
6

Atomicity Refinement for Verified Compilation

SURESH JAGANNATHAN, Purdue University
VINCENT LAPORTE, Université Rennes 1 / IRISA
GUSTAVO PETRI, Purdue University
DAVID PICHARDIE, ENS Rennes / IRISA / INRIA
JAN VITEK, Purdue University

We consider the verified compilation of high-level managed languages like Java or C# whose intermediate
representations provide support for shared-memory synchronization and automatic memory management.
Our development is framed in the context of the Total Store Order relaxed memory model. Ensuring complier
correctness is challenging because high-level actions are translated into sequences of nonatomic actions with
compiler-injected snippets of racy code; the behavior of this code depends not only on the actions of other
threads but also on out-of-order executions performed by the processor. A naı̈ve proof of correctness would
require reasoning over all possible thread interleavings. In this article, we propose a refinement-based
proof methodology that precisely relates concurrent code expressed at different abstraction levels, cognizant
throughout of the relaxed memory semantics of the underlying processor. Our technique allows the compiler
writer to reason compositionally about the atomicity of low-level concurrent code used to implement managed
services. We illustrate our approach with examples taken from the verification of a concurrent garbage
collector.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs, Mechanical Verification; D.2.4 [Software Engineering]: Software/Program
Verification, Correctness Proofs, Formal Methods, Reliability; D.3.4 [Programming Languages]: Proces-
sors, Compilers, Optimization; D.1.3 [Concurrent Programming]: Parallel Programming

General Terms: Languages, Reliability, Security, Verification

Additional Key Words and Phrases: Verified compilation, managed languages, concurrency, garbage collec-
tion, compiler transformations and optimizations, refinement, atomicity, mechanized proof assistant (Coq)

ACM Reference Format:
Suresh Jagannathan, Vincent Laporte, Gustavo Petri, David Pichardie, and Jan Vitek. 2014. Atomicity
refinement for verified compilation. ACM Trans. Program. Lang. Syst. 36, 2, Article 6 (April 2014), 30 pages.
DOI: http://dx.doi.org/10.1145/2601339

1. INTRODUCTION

Managed languages provide intrinsic support for concurrency at several levels. Appli-
cations can express concurrent computations using threads and synchronization prim-
itives. Additionally, to improve scalability or performance, elements of the language
implementation itself may run concurrently with application threads. The interactions
between application threads and the language runtime system such as the garbage
collector are regulated by compiler-injected code snippets. Example of snippets include

This work is supported by the National Science Foundation, under grants: 1216613 and 1318227.
Authors’ addresses: Suresh Jagannathan, Gustavo Petri, and Jan Vitek, Computer Science Department,
Purdue University, 305 N. University Street, 47907 West Lafayette, IN. USA; Vincent Laporte and David
Pichardie, INRIA, Projet Celtique, Campus de Beaulieu, 35042 Rennes Cedex, France.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 0164-0925/2014/04-ART6 $15.00

DOI: http://dx.doi.org/10.1145/2601339

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

http://dx.doi.org/10.1145/2601339
http://dx.doi.org/10.1145/2601339

6:2 S. Jagannathan et al.

allocation fast paths, read and write barriers, synchronization fences, and data ini-
tialization checks. The code injected by the compiler is sophisticated, often racy, and
must operate correctly in the presence of program transformations, both local and
global. The complexities of modern language runtimes justify the effort of verified
compilation.

However, verifying the correctness of a compiler for languages such as Java or C#
is an ambitious goal. It entails reasoning about the inherently parallel behavior of
operations in the source language as well as the operations introduced by the compiler.
Consider a synchronized block in Java; it is translated to a pair of monitorenter and
monitorexit operations in the bytecode. Acquiring a lock to implement monitorenter
can be modeled as an atomic action that checks the lock’s availability and transfers
ownership if the lock is unowned. The actual implementation uses a spin-lock with the
following sequence of operations:1

repeat

old <- CAS[Lock, 0 -> 1];

current = old;

while (current != 0) do current <- Lock;

until (old == 0)

The code may be interleaved with other threads. The loop first attempts a compare-
and-set to acquire the lock: a CAS[X,e->n] statement atomically reads X, compares its
value to the expression e and, if they are equal, writes n into it; it always returns the
value read. If the lock was not held, control exits the loop. Otherwise, the loop will retry
as long as the lock is held.

An abstract definition that is closer to the bytecode semantics could be expressed as
follows. Consider this a specification of the low-level implementation:

atomic(assume(Lock == 0); Lock := 1)

In the aforementioned snippet, atomic executes only if the assume holds. This specifi-
cation guarantees that no action by other threads on Lock can take place between the
assume statement and the assignment. While easier to reason about, it is impractical
to implement. So, the low-level version is efficient, but proving it implements moni-
torenter is difficult. Clearly, proving any invariant would be easier using the high-level
specification because there are fewer interleavings to consider. In other words, the low-
level implementation exposes fine-grained behavior, while the high-level specification
reflects a coarser granularity. We propose to mitigate the dichotomy between low-level
implementations and high-level specifications by establishing a refinement predicate
that relates the “high” and “low” definitions of concurrent code. Informally, we say that
a low-level statement l refines a high-level one h if the execution of both l and h starting
from the same state leads to the same final state; furthermore, if executing l admits a
trace tr of interleaved actions of other threads, then tr must be admissible as a feasible
trace under the execution of h. This notion of refinement guarantees the equivalence of
high- and low-level code. Given a high-level specification h that captures the atomicity
properties implicit in l, the refinement predicate helps the compiler writer devise a
proof that l refines h.

Verification Challenge. While recent years have seen progress in compiler verifica-
tion, much of this work has been for sequential languages [Leroy 2009]. The basic

1Capitalized variables refer to objects allocated in shared memory, lowercase variables refer to thread-local
objects or registers, “=” is a local or register move, “<-” loads from a shared variable, and “:=” stores into a
shared variable.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:3

correctness argument requires proving that any behavior admitted by the compiled
program is also admitted by the source. This is typically shown by a backward sim-
ulation proof between target and source language semantics. Assuming the source
program is safe, a backward simulation demonstrates that any observable behavior
produced by the target program is a valid observable behavior of the source pro-
gram as defined by the source language semantics [Leroy 2009]. Demonstrating such
a simulation is complicated by the presence of concurrency. While there are success
stories [Ševčı́k et al. 2011; Leroy et al. 2012], these efforts have focused on a sub-
set of C [Leroy 2009]. A fundamental characteristic of the C language is that indi-
vidual memory accesses performed by source programs are compiled into individual
memory accesses at the low-level target. This property makes a standard simulation
argument tractable. On the other hand, managed languages often compile a single
source memory access to multiple low-level memory accesses, as a result of code in-
jected by the compiler. For example, Java compilers typically inject write barriers
before each field update to support garbage collection. Indeed, an implementation
of write barriers, such as the one defined by the DLG collector [Doligez and Leroy
1993], uses a nontrivial protocol to communicate with the garbage collector thread
and serves to notify that changes are being done in the object graph. Dealing with
concurrency is thus quite challenging because it requires proving concurrent invari-
ants of the underlying implementation of the compiler and runtime system, internal
data structures, and communication protocols. The details of these protocols are not
visible to the high-level source. Consequently, a naı̈ve approach to verification of in-
jected concurrent code fragments is not scalable using a standard backward simulation
argument.

Atomicity Refinement. To address this challenge, we propose an atomicity refine-
ment methodology that coarsens the granularity of injected code, therefore simplifying
the overall verification of the compiler infrastructure. Our approach facilitates the
modular expression of such proofs, making a backward simulation argument feasi-
ble by establishing the equivalence of fine-grained and coarse-grained representations
of concurrency operations, in isolation of the other components in the program. Our
refinement enables a simulation argument similar to the ones used to demonstrate
the correctness of sequential optimizations and hence allows such arguments to be
effectively applied to potentially racy, lock-free, concurrent code. Our approach is mo-
tivated by the premise that establishing that the high-level specification captures the
behavior defined by the source program is substantially easier than directly proving
the correspondence between low-level target code and source code.

Relaxed Memory. A fundamental premise of our development is that performance
must not be affected. Indeed, if this was not a concern, we could use the DRF-0 [Adve
and Hill 1990] programming discipline, which guarantees Sequential Consistency (SC)
in the absence of data races. However, disallowing data races requires synchronizing
access to share data. This would have significant costs. Consider the example of a write
barrier injected by a Java compiler before every memory update operation. Imposing
synchronization on those barriers would mean that every write in the source Java pro-
gram would be preceded by a synchronization. All production Java compilers emit racy
code in barriers. Therefore, it is mandatory to consider the underlying relaxed memory
model of the architecture. There are techniques to relate programs with different atom-
icity granularities in the context of an SC memory model [Elmas et al. 2009; Turon
and Wand 2011; Liang et al. 2012a]. However, imposing SC semantics on executions
operating within a relaxed memory setting such as Total Store Order (TSO), would ei-
ther be erroneous or impact performance. To illustrate, consider Dekker’s algorithm, a
technique to enforce mutual exclusion between two threads. Here, i ∈ {0, 1} represents

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:4 S. Jagannathan et al.

the thread identifier.

