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Abstract

Transactional memory holds some promise to improve the practice
of concurrent programming, but achieving acceptable performance
remains an issue for large-scale adoption of the technology. Im-
plementations of software transactional memory increase the cost
of many frequently executed operations and have subtle interac-
tions with the run-time system of the host language. We have ob-
served that implementations significantly increase the load placed
on the host’s memory subsystem by increasing the allocation rate
and altering the lifetime of allocated data. In managed languages
this translates to added pressure on the garbage collector, which
must efficiently reclaim the objects used by the STM to implement
transactions. This paper presents experimental data on several STM
libraries running on top of Java, and shows that memory pressure
significantly impacts their performance. We show similar results
for a C# STM tightly integrated with its host virtual machine. Fi-
nally, we present performance results that demonstrate that adding
support for transactions in the memory subsystem leads to signifi-
cantly better throughput.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming; D.3.4

[Processors]: Compilers; D.1.5 [Programming Techniques]: Object-

oriented Programming; H.2.4 [Systems]: Transaction Processing
General Terms Compilers, Memory, Optimizations

Keywords  software transactional memory (STM), garbage collec-
tion (GC).

1. Introduction

The case for transactional memory has been made many times.
As chip manufactures increase the number of cores in commodity
hardware, future performance gains must look to exploiting par-
allelism. In shared-memory systems, lock-based concurrency con-
trol is difficult to use in a reliably correct manner. Transactional
memory offers an alternative that can potentially exploit more par-
allelism than coarse-grained locking, and be simpler to use than
fine-grained locking. Transactional code is easier to reason about
and avoids problems such as deadlock and priority inversion. While
hardware support is likely needed to outperform traditional con-
currency control mechanisms, most transactional memory systems
are implemented in software so as to facilitate adoption. In many
cases, Software Transactional Memory (STM) is implemented as a
library on top of some host language. Only a handful of systems
integrate transactional support into the language implementation,
with changes that crosscut the compiler and the language’s run-
time system. Even when hardware support is present, it is still the
case that long-lived transactions are implemented in software.
From a distance, an STM implementation must take care of two
things: first it must detect conflicts between concurrent transac-
tions, and second it must provide support for aborting a transac-
tion and undoing its memory effects. To do this it must maintain
auxiliary data structures that record operations performed by trans-
actions. These data structures remember which objects or memory

locations were accessed and record enough information to recover
their original state. There are several challenges for STM imple-
mentations. The STM must deal with features of the host language
that cannot be undone such as interactions with external devices, it
must attempt to keep the overhead on frequently executed opera-
tions such as reads and writes to a minimum, and it must deal with
language features that hinder optimizations, such as reflection.

As many STM systems are built on top of managed languages,
such as Java, C#, Haskell and ML, it is natural for implementers
to leverage parts of the run-time system of the host language.
In particular, the memory subsystem and its garbage collection
algorithm are often used to manage the allocation and reclamation
of the auxiliary data structures used by the STM. This choice entails
increased pressure on the Garbage Collector (GC). Typically, the
STM requires objects to have additional fields, thus increasing the
footprint of the system even when transactions are not used. When
transactions are used, logs and copies of objects may have to be
allocated. Transactions can also extend object lifetime. Otherwise
unreachable values may be referred to from a log, and thus kept
alive longer than necessary. Lastly aborts make all of the objects
created in the transaction unreachable, pushing onto the GC a batch
of objects that need to be collected that would never have even been
created under a corresponding lock-based implementation.

We first became interested in the interaction between STMs and
GC while working with the Bartok STM [4]. Our C# implementa-
tion of the STMBench7 [3] concurrency benchmark exhibited sur-
prising pathologies. We saw that when the benchmark ran with a
workload containing long-lived transactions (“long traversals”) the
program spent over 60% of its time in GC. Furthermore as we in-
creased the number of active threads the ratio quickly shot up to
close to a 100%. Interestingly, without long traversals, the ratio is
markedly smaller though still shockingly high for a benchmark that
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Figure 1. Time in GC. Running the C# STMBench7 on Bartok.
The x-axis gives the number of threads, and the y-axis the percent-
age of the total time spent doing GC.
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does little allocation. Fig. 1 shows these results and a description
of the Bartok environment is given in Sec. 4.1.

