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1

In a 2014 paper, Ray, Posnett, Devanbu, and Filkov claimed to have uncovered a statistically significant 2

association between eleven programming languages and software defects in 729 projects hosted on GitHub. 3

Specifically, their work answered four research questions relating to software defects and programming 4

languages. With data and code provided by the authors, the present paper first attempts to conduct an 5

experimental repetition of the original study. The repetition is only partially successful, due to missing code 6

and issues with the classification of languages. The second part of this work focuses on their main claim, the 7

association between bugs and languages, and performs a complete, independent reanalysis of the data and of 8

the statistical modeling steps undertaken by Ray et al. in 2014. This reanalysis uncovers a number of serious 9

flaws which reduce the number of languages with an association with defects down from eleven to only four. 10

Moreover, the practical effect size is exceedingly small. These results thus undermine the conclusions of the 11

original study. Correcting the record is important, as many subsequent works have cited the 2014 paper and 12

have asserted, without evidence, a causal link between the choice of programming language for a given task 13

and the number of software defects. Causation is not supported by the data at hand; and, in our opinion, even 14

after fixing the methodological flaws we uncovered, too many unaccounted sources of bias remain to hope for 15

a meaningful comparison of bug rates across languages. 16

CCS Concepts: • General and reference→ Empirical studies; • Software and its engineering→ Soft- 17

ware testing and debugging. 18
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1 INTRODUCTION 23

At heart, a programming language embodies a bet: the bet that a given set of abstractions will 24

increase developers’ ability to deliver software that meets its requirements. Empirically quantifying 25

the benefits of any set of language features over others presents methodological challenges. While 26

one could have multiple teams of experienced programmers develop the same application in 27

different languages, such experiments are too costly to be practical. Instead, when pressed to justify 28
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their choices, language designers often resort to intuitive arguments or proxies for productivity29

such as numbers of lines of code.30

However, large-scale hosting services for code, such as GitHub or SourceForge, offer a glimpse31

into the life-cycles of software. Not only do they host the sources for millions of projects, but32

they also log changes to their code. It is tempting to use these data to mine for broad patterns33

across programming languages. The paper we reproduce here is an influential attempt to develop a34

statistical model that relates various aspects of programming language design to software quality.35

What is the effect of programming language on software quality? is the question at the heart of the36

study by Ray et al. published at the 2014 Foundations of Software Engineering (FSE) conference [26].37

The work was sufficiently well-regarded in the software engineering community to be nominated38

as a Communication of the ACM (CACM) Research Highlight. After another round of reviewing, a39

slightly edited version appeared in journal form in 2017 [25]. A subset of the authors also published40

a short version of the work as a book chapter [24]. The results reported in the FSE paper and later41

repeated in the followup works are based on an observational study of a corpus of 729 GitHub42

projects written in 17 programming languages. To measure quality of code, the authors identified,43

annotated, and tallied commits which were deemed to indicate bug fixes. The authors then fit a44

Negative Binomial regression against the labeled data, which was used to answer the following45

four research questions:46

RQ1 “Some languages have a greater association with defects than others, although the47

effect is small.” Languages associated with fewer bugs were TypeScript, Clojure, Haskell,48

Ruby, and Scala; while C, C++, Objective-C, JavaScript, PHP and Python were associated49

with more bugs.50

RQ2 “There is a small but significant relationship between language class and defects.51

Functional languages have a smaller relationship to defects than either procedural or scripting52

languages.”53

RQ3 “There is no general relationship between domain and language defect proneness.”54

Thus, application domains are less important to software defects than languages.55

RQ4 “Defect types are strongly associated with languages. Some defect types like memory56

errors and concurrency errors also depend on language primitives. Language matters more57

for specific categories than it does for defects overall.”58

Of these four results, it is the first two that garnered the most attention both in print and on social59

media. This is likely the case because those results confirmed commonly held beliefs about the60

benefits of static type systems and the need to limit the use of side effects in programming.61

Correlation is not causality, but it is tempting to confuse them. The original study couched its62

results in terms of associations (i.e., correlations) rather than effects (i.e., causality) and carefully63

qualified effect size. Unfortunately, many of the paper’s readers were not as careful. The work was64

taken by many as a statement on the impact of programming languages on defects. Thus, one can65

find citations such as:66

• “...They found language design did have a significant, but modest effect on software quality.” [23]67

• “...The results indicate that strong languages have better code quality than weak languages.” [31]68

• “...functional languages have an advantage over procedural languages.” [21]69

Table 1 summarizes our citation analysis. Of the 119 papers that were retrieved,1 90 citations70

were either passing references (Cursory) or discussed the methodology of the original study71

(Methods). Out of the citations that discussed the results, 4 were careful to talk about associations72

(i.e., correlation), while 26 used language that indicated effects (i.e., causation). It is particularly73

1Retrieval performed on 12/01/18 based on the Google Scholar citations of the FSE paper; duplicates were removed.
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Table 1. Citation analysis

Cites Self
Cursory 77 1
Methods 12 0

Cites Self
Correlation 2 2
Causation 24 3

interesting to observe that even the original authors, when they cite their own work, sometimes 74

resort to causal language. For example, Ray and Posnett write “Based on our previous study [26] 75

we found that the overall effect of language on code quality is rather modest.” [24], Devanbu writes 76

“We found that static typing is somewhat better than dynamic typing, strong typing is better than 77

weak typing, and built-in memory management is better” [5], and “Ray [...] said in an interview 78

that functional languages were boosted by their reliance on being mathematical and the likelihood 79

that more experienced programmers use them.” [15]. Section 2 of the present paper gives a detailed 80

account of the original study and its conclusions. 81

Given the controversy generated by the CACM paper on social media, and some surprising 82

observations in the text of the original study (e.g., that Chrome V8 is their largest JavaScript 83

project—when the virtual machine is written in C++), we wanted to gain a better understanding 84

of the exact nature of the scientific claims made in the study and how broadly they are actually 85

applicable. To this end, we chose to conduct an independent reproduction study. 86

A reproduction study aims to answer the question can we trust the papers we cite? Over a decade 87

ago, following a spate of refutations, Ioannidis argued that most research findings are false [13]. 88

His reasoning factored in small effect sizes, limited number of experiments, misunderstanding 89

of statistics, and pressure to publish. While refutations in computer science are rare, there are 90

worrisome signs. Kalibera et al. reported that 39 of 42 PLDI 2011 papers failed to report any 91

uncertainty in measurements [29]. Reyes et al. catalogued statistical errors in 30% of the empirical 92

papers published at ICSE [27] from 2006 to 2015. Other examples include the critical review 93

of patch generation research by Monperrus [20] and the assessment of experimental fuzzing 94

evaluations by Klees et al. [14]. To improve the situation, our best bet is to encourage a culture of 95

reproducible research [8]. Reproduction increases our confidence: an experimental result reproduced 96

independently by multiple authors is more likely to be valid than the outcome of a single study. 97

Initiatives such as SIGPLAN and SIGSOFT’s artifact evaluation process, which started at FSE and 98

spread widely [16], are part of a move towards increased reproducibility. 99

Methodology. Reproducibility of results is not a binary proposition. Instead, it spans a spectrum 100

of objectives that provide assurances of different kinds (see Figure 1 using terms from [9, 29]). 101

Output
reported
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Repetion
Reproduction

Reanalysis

Methods
Validated

Experiment
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Publication Data and codeArtifact