Flag[i] := true;

atomic (while (Flag[1 - i]) do skip;

Critical Section);

Flag[i] := false

Assuming SC, existing techniques can verify that an implementation without the
atomic block refines one that includes it. This is incorrect under TSO because stores
may be buffered: thus, the update to Flag[i] performed by one thread may not be
visible to the read of Flag[1-i] by the other. Techniques proved sound for SC are not
sufficient when dealing with TSO-like architectures. As a side note, we remark that the
converse is true: all sound analysis of TSO code are clearly sound analysis of the same
code under SC, since the nondeterministic behavior of TSO buffers implies that SC
traces are but a subset of the traces considered for a TSO analysis. One could imagine
imposing SC on programs running in a TSO-like architecture by adding fence instruc-
tions after each store. However, this would degrade performance. The TSO memory
model supports programming idioms based on publication where a shared variable is
used as a flag to indicate that some changes have been made observable. The following
is a canonical example (ignoring the commented annotations for an instant):

Data := ...; // @Local
Flag := true

‖ while (! Flag) do skip;
r <- Data; // @Local

(1)

The code uses the shared variable Flag to communicate the availability of Data across
threads. Although the idiom contains a data race on Flag, the read of Data is guaranteed
to witness the update done by the other thread. No synchronization or fence required.
Of course, if a third thread was to modify both Data and Flag, the guarantee could be
violated. This shows that we must be able to capture invariants about the behavior
of the environment. Our methodology allows injected code to be annotated with rely
conditions [Vafeiadis and Parkinson 2007; Dodds et al. 2009]; the @Local annotations
declare assumptions that the memory location being stored (respectively, being read)
will not be read or written by the environment (respectively, will not be written). In the
example, both threads respect the @Local annotations through the publication protocol.
These annotations have no runtime effect; they serve to enable refinements that would
otherwise not be sound. In particular, if we know that no other thread can observe
an intermediate state, one can soundly assume that the subsequent instructions are
atomic with respect to the environment and, therefore, can be refined to a coarser
atomic block. Hence, annotations enable “thread-modular” reasoning about the global
interferences of the system. Section 5 explains how to prove their correctness.

Contribution. We present a proof methodology to verify the correctness of compiler
translations from a high-level Java-like Intermediate Representation (IR) with object
allocation, field access, thread creation and synchronization to a low-level structured
Register Transfer Language (RTL) representation expressed in an IR called RTLI . The
RTLI IR is patterned after CompCertTSO’s [Ševčı́k et al. 2013] RTL, an IR that ex-
presses unstructured control flow graphs, additionally allowing the expression of high-
and low-level statements; these statements are expressed in a structured language
called I (for Inject). Our methodology is based on an expressive notion of refinement
that enables lightweight compositional reasoning of concurrent and racy code within
a verified compiler framework. We concentrate on the code that is injected by the
compiler to support services such as allocators, collectors, synchronization, and so on.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:5

Fig. 1. Atomic increment of a shared variable.

Our work is part of a larger effort to verify a realistic Java implementation integrated
within the CompCertTSO verified compiler stack [Ševčı́k et al. 2013]. The refinement
technique supports TSO relaxed memory semantics to allow the verification of low-level
concurrent code in the context of x86 multiprocessors.

The remainder of the article is structured as follows. In the next section, we provide a
motivating example. Section 3 gives an overview of our approach. Section 3.1 describes
the refinement rules that enable the sound transformation from low-level code to high-
level specifications. Section 4 discusses uses and benefits of the refinement methodology
to verify the translation of the major components in a concurrent garbage collector.
Section 5 formalizes the approach. Related work and conclusions are given in Sections 6
and 7.

2. MOTIVATION

We illustrate our approach with a program that atomically increments a shared vari-
able. We start from the Java-like source language of Figure 1(a) and aim to compile
this code to the RTL program of Figure 1(d) where the abstract locking operations are
fully explicited. To directly verify that the RTL code only admits the behaviors permit-
ted by the source program is challenging given the inherently racy execution of the
statements responsible for acquiring the lock. As an example, consider the simulation
between source and target programs shown in Figure 2. There, we have three threads
executing the same RTL code. The simulation is clearly complex, with alignment of

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:6 S. Jagannathan et al.

Fig. 2. A backward simulation must match and align program states under source and target semantics.
The numbers refer to statements in the RTL program of Figure 1(d).

source and target states often skewed by many intermediate steps. Our methodology
allows these states to be more cleanly and straightforwardly aligned by introducing
two extra translation steps: a high-level specification shown in Figure 1(b) and a low-
level implementation shown in Figure 1(c). The low-level implementation expresses
the implementation of atomic actions in term of low-level atomic memory operations
and structured control-flow via loop and repeat statements. Significantly, Figure 1(c)
shows that statement (1) is isolated from the other operations in the program. We use
this IR as our compilation target.

Our refinement methodology systematically “lifts” low-level code to its higher-level
counterpart. Since the low-level includes loops with complex bodies, lifting is performed
systematically, with each step accompanied by a proof of equivalence, along with com-
positional rules (the core of our contribution) that validate their aggregation. Once this
equivalence is established, the low-level nonatomic code fragment can be replaced by
the high-level atomic version. To illustrate, consider statement (1). Using our refine-
ment predicate, we can express the outer repeat statement in terms of higher-level
unconditional loop and assume operations:

loop {
old <- CAS[Lock, 0 ->1];
current = old;
while (current != 0) do current <- Lock;
assume(old != 0)

}
old <- CAS[Lock, 0 -> 1];
current = old;
while (current != 0) do current <- Lock;
assume(old == 0);

The loop construct captures the notion of acquisition failure. The statements after
loop capture the notion of success; an acquisition succeeds if the value returned by
the CAS operation indicates the lock was unheld when the operation was performed.
Observe that as long as the loop eventually terminates (i.e., as long as the lock is
finally acquired), the actions performed in the loop are irrelevant to understanding the
correctness of the code with respect to the high-level definition. In other words, if we
consider possible iterations of this loop, the only ones able to match with the high-level
executions are those in which the loop does not execute.

Our methodology provides a set of meaning-preserving transformation rules that
allow us to simplify the program to eliminate actions not reflected in the specification.
Consider the two assume statements. Any execution in which these assertions hold

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:7

is equivalent to executions of a program in which they are lifted above independent
statements. This means we can move the assume statements to immediately follow
their respective CAS operations that set the value of old:

loop {
old <- CAS[Lock, 0 -> 1]; assume(old != 0);

current = old;

while (current != 0) do current <- Lock

}
old <- CAS[Lock, 0 -> 1]; assume(old == 0);

current = old;

while (current != 0) do current <- Lock

Regardless of the actions of other threads that may concurrently manipulate Lock, the
validity of the assume positioned immediately after the CAS must be the same as its
validity in the original example. The resulting specification contains two interesting
CAS patterns that can be further simplified using compositional rules available to the
compiler writer. First, a sequence

x <- CAS(Lock, old -> new); assume(x != old)

can be replaced by: fence; x <- Lock. Since the assumption holds precisely when
Lock is held by another thread, the effect of the CAS operation is guaranteed to be a
simple load of the current value of Lock after flushing the store buffer; as before, this
transformation only involves local reasoning, and is not affected by the actions of other
threads, which are guaranteed in any successful execution to not violate the conditions
checked by the assumption. Second, a successful lock acquisition:

x <- CAS(Lock, old -> new); assume(x == old)

can be replaced by

atomic {x <- Lock; assume (x == old); Lock := new }
We anticipate here that the atomic statements implicitly have a TSO fencing semantics
at the end. The reasoning that establishes the correctness of this transformation is
as before: if the assumption holds, which it must for any successful execution, then
the CAS operation must have succeeded, and the value of Lock must be new. Since the
CAS operation executes a read-modify-write operation atomically, we can expose the
sequence explicitly. We thus obtain

loop {
fence; old <- Lock;

current = old;

while (current != 0) do current <- Lock

}
atomic { old <- Lock; assume(old==0); Lock := 1 }
current = old;

while (current != 0) do current <- Lock;

This specification can, in turn, be further simplified because the loop block only modifies
dead variables (i.e., local variables that are never used before being redefined) and the

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:8 S. Jagannathan et al.