We wondered if we were observing behavior particular to Bar-
tok and its implementation or if this was a symptom of a more gen-
eral problem? We started by surveying STM implementations for
garbage-collected languages looking for any integration with the
GC or mention of design decisions based on GC considerations.
We found little integration. Most systems are library-based and do
not have the option of modifying the host run-time. The C# systems
include Bartok [4], LibCMT!, Microsoft’s SXM, and XSTM [10].
Bartok is the outlier with its STM system integrated into the com-
piler and the memory subsystem tasked with log compaction before
GC and use of weak references. Java systems include ASTM [9],
AtomlJava [7], Deuce [8], DSTM [5], DSTM2 [6], Multiverse?, and
the Intel STM [1]. Most of them either translate source code or re-
compile code ahead of time. Only the Intel STM uses an altered
JVM. Part of the value of Java is the near-universal deployment
of the JVM, which is lost with a modified VM. None of the im-
plementations use weak references. This is probably because they
are implemented by wrapper objects, and would add overheads.
Deuce mentions that they “limit as much as possible the stress on
the garbage collector, by using object pools when keeping track of
accessed fields.” DSTM mentions remembering to null-out fields to
make objects eligible for collection.

The contribution of this paper lies in our evaluation of the in-
teraction between transactions and GC in three existing STMs—
Deuce, Multiverse and Bartok. We have found the transaction sys-
tem places significant additional pressure on the GC. We describe
an optimization that allocates the transactional data on a dedicated
heap, separate from the normal heap, and its implementation in
Bartok. We measured the effect of this optimization, and found it
helped the most for benchmarks with larger transaction sizes.

2. Benchmarks

We evaluate STM implementations on the following four bench-
marks. All benchmarks used in this paper are freely available from
the project’s web page® along with links to original sources.

2.1 GCBench

GCBench is a new micro-benchmark which creates a linked list,
where each element of the list is itself a linked list of wrapped
doubles. The benchmark traverses the list in a transaction with, at
every node, a probability of (a) updating the node, (b) allocating
an unreachable object, (c) allocating an object that will become un-
reachable after commit, (d) allocating an object that will survive the
transaction, and (e) making an object unreachable. These parame-
ters, combined with the linked list size and the number of threads,
allows controlling the size of read and update logs, allocated and
discarded objects within each transaction. We use the following val-
ues: 5% updates, 15% immediately unreachable, 65% unreachable
at commit, 5% insert, 5% delete. Each thread operates on its own
private data structure, so there is no contention and there will be no
GC pressure due to aborted transactions.

2.2 STMBench?7

STMBench7 [3] is a benchmark over a data structure composed of
trees, graphs and indices intended to be suggestive of CAD/CAM
workloads. It has a relatively high memory overhead, with the
initial data structure measuring on the order of 500MB. STM-
Bench7 allows the choice of a read-dominated, read-write or write-
dominated workload, as well as whether to enable long traversals

"http://sourceforge.net/projects/libcmt

Zhttp://multiverse.codehaus.org 3http://bit.1ly/fMueU6

(operations that touch most of the data in one transaction). Opera-
tions generally do not allocate with the exception of a hash table to
maintain a set. The exception would be the structural modification
operations, which we did not enable. The original implementation
of the benchmark is in Java; we ported it to C# for these experi-
ments.

2.3 LeeTM

The LeeTM [11] benchmark performs automatic circuit routing us-
ing Lee’s algorithm. Pairs of points on a grid that could represent
transistors on an integrated circuit, logic elements on an FPGA,
or packages of ICs on a circuit board, are connected with non-
intersecting paths. The task has a large degree of potential par-
allelism. It is non-trivial to come up with a locking scheme that
is more fine-grain than simply locking the whole board for rout-
ing each path, yet most routes typically will not conflict. This is
the kind of scenario where STM should have the greatest advan-
tage. Various workloads are available by routing different circuits,
ranging from simple short parallel paths to a memory circuit and a
motherboard. We used versions of LeeTM that do and do not have
allocation in transactions.