Not
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Gold
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Level of 
Trust
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Fig. 1. Reproducibility spectrum (from [22])

Experimental repetition aims to replicate the results of 102

some previous work with the same data and methods 103

and should yield the same numeric results. Repeti- 104

tion is the basic guarantee provided by artifact eval- 105

uation [16]. Reanalysis examines the robustness of 106

the conclusions to the methodological choices. Mul- 107

tiple analysis methods may be appropriate for a given 108

dataset, and the conclusions should be robust to the 109

choice of method. Occasionally, small errors may need 110

to be fixed, but the broad conclusions should hold. Fi- 111

nally, Reproduction is the gold standard; it implies a 112
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full-fledged independent experiment conducted with different data and the same or different meth-113

ods. To avoid bias, repetition, reanalysis, and reproduction are conducted independently. The only114

contact expected with the original authors is to request their data and code.115

Results. We began with an experimental repetition, conducting it in a similar fashion to a116

conference artifact evaluation [16] (Section 3 of the paper). Intuitively, a repetition should simply117

be a matter of running the code provided by the authors on the original data. Unfortunately, things118

often don’t work out so smoothly. The repetition was only partially successful. We were able119

to mostly replicate RQ1 based on the artifact provided by the authors. We found ten languages120

with a statistically significant association with errors, instead of the eleven reported. For RQ2,121

we uncovered classification errors that made our results depart from the published ones. In other122

words, while we could repeat the original, its results were meaningless. Lastly, RQ3 and RQ4 could123

not be repeated due to missing code and discrepancies in the data.124

Repetition

RQ1 RQ2 RQ3 RQ4
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Fig. 2. Result summary

For reanalysis, we focused on RQ1 and discovered significant125

methodological flaws (Section 4 of this paper). While the origi-126

nal study found that 11 out of 17 languages were correlated with127

a higher or lower number of defective commits, upon cleaning128

and reanalyzing the data, the number of languages dropped to129

7. Investigations of the original statistical modeling revealed130

technical oversights such as inappropriate handling of multiple131

hypothesis testing. Finally, we enlisted the help of independent132

developers to cross-check the original method of labeling defec-133

tive commits, which led us to estimate a false positive rate of134

36% on buggy commit labels. Combining corrections for all of135

these aforementioned items, the reanalysis revealed that only136

4 out of the original 11 languages correlated with abnormal137

defect rates, and even for those the effect size is exceedingly138

small.139

Figure 2 summarizes our results: Not only is it not possible to140

establish a causal link between programming language and code141

quality based on the data at hand, but even their correlation142

proves questionable. Our analysis is repeatable and available143

in an artifact hosted at: https://github.com/PRL-PRG/TOPLAS19_144

Artifact.145

Follow up work. While reanalysis was not able to validate the146

results of the original study, we stopped short of conducting a147

reproduction as it is unclear what that would yield. In fact, even148

if we were to obtain clean data and use the proper statistical149

methods, more research is needed to understand all the various150

sources of bias that may affect the outcomes. Section 5 lists151

some challenges that we discovered while doing our repetition.152

For instance, the ages of the projects vary across languages153

(older languages such as C are dominated by mature projects such as Linux), and the data include154

substantial numbers of commits to test files (how bugs in tests are affected by language charac-155

teristics is an interesting question for future research). We believe that there is a need for future156

research on this topic; we thus conclude our paper with some best practice recommendations for157

future researchers (Section 6).158
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2 ORIGINAL STUDY AND ITS CONCLUSIONS 159

2.1 Overview 160

The FSE paper by Ray et al. [26] aimed to explore associations between languages, paradigms, 161

application domains, and software defects from a real-world ecosystem across multiple years. 162

Its multi-step, mixed-method approach included collecting commit information from GitHub; 163

identifying each commit associated with a bug correction; and using Negative Binomial Regression 164

(NBR) to analyze the prevalence of bugs. The paper claims to answer the following questions. 165

RQ1. Are some languages more defect prone than others? 166

The paper concluded that “Some languages have a greater association with defects than others, 167

although the effect is small.” Results appear in a table that fits an NBR model to the data; it reports 168

coefficient estimates, their standard errors, and ranges of p-values. The authors noted that con- 169

founders other than languages explained most of the variation in the number of bug-fixing commits, 170

quantified by analysis of deviance. They reported p-values below .05, .01, and .001 as “statistically 171

significant”. Based on these associations, readers may be tempted to conclude that TypeScript, 172

Haskell, Clojure, Ruby, and Scala were less error-prone; and C++, Objective-C, C, JavaScript, 173

PHP, and Python were more error-prone. Of course, this would be incorrect as association is not 174

causation. 175

RQ2. Which language properties relate to defects? 176

The study concluded that “There is a small but significant relationship between language class 177

and defects. Functional languages have a smaller relationship to defects than either procedural or 178

scripting languages.” The impact of nine language categories across four classes was assessed. Since 179

the categories were highly correlated (and thus compromised the stability of the NBR), the paper 180

modeled aggregations of the languages by class. The regression included the same confounders as 181

in RQ1 and represented language classes. The authors report the coefficients, their standard errors, 182

and ranges of p-values. These results may lead readers to conclude that functional, strongly typed 183

languages induced fewer errors, while procedural, weakly typed, unmanaged languages induced 184

more errors. 185

RQ3. Does language defect proneness depend on domain? 186

The study used a mix of automatic and manual methods to classify projects into six application 187

domains. After removing outliers, and calculating the Spearman correlation between the order of 188

languages by bug ratio within domains against the order of languages by bug ratio for all domains, 189

it concluded that “There is no general relationship between domain and language defect proneness”. 190

The paper states that all domains show significant positive correlation, except the Database domain. 191

From this, readers might conclude that the variation in defect proneness comes from the languages 192

themselves, making domain a less indicative factor. 193

RQ4. What’s the relation between language & bug category? 194

The study concluded that “Defect types are strongly associated with languages; Some defect type 195

like memory error, concurrency errors also depend on language primitives. Language matters more 196

for specific categories than it does for defects overall.” The authors report that 88% of the errors fall 197

under the general Programming category, for which results are similar to RQ1. Memory Errors 198

account for 5% of the bugs, Concurrency for 2%, and Security and other impact errors for 7%. 199

For Memory, languages with manual memory management have more errors. Java stands out; it 200

is the only garbage collected language associated with more memory errors. For Concurrency, 201
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inherently single-threaded languages (Python, JavaScript, ...) have fewer errors than languages202

with concurrency primitives. The causal relation for Memory and Concurrency is understandable,203

as the classes of errors require particular language features.204

2.2 Methods in the original study205

Below, we summarize the process of data analysis by the original manuscript while splitting it into206

the following three phases: data acquisition, cleaning, and modeling.207

2.2.1 Data Acquisition. For each of the 17 languages with the most projects on GitHub, 50 projects208

with the highest star rankings were selected. Any project with fewer than 28 commits was filtered209

out, leaving 729 projects (86%). For each project, commit histories were collected with git log210

--no-merges --numstat. The data were split into rows, such that each row had a unique com-211

bination of file name, project name, and commit identifier. Other fields included committer and212

author name, date of the commit, commit message, and number of lines inserted and deleted. In213

summary, the original paper states that the input consisted of 729 projects written in 17 languages,214

accounting for 63 million SLOC created over 1.5 million commits written by 29 thousand authors.215