Fig. 3. Syntax of I.

last two lines only modify a variable that is not used subsequently. The fence action is
clearly dominated by the following atomic which also makes it dead code.

atomic { old <- Lock; assume(old == 0); Lock := 1 }
This specification captures the behavior of all executions in which a lock that is initially
unheld is acquired by the executing thread. By simply eliminating the use of the local
variable old, we get the high-level specification found at statement (1) in Figure 1(b):

atomic { assume(Lock == 0); Lock := 1}
In the context of our example, this equivalence establishes the correctness of the trans-
lation of statement (1) in Figure 1(c) with the specification found in statement (1) of
Figure 1(b). Assuming the specification is correct, the task of constructing a backward
simulation proof that the target program admits the behaviors allowed by the source
is significantly simpler given the semantic closeness of the specification (Figure 1(a))
to the source (Figure 1(a)) and the structured RTL (Figure 1(c)) to the unstructured
target (Figure 1(d)).

3. A REFINEMENT-BASED PROOF METHODOLOGY

We base our refinement methodology around the intermediate language I (read “In-
ject”). The pieces of code that need to be injected to the source as part of the compilation,
as well as other parts of the runtime system, are written in I. For instance, the garbage
collector, and the write barriers that are attached to each memory update, are written
in this language. An important aspect of I is its support for coarse-grained atomic
instructions that, while not directly available in the target architecture, are only used
to support our atomicity refinement proofs. As such, there is a sublanguage of I which
contains all the low-level (fine-grained) statements that are directly supported by the
architecture, we denote this language by IL (read “Inject Low”).

Figure 3 presents the I language, with IL restricted to the two first lines of the gram-
mar. IL has mostly standard commands with the exception that all statements operate
on registers, here ranged by the metavariables d, r, o, n and �r representing a sequence
of registers. IL includes skip, sequencing, standard arithmetic and boolean operators,
conditionals, repeat−until loops, loads-from and stores-to memory (where the registers
are assumed to contain memory locations), a compare-and-set statement corresponding
to the CAS instruction found on x86 processors, a fence command for memory ordering
purposes, and an abort command to denote exceptional behavior. Notice that the com-
mands loadν(d, r) and storeν(d, r) have a visibility annotation ν, which can be Local or
empty. This annotation, which has no runtime effect, indicates in the program syntax
that no other thread in the system can modify the references being accessed by the
command. For presentation reasons, in the code snippets we present in the figures of
this article, we will use commentaries of the form “// @Local” to highlight Local mem-
ory accesses. We will describe the usage of these annotations in the refinement rules
below. More unusual are the “high-level” assume, branch, loop, and the coarse-grained
atomic statements that complete the I language. Atomic statements execute disallow-
ing actions from other threads, loops execute their body a nondeterministic number

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:9

Fig. 4. Proof strategy. The shaded portion is enabled via our refinement methodology. RTLI programs are
successively refined to replace low-level statements with high-level ones based on our refinement rules. ←↩

is the basic backward simulation. ⇐ is the backward simulation from refinement.

of times, and branches nondeterministically choose the branch they should execute;
“incorrect” choices simply manifest as failed assumptions (expressed through assume)
in the resulting execution.

We inject terms of I on top of the RTL intermediate representation of the Com-
pCertTSO [Ševčı́k et al. 2011] verified compiler. Thus, some nodes of the RTL language
of CompCertTSO will contain I statements. RTLI (read “RTL-Inject”) is the language
resulting from combining RTL with I. The code in Figures 1(b) and 1(c) are samples of
RTLI where the first node contains I code. The sublanguage that results by combining
RTL with the IL sublanguage of I is denoted RTLI

L .
As shown in Figure 4, our refinement methodology is used to systematically replace

low-level statements in the RTLI
L program (e.g., cas and repeat statements) with the

high-level statements (e.g., atomic and assume) of RTLI . Figure 1 is an example of this
process.

3.1. Refinement Rules

Given a low-level statement sl defined as part of the translation, we must construct
a high-level statement that matches a provided specification sh, defined in terms of
atomic, assume, loop, branch, and sequence commands; and a proof that sl refines sh
(written sl � sh). The statement sl is a proper implementation of sh whenever the
visibility annotations of sl hold. (We provide a formal definition of this relation in
Section 5.3.) To ease the construction of such proofs, we provide a set of compositional
rules that can be applied interactively using the Coq proof assistant. These rules avoid
the need to modify the semantics of any intermediate representation. We show an
excerpt of selected rules provided in our development in Figure 5.

The rule TRANS establishes the obvious transitivity property of refinement. IFBRANCH

and REPEAT allow control structures to be replaced by a combination of assume, loop,
and branch statements. For example, a repeat statement can be refined into one that
executes its body a nondeterministic number of times, verifying that the terminating
condition is not satisfied, and a terminating iteration where the condition is satisfied.
IFATOMIC allows an if whose branches are atomic to be transformed into an atomic if.

The CAS-FAIL rule establishes a refinement between a failed CAS operation and a
load operation that reads the contents of the location in register r into the destination
register d. As in x86-TSO, the load performed by the CAS must be preceded by a fence
command. A CAS fails when the presumed old value is not the same as the value read.
Thus, the sequence of low-level statements that performs the CAS and then assumes
the failing condition is a refinement of a simple load on the location. In contrast, a
successful CAS must atomically store the new value into the location, assuming the
location still contains the presumed old value (CAS-SUCCESS). Notice that unlike CAS-
FAIL, the CAS-SUCCESS rule does not require a fence. This is because the semantics
of atomic blocks implicitly requires that the TSO write-buffers be empty, similar to
the fence instruction (see Figure 5). Rule SWAPASSUME lifts assumptions above other
statements in a sequence. Rule DEAD allows to remove a statement with an unused
effect. This is a typical exercise with racy algorithms: a while or repeat loop spins
until the current thread takes its turn on a shared memory access. By turning such a
loop into a mix of loop and assume statements, the last iteration where the thread gets

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:10 S. Jagannathan et al.

Fig. 5. Compositional rules of the refinement predicate (excerpt).

its launching window becomes explicit. The previous iteration block is generally a dead
block that can be removed because the actions performed within those iterations have
no observable effect. The rule FENCEATOMIC is an obvious consequence of the fencing
behavior of atomic that flushes the store buffer on completion. FENCEELIM allows us
to remove unnecessary fences. AFTERABORT indicates that no commands are executed
after an abort.

The rule MAKESTOREATOMIC is implied by the fencing behavior of atomic and observ-
ing that stores are indivisible operations. A similar argument is applied for MAKELOAD-
ATOMIC, but in this case the fence is required to precede the load, which in TSO disallows
the load from overtaking previously issued writes in the buffer. Perhaps the most in-
teresting rule is GROWATOMICLOCAL which allows local memory operations (i.e., loads
and stores) to be moved within an atomic block; such aggregation is clearly acceptable
because the effect of the operation is not observable to the environment. This is guar-
anteed by the Local visibility annotation, which implies that the pointer in the register
r cannot be changed by the environment (neither can it be observed in the case of a
store). Similar rules EFLEFT and EFRIGHT apply for effect free operations (i.e., which
only manipulate registers).

To illustrate these rules, consider the spin lock of Section 2. In order to refine that
code, the following rules are applied: REPEAT, SWAPASSUME, CAS-FAIL, DEAD, FENCEELIM,

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:11

and CAS-SUCCESS. (We treat while as syntactic sugar for repeat.) This sequence of
refinements directly mirrors our informal explanation.

Let us at this point digress and consider the impact of TSO. As it can readily be
seen from MAKESTOREATOMIC, MAKELOADATOMIC, and GROWATOMICLOCAL, the semantics
of TSO implicitly affects the kind of refinement we perform. In particular, GROWATOMIC-
LOCAL, for the case where s0 is a local store, reflects the publication idiom. To see how
it exploits TSO, reconsider the publication example of Equation (1) under a slightly
weaker memory model: Partial Store Ordering (PSO) [SPARC 1994]. PSO adds to the
write-read relaxation of TSO, the possibility for two writes on different locations to be
reordered. Hence, the publication idiom does not hold for PSO. Our GROWATOMICLOCAL

rule would be unsound for PSO. Consider the case where we apply GROWATOMICLOCAL

to Equation (1) with PSO. The reason why variable Data can be considered “Local”
is because no other thread can access it before the write of Flag. However, in PSO,
the value of Flag may be propagated to other threads before the write of Data. Hence,
the read of Data might obtain an outdated value, breaking the illusion of an atomic
assignment of Data and Flag. Adding a fence instruction before the atomic command in
GROWATOMICLOCAL would recover soundness. So, reasoning about TSO permeates our
refinement rules, and changing the memory model to consider weaker memory models
would require reconsidering these rules. Similarly, using our rules in an environment
that enforces SC would impose unnecessary fences on code that needs to be refined.
However, we note that using our refinement on top of SC would be sound, as the
nondeterministic behavior of buffer updates in TSO implies that all SC behaviors are
also possible, and hence our soundness result immediately applies in this case.

