
Lab 0: Introduction to TI MSP-EXP430F5438

ECE/CS

Due by Thursday Jan 20,2011 11:59 PM

This document is divided into 2 main sections. The first one is a tutorial explaining how to work with the Code
Composer Studio IDE. The second section pertains to the problem statement, questions and submission method.

1 Tutorial: Code Composer Studio (CCS)

The TI MSP-EXP430F5438 Experimenter Board will be used in the initial labs for this course. The aim of this
tutorial is to take you through the entire flow of writing, building and debugging using the CCS. For this purpose,
we will implement a simple LED blink program and then modify it. The CCS is a TI-custom extension of the
Eclipse-IDE. For the lab, we will be using the MSP430 Data Sheet and User’s Guide extensively.

1.1 Setting up the Project

Open the Code Composer Studio from Start Menu. You will be prompted to choose a workspace Figure 1.

Figure 1: Opening CCS

The next screen is the Welcome screen, Figure 2. You are encouraged to look through the options given in the
welcome screen.

1



Figure 2: Welcome Screen

Once you close the Welcome screen, you will be taken to an empty project screen. From File → New, choose
CCS Project as shown in Figure 3.

Figure 3: Create New Project

Enter the project name on the subsequent prompt and click Next.
Choose MSP430 if already not chosen at the next screen and proceed.

2



Figure 4: Create New Project - Project Name

Figure 5: Create New Project - Choose the Configuration

3



Leave the next screen as it is. As this is our first project, we will not be referencing any other projects and use
the full C/C++ indexer. Click Next and proceed to CCS Project Settings.

Figure 6: Create New Project - Project Reference

Choose the Micro-controller variant. The MCU we will be using is the MSP430F5438. Leave the rest as defaults.
Your settings should match the values in Figure 7. Hit Finish. The project environment is up.

Figure 7: Create New Project - Choose Device

1.2 Programming the MSP-EXP430F5438 MCU

Now we are ready to start coding. For our program, a LED should glow when a switch is pressed and should stop
glowing when the switch is released. You will notice that there are 2 LEDs and 3 switches on the board. To begin
with, we need to know which GPIOs of the micro-controller control the LEDs and switches. A GPIO is a General
Purpose In/Out Pin. The board comes with peripherals connected to some GPIO of the MCU. Check chapter 4

4



of the MSP-EXP430F5438 Experimenter Board User’s Guide. It details the connections of the peripherals to the
ports of the MCU. For this lab, we want to use a switch and a light emitting diode.

Figure 8: Pin Map for Switches and LEDs - Experimenter Board (taken from Board User’s Guide)

In Figure 8, we can see that the switch S1 is connected to the GPIO 2.6 and the LED is connected to P1.0.
Therefore, the idea is to sample the signal from the switch through port 1.0 and depending upon the value of
the signal, control the value which is written out from port 2.6. That seems very straightforward. But, GPIOs
are ”general purpose”. Therefore, they may have multiple functions multiplexed onto the same pin. This in
turn,requires the programmer to configure the direction, the pull-up/pull-down resistors etc. depending upon the
choice of the function. In other words, we have to configure the MCU GPIOs in a particular way to complete the
connection with the LEDs or any other peripheral device on the experimenter board.

This subsection is Optional

Look at the MSP430F5438 Data Sheet. It is a 99-page document. We are only interested in the functions multiplexed
onto the GPIOs of the MCU. One can infer this information from either

1. Pin Designation diagram (For people familiar with MCU programming and data sheets).
2. Terminal Functions Table

I prefer the Terminal Functions Table. In the table, search for the ports P2.6 and P1.0 which are of immediate
interest to us. You will find that the port P2.6 also serves as an Auxiliary Clock (ACLK). The choice of functionality
on this GPIO, therefore depends upon some configuration. Similarly for P1.0.

