
Lecture: Embedded
Software Architectures
Jan Vitek

ECE/CS
Spring 2011

Reading List
•Mandatory Reading
‣Chapter 5 of ECS textbook

•Optional Reading
- N/A

2

Software Architecture
•A software architecture gives the general structure of an embedded

application independent of the actual computation performed

•Choice of architecture impacts issues such as:
‣ development time / likelihood of software defects
‣ responsiveness and latency
‣ code size / complexity

•Rule of thumb:
‣ Select simplest architecture that meets application requirements
‣Any extraneous complexity/generality costs additional development and

verification effort

3

Software Architectures
•Four well known choices:
‣ Simple Round Robin
‣ Round Robin with Interrupts
‣ Round Robin with Interrupts and Function Queues
‣ Real-time Operating System-based architectures

•The architectures are sorted in order of increasing complexity

•Round Robin (RR) architectures are also called Cyclic Executives in
real-time literature

•The main different between RR and RTOS-based approaches is that in
RR scheduling and admission control is done by the developer as
opposed to leaving it to the OS

4

Round Robin
•Simplest architecture, a single loop checks devices in predefined

sequence and performs I/O right away

1. while(1) {
2. if (device_1_ready()) { /*Perform D1 I/O and relate computation.*/ }
3. if (device_2_ready()) { /*Perform D2 I/O and relate computation.*/ }
4. …
5. if (device_N_ready()) { /*Perform DN I/O and relate computation.*/ }
6. }

•Works well for system with few devices, trivial timing constraints,
proportionally small processing costs

•Response time of device i equal to WCET of the body of the loop

5

Round Robin
•Periodic Round Robin
‣ In case the system must perform operations at different frequencies
‣Add code to wait a variable amount of time

1.while(1) {
2. waitForNextPeriod(10); // idle for up to 10 ms
3. if (device_1_ready()) { /*Perform D1 I/O and relate computation.*/ }
4. ...

•Exercise:
‣ Think of how to implement a loop that runs every 10 ms and measures the drift

6

Round Robin
•Limitations of the architecture:
‣ If some devices require small response times, while other have large WCET it

will not be possible to guarantee that all timing constraints will be met
‣ The architecture is fragile, adding a new task can easily cause missed deadlines

‣Question:
- Is the order in which devices appear significant?
- Same question, but with code for devices having different processing times and timing

constraints?

7

Round Robin with Interrupts
•Hardware events requiring small response times handled by ISRs
•Typically ISRs do little more than set flags and copy data

1. bool f_device_1 = FALSE;
2. bool f_device_1 = FALSE;
3. …
4. void interrupt handle_dev_1() {
5. // handle device 1
6. f_device_1 = TRUE;
7. }
8. …
9. void main() {
10. while (1) {
11. if(f_device_1) {
12. f_device_1 = FALSE;
13. // do processing related to device 1…
14. if (f_device_2) {
15. …
16. }
17.}

8

Round Robin with Interrupts
•Latency of an ISR is function of response time of higher priority ISRs
•Lower bound on latency of RR loop is response time of the ISRs

9

Device 1 ISR

Device 2 ISR

Device 3 ISR

All task code

All code

RR with IRR

low
priority

high
priority

Round Robin with Interrupts
•Drawbacks
‣All task code executes at same priority

- One can test some flags multiples times within loop body to reduce latency

‣ Shared data bugs

‣Question:
- What if one of the device requires large amount of processing time (larger than the time

constraint of others?)

10

RR+I and Function Queues
•Rather than fixed order, program manages order of execution

1. #define DEV_1 1
2. #define DEV_2 2
3. …
4. void interrupt handle_DEV_1() {
5. // deal with device
6. enqueue(DEV_1);
7. }
8. …
9. void main() {
10. while (1) {
11. switch (dequeue()) {
12. case DEV_1: // process DEV_1
13. break;
14. …
15. default: // empty queue nothing to do
16. }
17. }
18.}

11

RR+I and Function Queues
•One could use function pointers, but they add complexity
‣ FP are useful if one does not want to hardwire the devices in the main loop

•enqueue() reorders queue to improve latency of high priority devices
•For long running functions: break them up into multiple smaller units
‣Question: does that improve latency?

•Question
‣Consider implementation of dequeue(), what kind of data structure would you

use (why), is special care needed?

12

Real-time Operating Systems
•Rely on the operating for scheduling tasks
•Leverage preemptive scheduling to ensure that deadlines are met

1. static pthread_t thread_1;
2. …
3. void interrupt handle_DEV_1() {
4. // handle device
5. CHECK(pthread_wakeup(thread_1));
6. }
7. …
8. void task_1() {
9. while (1) {
10. pthread_suspend_np();
11. // process device 1 I/O
12. }
13. }
14. …

13

Real-time Operating Systems
•The scheduler in a RTOS takes care of scheduling all tasks according

to their priority
•Long running, low priority, tasks can be preempted by higher priority

ones

14

Device 1 ISR

Device 2 ISR

Device 3 ISR

All task code

All code

RR with IRR

low
priority

high
priority

Device 1 ISR

Device 2 ISR

Device 3 ISR

Task 1

RTOS

Task 2

Real-time Operating Systems
•Services that an RTOS could provide:
‣ Scheduling tasks

- create/terminate threads
- timing threads operations
- preemption

‣ Synchronization
- semaphores and locks

‣ Input/Output
- interrupt handling

‣Memory management
- separate stacks
- segmentation
- allocation/deallocation

‣ File system
- persistent store

‣ Security
- user vs. kernel space
- identity management

15

Conclusion
•Software architectures describe the structure of a system

independently of its function
‣ Round Robin is a simple architecture for devices with few (or uniform) timing

constraints
‣ Round Robin with Interrupts extends RR with low-latency interrupt handling
‣ Round Robin with Interrupts and Function Queues allows dynamic scheduling of

tasks under programmatic control
‣ Real-time Operating Systems relieve programmers from having to deal with

scheduling and time management

16

