 0x20) //If P2.6 is high @ Pi0s ox00
PLOUT = 0x01; (3 Prse ox00
[0x0000
else //I£ P2.5 is @ PLEs 0x00
FIOUT |= 0x00. 0 e ox00
[, PIFG 0x00
@ Pz oxrE
@ p2out 0x40
G, PR ox00
(3, PREN 0x00
@ P2os axg0 -
(3 PasEL ox00
(2 ox0000
[P2ES ax00
@ P2 ox00
0, PG ax00

5 Port B
& port3 e
&3 port.C
il Port 5.6
& portD
& port 78
3 PortE
i Port 9,10
&4 PortF
&4 port 11
i Port)

= B8 PMM_Power Mana

Console | %5 Debug £ |

% O~

FHEEEY-Y

‘@-pEvD

& g Blink_led [Debug] - TIMSPA30 USBL/MSP430 [Project Debug Session]
=5 Device
-4 Thread [main] (Suspended)
= 0 main) at blink led.c:6 0:0522
= 1c.int0_noinit_noexit) at boot.c1620:05cl e
4 TIMSPA30 USBL/MSP430 (6:03:34 PM)
3 TIMSPA30 USBL/MSP430: CIO (60334 PM)

B

Wiitable

Figure 14: Adding Breakpoints, Registers and Memory

Smarthset | 6:11

2 Problem Statement

Implement a simple XOR system which does the following for the TT MSP430F5438 Experimenter Board. Switches
are considered to be On when they are pushed.

S1 | S2 | LED1 | LED2
Off | Off | Off Off
Off | On Off On
On | Off | On off
On | On off off

Table 1: LED Glowing Pattern.

2.1 Submission

We will use the Blackboard System (http://www.itap.purdue.edu/tlt/blackboard/index.cfm) for the submission
throughout our course. Please zip everything before submission and only upload the package. Do not upload
every single file separately. The content of the package should be properly organized. Particularly, you should put
everything under a directory named username_lab0, where username is your Blackboard system login id. Under

the directory, include
1. blink_led.c: the bug-free blink-LED program;

2. pattern.c: the implementation of the XOR system.

10

