
Programming Models for
Concurrency and Real-time

Jan Vitek

Programming Models for Concurrency and Real-timeTools’09

Outline

0: Real-time and embedded systems

1: Real-time Java with Ovm

2: Memory management with Minuteman

3: Low latency programming with Flexotasks

4: Java in aerospace with the Fiji VM

5: Conclusion

Programming Models for Concurrency and Real-timeTools’09

0

Programming Models for Concurrency and Real-timeTools’09

What is a real-time system?

A real-time system is any information processing system which
has to respond to externally generated input stimuli within a
finite and specified period

correctness depends not only on logical result but also time it is delivered

failure to respond as bad as a wrong response

Programming Models for Concurrency and Real-timeTools’09

What is an embedded system?

Computer that is part of some other piece of equipment

Usually dedicated software

Often no “real” keyboard or general purpose display

… we use 100+ embedded computers daily

… embedded hardware growth rate of 14% to reach $78 billion

http://www.bccresearch.com/comm/G229R.html, http://www.ecpe.vt.edu/news/ar03/embedded.html

Programming Models for Concurrency and Real-timeTools’09

Characteristics of real-time embedded systems

Large and complex — from a few hundred lines of assembly to
20 mio lines of Ada for the Space Station Freedom

Concurrent control of separate components— devices operate
in parallel in the real-world; model this by concurrent entities

Facilities to interact with special purpose hardware — need to
be able to program devices in a reliable and abstract way

Extreme reliability and safe — embedded systems control their
environment; failure can result in loss of life, or economic loss

Guaranteed response times — must predict with confidence
the worst case; efficiency important but predictability is essential

Programming Models for Concurrency and Real-timeTools’09

A new software crisis?

Development time, code & certification are increasingly criteria

For instance in the automotive industry:

90% of innovation driven by electronics and software — Volkswagen

80% of car electronics in the future will be software-based— BMW

80% of our development time is spent on software— JPL

Worst, software is often the source of missed project deadlines.

Programming Models for Concurrency and Real-timeTools’09

A new software crisis?

Typical productivity

5 Line of Code / person / day

From requirements to testing: 1 kloc / person / year

Typical avionics “box”

100 kloc ⇒ 100 person years of effort

Costs of modern aircraft is ~$500M

Programming Models for Concurrency and Real-timeTools’09

A new software crisis?

The important metrics are thus
Reusability

Software quality

Development time

The challenges are
Sheer number and size of systems
Poor programmer productivity

The solutions are
Better processes (software engineering)

Better tools (verification, static analysis, program generation)

Better languages and programming models

Programming Models for Concurrency and Real-timeTools’09

The programming model for most real-time systems is ‘defined’ as
a function of the hardware, operating system, and libraries.

Consequently real-time systems are not portable across platforms

Good news

programming languages, such as Java and C#, are wrestling control
from the lower layers of the stack and impose well-defined semantics
(on threads, scheduling, synchronization, memory model)

What programming models?

Programming Models for Concurrency and Real-timeTools’09

What programming model?

“Real-time systems require fine grained control over resources
and thus the language of choice is C, C++ or assembly”

...entails the software engineering drawbacks of low-level code

Consider the following list of defects that have to be eradicated
(c.f. “Diagnosing Medical Device Software Defects” Medical DeviceLink, May 2009):

Buffer overflow and underflow (does not occur in a HLL)

Null object dereference (checked exception in a HLL)

Uninitialized variable (does not occur in a HLL)

Inappropriate cast (all casts are checked in a HLL)

Division by zero (checked exception in a HLL)

Memory leaks (garbage collection in a HLL)

Programming Models for Concurrency and Real-timeTools’09

What programming models?

There are many dimensions:

Imperative vs. Functional

Shared memory vs. Message passing

Explicit lock-based synchronization vs. Higher-level abstractions
(data-centric synchronization, transactional memory)

Time-triggered vs. synchronous / logic execution time

And multiple languages, systems:

C, C++, Ada, SystemC, Assembler, Erlang, Esterel, Lustre, Giotto …

Programming Models for Concurrency and Real-timeTools’09

Are object
oriented
technologies
the silver
bullet for the
real-time
software
crisis?

Programming Models for Concurrency and Real-timeTools’09

1

JavaOvm
The Real-time Java

experience

Programming Models for Concurrency and Real-timeTools’09

Java?