2.4 WormBench

WormBench [12] is a configurable benchmark that measures the
performance and robustness of STM systems. It is implemented
in C#, and was designed originally to run with the Bartok STM.
The main idea is to have a “worm” with a triangular-shaped head
and a line-shaped tail that lives in a matrix with other worms. The
worms have 15 different operations, such as move forward or turn
right, that they perform atomically so they do not end up occupying
the same spaces as other worms. There is no allocation within
transactions in WormBench. As of this writing WormBench is only
available for C#.

3. Evaluating the impact of GC on STMs

We now describe the results of our evaluation of the impact of GC
on the performance of STMs. Unless noted otherwise, all bench-
marking was done on an §-core, 1.60GHz Intel Xeon E5310 with
8GB of RAM and Physical Address Extension enabled, running
Windows Server 2003 SP2. Our Java virtual machine was HotSpot
1.6.0_21, and unless otherwise specified we ran with a 1.5GB heap
size and the default collector (see Sec. 3.4). We also used an Azul
Vega 3 3310B, with two 54-core processors and 48GB of RAM.
The benchmark ran on top of the Azul Virtual Machine with the
Concurrent Pauseless GC [2].

3.1 GCBench

We ran GCBench with two library-based Java STMs (Deuce and
Multiverse) and the Bartok C# STM. Since the different threads
in this benchmark operate on distinct data, we use an unsynchro-
nized version of the benchmark to give us a lower bound on ex-
ecution time. Any GC activity solely due to the application will
show up in the unsynchronized version. Any difference in GC ac-
tivity can be attributed to the STM. Table 1 shows the results for
the Java. Already with one thread Deuce and Multiverse are 10.2x
slower than raw Java. Due to what we assume to be an implemen-
tation defect, Deuce deadlocks after three threads. Multiverse with
8 threads performs 16.7x slower than raw Java. At that point Mul-
tiverse spends 77% of its time in GC. Unsynchronized Java spends
81% in GC. The difference between the raw Java GC time (39 secs
with 8 threads) and the Multiverse GC time (588 secs) comes solely
from the allocations performed by the STM infrastructure. While
Deuce does not scale as well, the same trend of increased GC work
can be observed up to three threads.
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For the C# version we report the running time of the benchmark
for different numbers of threads (1 to 8) and different problem sizes
(100 to 800). Fig 2 shows those results. Table 2 is the percentage
of time spent in GC. For any given size, increasing threads will
increase the application’s allocation rate and thus create more work
for the GC (and slow down the whole system). The data illustrates
this and shows the overheads of the STM implementation.

Deuce Multiverse Unsynced
GC Total GC Total | GC | Total
31.9 99.5 18.8 98.5 4.7 9.7
70.6 | 223.6 | 46.8 | 1459 | 10.0 | 17.5
121.5 | 789.3 | 69.7 | 1839 | 13.6 | 20.2
87.3 | 208.1 | 18.7 | 30.5
1184 | 2448 | 243 | 325
181.7 | 317.6 | 28.5 | 409
298.4 | 449.8 | 37.1 | 44.1
5884 | 769.2 | 39.4 | 46.9

RN B W -

Table 1. Java GCBench. Execution time in seconds. Size 800,
Java version, with 1.5GB heap. Deuce deadlocks with more than
3 threads.
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Figure 2. C# GCBench. The x-axis is list problem size, and the
y-axis is the slowdown between STM and unsynchronized C# on
Bartok. Each line represents a different number of threads.

100 | 200 | 300 | 400 | 500 | 600 | 700 | 800

0% 9% | 23% | 36% | 48% | 54% | 61% | 67%
12% | 35% | 56% | 69% | 74% | 82% | 85% | 88%
25% | 53% | T2% | 719% | 87% | 91% | 93% | 95%
39% | 66% | 81% | 88% | 92% | 95% | 96% | 97%
40% | 75% | 87% | 92% | 95% | 96% | 97% | 98%
49% | 81% | 90% | 95% | 97% | 98% | 98% | 99%
60% | 82% | 93% | 96% | 97% | 98% | 99% | 99%

RV B W -

64% | 85% | 94% | 97% | 98% | 99% | 99% | 99%

Table 2. C# GCBench. Percentage of total time spent in GC for
Bartok with different problem sizes.