We end by noting that the rules of Figure 5 are purely syntactical. This helps us
reduce the burden of interactively applying them by a set of custom Coq tactics that
automatically explore a program tree in order to find a subterm that fits with a given
refinement rule. Some rules such as DEAD require discharging some preconditions in
order to be applied. We discharge these preconditions using Coq’s reflection capabilities;
the predicates are executable and we let Coq prove them by computation. Significantly,
these rules are sound with respect to the semantics given in Section 5.

4. VALIDATION

To illustrate the use of our refinement methodology for the verification of a managed
concurrent programming language such as Java, we have devised a block-structured
Managed Intermediate Representation (MIR), which we compile to RTLI

L and subse-
quently to x86-TSO using the CompCertTSO tool chain. MIR exposes typical features
found in a managed language such as object allocation, field access, synchronization,
as well as high-level concurrency primitives such as locks, threads, nonblocking stacks,
and garbage collection. MIR has been designed to serve as a reasonable IR target for
Java bytecodes. Our compiler is sufficiently complete to compile data-allocation inten-
sive programs such as the binary-trees benchmark.2 Running this program shows that
the collector effectively traces the heap and collects free objects in parallel with user
code.

4.1. Case Study: Concurrent Allocation

As a representative case study, we examine the code snippet used to implement a
concurrent allocator that interacts with the DLG collector [Domani et al. 2000; Doligez
and Leroy 1993; Doligez and Gonthier 1994]. DLG is a mark and sweep algorithm with
three colors: White, Gray or Black. Objects that are not known to be alive are marked

2http://shootout.alioth.debian.org/

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

http://shootout.alioth.debian.org/

6:12 S. Jagannathan et al.

Fig. 6. A concurrent allocator; GROWATOMICLOCAL, AFTERABORT, CAS-SUCCESS, SWAPASSUME, CAS-FAIL, DEAD,
and MAKESTOREATOMIC are the salient refinement rules necessary to effect the transformation. For the sake
of readability, we use syntactic sugar for load and store operations to operate over simple expressions, rather
than just registers, and provide visibility annotations as comments.

White. Thus, every collection cycle starts with all objects white. Objects discovered to
be potentially alive, either by the collector or a mutator (a user thread), are upgraded
to Gray, indicating that the object and its descendants should not be collected in the
current cycle. When the collector traces the object graph, it marks Gray objects Black
and all of its descendants Gray. The traversing of the object graph terminates when no
gray objects exist. At this point, white objects are known to be unreachable and their
memory can be reclaimed in one sweep.

Free memory shared by the allocator and collector is implemented as a Treiber stack
[Treiber 1986] of free objects, where for simplicity, in our development, all objects are
of the same fixed size. Allocation then is implemented as a pop in the free object stack.
The fundamental property of the implementation is that allocation is nonblocking.

We provide the low-level and high-level code of the allocator in Figure 6. A pictorial
view of the data structure is presented in Figure 6(a). A thread starts the allocation by
reading the pointer FreeList which points to the first free object in the free stack. Then,
it checks if the head is null (head == 0). Otherwise, it reads the pointer to the next
element of the stack into next. Finally, it atomically (with a CAS) verifies whether the
head of the stack changed, and in case it did not, makes FreeList point to it, effectively
removing the head of the stack. If the CAS fails, indicating that another allocation
succeeded in between the read of the head and the CAS, the allocator restarts the
whole process. Notice that when the final CAS succeeds, it means that no other thread
modified the stack in between the read of the head and the CAS, which in turn means
that the whole execution can be considered to happen atomically. This is indeed the
specification given to the algorithm in Figure 6(c). Notice at this point that the field
head[blk_next] has a @Local annotation. This annotation is guaranteed to be true
by an invariant of the garbage collector. The only case in which the blk_next field is
modified is when the collector sweeps unreachable objects. To that end, the collector
creates a linked list of the dead objects (modifying their blk_next field), and when
all dead objects have been put in that list, it performs a concatenation (compare with

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:13

Fig. 7. A concurrent write barrier applying MAKESTOREATOMIC, followed by three applications of GROW-
ATOMICLOCAL.

push in a Treiber stack) which only modifies the FreeList variable. Hence, only the
collector is able to modify blk_next, and it does so when objects have been found to be
unreachable, meaning that the mutators cannot read them.

The second part of the code in the implementation initializes the object and sets up
its color. This atomic block is separate from the first one because the collector, during
tracing, may observe the uninitialized color of the newly allocated object.

4.2. Case Study: A Concurrent Write Barrier

Figure 7 shows the definition of a write barrier used to synchronize between mutators
and the DLG collector. Because mutation can take place concurrently with a collection
cycle, every write entails marking both the object currently pointed by the field being
modified, as well as the newly stored object, with the color Gray. An object marked
Gray indicates that it is potentially alive and, therefore, not subject to collection.

Marking objects Gray is achieved by adding their pointers into a “per mutator”
buffer of gray marked objects. This buffer is incremented by the mutator on one end
and visited by the collector thread on the other end. To enforce this protocol, depicted
in Figure 7(a), each mutator keeps a per-mutator global variable (NextWrite[tid],
only read/written by the owning mutator tid, and read by the collector). This variable
indicates the writing end of the buffer. The actual insertion of an object to the mutator’s
buffer is published to the collector upon the increment of the NextWrite[tid] variable.
Abstractly, it can be considered as performing three indivisible steps: a first reading
step, in which the old object pointed by the field to be modified is fetched; a second
marking step that marks the old object and the new object to be stored; and finally the
writing step, in which the store is actually performed and made visible to the collector.
The invariant being enforced is that marking happens in its entirety before the field
update.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:14 S. Jagannathan et al.

Table I. Injected Codes for a Concurrent GC

Component (low, loop) (high, loop) Thds CAS Races Rules LoC
Lock (∞,2) (1,0) all � 1 10 9
Alloc (Treiber) (∞,1) (2,0) all � heap size 21 15
Write Barrier (7,0) (3,0) all × 4 10 16
Cooperate (#roots,2) (2,0) 2 × #roots + 2 18 25
Thread Spawn (∞,2) (2,0) all � #mutators 11 32
Thread Start (∞,1) (1,0) 2 × 1 7 5
Thread End (∞,1) (2,0) all � 2 13 14
Func. Start (#vars,1) (2,0) 1 × 0 6 12
Func. End (2,0) (1,0) 1 × 0 6 3
Global Setup (#obj,1) (1,0) 1 × 0 6 20
Trace (GC) (∞, 5) (∞, 5) all � #thds + #obj 46 40
Sweep (GC) (∞, 3) (#obj, 3) all � #thds + #obj 18 29

The program fragment in Figure 7(b) exposes two potential race conditions: the first
can arise because of concurrent accesses to Obj by concurrently executing mutators;
the second is due to concurrent accesses to the mark buffer by the mutator and the
collector, that allows the collector to trace the new and old objects concurrently with
the mutator performing the update. Both of these race conditions have been considered
in the design of the GC algorithm and are benign. Hence, our implementation does not
enforce synchronization on these accesses. The Local annotations, on the other hand,
make clear that for the refinement of this code, it is assumed that NextWrite[tid]
cannot be modified by any other thread (the environment). This is in fact true be-
cause this is a per-thread variable, only written by one thread, and read by that
thread and the collector (compare with the Flag variable in Figure 3). Similarly, the
publication of the bucket items through NextWrite[tid] guarantees that until the as-
signment to NextWrite[tid], the bucket items at Bucket[tid][NextWrite[tid]] and
Bucket[tid][NextWrite[tid]+1] will be inaccessible (either to read or write) to the
collector until that assignment.

Our refinement technique proves that this program is equivalent to the specification
shown in Figure 7(c) written using atomic blocks that clearly exposes the desired atom-
icity properties of the barrier obfuscated in the low-level representation of Figure 7(b).
Applying rules MAKESTOREATOMIC and GROWATOMICLOCAL three times, we get the atomic
block shown in Figure 7(c).

4.3. Results

Table I quantifies the benefits of our approach on salient components of the collector
listed in the first column to give a sense of the complexity of the injected code snippets
we consider before and after refinement. In the second and third columns, we count the
number of atomic steps required for the snippet to terminate and the number of loops
that it contains. Many low-level implementations are not guaranteed to terminate when
subject to repeated interference (a livelock), thus potentially taking an “unbounded”
number of steps. In our case, livelocks are extremely unlikely and correspond to the
possibility of threads not being scheduled and, therefore, not cooperating. Whenever
we cannot bound the number of steps used by a piece of code to terminate, we use the
symbol ∞. The idea is that under a fair scheduler these pieces of code terminate, except
of course in the case of the lock implementation where there is a deadlock.

