Of Scripts and Programs
lall tales, Urban Legends and ruture Prospects

Jan Vitek S3lab, Purdue University

pased on joint work with

Bard Bloom John Field BV

Nate Nystrom U. lexas Arlington

Francesco Zappa Nardelli INHIA

Tobias Wrigstad Stocknolm University

Brian Burg Nicholas Kidd Sylvain Lebresne Johan Ostlund Gregor Richards Purdue

ﬁ want it tall

and strong
...and

cheap ...and
fast

ak

AT -

T— i o

& Tall Tales

No worries mate. |'ve got just
the right language for the job

At the beginning...

e Our work motivated by Tobias’ involvement with Pluto
[aka In Swedish Premiepensionmyndighsten)

¢ \Ve have been trying to get code for three years,
but it’s too sensitive to release...

e S0, apply salt to the following slides,
second hand material only, based on
discussions with Tobias and slides
by Lemonnier and Lundborg,
errors are mine, all mine.

...there was a script

e A modest Perl program hacked together to perform a simple data migration step
while the grown ups BIC = Big [T Company) built the real system

e Unfortunately, the real system was late, over budget, and unusable

e S0, BIC got fired and the script became the real system

...that grew up to be a program that...

e ... manages the retirement savings of 5.5 million users
o ... for a value of 23 billion Euros

e ... with a team of 30 developers over 7 years

Pluto

320 000 lines of Perl
68 000 lines of SQL
27 000 lines of shell
26 000 lines of HTML
230 database tables
750 G bytes of data
24/7 availability

0 bugs allowead

The Road to Glory

e A number of factors contributed to the success of Pluto

e High productivity of scripting languages
~orl won over Java In all intermal evaluations

¢ Disciplined use of the language
any features disalowed by standards. Only C-like code,
o floating points. No threads. No OO,

¢ [ail fast, Abort, Undo
satch dally runs, undo all changes It an error is detected,

e Contracts
Home-brewed contract notation for Perl, runtime checkeao

Contracts for Perl

contract(’do sell current holdings’)
-> 1in(&is person, &is date)
-> out(&1s_state)
-> enable;

sub do sell current holdings {

my (Sperson, S$date)

1f (Soperation eg “BUD ") {

return Sstate;

| essons Learned

® The Pluto developers complained about
e Syntax (it's ugly)
e Typing (it's weak)
e Speed (it's slow)
e Support for concurrency and parallelism is lacking

¢ | ack of encapsulation and modularity

The Questions are thus...

e Can we write dynamic scripts and robust programs in the same language?
e Can we go from scripts to programs and from programs to scripts freely?

e Can we do this without losing either the flexibility of scripting or
the benefits that come with static guarantees?

e Can | have my cake and eat it too?

Related Work

e [undborg, Lemonnier. PPM or how a system written in Perl can juggle with billions. Freenix 2006
e [emonnier. Testing Large Software With Perl. Nordic Perl Workshop 2007

o Stephenson. Perl Runs Sweden's Pension System. O’Reilly On Lamp, 2005

Thanks: Tobias Wrigstad

9P
®)
=
®
®)
O
-
o
©
O
e
=)

Understanding the dynamics of dynamic languages

e How dynamic should we, must we, be?
NVany anecdotal stories about need and use of dynamic features, but few case studies
Are dynamic features used to make up for missing static features”
Or are the programmers just "‘orogrammers’”?

e Can we add a static type system to an existing dynamic language?
without having to rewrtte all legacy programs and lioraries

Methodology

e \We selected a very dynamic language, JavaScript, a cross between
Scheme and Self without their elegance but with a large user base

e \WWe instrumented a popular browser (Safari) and collected traces from the
100 most popular websites (Alexa) plus many other traces

e \We ran an offline analysis of the traces to gather data

¢ \We analyzed the source code to get static metrics

JavaScript is a Programming Language

e A familiar syntax

function List(v,n) {this.value=v; this.next=n;}

List.prototype.map = function(f){
return new List(f(this.value),

this.next ? this.next.map(f) : null); }
var ls = new List(l, new List(2, new List (3, null)));
var nl = ls.map(function(x){return x*2;});

