
Lab 2: Timer

ECE/CS

Due by Thursday Fed 3, 2011 11:59 PM

1 Problem Statement

In this Lab, you will learn how to program hardware timers. The MSP430 MCU has two
built-in timers, which function almost the same. You are going to use one of them to control
the LEDs, making them flash in a desired rhythm. To do so, you need to understand how to
configure and start a timer, and how to install interrupt service routines (ISR).

Particularly, you are asked to complete the following two tasks:

1. using one timer to control LED1, making it flash in the frequency of 1 Hz (by toggling it
on/off every 1 second);

2. as LED1 flashes, using the same timer to make LED2 flash in 2 Hz.

2 Reading Guide

With the knowledge you have learnt in previous Labs, such as toggling LEDs, you may need to
further read the chapter 14 of the User’s Guide, which describes everything about one of the
two built-in timers -Timer A. (Chapter 15 is about Timer B, pretty much the same thing with
a few highlights about the difference from Timer A.)

The chapter is not short and you do not have to understand everything to complete your
tasks. In your reading, focus on the following contents:

• clock source selection and divider (ACLK clock)

• timer operating mode (Stop, Up, Continuous modes)

• capture/compare blocks (Compare Mode)

• timer interrupts

Following is a high level description of how the timer works, concentrating on the above
issues. It aims to give you an overview before you dive into the User’s Guide. For more accurate
and complete instructions, read the chapter.

Informally, a timer is a 16-bit counter driven by the selected clock. Depending on the
frequency of the source clock, the timer can count (by increasing or decreasing the counter by
one at the rising edge of a clock signal) in a predictable speed. Therefore, knowing the clock
frequency, yon can compute the time it takes to count any number. For example, ACLK clock
runs at 32k Hz by default (1k = 1024), so if ACLK is selected as the source clock, the initially
zeroed counter will be overflowed (count up to 0xFFFF then 0) in 2 seconds. If you feel the
selected clock is too fast, you can set a divider. Then the actual clock frequency will be firstly
divided by the divider and the timer will count in the computed frequency. e.g. ACLK with
divider set to 2 drives the timer in 16k Hz.

The timer can operate in four modes, of which we only care about Stop, Up, and Continuous.
Stop mode is simply that the timer is halted.

1



Under Up mode, the timer repeatedly counts from 0 to the value of register CCR0 and
generates an interrupt (if enabled) at CCR0, as shown in Figure 1. By installing a CCR0-
corresponded ISR, you get a periodic task handler.

TAxCCR0

CCR0-1 CCR0 0h

Timer Clock

Timer

Set TAxCTL TAIFG

Set TAxCCR0 CCIFG

1h CCR0-1 CCR0 0h

0h

0FFFFh

www.ti.com Timer_A Operation

Figure 14-2. Up Mode

The TAxCCR0 CCIFG interrupt flag is set when the timer counts to the TAxCCR0 value. The TAIFG
interrupt flag is set when the timer counts from TAxCCR0 to zero. Figure 14-3 shows the flag set cycle.

Figure 14-3. Up Mode Flag Setting

Changing Period Register TAxCCR0
When changing TAxCCR0 while the timer is running, if the new period is greater than or equal to the old
period or greater than the current count value, the timer counts up to the new period. If the new period is
less than the current count value, the timer rolls to zero. However, one additional count may occur before
the counter rolls to zero.

14.2.3.2 Continuous Mode
In the continuous mode, the timer repeatedly counts up to 0FFFFh and restarts from zero as shown in
Figure 14-4. The capture/compare register TAxCCR0 works the same way as the other capture/compare
registers.

Figure 14-4. Continuous Mode

The TAIFG interrupt flag is set when the timer counts from 0FFFFh to zero. Figure 14-5 shows the flag set
cycle.

359SLAU208G–June 2008–Revised July 2010 Timer_A

Copyright © 2008–2010, Texas Instruments Incorporated

Figure 1: Up Mode

Under Continuous mode, instead of counting up to CCR0, the timer counts to 0xFFFF and
restarts from 0. During the repetition, the corresponding interrupt will be generated (again
if enabled) at the point that the counter counts to CCRn where n can be 0 to 6. Therefore,
by using Continuous mode and setting CCRn to desired values, you can get up to 7 periodic
interrupts with different time intervals.

Figure 2 shows an example of using Continuous mode. In the example, we get two periodic
interrupts with interval of t0 and t1 respectively using CCR0 and CCR1. As you may notice,
maintaining the desired interval needs you to adjust the associated CCR in the ISR. That is,
at each occurrence of an interrupt, e.g. TAxCCR0a, you must adjust the CCR0 accordingly
by adding an fixed size offset (counting over which takes t0 long) to it to make sure the next
interrupt occurs at time point TAxCCR0b. The figure is taken from User’s Guide subsection
14.2.3.3, where you can find more details.