3.2 STMBench7

As mentioned in the introduction our experience with STMBench7
on Bartok was the motivation for this work. We found that it
scales poorly even on read-dominated (low contention) workloads.
With long traversals disabled, throughput is never more than 31%
faster than single thread performance even up to 8 threads; with
long traversals enabled, it never goes faster than at a single thread

(Fig. 7). As the number of threads increases, the fraction of time
spent in GC increases, approaching 70% and 98% respectively
(Fig. 1). An example of a long-traversal operation is Traversall,
which performs a depth-first search through the data structure and
builds 500 sets of 100000 elements total in the process. Sets are
implemented by hash tables, so some allocation occurs whenever
they need to resize. But more importantly, Bartok must keep log
entries for the reads of the 1 million+ elements of the data structure.
Because the operation takes longer than the time between GCs, the
logs survive collection and the heap grows. Growing heaps trigger
more collections. Larger heaps take more time to collect.

Deuce Multiverse

T Short Long Short Long

GC Total GC Total | GC | Total | GC | Total
1] 1554 | 601.2 | 69.9 | 620.3 | 0.0 5.0 0.1 15.0
2| 89.9 | 602.3 | 80.5 | 663.1 | 0.1 34 0.1 9.0
3| 41.0 | 604.7 | 168.5 | 6858 | 0.0 33 0.3 7.0
4| 279 | 629.7 | 290.3 | 745.1 | 0.3 3.0 0.4 6.0
5| 29.1 | 622.7 0.0 3.0 0.1 5.0
6| 349 | 6352 0.0 3.0 0.2 4.0
71 22.8 | 809.3 0.2 3.0 0.2 4.0
8| 22.5 | 643.9 0.2 3.0 0.3 3.0

Table 3. LeeTM. GC and Total execution time in seconds for short
and long traversals using Deuce and Multiverse.

3.3 LeeTM

Table 3 shows LeeTM performance and GC overhead for Deuce
and Multiverse. Deuce short does not exhibit a large GC overhead;
the overall performance is 5x slower than Bartok (Fig. 9). Multi-
verse on this specific benchmark is able to reduce the GC overhead
as well as minimizing the overall time. Its performance is compara-
ble to the Opt versions of LeeTM for Bartok, presumably because
it does a better job of handling transaction-local objects (discussed
further in Sec 5.3).

3.4 Choice of Collector

We wanted to ensure that our results were not due to a peculiar-
ity of the garbage collection algorithm. HotSpot offers the choice
of three different algorithms: serial (default), parallel, and concur-
rent mark-sweep. All of the collectors are generational. Parallel is
a stop-the-world collector that uses multiple threads. Concurrent
mark-sweep uses a separate thread to do GC work concurrently
with application work, but it does include a STW phase for ma-
jor collections. We tested them all on GCBench with a fixed max
heap size of 1.5GB and found that the serial collector performed
best with higher numbers of threads for Multiverse, while for the
unsynchronized version it was the parallel collector that slightly
outperformed the others (Fig. 3). The choice of collector did not
change our conclusions.

3.5 Scalability with Azul

To examine how the overhead scales beyond 8 cores, we switched
to an Azul machine with 108 cores. Fig. 4 shows the results of a
run of GCBench for data size of 800 and a heap size of 20GB (out
of the 29GB available for applications). For Multiverse, with each
increment of 5 threads, the benchmark slows down by an extra 10%
except at the very end, where the last data point is 61% slower than
the one before. At that data point, the benchmark is utilizing all of
the heap (Fig. 5), triggering more collections. (Azul grants extra
memory from the grant pool for up to 1G). Despite the presence
of a concurrent GC, threads will block waiting for more memory
to be made available. The total number of cores used is greater
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Figure 3. Collectors. GCBench size 600 with Multiverse and un-
synchronized Java. The y-axis is execution time in seconds and the
x-axis is the number of threads. Lines show the garbage collection
algorithms available in Hotspot (Serial/Parallel/ConcMS). There is
about 90MB of live data per thread in Multiverse and 20MB for
unsynchronized Java.