JavaScript is a Programming Language

e A familiar syntax

function List(v,n) {this.value=v; this.next=n;}

\

(Constructor) \
field addition

JavaScript is a Programming Language

.. | adding a shared
e A famili T

= function(f){
f(this.value),
is.next ? this.next.map(f) : null); }

List.prototypelmap
return new List(

s

\higher order function)

JavaScript is a Programming Language

e A familiar syntax

object construction)

/

var 1s

ne(n List(l, new List(2, new List(3, null)));

JavaScript is a Programming Language

e A familiar syntax

/ Closure)
/

var nl = ls.map(function(x){return x*2;});

Challenges to static typing

e | ack of type declarations
e Eval and dynamic loading
e Addition/deletion of fields/methods

e Changes in the prototype hierarchy

Corpus

e 100 JavaScript programs were recorded

Focus on the following:

280slides, Bing, Blogger, CNET, Digg, ESPN, Facebook,
Flicker, GMaps, Gmail, Google, ImageShack, LivelyKernel,
Other, Purdue, Twitter, Wikipedia, WordPress, YouTube,

eBay, AppleMe

e The total size of the traces is 6.7 GB

Corpus
p 1 MB

e Size of source in bytes
500 KB

_lllll llllll-lllll
*!
3

e Size of average trace in bytes

Q
m

Tl o
— 'E - —
o

5 MB

Instruction Mix

Image Shack

)

Average)

o

stores_direct
stores_hashmap
stores_idx
reads_direct
reads_hashmap
reads_idx
deletes_direct
deletes_hashmap
deletes_idx
defines

creates

calls

throws

catchs

WordPress)

Function Size

~
/

S i &
-
e 4H S
©
o |
<}
e e
™
o 1 5
=
oo il g
o A 2
O C
| 88
oo iH 2 S
o i
Fomme o = fewo
+ [sdelnD
R L EEEE ey R
T { + >ooa4
Fommmm - -1 NdS3
Fommmm e - -+ 6BBig
oo -1 = 13ND
+ + L Jobbo|g
Fommmme - -{ | Buig
F-mmme - DHT — S9pIIS082
oﬁ_& OWF oﬁ_: o_m 0

e Number of Instruction executed within each function

Live Data

e Objects allocated in the traces
broken down in major
categories

S
L L]
bE)

@;O

arrays dom

anonymous

prototypes

dates errors

Instances
functions

Bay @jk@%@y
Ve .%@%t
Other FLikr %ﬁe

regexps

Prototype chain lengths Vax)

Al
—

¢ Prototype chains allow
sharing behavior in a more
flexible way than
Inheritance

10

* Prototype chain length

similar to inheritance
depth metrics © -
¢ \While, average close to 1, 4
) « - J Avg
maximum depends on
coding style
3 I
_ | H i En B pamEal
X roto = 2 00 WEEL=26803p3052=28E0°
. P . Y % 0 O] S g a F = 9 S

woo awl
Aego
agn| no/
dPIOM
191IM]
anpind
AloAIT
yoeysh
a|b60o0K)
[rewsy
sdejND
MOl

Random COdG)

30044

NdS3
661

13INO
lebbo|g
buig
SOPIISO&

o a1l

_ _ _ _ _ _ _
0004 0009 0009 000V 000€ 000¢ 000} 0

—val

3//)

t

val, my

damage to data structures
deserialization of JSON

e Eval can perform arbitrary
data”?

e \What if most evals were

eval (Y“x.

Oh

Variadicity

/

¢ Functions need not be
called with the “right”
number of arguments

e Missing args have value
UNDEFINED, additional

args accessed by

position
f(l) # too few
£f(1,2,3) #1100 many
f = function(x,y) {..}

0.5

0.4

0.3

0.2

0.1

0.0

n
[}
9
n
o
5e)
Al

@)
=
28]

Blogger

CNET

Digg
ESPN

Fbook

Flickr
GMaps

Gmail

Google
ImgShack

60% of functions
are used

variadically y

~

WordP _
[]
eBay [|

> 0 @ 7§ &£ @
O c 2B = X O
> B €z 52
530522268
o (@)

>

S
Q
O
)
S

Dynamic dispatch

e Dynamic binding is a
nallmark of object-oriented
anguages

e How dynamic is our
COrpus?