Of these, 566,000 commits were bug fixes.216

2.2.2 Data Cleaning. As any project may be written in multiple languages, each row of the data is217

labeled by language based on the file’s extension (TypeScript is .ts, and so on). To rule out small218

change sets, projects with fewer than 20 commits in any single language are filtered out for that219

language. Commits are labeled as bug fixes by searching for error-related keywords: error, bug, fix,220

issue, mistake, incorrect, fault, defect and flaw in commit messages. This is similar to a heuristic221

introduced by Mockus and Votta [19]. Each row of the data is furthermore labeled with four extra222

attributes. The Paradigm class is either procedural, functional, or scripting. The Compile class223

indicates whether a language is statically or dynamically typed. The Type class indicates whether a224

language admits ‘type-confusion’, i.e., it allows interpreting a memory region populated by a value225

of one type as another type. A language is strongly typed if it explicitly detects type confusion226

and reports it as such. The Memory class indicates whether the language requires developers to227

manage memory by hand.228

2.2.3 Statistical Modeling. For RQ1, the manuscript specified an NBR [7], where an observation is229

a combination of project and language. In other words, a project written in three languages has230

three observations. For each observation, the regression uses bug-fixing commits as a response231

variable, and the languages as the independent variables. NBR is an appropriate choice, given232

the non-negative and discrete nature of the counts of commits. To adjust for differences between233

the observations, the regression includes the confounders age, number of commits, number of234

developers, and size (represented by inserted lines in commits), all log-transformed to improve the235

quality of fit. For the purposes of RQ1, the model for an observation i is:236

bcommitsi ∼ NegativeBinomial(µi , θ ), where
E{bcommitsi } = µi

Var{bcommitsi } = µi + µ2i /θ

loд µi = β0 + β1log(commits)i + β2log(age)i + β3log(size)i + β4log(devs)i +
∑16
j=1 β(4+j )languagei j

The programming languages are coded with weighted contrasts. These contrasts are customized237

in a way to interpret β0 as the average log-expected number of bugs in the dataset. Therefore,238

β5, . . . , β20 are the deviations of the log-expected number of bug-fixing commits in a language239

from the average of the log-expected number of bug-fixing commits. Finally, the coefficient β21240

(corresponding to the last language in alphanumeric order) is derived from the contrasts after the241
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model fit [17]. Coefficients with a statistically significant negative value indicate a lower expected 242

number of bug-fixing commits; coefficients with a significant positive value indicate a higher 243

expected number of bug-fixing commits. The model-based inference of parameters β5, . . . , β21 is 244

the main focus of RQ1. 245

For RQ2, the study fit another NBR, with the same confounder variables, to study the association 246

between language classes and the number of bug-fixing commits. It then uses Analysis of Deviance 247

to quantify the variation attributed to language classes and the confounders. For RQ3, the paper 248

calculates the Spearman’s correlation coefficient between defectiveness by domain and defectiveness 249

overall, with respect to language, to discuss the association between languages versus that by 250

domain. For RQ4, the study once again uses NBR, with the same confounders, to explore the 251

propensity for bugfixes among the languages with regard to bug types. 252

3 EXPERIMENTAL REPETITION 253

Our first objective is to repeat the analyses of the FSE paper and to obtain the same results. We 254

requested and received from the original authors an artifact containing 3.45 GB of processed data 255

and 696 lines of R code to load the data and perform statistical modeling steps. 256

3.1 Methods 257

Ideally, a repetition should be a simple process, where a script generates results and these match 258

the results in the published paper. In our case, we only had part of the code needed to generate the 259

expected tables and no code for graphs. We therefore wrote new R scripts to mimic all of the steps, 260

as described in the original manuscript. We found it essential to automate the production of all 261

numbers, tables, and graphs shown in our paper as we had to iterate multiple times. The code for 262

repetition amounts to 1,140 lines of R (file repetition.Rmd and implementation.R in our artifact). 263

3.2 Results 264

The data was provided to us in the form of two CSV files. The first, larger file contained one row 265

per file and commit, and it contained the bug fix labels. The second, smaller file aggregated rows 266

with the same commit and the same language. Upon preliminary inspection, we observed that the 267

files contained information on 729 projects and 1.5 million commits. We found an additional 148 268

projects that were omitted from the original study without explanation. We choose to ignore those 269

projects as data volume is not an issue here. 270

Developers vs. Committers. One discrepancy was the 47 thousand authors we observed versus 271

the 29 thousand reported. This is explained by the fact that, although the FSE paper claimed to 272

use developers as a control variable, it was in fact counting committers: a subset of developers with 273

commit rights. For instance, Linus Torvalds has 73,038 commits, of which he personally authored 274

11,343, the remaining are due to other members of the project. The rationale for using developers 275

as a control variable is that the same individual may be more or less prone to committing bugs, but 276

this argument does not hold for committers as they aggregate the work of multiple developers. We 277

chose to retain committers for our reproduction but note that this choice should be revisited in 278

follow up work. 279

Measuring code size. The commits represented 80.7 million lines of code. We could not account 280

for a difference of 17 million SLOC from the reported size. We also remark, but do not act on, the 281

fact that project size, computed in the FSE paper as the sum of inserted lines, is not accurate—as 282

it does not take deletions into account. We tried to subtract deleted lines and obtained projects 283

with negative line counts. This is due to the treatments of Git merges. A merge is a commit which 284

combines conflicting changes of two parent commits. Merge commits are not present in our data; 285
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Table 2. Negative Binomial Regression for Languages (grey indicates disagreement with the conclusion of
the original work)

Original Authors Repetition
(a) FSE [26] (b) CACM [25] (c)
Coef P-val Coef P-val Coef P-val

Intercept -1.93 <0.001 -2.04 <0.001 -1.8 <0.001
log commits 2.26 <0.001 0.96 <0.001 0.97 <0.001

log age 0.11 <0.01 0.06 <0.001 0.03 0.03
log size 0.05 <0.05 0.04 <0.001 0.02 <0.05
log devs 0.16 <0.001 0.06 <0.001 0.07 <0.001

C 0.15 <0.001 0.11 <0.01 0.16 <0.001
C++ 0.23 <0.001 0.18 <0.001 0.22 <0.001
C# 0.03 – -0.02 – 0.03 0.602

Objective-C 0.18 <0.001 0.15 <0.01 0.17 0.001
Go -0.08 – -0.11 – -0.11 0.086

Java -0.01 – -0.06 – -0.02 0.61
Coffeescript -0.07 – 0.06 – 0.05 0.325
Javascript 0.06 <0.01 0.03 – 0.07 <0.01
Typescript -0.43 <0.001 0.15 – -0.41 <0.001

Ruby -0.15 <0.05 -0.13 <0.01 -0.13 <0.05
Php 0.15 <0.001 0.1 <0.05 0.13 0.009

Python 0.1 <0.01 0.08 <0.05 0.1 <0.01
Perl -0.15 – -0.12 – -0.11 0.218

Clojure -0.29 <0.001 -0.3 <0.001 -0.31 <0.001
Erlang 0 – -0.03 – 0 1
Haskell -0.23 <0.001 -0.26 <0.001 -0.24 <0.001
Scala -0.28 <0.001 -0.24 <0.001 -0.22 <0.001

only parent commits are used, as they have more meaningful messages. If both parent commits of286

a merge delete the same lines, the deletions are double counted. It is unclear what the right metric287

of size should be.288

3.2.1 Are some languages more defect prone than others (RQ1). We were able to qualitatively289

(although not exactly) repeat the result of RQ1. Table 2 (a) has the original results, and (c) has290

our repetition. Grey cells indicate disagreement with the conclusion of the original work. One291

disagreement in our repetition is with PHP. The FSE paper reported a p-value <.001, while we292

observed <.01; per their established threshold of .005, the association of PHP with defects is not293

statistically significant. The original authors corrected that value in their CACM repetition (shown294

in Table 2 (b)), so this may just be a reporting error. On the other hand, the CACM paper dropped295

the significance of JavaScript and TypeScript without explanation. The other difference is in the296

coefficients for the control variables. Upon inspection of the code, we noticed that the original297

manuscript used a combination of log and log10 transformations of these variables, while the298

repetition consistently used log. The author’s CACM repetition fixed this problem.299