The code snippets in the table are injected into routines that typically involve memory
allocation and thus interact with the collector. For example, thread creation requires
allocating and initializing private memory for each new thread. This piece of memory is
safely acquired by first acquiring a lock, then scanning for a free block with a loop and
upon success, releasing the lock. When the thread terminates, it releases its private

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:15

Fig. 8. Synchronization of the different semantics.

memory with a similar procedure. A freshly spawned thread waits for the end of the
collector’s sweeping phase before starting. This wait loop is turned into a single atomic
block with an explicit assumption. The full write barrier, based on the code in Figure 7,
contains three atomic blocks that includes two exceptional cases. Since each mutator
must keep track of its own roots, function prologues and epilogues are inserted to
manage the representation of the root set. We note that the ostensible proof burden for
the collector, when considering the number of steps and interleavings as the metric,
is not greatly reduced using our refinement methodology; however, our approach does
more closely align the steps of the high-level refined code with a semantics of a realistic
relaxed-memory aware compiler backend bytecode, leading to an overall simplification
in the final simulation argument.

The fourth column shows the degree of thread interference induced by the various
components. The fifth column indicates whether the code contains a CAS instruction
(generally used to implement synchronization). The sixth column shows the number
of shared locations possibly involved in data races; for example, in the allocator, every
cell of the free list is potentially subject to a data race. The final two columns count
the number of tactics required to refine the code fragments and the lines of code in the
low-level implementation, resp.

Notice that the size in LoC of the code snippets considered does not reflect the com-
plexity involved their proof, and moreover, in the proofs of larger codes using them as a
service. This is because these are the pieces of code that are highly concurrent, contain
injected code, and contain data races. In other words, the pieces of code that do not
stand the standard verification techniques used throughout the CompCertTSO frame-
work. On the other hand, coarsening the atomicity of these pieces of code, liberates
other parts of the proof from reasoning about complex interleavings possible due to
these snippets. Much of the verification of the other components of a certified compiler
can be carried out in the same way as it is done in Compcert and CompCertTSO, which
we do not discuss in this article.

THEOREM 4.1. For every pair of code snippets (sl, sh) injected by our compiler (Table I
included), we have sl � sh. (COQPROOF)

Our formal development and compiler comprises roughly 20K lines of Coq, divided
roughly in half between specifications and proofs. The full development can be found
at http://jcert.inria.fr.

5. FORMALIZATION

5.1. Semantics

In this section, we present the semantics that justify our methodology. Figure 8 presents
the different relations (arrows) we use, and the way in which they synchronize. We start

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

http://jcert.inria.fr

6:16 S. Jagannathan et al.

Fig. 9. Events and thread-local semantics of I.

our discussion with the semantics of I. We elide the semantics of RTLI , which is simply
the semantics of the RTL language of CompCertTSO with the additional commands of
I. As mentioned before, only terms in IL, the low level commands of I, are compiled
into RTL. Terms in IH need not have an obvious implementation in RTL, and only serve
to facilitate our proofs.

Our semantics are structured as the composition of different labeled transition sys-
tems. Figure 9 repeats the language of Figure 3 for reference and presents the events
and small-step semantics of individual commands of the I language. Notice that we
have added placeholders {π}, standing for assertion predicates, to the syntax of load and
store instructions. These predicates will not be used in the definition of the program
semantics but are necessary to support the rely/guarantee proof methodology we intro-
duce later. Hence, we postpone their treatment and omit them from the presentation
of the semantics.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:17

Fig. 10. Memory and thread composition semantics.

Our labels are composed of memory, synchronization, and error events. Memory
events MEv, roughly correspond to the memory operations available in the x86 archi-
tecture. These include reads rdp,v, representing the query of memory location p which
returns value v; writes stp,v, representing the result of a store to a location of a value
v found in a memory location p; compare-and-set events casp,v,v′,w, representing an
atomic read-modify operation on memory location p, where v is the expected value, v′
is the value to be stored in p and w is the result of the read—notice that the update is
executed only if v and w coincide; an event recording the execution of a memory fence
#; and a special event to denote the flush of a TSO buffer ubffp,v. The full set of events
Ev includes memory events as well as a τ (empty event) corresponding to a thread-local
operation; we omit such labels in general; 	 and � events, representing the beginning
and the end of an atomic command respectively; and an abort event, †, generated by
the abort command to represent exceptional execution.

The semantics of Figure 9 represents the contribution of each thread, through events,
to the overall system. Figure 10 shows the the small-step semantics of the composition
of different threads and their interaction through shared-memory. Recall that based on
the syntax of Figure 3, metavariables r, o, n, d ∈ Registers represent registers, v ranges
over values, and p represents a memory location. We distinguish the sublanguage IL
of I by disallowing the high-level statements for I (i.e., assume, loop, branch, and
atomic).

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:18 S. Jagannathan et al.

Thread local evaluation is defined by a small-step evaluation judgment of the
form s, rs

ev
⇁ s′, rs′, where s and s′ are commands in I, rs, rs′ ∈ RegMap represent

register maps, associating values to the registers of the thread. We use the com-
mand skip to represent termination. The notation rs[r : v] denotes a register map
that associates v to the register r. The judgment states that evaluating statement s
with a register map rs yields a state with continuation s′ and a new register map
rs′ while emitting the event ev. Notice that when an abort command is executed,
the whole command is immediately terminated—with continuation skip and abort
event †. Since load and compare-and-set judgments are defined in isolation from
the memory judgments, but depend on the memory, their rules are nondeterminis-
tic. For example, a rdp,v step must admit every possible value v as its return value.
The value is only constrained when synchronizing with the memory, where only one
value can be read. The property of accepting all possible return values is called re-
ceptiveness in CompCertTSO [Ševčı́k et al. 2013], and our semantics uses the same
principle.

Statements fence and cas(d, r, o, n) emit the events # and casp,v,v′,w, respectively, with
the obvious semantic rules. For the latter instruction, the memory location to be read-
and-modified is contained in the register r. Hence, if the register r contains a pointer p;
the expected value for the pointer, given in register o, is v; the value to write, in register
n, is v′; and the actual value of p in memory is w, the instruction generates the event:
casp,v,v′,w. The value w is placed in the destination register d. In the case where v = w,
the location p is updated to v′, otherwise it remains unchanged. Here also, the rule for
casp,v,v′,w is receptive. Rules related to local control flow emit τ events, whose labels we
omit because their effect is not observable for other threads.

The command loop s nondeterministically chooses to either execute the statement s
and continue looping, or terminate immediately. The statement branch s1, s2 nondeter-
ministically chooses to execute s1 or s2. The command assume c only proceeds if register
map rs satisfies the condition c. The atomic s command executes s atomically, ensur-
ing that the effect of the atomic action is propagated to memory from the local store
buffer upon completion; endatomic is a runtime statement simply used as a marker to
record the end of an atomic section. It is not part of the source code syntax. Finally, we
use the command skip to denote termination, a thread whose only command is skip is
considered terminated.

In Figure 10, we present the semantics of thread composition stratified into two
parts: (1) the semantics of the memory machine, and (2) the overall system behav-
ior composing the memory and the threads. A thread system whose threads are all
terminated is considered a terminated program.

The memory machine implements the TSO memory model following the guide-
lines of CompCertTSO. The memory state, which shall remain abstract throughout
the paper, contains a store, mapping memory locations to values, and a write buffer
for each thread. A write buffer is simply a FIFO queue of store events of the form
〈p, v〉 (a pending store of a value v at address p). Given a memory M ∈ Mem, we
use projections M.m and M.b to obtain the store and the buffer map, respectively;
M.b(t) represents the buffer of thread t and the operations bufferPush(M, t, 〈p, v〉),
bufferPop(M, t), updateMem(M, 〈p, v〉) and emptyBuff have the obvious meanings, where
M is a memory state, t a thread. lastIn(B, p) returns the value of the last-in item in
the store buffer B for the location p. Finally, the operation CAS M pv v′ = (w, M′)
returns the pair containing the value w read in the memory M for pointer p, and
accordingly the new memory M′ (which will differ from M in case the operation was
successful.)

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:19

The semantics of the memory machine is described by judgments of the type
M

ev
⇀t M′, which represent the execution of an event ev by thread t and that modifying

the memory state M into the state M′. These rules closely follow the memory machines
described by other authors [Ševčı́k et al. 2013; Burckhardt et al. 2012]; note that in
the rule for reading, we use the notation lastIn(M.b(t), p)M.m (p) to indicate that the
absence of location p in the store buffer for thread t—that is, p /∈ dom(M.b(t))—results
in reading the contents of p from memory: M.m (p). Note that the unbuffering is the
only memory operation that is not derived from the program syntax; it can be applied
at any time when the thread buffer is nonempty and flushes some unspecified portion
of the buffer to memory.