10000

100

\
(>1 OOK call sites
E—— monomorphic
* p J
*
*
*
‘0
e (fcallsite
*» '
0 dispatches to
e '
Sog o 100K functions
0%
\g
X 4
¢ ‘&0 0’
%*.
4060 ‘0‘: * ¢
00 SN D G000 & o0
OMDHANNIN % & * * L 2
*
L 2 & 2R 2 »
I I I I I
1 10 100 1000 10000

#of different functions called from a call site

Dynamic dispatch

e \What if there were many
identical functions?

e Programming style
(or lack thereof) matters

function List (h, t) {
this.head=h;
this.tail=t;
this.c=function (1) {..}
}

10000

100

~
~100K bodies

———— am® unique
¢ -
*
*

J

*e 4)
- 1 body shared
50K functions

10 100 1000 10000
#of functions sharing the same body

Dynamic dispatch

e [hese are not so different
from Java or C#...

10000

100

~
~100K call sites

P— monomorphic
*

N /
L 2
L 2
¢
¢ 0
. - 1 call site A
‘. dispatches <2K
L 2 J 0
9 functions
“‘00 *
00“ * e
0‘ .
Q:Q
T
SR
xR 2 2 4 L 2
® O VNN &

SANBNNENNIND D AND ¥ 66 6 06

I I I I I I I
1 5 10 50 100 500 1000

#of different function body called from a call site

Constructor dynamism

e Constructors are “just”
functions that side-effect
this.

e Accordingly a constructor
can return different “types”,
l.e. objects with different
properties

function Person(n,M) {
this.name=n;
this.sex=M;
1f (M) {
this.likes= “guns”
}

}

100 1000 10000

10

~

>2K constructors

monomorphic

R J
L 2
* e ’ - A
.Y 1 constructor
R returns
e\ ~300 “types” /
*» ¢ ¢ L 2
L 2 L 2 L 2
L 2 L 2 2 o WM o
L X 2 SO O 00 O 00 L X 4 »
[[[[[[[
2 5 10 20 50 100 200

#of different “types” returned by a constructor

Addition/Deletion

e JavaScript allows
runtime addition and
deletion of fields and 2.0
methods in objects
(including prototypes)

1.5 —
® |[gnoring constructors,

the average number of
additions per object is

: 1.0 -
considerable

e Deletion are less frequent
but can’t be ignored 05 —

X. proto .f = F 0.0 —

delete x.y

£
o
O
o)
S

Addition/Deletion

e Programming style (or
ack thereof) matters.

¢ \What about objects
constructed by extending
an empty object”?

e Heuristic: construction
ends at first read

x = {}

X .head="Mickey”
x.map=function (x) {..}

.= x.T ..

1

B

PU
Twit
Wikip

280
WordP

Bing
Blog

CNET
Digg

ESPN
Fbook
Flikr
GMail
Gmap
Googl
IShak
Livly
Other
eBay
YTube
me.com

Addition/Deletion

e Hash tables & arrays are
objects, and vice versa

e \What if most of add/
deletes were hash/index
operation”?

e Heuristic:
syntax of access
operations

2.0

1.5

1.0

0.5

0.0

1

II |—1
X = O F X > = = o > O
8?8’5%%0;!&@8’@303232%6_0%
mMmMmZAowm s WL Oc/)—'o < O o F ©
@ TN ORNOROR- = >-qE>

Conclusions, maybe

e JavaScript programs are indeed dynamic
o All features are used, but not all the time
e Some of the abuse is sloppy programming

e Hope of imposing types on legacy code?

Related Work

e Anderson, Giannini, Drossopoulou. Towards type inference for JavaScript. ECOOP 2005
e Mikkonen, Taivalsaari. Using JavaScript as a Real Programming Language. TR SUN 2007
e Holkner, Harland. Evaluating the dynamic behavior of Python applications. ACSC 2009

e Chugh, Meister, Jhala, Lerner. Staged information flow for JavaScript. PLDI 2009

e Furr, An, Foster, Hicks. Static type inference for Ruby. SAC 2009

e GGuha, Krishnamurthi, Jim. Using static analysis for Ajax intrusion detection. WWW 2009

e Jensen, Maller, Thiemann. Type analysis for JavaScript. SAS 2009

Current team: Sylvain Lebresne, Gregor Richards, Brian Burg
Alumni: Johan Ostlund, Tobias Wrigstad
Sponsor: ONR, NSF

Future Prospects

THE MODERN THEORY OF THE DESCENT OF MAN.