3.2.2 Which language properties relate to defects (RQ2). As we approached RQ2, we faced an issue300

with the language categorization used in the FSE paper. The original categorization is reprinted in301

Table 3. The intuition is that each category should group languages that have “similar” characteristics302

along some axis of language design.303

The first thing to observe is that any such categorization will have some unclear fits. The original304

authors admitted as much by excluding TypeScript from this table, as it was not obvious whether a305

gradually typed language is static or dynamic. But there were other odd ducks. Scala is categorized306
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as a functional language, yet it allows programs to be written in an imperative manner. We are 307

not aware of any study that shows that the majority of Scala users write functional code. Our 308

experience with Scala is that users freely mix functional and imperative programming. Objective-C 309

is listed as a statically compiled and unmanaged language. However, Objective-C has an object 310

system that is inspired by SmallTalk; its treatment of objects is quite dynamic, and objects are 311

collected by reference counting, so its memory is partially managed. The Type category is the most 312

counter-intuitive for programming language experts as it expresses whether a language allows 313

value of one type to be interpreted as another, e.g. due to automatic conversion. The CACM paper 314

attempted to clarify this definition with the example of the ID type. In Objective-C, an ID variable 315

can hold any value. If this is what the authors intend, then Python, Ruby, Clojure, and Erlang 316

would be weak as they have similar generic types. 317

In our repetition, we modified the categories accordingly and introduced a new category of 318

Functional-Dynamic-Weak-Managed to accommodate Clojure and Erlang. Table 4(c) summarizes 319

the results with the new categorization. The reclassification (using zero-sum contrasts introduced 320

in section 4.2.1) disagrees on the significance of 2 out of 5 categories. We note that we could repeat 321

the results of the original classification, but since that classification is wrong, those results are not 322

meaningful. 323

3.2.3 Does language defect proneness depend on domain (RQ3). We were unable to repeat RQ3, as 324

the artifact did not include code to compute the results. In a repetition, one expects the code to be 325

available. However, the data contained the classification of projects in domains, which allowed us 326

to attempt to recreate part of the analysis described in the paper. While we successfully replicated 327

the initial analysis step, we could not match the removal of outliers described in the FSE paper. 328

Stepping outside of the repetition, we explore an alternative approach to answer the question. 329

Table 5 uses an NBR with domains instead of languages. The results suggest there is no evidence 330

that the application domain is a predictor of bug-fixes as the paper claims. So, while we cannot 331

repeat the result, the conclusion likely holds. 332

3.2.4 What’s the relation between language & bug category (RQ4). We were unable to repeat the 333

results of RQ4 because the artifact did not contain the code which implemented the heatmap or 334

NBR for bug types. Additionally, we found no single column in the data that contained the bug 335

categories reported in the FSE paper. It was further unclear whether the bug types were disjoint: 336

adding together all of the percentages for every bug type mentioned in Table 5 of the FSE study 337

totaled 104%. The input CSV file did contain two columns which, when combined, matched these 338

categories. When we attempted to reconstruct the categories and compared counts of each bug 339

type, we found discrepancies with those originally reported. For example, we had 9 times as many 340

Table 3. Language classes defined by the FSE paper.

Classes Categories Languages
Paradigm Procedural C C++ C# Objective-C Java Go

Scripting CoffeeScript JavaScript Python Perl PHP Ruby
Functional Clojure Erlang Haskell Scala

Compilation Static C C++ C# Objective-C Java Go Haskell Scala
Dynamic CoffeeScript JavaScript Python Perl PHP Ruby Clojure Erlang

Type Strong C# Java Go Python Ruby Clojure Erlang Haskell Scala
Weak C C++ Objective-C PHP Perl CoffeeScript JavaScript

Memory Unmanaged C C++ Objective-C
Managed Others
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Table 4. Negative Binomial Regression for Language Classes

(a) Original (b) Repetition (c) Reclassification
Coef P-val Coef P-val Coef P-val

Intercept -2.13 <0.001 -2.14 <0.001 -1.85 <0.001
log age 0.07 <0.001 0.15 <0.001 0.05 0.003
log size 0.05 <0.001 0.05 <0.001 0.01 0.552
log devs 0.07 <0.001 0.15 <0.001 0.07 <0.001

log commits 0.96 <0.001 2.19 <0.001 1 <0.001
Fun Sta Str Man -0.25 <0.001 -0.25 <0.001 -0.27 <0.001
Pro Sta Str Man -0.06 <0.05 -0.06 0.039 -0.03 0.24
Pro Sta Wea Unm 0.14 <0.001 0.14 <0.001 0.19 0
Scr Dyn Wea Man 0.04 <0.05 0.04 0.018 0 0.86
Fun Dyn Str Man -0.17 <0.001 -0.17 <0.001 – –
Scr Dyn Str Man 0.001 – 0 0.906 – –
Fun Dyn Wea Man – – – – -0.18 <0.001

Language classes are combined procedural (Pro), functional (Fun), scripting (Scr), dynamic (Dyn), static (Sta), strong (Str),
weak (Wea), managed (Man), and unmanaged (Unm). Rows marked – have no observation.

Unknown bugs as the original, but we had only less than half the number of Memory bugs. Such341

discrepancies make repetition invalid.342

Table 5. NBR for RQ3

Coef p-Val
(Intercept) -1.94 <0.001

log age 0.05 <0.001
log size 0.03 <0.001
log devs 0.08 <0.001

log commits 0.96 <0.001

Coef p-Val
Application 0 1.00

CodeAnalyzer -0.05 0.93
Database 0.04 1.00

Framework 0.01 1.00
Library -0.06 0.23

Middleware 0 1.00

3.3 Outcome343

The repetition was partly successful. RQ1 produced small differences, but qualitatively similar344

conclusions. RQ2 could be repeated, but we noted issues with language classification; fixing these345

issues changed the outcome for 2 out of 5 categories. RQ3 could not be repeated, as the code was346

missing and our reverse engineering attempts failed. RQ4 could not be repeated due to irreconcilable347

differences in the data.348

4 REANALYSIS349

Our second objective is to carry out a reanalysis of RQ1 of the FSE paper. The reanalysis differs350

from repetition in that it proposes alternative data processing and statistical analyses to address351

what we identify as methodological weaknesses of the original work.352
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4.1 Methods: Data processing 353

First, we examined more closely the process of data acquisition in the original work. This step was 354

intended as a quality control, and it did not result in changes to the data. 355

We wrote software to automatically download and check commits of projects against GitHub 356

histories. Out of 729 projects used in the FSE paper, 618 could be downloaded. The other projects 357

may have been deleted or became private. The downloaded projects were matched by name. As the 358

FSE data lacked project owner names, the matches were ambiguous. By checking for matching 359

SHAs, we confidently identified 423 projects as belonging to the study. For each matched project, we 360

compared its entire history of commits to its commits in the FSE dataset, as follows. We identified 361

the most recent commit c occurring in both. Commits chronologically older than c were classified 362

as either valid (appearing in the original study), irrelevant (not affecting language files), or missing 363

(not appearing in the original study). 364

We found 106K missing commits (i.e. 19.95% of the dataset). Perl stands out with 80% of commits 365

that were missing in the original manuscript (Fig. 3 lists the ratio of missing commits per language). 366

Manual inspection of a random sample of the missing commits did not reveal any pattern. We 367

also recorded invalid commits (occurring in the study but absent from the GitHub history). Four 368

projects had substantial numbers of invalid commits, likely due to matching errors or a change in 369

commit history (such as with the git rebase command). 370
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Fig. 3. Percentage of commits identified as missing from the FSE dataset.