The state of the whole system is comprised of two components, a global memory, and
a thread map (�), which maps thread identifiers to thread states; these states contain
the registers and the code of the thread. There are two judgments in this semantics.
Judgments of the form: (M, st)

ev→t (M′, st′), where st is the thread state for thread t,
containing t’s continuation and register map. The judgment represents the execution
of a step by t with respect to shared memory M. The rule MEMORY STEP synchronizes
the semantics of individual threads and the memory system by having the events in the
premises and in the consequent coincide. The rule INTRA STEP does not need to exercise
the memory machine, and the rule UNBUFFER asynchronously flushes elements of the
buffer into the memory without modifying the thread state.

Thread composition judgments have the shape (M,�) →t (M′,�′). This seman-
tics captures in a single step, the multiple steps that could be required to execute an
atomic statement. The rule INTERLEAVE NONATOMIC executes any statement labeled with
an event other than 	. The rule INTERLEAVE ATOMIC executes the atomic statement in a
single step, thereby ensuring that all actions in the atomic statement occur without in-
terleaving of other threads—observe that the thread identifier in the premise restricts
the multistep in the premise to only execute steps of thread t.

5.2. Soundness

The starting point of our refinement methodology assumes that input programs are
verified using a rely/guarantee-style program logic [Jones 1983; Feng 2009; Liang
et al. 2012a], a well-established technique for verifying shared-memory concurrent
programs. As such, we assume that programs in IL are annotated with assertions
and rely/guarantee conditions supporting a rely/guarantee proof. Since we are not
concerned with the actual proof here, we adopt a shallow embedding of rely/guarantee
conditions and assertions which we use to enhance our refinements. In this section,
we briefly define the notions of annotations and rely/guarantee conditions, and give an
overview of the rely/guarantee proof structure.

Assertions π that accompany certain instructions in our code have the following
signature:

π ∈ Pre : Mem × RegMap → bool

The similarity with Hoare-logic [Hoare 1969] style annotations should be immediate.
The meaning of these annotations is that for any state that reaches an instruction
annotated with such an assertion, evaluating the assertion at that state should return
true. The following definition formalizes this intuition.

Definition 5.1 (Correct Assertions). A RTLI program R satisfies its attached asser-
tions if:

∀ t, π, rs, s, ∀(M,�) ∈ reachI (R), �(t) = (s, rs) ∧ π @ s ⇒ π (M, rs),

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:20 S. Jagannathan et al.

where π @ s is the projection of the assertion π from the first command of s defined by:

π @ {π} loadν(d, r) π @ {π} storeν(d, r)
π @ s1

π @ s1; s2

and reachI (R) is the set of states reachable from the input of the global program R,
where we only consider the state of threads currently engaged in injected code – that
is, whose continuation is a statement s ∈ I rather than RTL.

Additionally, rely/guarantee adds rely and guarantee conditions. These conditions
allow us to reason about concurrency in a thread-modular way. Rely conditions repre-
sent a thread’s expectations of the state changes made by the environment (i.e., other
threads). Guarantee conditions represent the state changes made by a thread to the
environment.

Not all actions in a rely are allowed at any state, and therefore a rely condition
takes a thread identifier t as a parameter, a memory M, and returns a set contain-
ing the “actions” that the environment of this thread can do starting from M. This
choice of rely/guarantee logic is similar to [Ridge 2010]. In our shallow embedding
of rely/guarantee, we abstract memory actions with the events of Figure 9. A rely
condition, ranged over by the meta-variable ρ ∈ Rely, has the following signature:

ρ[t] ∈ Rely : Mem → 2MEv,

where Rely is the domain of rely conditions. In fact, guarantee conditions, which we
range with the metavariable θ have the exact same signature, but their interpretation
is different. We write θ [t] for the guarantee of thread t.

The usage of rely/guarantee conditions is best explained using an idealized presen-
tation of some of the standard proof rules. Consider for example a generic proof rule
for the store command.

stable(P, ρ[t]) {P} store(d, r) {Q} stable(Q, ρ[t]) �store(d, r)�(P) ⊆ θ [t]
ρ, θ �t {P} store(d, r) {Q} ,

where we denote by: stable(P, ρ[t]) the condition that the assertion P must remain
valid after applying to any memory that satisfies P initially, any of the events in ρ[t]. In
rely/guarantee jargon, P is closed under the rely ρ[t] if (a) {P} store(d, r) {Q} holds - this
is the usual Hoare-triple proof in sequential Hoare-logics; and (b) if �store(d, r)�(P) ⊆
θ [t] - the notation asserts that any memory event that could be generated by the
command store(d, r) starting in a memory satisfying P must be permissible according
to the guarantee condition θ [t] of thread t (see Ridge [2010] for a similar argument).
Summarizing, this proof rule requires that the assumptions made in P and Q should
be valid under the assumed interference given by ρ[t], and that the actions made by
the command store(d, r) must be allowed by the guarantee θ [t].

Of course a rely/guarantee proof would not be sensible if the assumptions made
about the environment by each thread (in ρ[t]) are not met by the other threads. That
is exactly the purpose of the guarantee (θ [t]) in each thread. The final proof obligation
requires that for each thread t we verify that any other threads t′ guarantee has been
considered as possible interference; we then have that

∀t, t′, t �= t′ ⇒ θ [t′] ⊆ ρ[t].

This is the top-level proof obligation of a rely/guarantee proof.
In this work, we assume the correctness of rely guarantee conditions and establish

this assumption semantically using the following definition.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:21

Fig. 11. Semantics of expressions—abstract environment respecting the rely (excerpt).

Definition 5.2 (Correct Rely Condition). A RTLI program R satisfies the rely condi-
tions ρ if: ∀ t, t′, (M,�) ∈ reachI (R),

(M,�)
ev→t′ (M′,�′) ∧ t �= t′ ⇒ ev ∈ ρ[t](M)

This means that from any reachable state (M,�), any step performed by a thread other
than t, must respect the rely condition of t.

5.3. The Refinement Relation

Because the definition of refinement has to take into account the behavior of the
environment, we develop a semantic interpretation of the refinement relation that
relies on a dedicated semantic judgment of the I language and is parametric on a rely
predicate ρ provided by the programmer (or prover) again as part of an underlying
rely/guarantee proof. The only purpose of this semantics is to define and enable the
refinement methodology, and it has no computational effect. This semantics represents
a single thread’s view, executing with an arbitrary context or environment (compare to
Brookes [1993]) respecting the rely condition ρ, which in this work is assumed to be
given.

Figure 11 provides the inductive rules of the judgment ρ �t s : (M, rs) tr⇒ (M′, rs′)
indicating that starting from a memory M and register map rs, the thread t can execute
the statement s terminating in a state (M′, rs′) in a context where the environment,
an overapproximation of the other threads running in parallel, modify the store by
performing the memory events contained in the sequence tr. Moreover, these events
are checked to satisfy the rely assumptions in ρ. In the following, tr is a sequence
of read, store, and unbuffering events that capture accesses and modifications to the
store made by other threads, and the memory M, for the executing thread (in this case
t). This semantic interpretation allows us to focus on the evaluation steps taken by
one thread, merging the interleavings of other threads into an external environment
captured by tr.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:22 S. Jagannathan et al.

The rules for environment steps are presented in the first two rules of Figure 11,

defining the semantic transition
tr

↪→. Notice that the environment is only allowed to
modify the memory by respecting the ρ condition, in which ρ[t](M) returns a set of
events that can be performed by the environment. In the upper rules, we verify that
the event the environment attempts (either a stp,v, ubffp,v or a rdp,v) is not disallowed
by the rely. The remaining rules, of which we only present the most significant ones,
are unsurprising and deal with steps taken by the command s, the composition of
environment traces with the current command, the unbuffering of TSO buffers, and
control-flow. They largely resemble the rules of Figure 10.

Example. Assuming a universal rely (i.e., a rely condition that permits the environ-
ment to generate any event), the statement:

x := 0; x := 1; x := 2

may be interleaved with the following external trace of events:

〈rdx,0, rdx,1, rdx,2〉
This trace captures the fact that other threads in the environment may witness three
updates to x performed by the executing thread. However, this trace cannot be produced
by executing:

x := 0; atomic{x := 1; x := 2}

The atomic action prevents interleaving of other threads and thus the intermediate
update of 1 to x cannot be observed.

From Rely/Guarantee Conditions to Syntactic Annotations. Our refinement method-
ology leverages automation through purely syntactic rules. However, our proofs only
provide us with rely/guarantee conditions to express invariants about environments.
We show how these invariants can be used to justify the use of our syntactic refinement
rules such as GROWATOMICLOCAL (Figure 5).

Consider the Local annotations that we attached to the code in some memory ac-
cessing operations. These indicate to our refinement rules that the memory locations
being manipulated by the executing thread cannot be modified by other threads. These
annotations, which we used in Section 2, take the form: loadLocal(d, r) and storeLocal(d, r).
These annotations encode in the program syntax, facts that are assumed to be true
from the rely conditions that accompany the code. We can, therefore, define what it
means for an annotation to be correct.