Object-oriented programming helps software reuse

Mature development environment and libraries

Garbage collected & Memory-safe high-level language

Portable, little implementation-specific behavior

Concurrency built-in, support for SMP, memory model

Popular amongst educators and programmers

Programming Models for Concurrency and Real-timeTools’09

Java?

Predictable?

Not really.

Call sleep(10ms) and get up
20 milis.sec. variability.

Hard real-time often
requires microsecond
accuracy.

0

175

350

525

700

40 us

115 us

260 us

wct: 19ms

Programming Models for Concurrency and Real-timeTools’09

Time scale

Hum
an

 re
act

ion

1s

Bra
ke

en
gag

em
en

t

300ms

Sch
ed

ulin
g q

ua
nta

100ms

Slo
w m

usi
cal

 in
str

um
en

t

20ms

Clock
acc

ura
cy

10ms

Fas
t m

usi
cal

 in
str

um
en

t

4ms

Conte
xt

sw
itc

h

25 us

Programming Models for Concurrency and Real-timeTools’09

Java?

Predictable?

Java Collision Detector running at 20Hz.

• Bartlett’s Mostly Copying Collector. Ovm. Pentium IV 1600 MHz, 512 MB
RAM, Linux 2.6.14, GCC 3.4.4

GC pauses cause the collision detector to miss up to three
deadlines…this is not a particularly hard should support KHz periods

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

Worst case = 114ms

Programming Models for Concurrency and Real-timeTools’09

The Real-time Specification for Java (RTSJ)

Java-like programming model:

Shared-memory, lock-based synchronization, first class threads.

Main real-time additions:

Physical memory access (memory mapped I/O, devices, …)

Real-time threads (heap and no-heap)

Synchronization, Resource sharing (priority inversion avoidance)

Memory Management (region allocation + real-time GC)

High resolution Time values and Clocks

Asynchronous Event Handling and Timers

Asynchronous Transfer of Control

Programming Models for Concurrency and Real-timeTools’09

Java

Ovm

Started on Real-time Java in 2001,
in a DARPA funded project.
At the time, no real RTSJ implementation.

Developed the Ovm virtual machine
framework, a clean-room, open source
RT Java virtual machine.

Fall 2005, first flight test with Java on a plane.

 Duke’s Choice
 Award

R202? t H7BtArD
• - EN B2rv21 . B = 711:2w. r2 fAr BA27? g’B

S0. ? E. g:2 . ? C? = . ? ? 21 . r7. : v2570:2 (UAV)

• PrAv7121 r2. :-t7= 2 0A= = C? 70. t7A? w7t5
grAC? 1 Bt. t7A?

• BCt 0A? 02r? r2= . 7? 21 . bACt Av2r52. 1 Af - EN

Programming Models for Concurrency and Real-timeTools’09

Case Study: ScanEagle

Programming Models for Concurrency and Real-timeTools’09

ScanEagle

Programming Models for Concurrency and Real-timeTools’09

ScanEagle
Flight Software:

953 Java classes, 6616 methods.
Multiple Priority Processing:
• High (20Hz) - Communicate with Flight Controls

• Medium (5 Hz) - Computation of navigation data

• Low (1 Hz) - Performance Computation

Embedded Planet 300 Mhz PPC,
256MB memory, Embedded Linux

Java performed better than C++

Mission Control

Payload Card

Real-time JAVA

Virtual Machine

Serial I/O Device

Object Reference

Broker

Event Channel

Event Queues

Frame Controller

Application

Components

ScanEagle

 Patform

Flight

Control

Card

PeriodicParameters

RelativeTime

NoHeapRealtimeThread

AsyncEvent

BoundAsyncEventHandle

ImmortalMemory

Ground

Station

Threats, No Fly Zones

Flight Data

Navigation

PassThrough

Programming Models for Concurrency and Real-timeTools’09

References and acknowledgements

Team

J. Baker, T. Cunei, C. Flack, D. Holmes, C. Grothoff, K. Palacz,
F. Pizlo, M. Prochazka and also J. Thomas, K. Grothoff, E. Pla,
H. Yamauchi, P. McGachey, J. Manson, A. Madan, B. Titzer

Funding: DARPA, NSF, Lockheed Martin, Boeing

Availability: open source, http://www.cs.purdue.edu

Paper trail

A Real-time Java Virtual Machine for Avionics. RTAS, 2006
Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006
A New Approach to Real-time Checkpointing. VEE, 2006
Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004
Subtype tests in real time. ECOOP, 2003
Engineering a customizable intermediate representation. IVME, 2003