Next, we applied three data cleaning steps (see below for details; each of these was necessary to 371

compensate for errors in data acquisition of the original study): (1) Deduplication, (2) Removal of 372

TypeScript, (3) Accounting for C and C++. Our implementation consists of 1323 lines of R code split 373

between files re-analysis.Rmd and implementation.R in the artifact. 374

4.1.1 Deduplication. While the input data did not include forks, we checked for project similarities 375

by searching for projects with similar commit identifiers. We found 33 projects that shared one or 376

more commits. Of those, 18 were related to bitcoin, a popular project that was frequently copied 377

and modified. The projects with duplicate commits are: litecoin, mega-coin, memorycoin, bitcoin, 378

bitcoin-qt-i2p, anoncoin, smallchange, primecoin, terracoin, zetacoin, datacoin, datacoin-hp, freicoin, ppcoin, 379

namecoin, namecoin-qt, namecoinq, ProtoShares, QGIS, Quantum-GIS, incubator-spark, spark, sbt, xsbt, 380

Play20, playframework, ravendb, SignalR, Newtonsoft.Json, Hystrix, RxJava, clojure-scheme, clojurescript. 381

In total, there were 27,450 duplicated commits, or 1.86% of all commits. We deleted these commits 382

from our dataset to avoid double counting some bugs. 383

4.1.2 Removal of TypeScript. In the original dataset, the first commit for TypeScript was recorded 384

on 2003-03-21, several years before the language was created. Upon inspection, we found that 385
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the file extension .ts is used for XML files containing human language translations. Out of 41386

projects labeled as TypeScript, only 16 contained TypeScript. This reduced the number of com-387

mits from 10,063 to an even smaller 3,782. Unfortunately, the three largest remaining projects388

(typescript-node-definitions, DefinitelyTyped, and the deprecated tsd) contained only declara-389

tions and no code. They accounted for 34.6% of the remaining TypeScript commits. Given the small390

size of the remaining corpus, we removed it from consideration as it is not clear that we have391

sufficient data to draw useful conclusions. To understand the origin of the classification error, we392

checked the tool mentioned in the FSE paper, GitHub Linguist.2 At the time of the original study,393

that version of Linguist incorrectly classified translation files as TypeScript. This was fixed on394

December 6th, 2014. This may explain why the number of TypeScript projects decreased between395

the FSE and CACM papers.396

4.1.3 Accounting for C++ and C. Further investigation revealed that the input data only included397

C++ commits to files with the .cpp extension. However, C++ compilers allow many extensions,398

including .C, .cc, .CPP, .c++, .cp, and .cxx. Moreover, the dataset contained no commits to .h header399

files. However, these files regularly contain executable code such as inline functions in C and400

templates in C++. We could not repair this without getting additional data and writing a tool to401

label the commits in the same way as the authors did. We checked GitHub Linguist to explain the402

missing files, but as of 2014, it was able to recognize header files and all C++ extensions.403

Commits
C 16

C++ 7
Python 488

JavaScript 2,907

Fig. 4. V8 commits.

The only correction we applied was to delete the V8 project. While V8 is404

written mostly in C++, its commits in the dataset are mostly in JavaScript405

(Fig. 4 gives the number of commits per language in the dataset for the V8406

project). Manual inspection revealed that JavaScript commits were regres-407

sion test cases for errors in the missing C++ code. Including them would408

artificially increase the number of JavaScript errors. The original authors409

may have noticed a discrepancy as they removed V8 from RQ3.410

At the end of the data cleaning steps, the dataset had 708 projects, 58.2411

million lines of code, and 1.4 million commits—of which 517,770 were labeled as bug-fixing commits,412

written by 46 thousand authors. Overall, our cleaning reduced the corpus by 6.14%. Fig. 5 shows413

the relationship between commits and bug fixes in all of the languages after the cleaning. As one414

would expect, the number of bug-fixing commits correlated to the number of commits. The figure415

also shows that the majority of commits in the corpus came from C and C++. Perl is an outlier416

because most of its commits were missing from the corpus.417

4.1.4 Labeling Accuracy. A key reanalysis question for this case study is: What is a bug-fixing418

commit? With the help of 10 independent developers employed in industry, we compared the419

manual labels of randomly selected commits to those obtained automatically in the FSE paper. We420

selected a random subset of 400 commits via the following protocol. First, randomly sample 20421

projects. In these projects, randomly sample 10 commits labeled as bug-fixing and 10 commits not422

labeled as bug-fixing. Enlisting help from 10 independent developers employed in industry, we423

omitted the commits’ bugfix labels and divided them equally among the ten experts. Each commit424

was manually given a new binary bugfix label by 3 of the experts, according to their best judgment.425

Commits with at least 2 bugfix votes were considered to be bug fixes. The review suggested a false426

positive rate of 36%; i.e., 36% of the commits that the original study considered as bug-fixing were427

in fact not. The false negative rate was 11%. Short of relabeling the entire dataset manually, there428

was nothing we could do to improve the labeling accuracy. Therefore, we chose an alternative route429

and took labeling inaccuracy into account as part of the statistical modeling and analysis.430

2https://github.com/github/linguist
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Fig. 5. Commits and bug-fixing commits after cleaning, plotted with a 95% confidence interval.

We give five examples of commits that were labeled as bug fixing in the FSE paper but were 431

deemed by developers not to be bug fixes. Each line contains the text of the commit, underlined 432

emphasis is ours and indicates the likely reason the commit was labeled as a bug fix (when apparent), 433

and the URL points to the commit in GitHub: 434

• tabs to spaces formatting fixes. 435

https://langstudy.page.link/gM7N 436

• better error messages. 437

https://langstudy.page.link/XktS 438

• Converted CoreDataRecipes sample to MagicalRecordRecipes sample application. 439

https://langstudy.page.link/iNhr 440

• [core] Add NIError.h/m. 441

https://langstudy.page.link/n7Yf 442

• Add lazyness to infix operators. 443

https://langstudy.page.link/2qPk 444

Unanimous mislabelings (when all three developers agreed) constituted 54% of the false positives. 445

To control for random interrater agreement, we compute Cohen’s Kappa coefficient. We calculate 446

kappa coefficients for all pairs of raters on the subset of commits they both reviewed. All values 447

were positive with a median of 0.6. Within the false positives, most of the mislabeling arose because 448

words that were synonymous with or related to bugs (e.g., “fix” and “error”) were found within 449

substrings or matched completely out of context. A meta-analysis of the false positives suggests 450

the following six categories: 451

(1) Substrings; 452

(2) Non-functional: meaning-preserving refactoring, e.g. changes to variable names; 453