Definition 5.3 (Correct Local Annotations). Given a statement s such that s ∈
{{π} loadLocal(d, r), {π} storeLocal(d, r)} and s appears in an injected code block of thread t,
we say that s has a correct local annotation according to ρ if the two following conditions
hold:

if s = {π} loadLocal(d, r),

∀M, rs, π (M, rs) ⇒ {strs(r), , ubffrs(r), , casrs(r), , , } ∩ ρ[t](M) = ∅
if s = {π} storeLocal(d, r),

∀M, rs, π (M, rs) ⇒ {rdrs(d), , strs(d), , ubffrs(d), , casrs(d), , , } ∩ ρ[t](M) = ∅
In essence, we say that a Local annotation is correct if the rely condition ρ that accom-
panies the code sl is sufficient to guarantee that other threads are not able to observe
intermediate states of the execution of this piece of code through these variables.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:23

Fig. 12. GC-side bucket protocol: tracing the roots.

Proving that the Local annotations added for refinement are correct is a proof obli-
gation that we must discharge. Importantly, this proof obligation is only a logical
consequence of the rely condition and the program assertions.

Example 5.4. Figure 12 presents the garbage collector code that traverses the mu-
tators buckets (compare with the write barrier protocol presented in Figure 7(b)) and
marks the white objects found as black, representing alive objects. In this code, we
present an inner loop that traverses the bucket of thread tid, and is executed when
the GC is tracing the object graph. To that end, the GC thread holds in a GC-local
table NextRead, indexed by the thread ID of the mutators, the last seen element of
the bucket of that thread. Recall that mutators indicate through their NextWrite[tid]
variable the first unused bucket slot. This protocol ensures that the mutator can write
any bucket element larger or equal than NextWrite[tid] and that it will not modify,
nor read, any object lower than that value. The GC is free to traverse the bucket up to
NextWrite[tid] for each tid. Hence, NextWrite[tid] implements racy synchronization
between the GC and the mutator tid to protect accesses to Bucket[tid].

Let us now illustrate the assertions, rely conditions, and local annotation proof obli-
gations that make this piece of code sound. We give the preconditions π1, π2, and π3 in
Figure 12 as well as the part of the rely guarantee ρ concerning the GC thread, denoted
by tGC relevant to this piece of code. Preconditions π1 and π3 are vacuous. Assertion π2
requires that before the read of a bucket element by the GC in the bucket of thread tid,
the registers nr, representing the next read of the collector, nw, representing the last
seen next write value, and the actual value in the next write pointer NextWrite[tid]
satisfy the ordering constraints of the bucket protocol.

The rely ρ(tGC) allows any store, unbuffering and read event other than the ones
restricted in (1), (2), (3) and (4). Of course, here we are showing only the rely conditions
relevant to this piece of code, more constraints can limit stores and unbufferings on

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:24 S. Jagannathan et al.

other portions of the memory, but we omit them here for didactic reasons. Stated in
English: (1) indicates that the memory location found at �&NextRead[t]�(M) cannot be
modified by any other thread.3 This corresponds to the intuition that the NextRead
table is thread-local to the GC. Condition (4) expresses the same intuition but limiting
reads by other threads instead of just stores and unbufferings. Condition (2) states
that, while the value of NextWrite[t] can change, it must do so in a monotonic way.
We use this condition to ensure that the precondition π2 is stable with respect to
the rely conditions. Finally, condition (3) asserts that if a bucket element of thread t
changes (in Bucket[t]), its index i must be larger than or equal to the current value of
NextWrite[tid].

With these conditions at hand, we can prove that the Local annotations found in the
code are correct. The rely conditions (1) and (4) trivially imply the correctness of the
annotations at lines 1 and 9. It remains to show that the annotation at line 5 is correct.
It then suffices to observe that from the precondition π2, nr is lower than the current
value of NextWrite[t]; through the rely condition (3), it can be seen that no other
thread, including t, can modify this bucket element, and therefore the proof obligation
of Definition 5.3 is immediately met. A similar argument can be made in the code of
Figure 7(b).

We clarify that the proofs justifying the rely conditions as in the example above, have
not been fully carried out in Coq, and are not considered a contribution of this article.
The methodology we present in this article takes these rely conditions as a premise,
but the rely/guarantee proof itself is not a novelty of our approach.

We can finally provide a definition conjoining the correctness of the assertions, the
rely conditions and the Local annotations as follows.

Definition 5.5 (Correctly Annotated Program). An RTLI program R is correctly
annotated with respect to a rely condition ρ if: (1) it satisfies its attached asser-
tions (Definition 5.1), (2) it satisfies the rely condition ρ (Definition 5.2), and (3) ev-
ery local load/store that appears in it has a correct local annotation according to ρ
(Definition 5.3).

We denote this fact by �R�(ρ)�. We overload the notation so that �s�(ρ)� denotes an
injected statement s that appears in a program R satisfies �R�(ρ)�.

With this, we can give our full definition of refinement.

Definition 5.6. Let sh ∈ I, sl ∈ IL and ρ ∈ Tid → Rely. We say that sl refines sh under
the rely condition ρ (denoted ρ � sl � sh), if for all states (M, rs), (M′, rs′) and all traces
tr, and all t we have that

ρ �t sl : (M, rs)
tr⇒ (M′, rs′) implies ρ �t sh : (M, rs)

tr⇒ (M′, rs′).

Thus, if starting in state (M, rs) which satisfies the precondition of sl, threads other
than t are able to perform a trace of memory actions tr during t’s execution of sl, which
terminates in state (M′, rs′), there must exist an execution of sh from (M, rs) that also
terminates in (M′, rs′) and permits the same trace tr of environment memory actions.
In both cases the trace tr must respect the rely condition imposed by ρ. Notice that
this semantic notion of refinement needs only consider the code of one thread at a
time. The abstract notion of environment quantifies all possible threads that could be
composed with this code. All we require is that the same environments be allowed for

3We use the notation �&NextRead[t]�(M) as a shortcut to denote the memory address of the array element
in memory M.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:25

both pieces of code, under the assumptions made by ρ. In following statements, we
will additionally require nonfailing terminating traces to guarantee that semantics of
the overall thread composition is preserved by refinement, but this is not necessary to
prove the correctness of the rules.

We observe that

� x := 0; x := 1; x := 2 �� x := 0; atomic{x := 1; x := 2},

whereas

� atomic {x := 1; x := 2} � atomic {x := 2}.

THEOREM 5.7. If sh ∈ I, sl ∈ I and ρ is a rely condition such that �sl�(ρ)� holds, then

sl � sh ⇒ ρ � sl � sh,

where sl � sh is derived from the rules of Figure 5.
(COQ PROOF)

5.4. Embedding the Methodology in a Compiler

As explained earlier, our overall goal is to construct a whole-system backward simu-
lation from target to source; this whole-program simulation is built from a series of
smaller simulation steps that relate adjacent IRs in the compilation stack. We use the
refinement methodology to prove an inclusion property between IL and I. Recall that
the I language is embedded within the RTLI IR that encapsulates I terms in some of
its nodes. This embedding enables a modular correctness proof, allowing us to reason
about refinements on just the I sublanguage. For example, in Figure 1(c) statement
(1) is an I statement, as is statement (1) in Figure 1(b); both of these statements are
embedded within what is otherwise an ordinary RTL program.

Because of this embedding, it is convenient to consider RTL contexts, R[], an RTL
where one of its nodes contains a hole that can be filled with an I command s. A
complete RTLI program is simply an RTL context with no empty holes. With this
simple notion of context, we can state our final soundness result. An RTL context may
contain several holes, and in that case substitution is done starting from the leftmost
hole in the context.

THEOREM 5.8 (SIMULATION FROM REFINES). Consider a low statement sl ∈ IL and an RTLI

program R[sl] such that R[sl] is correctly annotated by a rely condition ρ (�R[sl]�(ρ)�).
Moreover, consider a high statement sh ∈ I such that sl � sh. Then, for each nonfailing
terminating trace γ of R[sl], there exists a trace γ ′ of R[sh] such that γ and γ ′ have the
same observable behaviors. In other words, there exists a backward simulation from
R[sl] to R[sh] for all nonfailing terminating traces of R[sl] (under the assumptions of ρ).

(COQPROOF)

In other words, replacing a low level statement sl, for a high-level statement sh, in a
well-behaved (nonfaulting) RTL program R[sl], renders a program R[sh] with the same
observable behaviors as the original R[sl] for nonfailing terminating traces. Therefore,
the latter can be considered a faithful implementation of the former. The notion of
observable behavior in the previous statement, which we inherit from the development
of CompCertTSO, includes the external input/output events of the program, including
system calls, failures, and exit events.