than the number of threads because additional cores are used by
the GC, but it is still less than the number of hardware cores.
The benchmark is limited by the available memory. The distance
between the performance of Multiverse and raw Java is striking: the
culprit is the overheads due to the transactional operations (reads
and writes).

The Azul appliance has a form of hardware transactional mem-
ory called Speculative Multi-address Atomicity (SMA). SMA kicks
in whenever a Java synchronized statement is executed and spec-
ulates it in a transaction. We did not set out to evaluate the benefits
of SMA in this work, but we report, for completeness, the results
with SMA enabled and with SMA turned off. For the unsynchro-
nized version of GCBench there is, as expected, no difference. For
the version of GCBench running with Multiverse, SMA slightly
decreases performance for higher thread counts.

3.6 Discussion

The overheads we have observed point to pathologies that make the
STM systems we have tried all but useless for the workloads under
consideration. By varying the implementation strategy (library vs.
integrated in the VM), the choice of GC algorithm (serial, paral-
lel, concurrent mark-sweep and pauseless), the numbers of threads
(1 to 40) and the workloads, we believe that we have shown con-
clusively that memory pressure is a significant problem for perfor-
mance of STM implementations.

4. A Transaction-aware GC

This section describes how we modified the memory subsystem of
one particular infrastructure, Bartok, to make it transaction aware.

4.1 Bartok

The Bartok STM [4] is an object-based STM integrated into the
Bartok research compiler. The integration in the compiler allows
direct access to objects’ fields rather than using shadow copies of
objects as many library-based implementations do. It uses a de-
composed STM interface, which combined with special compiler
optimizations allows for the elimination of some logging opera-
tions. For example, multiple reads to the same object are recorded

700
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400
300 NoSMA-Multiverse
200
100 NoSMA-UnSynced
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Figure 4. Java GCBench on Azul. Unsynchronized and Multi-
verse versions of GCBench with size 800. Y-axis is time in seconds,
x-axis is number of threads. SMA means Speculative Multi-address
Atomicity is enabled.
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Figure 5. Java GCBench on Azul. Peak memory usage. Y-axis is
peak memory in GB, x-axis is number of threads.

by a single read enlistment, and reads to an object are subsumed by
writes needing only an update enlistment. Bartok uses three logs
for each transaction: read enlistment, update enlistment, and undo
values. The logs are allocated in chunks and linked in reverse or-
der (i.e., newest chunk at the beginning). Bartok also uses objects’
headers to store which transaction if any has opened the object for
update. It is the first STM to allow objects that become unreachable
within a transaction to be collected. It performs log compaction in
a pre-GC phase, taking advantage of the stopped world to remove
duplicate read and update enlistment entries and to remove reads
subsumed by updates. It further arranges that log entries other than
undo values are treated as weak references, allowing objects to be
reclaimed if they are only referenced by read or update enlistment
entries. Objects created within a transaction can be collected this
way, but any objects that existed prior to the transaction would still
be referenced strongly by an undo entry. For our experiments, we
use the Semispace collector (which is generational, serial and stop-
the-world) because it is the best integrated with the STM. However,
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under high stress workloads, errors still sometimes occur with and
without our optimizations.