(3) Comments: changes to comments, formatting, etc.; 454

(4) Feature: feature enhancements; 455

(5) Mismatch: keywords used in an unambiguous non-bug context (e.g., “this isn’t a bug”); 456

(6) Hidden features: new features with unclear commit messages. 457
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The original study clarified that its classification, which involved identifying bugfixes by only458

searching for error-related keywords came from [19]. However, that work classified modification459

requests with an iterative, multi-step process, which differentiates between six different types460

of code changes through multiple keywords. It is possible that this process was planned but not461

completed in the FSE publication.462

It is noteworthy that the above concerned are well known in the software engineering community.463

Since the Mockus and Votta paper [19], a number of authors have observed that using keywords464

appearing in commit message is error prone, and that biased error messages can lead to erroneous465

conclusions [2, 12, 28] (paper [2] has amongst its authors two of the authors of FSE’14). Yet, keyword466

based bug-fix detection is still a common practice [3, 6].467

4.2 Methods: Statistical Modeling468

The reanalysis uncovered several methodological weaknesses in the statistical analyses of the469

original manuscript.470

4.2.1 Zero-sum contrasts. The original manuscript chose to code the programming languages with471

weighted contrasts. Such contrasts interpret the coefficients of the Negative Binomial Regression as472

deviations of the log-expected number of bug-fixing commits in a language from the average of the473

log-expected number of bug-fixing commits in the dataset. Comparison to the dataset average is474

sensitive to changes in the dataset composition, makes the reference unstable, and compromises the475

interpretability of the results. This is particularly important when the composition of the dataset is476

subject to uncertainty, as discussed in Sec. 4.1 above. A more common choice is to code factors such477

as programming languages with zero-sum contrasts [17]. This coding interprets the parameters as478

the deviations of the log-expected number of bug-fixing commits in a language from the average of479

log-expected number of bug-fixing commits between the languages. It is more appropriate for this480

investigation.481

4.2.2 Multiplicity of hypothesis testing. A common mistake in data-driven software engineering482

is to fail to account for multiple hypothesis testing [27]. When simultaneously testing multiple483

hypotheses, some p-values can fall in the significance range by random chance. This is certainly484

true for Negative Binomial Regression, when we simultaneously test 16 hypotheses of coefficients485

associated with 16 programming languages being 0 [17]. Comparing 16 independent p-values to a486

significance cutoff of, say, 0.05 in absence of the associations implies the family-wise error rate487

(i.e., the probability of at least one false positive association) FWER = 1 − (1 − 0.05)16 = 0.56. The488

simplest approach to control FWER is the method of Bonferroni, which compares the p-values to the489

significance cutoff divided by the number of hypotheses. Therefore, with this approach, we viewed490

the parameters as “statistically significant” only if their p-values were below 0.01/16 = .000625.491

The FWER criterion is often viewed as overly conservative. An alternative criterion is the False492

Discovery Rate (FDR), which allows an average pre-specified proportion of false positives in the list493

of “statistically significant” tests. For comparison, we also adjusted the p-values to control the FDR494

using the method of Benjamini and Hochberg [1]. An adjusted p-value cutoff of, say, 0.05 implies495

an average 5% of false positives in the “statistically significant” list.496

As we will show next, for our dataset, both of these techniques agree in that they decrease the497

number of statistically significant associations between languages and defects by one (Ruby is not498

significant when we adjust for multiple hypothesis testing).499

4.2.3 Statistical significance versus practical significance. The FSE paper focused on the statistical500

significance of the regression coefficients. This is quite narrow, in that the p-values are largely501

driven by the number of observations in the dataset [11]. Small p-values do not necessarily imply502
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practically important associations [4, 30]. In contrast, practical significance can be assessed by 503

examining model-based prediction intervals [17], which predict future commits. Prediction intervals 504

are similar to confidence intervals in reflecting model-based uncertainty. They are different from 505

confidence intervals in that they characterize the plausible range of values of the future individual 506

data points (as opposed to their mean). In this case study, we contrasted confidence intervals and 507

prediction intervals derived for individual languages from the Negative Binomial Regression. As 508

above, we used the method of Bonferroni to adjust the confidence levels for the multiplicity of 509

languages. 510

4.2.4 Accounting for uncertainty. The FSE analyses assumed that the counts of bug-fixing commits 511

had no error. However, labeling of commits is subject to uncertainty: the heuristic used to label 512

commits has many false positives, which must be factored into the results. A relatively simple 513

approach to achieve this relies on parameter estimation by a statistical procedure called the 514

bootstrap [17]. We implemented the bootstrap with the following three steps. First, we sampled 515

with replacement the projects (and their attributes) to create resampled datasets of the same size. 516

Second, the number of bug-fixing commits bcommits∗i of project i in the resampled dataset was 517

generated as the following random variable: 518

bcommits∗i ∼ Binom(size = bcommitsi , prob = 1 − FP) + Binom(size = (commitsi − bcommitsi ), prob = FN)

519where FP=36% and FN=11% (Section 4.1). Finally, we analyzed the resampled dataset with Negative 520

Binomial Regression. The three steps were repeated 100,000 times to create the histograms of 521

estimates of each regression coefficients. Applying the Bonferroni correction, the parameter was 522

viewed as statistically significant if 0.01/16th and (1-0.01)/16th quantiles of the histograms did not 523

include 0. 524

4.3 Results 525

Table 6(b-e) summarizes the re-analysis results. The impact of the data cleaning, without multiple 526

hypothesis testing, is illustrated by column (b). Grey cells indicate disagreement with the conclusion 527

of the original work. As can be seen, the p-values for C, Objective-C, JavaScript, TypeScript, PHP, 528

and Python all fall outside of the “significant” range of values, even without the multiplicity 529

adjustment. Thus, 6 of the original 11 claims are discarded at this stage. Column (c) illustrates the 530

impact of correction for multiple hypothesis testing. Controlling the FDR increased the p-values 531

slightly, but did not invalidate additional claims. However, FDR comes at the expense of more 532

potential false positive associations. Using the Bonferroni adjustment does not change the outcome. 533

In both cases, the p-value for one additional language, Ruby, loses its significance. 534

Table 6, column (d) illustrates the impact of coding the programming languages in the model 535

with zero-sum contrasts. As can be seen, this did not qualitatively change the conclusions. Table 6(e) 536

summarizes the average estimates of coefficients across the bootstrap repetitions, and their standard 537

errors. It shows that accounting for the additional uncertainty further shrunk the estimates closer 538

to 0. In addition, Scala is now out of the statistically significant set. 539

Prediction intervals. Even though some of the coefficients may be viewed as statistically signifi- 540

cantly different from 0, they may or may not be practically significant. We illustrate this in Fig. 6. 541

The panels of the figure plot model-based predictions of the number of bug-fixing commits as 542

function of commits for two extreme cases: C++ (most bugs) commits) and Clojure (least bugs). 543

Age, size, and number of developers were fixed to the median values in the revised dataset. Fig. 6(a) 544

plots model-based confidence intervals of the expected values, i.e., the estimated average numbers 545

of bug-fixing commits in the underlying population of commits, on the log-log scale considered 546

by the model. The differences between the averages were consistently small. Fig. 6(b) displays 547
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Table 6. Negative Binomial Regression for Languages (grey indicates disagreement with the conclusion of
the original work)