Required: Configuration Registers

The way that we configure a GPIO to a certain functionality is through configuration registers. Open up the
MSP430 MCU User’s Guide. The User’s Guide is what you need to write software for the MCU and thus for the
board. We will be using this document extensively for the labs to come. Go to Chapter 10: Digital I/O. This
chapter provides all the information that you require to use a GPIO. Read Section 10.2. It is highly recommended
that you peruse through the entire chapter before continuing with this document.

Section 10.4 describes the registers used for configuring different GPIO ports and their initial states.
5



Programming

Ok, so let us start writing our program. Open a new C source file as shown in Figure 9.

Figure 9: Open new C source file

Give a file name with the .c extension as in Figure 10.
Include the header file msp430f5438.h. The header file contains all the registers in our MCU which may be

used in the program. The following program is for demonstration of the flow. But it is not the solution. We shall
build it, run it on the board and then proceed to debug it. This document will only outline some of the methods
you may use to debug using the CCS and will not provide the full solution! Copy the following code into your
blink led.c file.

#include "msp430f5438.h"

void main()
{

//Switch S1
P2SEL &= ~0x40; //I/O Function
P2DIR &= ~0x40; //P2.6 as input
P2REN |= 0x40; //Enable pull resistor
P2OUT |= 0x40; //Enable Pull-Up resistor

//LED 1
P1SEL &= ~0x01; //I/O Function
P1DIR |= 0x01; //P1.0 as output
P1DS |= 0x01; //Enable Full drive strength

if(P2IN & 0x40) //If P2.6 is high
P1OUT |= 0x01;

else //If P2.6 is low
P1OUT |= 0x00;

}

6



Figure 10: Name C file

Save the file. To build the code go to Project→Build All or hit Ctrl+B. Your CCS window should look something
like Figure 11.

Debug

Now we have to run it on the board. Look at Figure 12 to run the debug session on the board.
You can see the program being loaded on a new pop-up window and subsequently the CCS switches into

Perspective Window Mode. Go ahead and hit the play button on the debug panel, Figure 13, to see what the
program does on the board. Try pressing the switch S1.

You would have seen that the LED is glowing all the time. There are multiple mistakes in the program. Pause
the run and hit the restart button on the debug panel. As promised, the program contains bugs and is not the
solution. Let us insert some break-points and start to debug. Insert break points at the lines 17, 20, and 21 -
also shown in Figure 14 by double clicking on the vertical bar to the left of the code. Now, we would like to view
the values of the registers we are using. Enable the register view by going to Window→Show View→Registers. I
rearranged my Perspective View so that it becomes easy for me to view the code, registers and memory values. You
can rearrange your window to suit your needs. Open the tree for Port 1 2.

Now do a step by step debug and watch the values of registers. You will hit the end of the code pretty soon
which leads us to the most obvious error. You may also want to see the memory space if you are using any variables
inside the code. You can open up the Memory View in the same way as the Register View. The example program
is a simple one and thus does not use any variables. There are some redundant lines in the given program which
you can remove after understanding section 10.2 and going through 10.4.

7



Figure 11: Build completed

Figure 12: Run the debug session on the board

8



Figure 13: Debug buttons

Figure 14: Adding Breakpoints, Registers and Memory

9



2 Problem Statement

Implement a simple XOR system which does the following for the TI MSP430F5438 Experimenter Board. Switches
are considered to be On when they are pushed.

S1 S2 LED1 LED2
Off Off Off Off
Off On Off On
On Off On Off
On On Off Off

Table 1: LED Glowing Pattern.

2.1 Submission

We will use the Blackboard System (http://www.itap.purdue.edu/tlt/blackboard/index.cfm) for the submission
throughout our course. Please zip everything before submission and only upload the package. Do not upload
every single file separately. The content of the package should be properly organized. Particularly, you should put
everything under a directory named username lab0, where username is your Blackboard system login id. Under
the directory, include

1. blink led.c: the bug-free blink-LED program;

2. pattern.c: the implementation of the XOR system.

10