4.2 Dedicated nurseries

One way to improve performance is to take advantage of STM’s
impact on object lifetime by having a nursery per transaction. Ob-
jects that are allocated within a transaction are not visible to other
threads until the transaction commits, so GC traversal of these ob-
jects is redundant before commit. Based on our observation of the
above mentioned benchmarks, few objects get allocated and dis-
carded voluntarily within a single transaction. Therefore, a sim-
ple bump allocator can be used to allocate from this heap. On
abort, after restoring undo values, the entire per-transaction nurs-
ery can be reclaimed. This can be accomplished easily by reset-
ting the per-transaction nursery heap pointer. On commit, the per-
transaction nursery can be promoted to normal nursery. This can
be done cheaply by re-labeling its pages as normal nursery pages.
This idea can be easily adapted for systems that allow nested trans-
actions. Aborting an inner transaction can be done by resetting the
allocation pointer to its value at the beginning of the inner trans-
action. Commit requires no special handling, since the transaction
will truly commit only when the outer-most transaction commits.

The benefits of this optimization depend on the nature of the
workload and the other optimizations in the system. Workloads
with high contention are likely to see the most improvements as the
cost of aborts is lowered and as doomed object will be reclaimed
early. This optimization complements the elision of logging opera-
tions for transaction-local objects [1]. On the other hand, in some
STMs it is preferable to pre-allocate data before the start of the
transaction in order to avoid logging the initializers; when this pro-
gramming idiom is used, this optimization will be less useful.

Finalizable objects pose a concern because discarding a trans-
action nursery in one step would not allow their finalizers to run. It
would not be unreasonable to prohibit finalizable objects in trans-
actions because often they are mostly required for freeing IO re-
sources, and 1O is generally not allowed in a transactional scope.
Alternatively, one could allocate finalizable objects on the normal
heap.

4.3 Dedicated heap

Detailed analysis of the experimental results reveals that 90% of
the memory being allocated in Bartok is for transactional logs
rather than application objects. Similarly, most of the GC’s time
is spent on dealing with the STM’s data. The designers of the
Bartok STM chose to treat all STM data as normal objects, like in a
library-based implementation. Short-lived transactions have small
logs which are ready for collection quickly. If short transactions
are frequent, minor GCs will be triggered often since these logs
are filling the nursery. For long transactions, GC will be triggered
within the transaction, logs will be promoted, eventually leading to
an increase in the number of major collections.

Transactional logs have three important properties: (a) they are
only reachable from the object which represents the transactional
context, (b) they are bounded by the transactional scope they serve,
(c) they are allocated sequentially and are only discarded at transac-
tion end. One possible solution to reduce the cost of managing logs
would be to pool and reuse them. But as the log sizes are a function
of the number of operations performed in a transaction and thus
can vary widely, this would entail some complexity in managing
the pool of log objects and making sure that unused logs eventually
get reclaimed. Further, this would only reduce the allocation over-
head but not remove the need for the GC to trace the pool despite
that the pool will not be freed.

We propose a dedicated heap for the logs. With our proposed
optimization we would allocate logs from a separate heap and use

a dedicate memory manager to allocate and free them. Since the
logs are often a major contributor to heap exhaustion, this removes
significant pressure from GC. This entails a number of changes that
we detail next.

Chunk size. Bartok logs are allocated in chunks containing 512
to 1024 entries, depending on the log type. Large transactions
would suffer from smaller log chunk size due to the overhead of
frequent allocation/collection. Very small transactions can suffer
from allocating a large log chunk. Bartok retains a log chunk per
thread for its lifetime (allocated by the first transaction of the
thread) to reduce the allocation overhead of small transactions.

To simplify free list management, we use fixed size chunks
for all log types. Bartok has three log types: (1) Read enlistment
logs which store references that were read (entry size is 1 word),
(2) Update enlistment logs for updated references (entry size is
4 words) and (3) Undo logs for original values (2 words). Read
logs are smaller but more frequent. Update logs are bigger but less
frequent. A log chunk contains a larger number of read enlistment
logs than update enlistment logs. The difference in number of
entries required by each in a transaction depends on the nature of
the transaction’s work (mostly-reads vs mostly-writes). Selecting a
fixed size for log chunks of all types eliminates unusable fragments
in the free list and allows optimizing allocation/free operations.

Allocation. Each thread acquires a lock to the free list in order to
allocate or free. Allocating a new chunk is fast (grab the first chunk
in the free list). Freeing a log chunk requires more work to add the
newly freed chunk to the free list by retrieving the previous free
chunk to link to it. Practically this did not cause any measurable
overhead if we merge the free space. Since we have fixed size
logs, free operations only need to append the newly freed memory
to the head of the free list. A better implementation would be to
use a wait-free queue, but no contention was observed during our
experiments.