Original Authors Reanalysis
(a) FSE [26] (b) cleaned data (c) pV adjusted (d) zero-sum (e) bootstrap

Coef P-val Coef P-val FDR Bonf Coef Bonf Coef sig.
Intercept -1.93 <0.001 -1.93 <0.001 – – -1.96 – -1.79 *

log commits 2.26 <0.001 0.94 <0.001 – – 0.94 – 0.96 *
log age 0.11 <0.01 0.05 <0.01 – – 0.05 – 0.03
log size 0.05 <0.05 0.04 <0.05 – – 0.04 – 0.03 *
log devs 0.16 <0.001 0.09 <0.001 – – 0.09 – 0.05 *

C 0.15 <0.001 0.11 0.007 0.017 0.118 0.14 0.017 0.08
C++ 0.23 <0.001 0.23 <0.001 <0.01 <0.01 0.26 <0.01 0.16 *
C# 0.03 – -0.01 0.85 0.85 1 0.02 1 0

Objective-C 0.18 <0.001 0.14 0.005 0.013 0.079 0.17 0.011 0.1
Go -0.08 – -0.1 0.098 0.157 1 -0.07 1 -0.04

Java -0.01 – -0.06 0.199 0.289 1 -0.03 1 -0.02
Coffeescript -0.07 – 0.06 0.261 0.322 1 0.09 1 0.04
Javascript 0.06 <0.01 0.03 0.219 0.292 1 0.06 0.719 0.03
Typescript -0.43 <0.001 – – – – – – – –

Ruby -0.15 <0.05 -0.15 <0.05 <0.01 0.017 -0.12 0.134 -0.08 *
Php 0.15 <0.001 0.1 0.039 0.075 0.629 0.13 0.122 0.07

Python 0.1 <0.01 0.08 0.042 0.075 0.673 0.1 0.109 0.06
Perl -0.15 – -0.08 0.366 0.419 1 -0.05 1 0

Clojure -0.29 <0.001 -0.31 <0.001 <0.01 <0.01 -0.28 <0.01 -0.15 *
Erlang 0 – -0.02 0.687 0.733 1 0.01 1 -0.01
Haskell -0.23 <0.001 -0.23 <0.001 <0.01 <0.01 -0.2 <0.01 -0.12 *
Scala -0.28 <0.001 -0.25 <0.001 <0.01 <0.01 -0.22 <0.01 -0.13

the model-based prediction intervals, which consider individual observations rather than averages,548

and characterize the plausible future values of projects’ bug-fixing commits. As can be seen, the549

prediction intervals substantially overlap, indicating that, despite their statistical significance, the550

practical difference in the future numbers of bug-fixing commits is small. Fig. 6(c)-(d) translate the551

confidence and the intervals on the original scale and make the same point.552

4.4 Outcome553

The reanalysis failed to validate most of the claims of [26]. As Table 6(d-f) shows, the multiple554

steps of data cleaning and improved statistical modeling invalidated the significance of 7 out of 11555

languages. Even when the associations are statistically significant, their practical significance is556

small.557

5 FOLLOW UPWORK558

We now list several issues that may further endanger the validity of the causal conclusions of the559

original manuscript. We have not controlled for their impact; we leave that to follow up work.560

5.1 Regression Tests561

Tests are relatively common in large projects. We discovered that 16.2% of files are tests (801,248562

files) by matching file names to the regular expression “*(Test|test)*”. We sampled 100 of these563

files randomly and verified that every one indeed contained regression tests. Tests are regularly564

modified to adapt to changes in API, to include new checks. Their commits may or may not be565

relevant, as bugs in tests may be very different from bugs in normal code. Furthermore, counting566
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Fig. 6. Predictions of bug-fixing commits as function of commits by models in Table 6(c-d) for C++ (most
bugs) and Clojure (least bugs). (a) (1-0.01/16%) confidence intervals for expected values on log-log scale.
(b) Prediction intervals for a future number of bug-fixing commits, represented by 0.01/16 and 1 − 0.01/16
quantiles of the NB distributions with expected values in (a). (c)–(d): translation of the confidence and
prediction intervals to the original scale.

tests could lead to double counting bugs (that is, the bug fix and the test could end up being two 567

commits). Overall, more study is required to understand how to treat tests when analyzing large 568

scale repositories. 569

5.2 Distribution of Labeling Errors 570

Given the inaccuracy of automated bug labeling techniques, it is quite possible that a significant 571

portion of the bugs being analyzed are not bugs at all. We have shown how to accommodate for 572

that uncertainty, but our correction assumed a somewhat uniform distribution of labeling errors 573

across languages and projects. Of course, there is no guarantee that labeling errors have a uniform 574

distribution. Error rates may be influenced by practices such as using a template for commits. 575

For instance, if a project used the word issue in their commit template, then automated tools 576

would classify all commits from that project as being bugs. To take a concrete example, consider 577

the DesignPatternsPHP project: it has 80% false positives, while more structured projects such as 578

tengine have only 10% false positives. Often, the indicative factor was as mundane as the wording 579

used in commit messages. The gocode project, the project with the most false negatives, at 40%, 580

“closes” its issues instead of “fixing” them. Mitigation would require manual inspection of commit 581

messages and sometimes even of the source code. In our experience, professional programmers 582
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can make this determination in, on average, 2 minutes. Unfortunately, this would translate to 23583

person-months to label the entire corpus.584

5.3 Project selection585

Using GitHub stars to select projects is fraught with perils as the 18 variants of bitcoin included586

in the study attest. Projects should be representative of the language they are written in. The587

PHPDesignPatterns is an educational compendium of code snippets; it is quite likely that is does588

represent actual PHP code in the wild. The DefinitelyTyped TypeScript project is a popular list of589

type signatures with no runnable code; it has bugs, but they are mistakes in the types assigned to590

function arguments and not programming errors. Random sampling of GitHub projects is not an591

appropriate methodology either. GitHub has large numbers of duplicate and partially duplicated592

projects [18] and too many throwaway projects for this to yield the intended result. To mitigate this593

threat, researchers must develop a methodology for selecting projects that represent the population594

of interest. For relatively small numbers of projects, less than 1,000, as in the FSE paper, it is595

conceivable to curate them manually. Larger studies will need automated techniques.596

5.4 Project provenance597

GitHub public projects tend to be written by volunteers working in open source rather than by598

programmers working in industry. The work on many of these projects is likely done by individuals599

(or collections of individuals) rather than by close knit teams. If this is the case, this may impact the600

likelihood of any commit being a bug fix. One could imagine commercial software being developed601

according to more rigorous software engineering standards. To mitigate for this threat, one should602

add commercial projects to the corpus and check if they have different defect characteristics. If this603

is not possible, then one should qualify the claims by describing the characteristics of the developer604

population.605

5.5 Application domain606

Some tasks, such as system programming, may be inherently more challenging and error prone than607

others. Thus, it is likely that the source code of an operating system has different characteristics608

in terms of errors than that of a game designed to run in a browser. Also, due to non-functional609

requirements, the developers of an operating systemmay be constrained in their choice of languages610