FFFEh FFFFh 0h

Timer Clock

Timer

Set TAxCTL TAIFG

1h FFFEh FFFFh 0h

0FFFFh

TAxCCR0a

TAxCCR0b TAxCCR0c
TAxCCR0d

t1

t0 t0

TAxCCR1a

TAxCCR1b TAxCCR1c

TAxCCR1d

t1 t1

t0

Timer_A Operation www.ti.com

Figure 14-5. Continuous Mode Flag Setting

14.2.3.3 Use of Continuous Mode
The continuous mode can be used to generate independent time intervals and output frequencies. Each
time an interval is completed, an interrupt is generated. The next time interval is added to the TAxCCRn
register in the interrupt service routine. Figure 14-6 shows two separate time intervals, t0 and t1, being
added to the capture/compare registers. In this usage, the time interval is controlled by hardware, not
software, without impact from interrupt latency. Up to n (where n = 0 to 6), independent time intervals or
output frequencies can be generated using capture/compare registers.

Figure 14-6. Continuous Mode Time Intervals

Time intervals can be produced with other modes as well, where TAxCCR0 is used as the period register.
Their handling is more complex since the sum of the old TAxCCRn data and the new period can be higher
than the TAxCCR0 value. When the previous TAxCCRn value plus tx is greater than the TAxCCR0 data,
the TAxCCR0 value must be subtracted to obtain the correct time interval.

14.2.3.4 Up/Down Mode
The up/down mode is used if the timer period must be different from 0FFFFh counts, and if symmetrical
pulse generation is needed. The timer repeatedly counts up to the value of compare register TAxCCR0
and back down to zero (see Figure 14-7). The period is twice the value in TAxCCR0.

360 Timer_A SLAU208G–June 2008–Revised July 2010

Copyright © 2008–2010, Texas Instruments Incorporated

Figure 2: Continuous Mode Time Intervals

All the above description are made under the assumption that the CCRs are used under
Compare mode. Under this mode, CCRs are used as targets to which the counter is compared.
The Capture mode, on the other hand, uses CCRs to record the time when certain events
happened by copying the counter value into a CCR. You would not need Capture mode in this
Lab.

As mentioned previously, each CCRn can be a source of interrupts. The counter overflow
will generate a interrupt as well. Every interrupt can be enabled or disabled independently.
There are two interrupt vectors reserved for each timer. One is dedicated to CCR0 interrupt
and the other is for all the rest. Using former one is straightforward, while using the latter may

2



need a bit more work. Essentially, when an interrupt other than CCR0’s occurs, your ISR will
be invoked and a particular value indicating the interrupt source will be assigned to a register
called IV (the timer prefix is omitted, see section 3.1). Therefore, you will be able to know
where the interrupt comes from by examining IV in your ISR hence able to handle it properly.

3 Implementation Hints

Here we give some hints about your implementation.

3.1 Timer Instances

As mentioned at the beginning of Chapter 14, Timer A may have multiple instantiations (each
uses prefix TAx in its register names). By looking at the header file ”msp430f5438.h” (which you
can find at directory CCSV4 HOME/msp430/include, where CCSV4 HOME denotes the directory
the Code Composer Studio is install), you will find there are two of them - TA0 and TA1. For
Timer B, there is only one instance TB0. Simply pick one of them and make sure you always
work on the registers with the same prefix you picked.

3.2 Registers and Bits

Suppose you choose to use TA0, Table 1 shows a SUPERSET of the registers and bits that
you need to deal with concerning timer configuration. ”Superset” means not all of them are
supposed to show up in your program; just pick what you need. For the detailed description,
refer to User’s Guide subsection 14.3.

Table 1:

Registers Bits

TAxCTL TASSEL, ID, MC, TACLR
TAxCCTLn CAP, CCIE
TAxIV TAIV
TAxEX0 IDEX
TAxCCRn all bits

3.3 ISR and Interrupt Vector

The MSP430 C/C++ compiler that comes with Code Composer Studio is a slightly modified
version of the IAR one. Here we list some intrinsics, pragmas, and micros that you may use
when dealing with interrupts:

To enable global interrupts, use

__bis_SR_register(GIE);

To install an ISR THE ISR into the interrupt vector THE VECTOR, use

#pragma vector=THE_VECTOR

__interrupt void THE_ISR(void)

{

// your code here

}

In the header file ”msp430f5438.h”, you can find all the defined micros of interrupt vectors.
The ones you may be interested in are picked out and listed in Table 2. When you install an
ISR to one of the vectors listed in the left column, your ISR will be invoked when the timer
counts to the corresponding CCR(s) listed in the right column.

3



Table 2:

Vector Micros Triggering Registers

TIMER0 A0 VECTOR TA0 CCR 0
TIMER0 A1 VECTOR TA0 CCR 1 - 6
TIMER1 A0 VECTOR TA1 CCR 0
TIMER1 A1 VECTOR TA1 CCR 1 - 6
TIMER0 B0 VECTOR TB0 CCR 0
TIMER0 B1 VECTOR TB0 CCR 1 - 6

4 Submission

Please zip everything before submission and only upload the package. Do not upload every
single file separately. The content of the package should be properly organized. Particularly,
you should put everything under a directory named username lab2, where username is your
Blackboard system login id. Under the directory, include

1. timer1.c: LED1 flashing program;

2. timer2.c: LED1 and LED2 flashing program.

4


	Problem Statement
	Reading Guide
	Implementation Hints
	Timer Instances
	Registers and Bits
	ISR and Interrupt Vector

	Submission