Programming Models for Concurrency and Real-timeTools’09

2

Minuteman
Real-time Garbage Collection

Programming Models for Concurrency and Real-timeTools’09

Memory management and programming models

The choice of memory management affects productivity

Object-oriented languages naturally hide allocation behind
abstraction barriers

Taking care of de-allocation manually is more difficult in OO style

Concurrent algorithms usually emphasize allocation

because freshly allocated data is guaranteed to be thread local

“transactional” algorithms generate a lot of temporary objects

… but garbage collection is a global, costly, operation that
introduces unpredictability

Programming Models for Concurrency and Real-timeTools’09

Alternative 1: No Allocation

If there is no allocation, GC does not run.

This approach is used in JavaCard

Programming Models for Concurrency and Real-timeTools’09

Alt 2: Allocation in Scoped Memory

RTSJ provides scratch pad memory regions which can be used for
temporary allocation

Used in deployed systems, but tricky as they can cause exceptions

s = new SizeEstimator();
s.reserve(Decrypt.class, 2);
…
shared = new LTMemory(s.getEstimate());
shared.enter(new Run(){ public void run(){
 ...d1 = new Decrypt() ...
}});

Programming Models for Concurrency and Real-timeTools’09

Alt 3: Real-time Garbage Collection

There are three main families of RTGC implementations

 Work-based

Aicas JamaicaVM

 Time-triggered, periodic

IBM Websphere

Time-triggered, slack

SUN Java Real Time System

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Programming Models for Concurrency and Real-timeTools’09

Incrementalizing marking

Collector marks object

Application updates
reference field

Compiler inserted
write barrier marks object

Programming Models for Concurrency and Real-timeTools’09

Incrementalizing compaction

Forwarding pointers refer to the current version of objects

Every access must start with a derefence

copy

original

Programming Models for Concurrency and Real-timeTools’09

Time-based GC Scheduling

GC thread

RT thread

Java thread

Programming Models for Concurrency and Real-timeTools’09

Slack-based GC Scheduling

GC thread
RT thread

Java thread

Programming Models for Concurrency and Real-timeTools’09

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

Worst case = 114ms

GC pauses cause the collision detector to miss deadlines…
and this is not a particularly hard problem should support KHz periods

Programming Models for Concurrency and Real-timeTools’09

CD with periodic RTGC

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25
y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

(a) Java-GC: Latency. (b) RTGC: Latency.

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

(c) ScopedMemory: Latency. (d) ScopedMemory-NoChecks: Latency.

0 0.5 1 1.5 2
GC Pause Time HmillisL

200

400

600

800

1000

1200

st
n
u
o

C

pollcheck histos.nb 1

Printed by Mathematica for Students

0 5 10 15 20 25
Time HsecsL

0.2

0.4

0.6

0.8

1

r
ot

at
u

M
n
oit

a
zilit

U

pollcheck histos.nb 1

Printed by Mathematica for Students

(e) RTGC: Pause times. (f) RTGC: Utilization trace.

Figure 8. Evaluating the Collision Detector.

is small, no more than 10%. Moreover we can observe how

GC gradually free dead objects.

This benchmark is interesting as it has shown that RTGC

meets the application’s predictability requirements. In term

of median latencies, Java-GC and RTGC are the fastest with

a median latency of 1.5ms. Scopes are a bit slower with me-

dian latencies of 1.7ms (1.6ms without scope checks).

5.3.2. Collision Detector The collision detector is a

41KLoc RTSJ program with two real-time threads. One

thread is a periodic NoHeapRealtimeThread that de-

tects collisions in data generated by a simulator. The other

thread is a Java thread that interacts with the environ-

ment. The input is a complex simulation involving over

200 aircrafts. We record the latency of processing one in-

put frame.

As before, we begin with the mostly copying collec-

tor. Fig. 8(a) shows that the maximum latency for one in-

put frame is 114ms. Switching to RTGC dramatically de-

creases the worst-case latency, it drops to 18ms, shown in

Fig. 8(b). The RTGC is configured for 2ms of mutator activ-

ity for every 1ms of collector activity. The utilization trace

of Fig. 8(f) shows 60% utilization most of the the time.