An alternative to our approach would be to use a per-thread
allocator for the logs. When a transaction ends, its allocator pointer
is reset to the beginning of the thread-private log memory. This
would avoid the need to fix the logs sizes since no fragmentation
can occur. Also no locking is required. However, this design would
require acquiring and releasing pages from the system or assigning
a fixed share of the memory to each thread.

Nested transactions. 'We support nested transactions. In case of
commit, all logs are kept until the outermost transaction commits
as well before freeing any of the logs/log chunks. In case of abort,
logs are discarded immediately, and no special handling is required.

Available Memory. A dedicated heap may be seen as reducing the
memory available to the application. Especially so if the application
uses transactions in an uneven way, for instance starting with long-
lived transactions and then switching to short-ones. Periodically,
the logs memory manager can release unused pages.

Tracing. Another issue with the dedicated heap is its integration
with the GC. Given that Bartok STM performs updates in place,
if an object becomes unreachable during a transaction, it has to be
preserved until the transaction ends. It can be freed if the transac-
tion commits, but must be restored on an abort. Such objects are
only reachable by their log entries. Normally, these objects would
be traced by the GC when the log is visited. But since the logs
themselves are outside the heap, the GC must be informed of the
presence of logs and the objects the logs reference must be traced
explicitly.

Stop-the-world. We worked with a stop-the-world garbage col-
lector. Stop-the-world collectors allow the system to synchronize
the two heaps operations before and after collection, which will be
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harder and may require special synchronization in case of a con-
current garbage collector.

4.4 Implementation

As mentioned above, we moved the logs to a separate memory.
Log chunks for reads, updates, and undos are allocated from a
global free list protected by a spinlock. Since the chunks are large
contention for them is minimal. The garbage collector is instructed
not to follow pointers into this memory when tracing or copying.
During GC, the logs are explicitly visited. The system’s bump
allocator is now aware of both heaps. According to a runtime
flag (which is set before and unset after log allocation), the bump
allocator decides which heap to allocate from. The extra check per
allocation has a minimal effect (1 extra branch instruction, and 2
memory updates per chunk allocation). Another alternative would
be to allocate raw memory from the log heap, and initialize it
with the log chunk object information separately, eliminating the
test since the decision is made by the code allocating, rather than
the allocator. When an outer transaction commits or a transaction
aborts, the system does a traversal of the log chunks used (not
the logs themselves, only the chunks), and frees each of them
individually.

5. Results

We used the testing environment and C# benchmarks described in
Sec. 3.

5.1 GCBench

‘We ran GCBench on the modified STM and compared the running
time to the original Bartok STM.? Fig. 6 demonstrates the per-
formance improvements of the new implementation. Smaller data
sizes (at 100) suffer up to 17% slow down due to the larger log
chunks used for small transactions and to the extra check on allo-
cation. As the problem size increases the benefits kick in and peak
at a 50% speed up.

5.2 STMBench?7

We ran STMBench7’s read-dominated workload on Bartok with
and without long traversals and compared the performance of the
modified STM to that of the original Bartok STM. Fig. 7 shows
operations per second. For long transactions the improvements
are striking. Fig. 8 gives the relative improvements between the
versions of the STM. While, short transaction show improvements
of more than 50% after 3 threads, long transactions are around
200% faster.* Table 4 gives the log sizes per transaction, and shows
that long traversals involve about 5.6x as much logging as short
transactions. They benefit more as our modifications prevent these
logs from adding to the GC pressure.

Read ‘Write Total
LTD 321816 | 138991 460807
LTE || 2213538 | 387786 | 2601325

Table 4. C# STMBench7. Logs by type per average transaction.