Thorn

® The story so far:

¢ \We are looking into how to help scripts grow up to be programs
e Scripts are really dynamic

® L£xisting languages are ill-suited to non-invasive evolution

Methodology

e Design a new language, benefit from

e the ability to correct unlucky language design decision
¢ the freedom from legacy code and user base

* Thorn is an experiment in language design
e Thorn lets scripts grow up by

e addition of encapsulation/modularization (Classes, modules, components)
e addition of concurrency (components)

e addition of types (like types)

Thorn is a Programming Language

e A familiar syntax

class List(hd,tl) {

def lmap(f) = List(f.apply(head),
if (hd==null) tl.lmap(f); else null;

ls = List(1l, List(2, List(3, null)));

Growing up modular

Modularity and encapsulation mechanisms

e A script

e A simple script that does some text manipulation

e No encapsulation, no modularity, but does the job

words = "story.txt".file.contents.split("\\W+");
wc = %group(word=w.toLower){ n=%count; | for w<-words };
sorted = %$sort["%3d %s".format(n,word)

%> n %< word | for {:word, n:} <- wc];

println(sorted.joined("\n"));

Modularity and encapsulation mechanisms

e A class

e Classes provide basic encapsulation and modularity

¢ | imited support for access control

class Counter(name) {

words = name.file.contents.split("\\W+");

def count() = 3group(word=w.toLower) {
n=%count; | for w <- words };
def sort() = %sort["%3d %s".format(n,w)

3> n %< w | for {:w,n:} <- count()];

Modularity and encapsulation mechanisms

e A module

e Better support for encapsulation

e Control over linking

module COUNT {

import own file.*;
import util.Vector;

class Counter(name) {

}
}

Modularity and encapsulation mechanisms

e A component

e Stronger encapsulation

component Count {

sync count(name) ...

Growing up concurrent

Concurrency features

e The unit of concurrency is the component
e Components are
P ’ S

¢ single-threaded {,b-
e fully isolated Q)@

e have a mailbox . ¥

S
Y
,b)'

S
Q
o

Growing up typed

Static and dynamic type checking

gynamic type checking is great: W s
® anything goes, until it doesn't;

® a program can be run even when | | Static type checking is great:
@cial pieces are missing

] ® catches bugs earlier;
;ﬁ” \ /") ® enables faster execution.
.

: : "’ T b
l‘ = W e
’ Poad ‘T\\I\é('-.;‘ P yie 2 _-—-«_‘.___ _..-; ' 4 '& - X if
Y . =0 A A . A :{ n:

) "\'. ¢ ;;"'\.\' s ‘ e ‘ ‘g:.' b, i 'L" A
§ 5 Sy | K Vg : A
| ‘ ; ,! 11 \ V/// §Y‘~ | { 'ii o E ‘ 8. [

; (1 3 | " : ‘
= . :— { ‘ g _ (' !1 L ‘1 ,/ i 2 }
r o .t I 3 @ ' Kl) r f 1 1«‘.\ f
‘, RECO £ i o Ui oy -
\J \\ X ’ : 3 b . .“
& N =)
s L i 7/ v
s b ik ¥ |

Problem

class Foo{ def bar(x:Int) = x+1; }

= Foo();

-
Idea: let the run-time check a.bar(X);
that X is compatible with # assume no static type information available on X

\type — \
\ X

When should this check be performed?

How long does it take?
& /

Run-time wrappers

class Ordered { def compare(o:0Ordered):Int; }
fun sort (x:[Ordered]):[Ordered] = ..

a:[Ordered] = sort(X);

® Checking that X is an array of Ordered is linear time

® Arrays are mutable, so checking at invocation of sort is not enough.