The long period of collector activity at the beginning of

the utilization trace is due to the simulation initializing it-

self; this is not part of the mission phase and has no corre-

8

GC worst case: 120 ms (median 9ms)

RTGC worst case: 18 ms (median 11ms)

Programming Models for Concurrency and Real-timeTools’09

Slack-based GC

0 50 100 150 200 250 300
Iteration Number

20

40

60

80

100

120

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

(a) Java-GC: Latency. (b) RTGC: Latency.

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25
y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

0 50 100 150 200 250 300
Iteration Number

5

10

15

20

25

y
c
n
et

a
L

H
silli

m
L

pollcheck histos.nb 1

Printed by Mathematica for Students

(c) ScopedMemory: Latency. (d) ScopedMemory-NoChecks: Latency.

0 0.5 1 1.5 2
GC Pause Time HmillisL

200

400

600

800

1000

1200

st
n
u
o

C

pollcheck histos.nb 1

Printed by Mathematica for Students

0 5 10 15 20 25
Time HsecsL

0.2

0.4

0.6

0.8

1

r
ot

at
u

M
n
oit

a
zilit

U

pollcheck histos.nb 1

Printed by Mathematica for Students

(e) RTGC: Pause times. (f) RTGC: Utilization trace.

Figure 8. Evaluating the Collision Detector.

is small, no more than 10%. Moreover we can observe how

GC gradually free dead objects.

This benchmark is interesting as it has shown that RTGC

meets the application’s predictability requirements. In term

of median latencies, Java-GC and RTGC are the fastest with

a median latency of 1.5ms. Scopes are a bit slower with me-

dian latencies of 1.7ms (1.6ms without scope checks).

5.3.2. Collision Detector The collision detector is a

41KLoc RTSJ program with two real-time threads. One

thread is a periodic NoHeapRealtimeThread that de-

tects collisions in data generated by a simulator. The other

thread is a Java thread that interacts with the environ-

ment. The input is a complex simulation involving over

200 aircrafts. We record the latency of processing one in-

put frame.

As before, we begin with the mostly copying collec-

tor. Fig. 8(a) shows that the maximum latency for one in-

put frame is 114ms. Switching to RTGC dramatically de-

creases the worst-case latency, it drops to 18ms, shown in

Fig. 8(b). The RTGC is configured for 2ms of mutator activ-

ity for every 1ms of collector activity. The utilization trace

of Fig. 8(f) shows 60% utilization most of the the time.

The long period of collector activity at the beginning of

the utilization trace is due to the simulation initializing it-

self; this is not part of the mission phase and has no corre-

8

RTGC worst case: 18 ms (median 11ms)

RTSJ worst case: 10 ms (median 7ms)

Programming Models for Concurrency and Real-timeTools’09

References and acknowledgements

Team

J. Baker, T. Cunei, T. Kalibera, T. Hosking, F. Pizlo, M. Prochazka

Funding: NSF

Availability: open source

Paper trail

Accurate Garbage Collection in Uncooperative Environments. CC:P&E, 2009
Memory Management for Real-time Java: State of the Art. ISORC, 2008
Garbage Collection for Safety Critical Java. JTRES, 2007
Hierarchical Real-time Garbage Collection. LCTES, 2007
Scoped Types and Aspects for Real-time Java Memory management. RTS, 2007
Accurate Garbage Collection in Uncooperative Environments with Lazy Stacks. CC, 2007
An Empirical Evaluation of Memory Management Alternatives for Real-time Java. RTSS, 2006
Real-Time Java scoped memory: design patterns, semantics. ISORC, 2004

Programming Models for Concurrency and Real-timeTools’09

3

Flexotask
Flexible Task Graphs

Programming Models for Concurrency and Real-timeTools’09

Goals

Design a new real-time programming model that allows
embedding hard real-time computations in timing-oblivious Java
applications

Principle of Least Surprise

Semantics of non-real-time code unchanged

Semantics of real-time code unsurprising

Limited set of new abstractions that compose flexibly

No cheating

Run efficiently in a production environment

Programming Models for Concurrency and Real-timeTools’09

Unification of previous work

Eventrons [PLDI’06] (IBM)

Reflexes [VEE’07] (Purdue/EPFL)

Inspired by RTSJ and Eventrons

Exotasks [LCTES’07] (IBM)

Inspired by Giotto, and E-machine

StreamFlex [OOPSLA’07] (Purdue/EPFL)

Inspired by Reflexes, StreamIt and dataflow languages

Programming Models for Concurrency and Real-timeTools’09

Design space

Java

RTGC

RTSJ

Eventrons

Reflex

Exotask

StreamFlex

Flexotask

Latency

Ex
pr

es
si

ve
ne

ss

1 ms<< 1 ms >> 1 ms

Programming Models for Concurrency and Real-timeTools’09

Programming model
Basic model:

No shared state, (but local sate), no low-level data races

Components communicate via atomic channels

Memory management is either GCed or Region-allocated

Time triggered scheduler

• Inspiration: Actors, Erlang, ...