5.3 LeeTM

LeeTM allocates transient data structures within each transaction.
These objects are transaction-local, but Bartok is not able to detect

3 At the time of writing, higher thread count triggers a bug in the STM
support; we are investigating its source.

4The missing observations are due to a software defect in the original
Bartok STM.
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Figure 6. C# GCBench. The y-axis is the percentage improve-
ment in total running time over the original Bartok STM and the x-
axis is the problem size. Lines show different thread counts. Miss-
ing observations are due to a software defect.
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Figure 7. C# STMBench7. The y-axis gives operations per sec-
ond, and the x-axis gives number of threads. LTD means that long
traversals are disabled, and LTE that they enabled.
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Figure 8. C# STMBench7. The y-axis is percent increase in oper-
ations per second, x-axis is number of threads.
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this and must needlessly log and validate all the read/write opera-
tions involved. This causes massive slow downs. To avoid this we
re-factored LeeTM to allocate transient data structures outside of
transactions (Opt version). Moreover, LeeTM uses a 3-dimensional
array and the Bartok STM does not optimize logging for multidi-
mensional arrays. To avoid the associated overhead, we changed
the array to a one-dimensional row-major representation (RM ver-
sion). LeeTM comes with four workloads: sparseshort, sparselong,
memboard and mainboard. We were only able to run sparseshort
on the original Bartok STM implementation.

Fig. 9 shows the time elapsed for the different implementations
and Fig. 10 shows the relative speedup. The Opt change has a big-
ger improvement than the RM change. Both does better than ei-
ther alone. RM benefits the most from our modifications to Bartok,
60-70% with multiple threads, as it has most logging from all the
excess logging in the initialization (effectively it is a much larger
transaction). Table 5 shows that RM has roughly 35x logging com-
pared to the Opt and OptRM versions, mostly writes. OptRM aver-
ages 7% improvement. Opt averages 1% improvement.

5.4 WormBench

We ran WormBench with and without our optimization and ob-
served no significant change in performance. According to [12],
the maximum number of reads/writes per transaction is 79/67.
A log chunk can typically hold 512 log entries, which is more

120
~+-RM-Original
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80
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40 -=RM-Modified
Opt-Original

20 --Opt-Modified
~~0ptRM-Original
OptRM-Modified

o —
1 2 3 4 5 6 7 8

Figure 9. LeeTM. The y-axis is total time and the x-axis is num-
ber of threads. Original and modified refer to the STM version.
RM, Opt and OptRM refer to, respectively, the row major array
optimization, the allocation optimization, and both optimizations.
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Figure 10. LeeTM. The y-axis gives percent of time saved and the
x-axis is number of threads.

Read Write Total
Opt 20014 2691 22705
OptRM || 16479 2690 19169
RM 17079 | 722690 | 739769

Table 5. LeeTM. Logs by type per average transaction.

than sufficient for WormBench transactions. Each Transaction Log
Manager maintains a log chunk for reuse over the lifetime of the
thread. Therefore no additional log chunks were allocated or re-
leased/collected. Fig. 11 shows that we have a speed up of up to
21% for board size of 256, as well as a slow down of the same
amount for 512. A board of size 1024 incurs a slow down of 21%
at 3 threads and a speed up of 20% at 7 threads. 10 out of the 40
data points are zero (no speed up or slow down). The overall graph
shows a total slow down of 4%, due to the extra allocation check.
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Figure 11. WormBench The y-axis gives operations per second,
and the x-axis gives number of threads. Lines represents a different
grid sizes. For head size 8x8 and tail size of 8x8.

6. Conclusion

Software transactional memory must maintain a number of auxil-
iary data structures to detect conflicts between concurrent transac-
tions and record enough information to undo the memory effects
of an aborted transaction. STMs for managed languages tend to be
library-based and to allocate these data structures from the gen-
eral heap, adding significant pressure to the memory subsystem
and causing more time to be spent on automatic garbage collection.
However, since the lifetime of these structures is known, their mem-
ory can be more efficiently managed by explicit allocate and free
operations. STMs integrated with the host language’s runtime can
thus avoid collecting transactional garbage. The benefit is greater
for longer transactions. For transactions with no memory alloca-
tion, we will be able to calculate better estimates of the transaction
completion time.
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