(typically unmanaged system languages). The results reported in the FSE paper suggest that this611

intuition is wrong. We wonder if the choice of domains and the assignment of projects to domains612

could be an issue. A closer look may yield interesting observations.613

5.6 Uncontrolled influences614

Additional sources of bias and confounding should be appropriately controlled. The bug rate (num-615

ber of bug-fixing commits divided by total commits) in a project can be influenced by the project’s616

culture, the age of commits, or the individual developers working on it. Consider Fig. 7, which617

shows that project ages are not uniformly distributed: some languages have been in widespread618

use longer than others. The relation between age and its bug rate is subtle. It needs to be studied,619

and age should be factored into the selection of projects for inclusion in the study. Fig. 8 illustrates620

the evolution of the bug rate (with the original study’s flawed notion of bugs) over time for 12621

large projects written in various languages. While the projects have different ages, there are clear622

trends. Generally, bug rates decrease over time. Thus, older projects may have a smaller ratio of623

bugs, making the language they are written in appear less error-prone. Lastly, the FSE paper did624

not control for developers influencing multiple projects. While there are over 45K developers, 10%625

of these developers are responsible for 50% of the commits. Furthermore, the mean number of626
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Fig. 7. Bug rate vs. project age. Lines indicate means of project age (x-axis) and bug rate (y-axis).

projects that a developer commits to is 1.2. This result indicates that projects are not independent. 627

To mitigate those threats, further study is needed to understand the impact of these and other 628

potential biases, and to design experiments that take them into account. 629

5.7 Relevance to the RQ 630

The FSE paper argues that programming language features are, in part, responsible for bugs. Clearly, 631

this only applies to a certain class of programming errors: those that rely on language features. It is 632

unclear if bugs related to application logic or characteristics of the problem domain are always 633

affected by the programming language. For example, setting the wrong TCP port on a network 634

connection is not a language-related bug, and no language feature will prevent that bug,whereas 635

passing an argument of the wrong data type may be if the language has a static type system. It is 636

eminently possible that some significant portion of bugs are in fact not affected by language features. 637

To mitigate this threat, one would need to develop a new classification of bugs that distinguishes 638

between bugs that may be related to the choice of language and those that are not. It is unclear 639

what attributes of a bug would be used for this purpose and quite unlikely that the process could 640

be conducted without manual inspection of the source code. 641

6 BEST PRACTICES 642

The lessons from this work mirror the challenges of reproducible data science. While these lessons 643

are not novel, they may be worth repeating. 644
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Fig. 8. Monthly avg. bug rate over lifetime. Points are % of bug-labeled commits, aggregated over months.

6.1 Automate, document, and share645

The first lesson touches upon the process of collecting, managing, and interpreting data. Real-world646

problems are complex, and produce rich, nuanced, and noisy datasets. Analysis pipelines must be647

carefully engineered to avoid corruption, errors, and unwarranted interpretations. This turned out648

to be a major hurdle for the FSE paper. Uncovering these issues on our side was a substantial effort649

(approximately 5 person-months).650

Data science pipelines are often complex: they use multiple languages, and perform sophisticated651

transformations of the data to eliminate invalid inputs and format the data for analysis. For instance,652

this paper relies on a combination of JavaScript, R, shell, and Makefiles. The R code contains over 130653

transformation operations over the input table. Such pipelines can contain subtle errors—one of654

the downsides of statistical languages is that they almost always yield a value. Publications often655

do not have the space to fully describe all the statistical steps undertaken. For instance, the FSE656

paper did not explain the computation of weights for NBR in sufficient detail for reproduction.657

Access to the code was key to understanding. However, even with the source code, we were not658

able to repeat the FSE results—the code had suffered from bit rot and did not run correctly on the659

data at hand. The only way forward is to ensure that all data analysis studies be (a) automated, (b)660

documented, and (c) shared. Automation is crucial to ensure repetition and that, given a change661

in the data, all graphs and results can be regenerated. Documentation helps understanding the662

analysis. A pile of inscrutable code has little value.663
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6.2 Apply domain knowledge 664

Work in this space requires expertise in a number of disparate areas. Domain knowledge is critical 665

when examining and understanding projects. Domain experts would have immediately taken 666

issue with the misclassifications of V8 and bitcoin. Similarly, the classification of Scala as a purely 667

functional language or of Objective-C as a manually managed language would have been red flags. 668

Finally, given the subtleties of Git, researchers familiar with that systemwould likely have counseled 669

against simply throwing away merges. We recognize the challenge of developing expertise in all 670

relevant technologies and concepts. At a minimum, domain experts should be enlisted to vet claims. 671

6.3 Grep considered harmful 672

Simple bug identification techniques are too blunt to provide useful answers. This problem was 673

compounded by the fact that the search for keywords did not look for words and instead captured 674

substrings wholly unrelated to software defects. When the accuracy of classification is as low as 675

36%, it becomes difficult to argue that results with small effect sizes are meaningful as they may be 676

indistinguishable from noise. If such classification techniques are to be employed, then a careful 677

post hoc validation by hand should be conducted by domain experts. 678

6.4 Sanitize and validate 679

Real-world data is messy. Much of the effort in this reproduction was invested in gaining a thorough 680

understanding of the dataset, finding oddities and surprising features in it, and then sanitizing 681

the dataset to only include clean and tidy data [10]. For every flaw that we uncovered in the 682

original study and documented here, we developed many more hypotheses that did not pan out. 683

The process can be thought of as detective work—looking for clues, trying to guess possible culprits, 684

and assembling proof. 685

6.5 Be wary of p-values 686

Our last advice touches upon data modeling, and model-based conclusions. Complicated problems 687

require complicated statistical analyses, which in turn may fail for complicated reasons. A narrow 688

focus on statistical significance can undermine results. These issues are well understood by the 689

statistical community, and are summarized in a recent statement of the American Statistical 690

Association [30]. The statement makes points such as “Scientific conclusions should not be based 691

only on whether a p-value passes a specific threshold” and “A p-value, or statistical significance, does 692

not measure the importance of a result.” The underlying context, such as domain knowledge, data 693

quality, and the intended use of the results, are key for the validity of the results. 694

7 CONCLUSION 695

The Ray et al. work aimed to provide evidence for one of the fundamental assumptions in program- 696

ming language research, which is that language design matters. For decades, paper after paper was 697

published based on this very assumption, but the assumption itself still has not been validated. The 698

attention the FSE and CACM papers received, including our reproduction study, directly follows 699

from the community’s desire for answers. 700

Unfortunately, our work has identified numerous and serious methodological flaws in the FSE 701

study that invalidated its key result. Our intent is not to blame. Statistical analysis of software based 702

on large-scale code repositories is challenging. There are many opportunities for errors to creep in. 703

We spent over 6 months simply to recreate and validate each step of the original paper. Given the 704

importance of the questions being addressed, we believe it was time well spent. Our contribution 705

not only sets the record straight, but more importantly, provides thorough analysis and discussion 706
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of the pitfalls associated with statistical analysis of large code bases. Our study should lend support707

both to authors of similar papers in the future, as well as to reviewers of such work.708

After data cleaning and a thorough reanalysis, we have shown that the conclusions of the FSE and709

CACM papers do not hold. It is not the case that eleven programming languages have statistically710

significant associations with bugs. An association can be observed for only four languages, and711

even then, that association is exceedingly small. Moreover, we have identified many uncontrolled712

sources of potential bias. We emphasize that our results do not stem from a lack of data, but rather713

from the quality of the data at hand.714

Finally, we would like to reiterate the need for automated and reproducible studies. While715

statistical analysis combined with large data corpora is a powerful tool that may answer even716

the hardest research questions, the work involved in such studies—and therefore the possibility717

of errors—is enormous. It is only through careful re-validation of such studies that the broader718

community may gain trust in these results and get better insight into the problems and solutions719

associated with such studies.720
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