Extensions:

Rate driven schedulers

• Inspiration: StreamIt, Giotto, ...

Weak isolation for throughput

Transactional memory for external interaction

Programming Models for Concurrency and Real-timeTools’09

Flexible Task Graphs

A FlexoTask Graph is a set of
concurrently executing, isolated,
tasks communicating through
non-blocking channels

Semantics of legacy code is
unaffected

Real-time code has restricted
semantics, enforced by compile
and start-up time static checks

Java
thread

Java
object

Task Graph

Java Virtual Machine

Programming Models for Concurrency and Real-timeTools’09

Task Graph

Task

Channel

Scheduler

A FlexoTask Graph is a set of
concurrently executing, isolated,
tasks communicating through
channels

Schedulers control the execution
of tasks with user-defined policies
(eg. logical execution time, data
driven)

atomically update task’s in ports

invoke task’s execute()

update the task’s output ports

Programming Models for Concurrency and Real-timeTools’09

Memory management

Either garbage collected with a real-
time GC, or a region allocator for
sub-millisecond response times.

Region tasks are split between

Stable objects

Transient (per invocation) objects

Region-allocated tasks preempt task
RTGC and Java GC

Region Task

Transient

Stable

RTGCed Task

Stable

Programming Models for Concurrency and Real-timeTools’09

Channels

Stable channels

Can refer to any stable object
(complex structures)

Deep copy on read (atomic)

Transient channels

Can refer to Capsules (transient
objects, arrays)

Zero-copy (linear reference)
Pinned Transient objects,
allocated on Java heap

Stable objects,
copy on read

Programming Models for Concurrency and Real-timeTools’09

Communication with Java

Every task has an automatically
generated proxy-object

User-defined atomic methods can
be called from Java with
transactional semantics

Arguments are reference-
immutable pinned objects

Guard
Transient

Stable

Java
thread

Programming Models for Concurrency and Real-timeTools’09

Communication with Java
Atomic Methods:

acquire a lock on guard & pin all
reference-immutable arguments

start transaction;

execute method

commit transaction

reclaim transient memory

unpin all arguments & release lock
on guard

If during execution of the method
the Task is scheduled, the
transaction is immediately aborted.

Guard
Transient

Stable

Java
thread

Programming Models for Concurrency and Real-timeTools’09

Static safety

Safety checks prevent references to transient objects after they
have been deallocated and to capsules once they have been sent.

A simple form of ownership types is used where Stable is a
marker interface for data allocated in the stable heap and
Capsule for messages. Some polymorphism needed for arrays.

Checking is done statically,
no dynamic tests are need.

Programming Models for Concurrency and Real-timeTools’09

Predictability

 600K periodic invocations

 Inter-arrival time bw 57 and 144us

 516 aborts of the atomic method

Programming Models for Concurrency and Real-timeTools’09

References and acknowledgements

Team

J. Spring, J. Auerbach, D. Bacon, F. Pizlo, R. Guerraoui, J. Manson

Funding: NSF & IBM

Availability: released open source by IBM on sourceforge

Paper trail

A Unified Restricted Thread Programming Model for Java. LCTES, 2008
StreamFlex: High-throughput Stream Programming in Java. OOPSLA, 2007
Reflexes: Abstractions for Highly Responsive Systems. VEE, 2007
Scoped Types and Aspects for Real-time Java Memory management. RTS, 2007
Scoped Types and Aspects for Real-Time Systems. ECOOP, 2006
Preemptible Atomic Regions for Real-time Java. RTSS,2005
Transactional lock-free data structure for Real Time Java. CSJP, 2004

Programming Models for Concurrency and Real-timeTools’09

4

Fiji
Safety Critical Java

Programming Models for Concurrency and Real-timeTools’09

SC Java Goal

A specification for Safety Critical Java capable of being certified
under DO-178B Level A