)

4)
Idea: add a wrapper around X that checks
that it can respond to methods invoked on it

N A
7 \
4)
Compiled code:
a:[Ordered] = sort(#[Ordered]#X)

_ J

Cannot optimize code

class Foo{ def bar(x:Int) = x+1; }
a:Foo = Foo();

a.bar(X);

With static types, body of Foo.bar compiled with aggressive optimizations
Any decent compiler would unbox the Int

This is not possible if it is a wrapped object #Int#X

Our design

Our design principles

Permissive:
accept as many programs as possible
Modular:
be as modaular as possible
Reward good behavior:

reward programmer with performance or clear correctness guarantees

Our design

Introduce a novel type construct that mediates between static and dynamic.

still flexible flexible

fast

static like type dynamic

catch errors catch some errors

® For each class name C, add type 1ike C

® Compiler checks that operations on 1ike C variables are well-typed if the
referred object had type C

® Does not restrict binding of 1ike C variables,
checks at run-time that invoked method exists

An example

class Point(var x:Int, var y:Int) {
def getX():Int = Xx;
def getY():Int = y;

def move(p) { X := p.getX(); y := p.get¥(); }
}

Requirements:

1. Fields x and y declared Int

2. move accepts any object with getX and getY methods

like Point

class Point(var x:Int, var y:Int) {
def getX():Int = x;
def getY():Int = y;

def move(p:like Point) { x := p.getX(); y := p.get¥(); }

1. Flexibility

class Point(var x:Int, var y:Int) {
def getX():Int = x;
def getY():Int = y;

def move(p:like Point) { x := p.getX(); y := p.get¥(); }

class Coordinate(x:Int,y:Int) {
def getX():Int = x;
def getY():Int = y;

p = Point(0,0);
c = Coordinate(5,6);

move runs fine if ¢ has getX/getY
p.move(c);

2. Checks

class Point(var x:Int, var y:Int) {
def getX():Int = x;
def getY():Int = y;

def move(p:like Point) {
X 1= p.getX(); y := p.get¥();
p.hog;

Compile-time Error)

move IS type-checked under assumption that the argument is a Point

3. Return values have the expected type

class Cell(var contents) {
def get() = contents;
def set(c) { contents := c }

}

class IntCell { def get():Int; def set(c:Int); }

g:Cell = Cell(41);

p:like IntCell = Cell(42);
—‘:///””’,,,—(g.get():dyn)
g.get() + 1; h
p.get() + 1 -
p.get():Int
optimizations possible

Like types

® A unilateral promise as to how a value will be treated locally

allow most of the regular static checking machinery

allows the flexibility of structural subtyping

® Concrete types can stay concrete

allow reusing names as semantics tags

® /nteract nicely with generics

Rewards

Lies, big and small...

3.0 — 4.87 ' 4.84]

3 - B Typed Thorn B Python 2.5.1

g 2.0 = Dynamic Thorn B Ruby 1.8.6

= N

< 2.0

3 N

> -

E 1.5 —

S__)‘ L

. N

2 1.0 =

20 N

= 0.5 —

= B

= -

0.0C | | |
1000 1500 | 1000 1500 | 11 12
spectral-norm mandelbrot . fannkuch

* Obtained with an older version of Thom
* Benefits due to unboxing of numeric values
* Benchmarks are meaningless

Stil slower than Java

Related Work

e Findler, Felleisen. Contracts for higher-order functions. 2002

e Bracha. The Strongtalk Type System for Smalltalk. 2003

e (Gray, Findler, Flatt. Fine-grained interoperability through mirrors and contracts. 2005
e Siek, Taha. Gradual typing for functional languages. 2006

e /obin-Hochstadt, Felleisen. Interlanguage migration: From scripts to programs. 2006
e FCMA. Proposed ECMAScript 4th Edition — Language Overview. 2008

e Siek, Garcia, Taha. Exploring the design space of higher-order casts. 2009

o \Vadler, Findler. Well-typed programs can’t be blamed. 2009

Current team: Bard Bloom, John Field, Johan Ostlund, Gregor Richards, Brian Burg, Nick Kidd
Alumni: Tobias Wrigstad, Nate Nystrom, Rok Strinsa
Sponsor: IBM, ONR, NSF

Conclusion, actually

¢ [ransforming a one-off script into a program requires language and virtual
machine support

® [anguage design may have to make certain compromises in order to achieve
performance

¢ Rewarding programmer effort is essential for adoption

e More information:

THORN tutorial @ OOPSLA

Talk iIn the main track

http://thorn-lang.org

Online-demo