Implies small, reduced complexity infrastructure (i.e. JVM)

Emphasis on defining a minimal set of capabilities
required by implementations

Based on HIJA – High-Integrity Java Application (EU project)

Final draft due this year (already 300+ page book)

Programming Models for Concurrency and Real-timeTools’09

Fiji VM technology
Proprietary ahead-of-time compiler

Java bytecode to portable ANSI C

high-performance, predictable execution

Multi-core ready

Proprietary real-time garbage collection

easy-to-use, fully preemptible, small overhead

zero pause times for RT tasks

Current platforms

OS X, Linux, RTEMS

x86 and x64, SPARC, LEON2/3, ERC32, and PowerPC

200KB footprint

Programming Models for Concurrency and Real-timeTools’09

Execution time vs. Competitor RTJVM

0

2

4

6

8

10

12

compress db
mpegaudio

jack

Product X fVM RTGC --more-opt fVM NO GC --more-opt

30% faster than
leading

competitor

no GC slow-down

Programming Models for Concurrency and Real-timeTools’09

RTEMS demo

fVM runs on RTEMS 4.9.2

Java threads run side-by-side with RTEMS C, C++, Ada threads

Repeat every 10 ms

Allocate Integer[1000] array, fill with Integer instances

Allocate 1000 more Integer instances

Run code as an RTEMS interrupt handler

fVM’s Java runtime is robust enough to allow pure Java code to run in an
interrupt context while using all of Java’s features

Programming Models for Concurrency and Real-timeTools’09
class Demo {
 static Integer[] arr; static int iter, iWGC; static long mDWoGC, mDWGC;
 public static void main(String[] v) {
 final Timer t=new Timer();
 t.fireAfter(10,new Runnable(){
 public void run() {
 long before=HardRT.readCPUTimestamp();
 iter++; if (GC.inProgress()) iWGC++;
 if (arr==null) {
 arr=new Integer[100000];
 for (int i=0;i<arr.length;++i) arr[i] = new Integer(i);
 } else
 for (int i=0;i<arr.length;++i)
 if (!arr[i].equals(new Integer(i))) throw new Error("failed "+i);
 t.fireAfter(10,this);
 long diff = before-HardRT.readCPUTimestamp();
 if (GC.inProgress()){
 if (diff>mDWGC) mDWGC = diff;
 } else if (diff > mDWoGC) mDWoGC = diff;
 }});
 for (;;) {
 String res = "Number of timer interrupts: "+iter +
 "\nNumber of timer interrupts when GC running: "+iWGC +
 "\resMax interrupt exec time with GC: "+ mDWGC);
 System.out.println(res);
 Thread.sleep(1000);
} } }

Programming Models for Concurrency and Real-timeTools’09

class Demo {

 static void main(String[] v) {
 final Timer t = new Timer();
 t.fireAfter(10, new Runnable(){
 public void run() {
 long before = HardRT.getCPUTimestamp();
 if (GC.inProgress()) iterationsWGC++;
 arr = new Integer[1000];
 for (int i=0;i<arr.length;++i)
 arr[i] = new Integer(i);
 t.fireAfter(10, this);
 ...

 }});
 ...
 }

Programming Models for Concurrency and Real-timeTools’09

t = new Timer();
t.fireAfter(10,
 new Runnable(){ void run(){
 long before=getCPUTimestamp();
 if (GC.inProgress()) iWGC++;
 arr = new Integer[1000];
 for (int i=0;i<arr.length;++i)
 arr[i] = new Integer(i);
 t.fireAfter(10, this);
 ...
}});

Programming Models for Concurrency and Real-timeTools’09

References and acknowledgements

Team

F. Pizlo, L. Ziarek, T. Kalibera, D. Tang, L. Zhao

Funding: NSF, Fiji Systems LLC

Availability: to be GPLed for research

Paper trail

Real-time Java in Space: Potential Benefits and Open Challenges. DASIA, 2009
A Technology Compability Toolkit for Safety Critical Java. 2009

Programming Models for Concurrency and Real-timeTools’09

5

Programming Models for Concurrency and Real-timeTools’09

Conclusion

Realtime Specification for Java:

http://www.rtsj.org

Safety Critical Java:

JSR-302 http://jcp.org

Fiji VM:

http://www.fiji-systems.com

Ovm:

http://www.cs.purdue.edu/homes/jv