We prove this theorem by induction on program executions, showing a backward
trace inclusion between any IL trace and a trace where every subtrace corresponding
to the execution of an injected statement either terminates and corresponds to a high-
level statement, or is still in progress, and corresponds to a low-level statement. During

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:26 S. Jagannathan et al.

the induction step, we use the refinement property to substitute a completed subtrace
of a low statement by a corresponding completed subtrace of a high statement, without
affecting the ongoing traces of other threads.

We only consider nonfailing traces, because failing traces represent exceptional be-
haviors that are not intended by the programmer. Similarly, we only consider termi-
nated traces because we need to align low- and high-level code in a one-to-one fashion.
Not every code has a single point where this alignment could happen (compare with
linearizability), and hence our theorems only are concerned with states where the state
can be compared between the high- and low-level executing programs.

COROLLARY 5.9 (SOUNDNESS). Let γ be a terminating, nonfailing trace of the RTL
program R[s0

l] . . . [sn
l], which is correctly annotated by the rely condition ρ. If for all

i ∈ [0, n], si
l � si

h, then there exists a trace γ ′ of the program R[s0
h] . . . [sn

h], such that
γ and γ ′ have the same observable behaviors. In other words, there exists a backward
simulation from R[s0

l] . . . [sn
l] to R[s0

h] . . . [sn
h] for all terminating, nonfailing traces of the

former.
(COQPROOF)

Finally, we point out that our proof rules are in no way complete. There are refine-
ments, which while perfectly sound cannot be reached through the syntactic rules of
Figure 5. As a simple example consider the rule CAS-FAIL under an environment where
the location pointed by the contents of register r could never contain the value in regis-
ter o. It is easy to see that in this case the compare would always fail, making a load of
the pointer in r into the register d followed by a fence (load(d, r); fence), equivalent to a
compare-and-set (cas(d, r, o, n)). However, we provide no way to go from the former to
the latter. Moreover, in general, we provide no way to go from high-level code to “equiv-
alent” low-level versions. The purpose of our methodology is to aid the proof burden of
a concurrent compiler infrastructure by making intricate pieces of code more atomic,
as opposed to enabling general equivalence proofs.

5.5. Discussion

Consider the issues involved in proving a complex concurrent (racy) program such
as a concurrent garbage collector correct. While it might be conceivable to prove the
correctness of the whole collector (assuming a certain abstraction of the client code)
in a single monolithic proof, we argue that by using our refinement methodology, the
proof would be largely simplified by coarsening the atomicity of low-level racy pieces of
code, which are only used as a service for the overall algorithm. An example of this is
the bucket protocol exposed in Figures 7(b) and 12 to implement the write barrier, and
the publication of the roots to the collector. An exemplar garbage collection invariant
would require sating sophisticated properties relating the object graph, reachability
of objects, their color, and the phases of the mutators, all at the same time. It is
undesirable to talk about the state of the Bucket[tid][nw] variable when reasoning
about the proofs of this kind of invariant. On the other hand, to prove the rely conditions
required for our refinement of the bucket protocol, no information about the object
graph, reachability of objects, or colors is necessary. Hence, our technique in a first
step coarsens the atomicity of “internal” data structures, whose intermediate steps are
uninteresting, and unaffected by the larger property to verify. Once these refinements
have been performed, it is safe to consider these data structures as being “atomic”
while performing the more challenging proof of these invariants.

We note that the conditions required to establish the soundness of refinements in
the presence of visibility annotations for injected code is substantially simpler to state

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:27

and prove than the invariants that capture the desired behavior of the entire runtime
system. Once a low-level statement is refined to a higher-level one, proving these more
complex invariants becomes easier. Atomicity refinement is hence an important build-
ing block toward realizing tractable proofs of higher-level services and data structures.

We also note that the techniques used to prove these higher-level invariants are not
constrained in any way by our refinement methodology and do not necessarily have to
be of the rely/guarantee flavor. For this reason, our formalization does not integrate a
rely/guarantee logic framework to discharge the conditions. Indeed, the reader might
have observed that only rely conditions are necessary to establish the soundness of our
refinements; given the structure of the visibility annotations used in the refinement
rules, the guarantees established by one thread invariably mirror the rely conditions
of another.

6. RELATED WORK

Our strategy is reminiscent of the approach advocated in QED [Elmas et al. 2009, 2010]
that uses atomicity and reduction as proof tools to simplify the verification of assertions
in concurrent programs. The novelty of our technique is the integration of broadly
similar intuitions into a verified compiler framework, amenable to trace-based proofs.
As an additional point of distinction, our techniques support the TSO memory model.
Indeed, while there have been recent attempts to build verified compiler infrastructures
for concurrent languages (e.g., CompCertTSO [Ševčı́k et al. 2011], Jinja [Lochbihler
2010], the work of Hobor et al. [2008]), we are unaware of other efforts focused on
proof methodologies to simplify the task of verified compilation in the presence of
low-level imperative and, potentially racy, concurrent code generated from high-level
source and compiler-injected abstractions. Indeed, our solution does not depend on
strong restrictions such as data-race freedom in either application programs or injected
program fragments.

Liang et al. [2012a] present a rely/guarantee technique to aid in the verification of a
concurrent program transformer. While their solution greatly simplifies the burden of
considering all possible interleavings of the concurrently executing threads, it is still
very challenging to describe all the possible atomic actions that the program could
perform; see Liang et al. [2012b] for examples. Like our approach and that of Elmas
et al. [2009], their technique relies on defining preconditions and invariants, which
must be discharged by means of some program logic. While it is not apparent how
one might integrate their approach in a verified compiler that contain racy injected
concurrent code in the absence of a refinement methodology of the kind defined here,
the technique they suggest is likely to be helpful in devising rely/guarantee proofs that
establish the safety of visibility annotations.

Turon and Wand [2011] present an elegant (fenced-)refinement theory, incorporating
aspects of separation logic and rely-guarantee to relate ownership and atomicity based
on the rely/guarantee framework of Feng [2009].While this refinement definition is pre-
sumably sufficiently powerful for the verification of the algorithms we need to consider,
the level of abstraction and the final result make it impractical to be exploited within
a verifying compiler toolchain. However, their observation that “atomicity is relative
to ownership” is similar to the motivation underlying our methodology.

Lochbihler [2010] considers the translation phase from Java source code to Java
bytecode. While a major transformation happens in this phase, none of the “injected”
(as opposed to replaced one-to-one) code is concerned with fine-grained atomicity issues,
which is a substantial point of difference from our work.

McCreight et al. [2010] describe the design and implementation of a framework
for certified compilation of programs in garbage-collected languages. They extend
CompCert with a new intermediate language, GCminor, that provides primitives for

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

6:28 S. Jagannathan et al.

allocation, and specifying heap roots. Their framework does not consider concurrent
collection (all their collectors are “stop-and-collect”), however, and thus elides the key
technical challenges addressed here.

Hobor et al. [2008] and Leroy et al. [2012] define a concurrent version of CompCert’s
Cminor IR equipped with a concurrent separation logic. The idea is to do verified
compilation for programs that have been proved correct in such a logic, which must
necessarily be race-free. While likely suitable for application code, the race-free re-
quirement is likely to be too stringent for injected code fragments like write barriers
and allocators that are carefully constructed to deal with races for efficiency reasons.

Many techniques have been proposed for the verification of concurrent TSO pro-
grams: Bouajjani et al. [2013] considers model checking, and Alglave et al. [2013] con-
siders verification under program rewriting. Most of these techniques are not amenable
to the certification methodology we tackle in this article.

7. CONCLUSIONS

In this article, we present the first verifying compiler framework capable of reasoning
about low-level injected, racy concurrent code cognizant of TSO relaxed memory be-
havior. Our primary contribution is a proof methodology that allows such code to be
successively refined into higher-level atomic units whose equivalence to the original
source abstraction is more easily demonstrated than a proof constructed directly on the
low-level version. We have integrated our ideas within the CompCertTSO toolchain,
and verified the translation of major components of a realistic concurrent GC.

Our choice of rely/guarantee-like invariants, encoded through a shallow embedding
in Coq, necessitates the need for rely/guarantee program logics to discharge these as-
sumptions. There are several existing rely/guarantee logics, for example [Dodds et al.
2009; Ridge 2010], aimed at proving these kind of programs. The latter in particu-
lar supports the TSO memory model. Fully integrating such a logic into our verified
compiler toolchain is an important direction for future work necessary to enable full
end-to-end verification of concurrent high-level managed languages.

Some directions for improvement in our refinement methodology include: (1) The
simulation argument requires that the computations be terminating. A finer notion
of simulation than the one considered in this article could enable us to establish a
finer relation between the low-level injected code and the high-level one. In particular,
this is the case for pieces of code that we know are linearizable [Herlihy and Wing
1990]. Whether by incorporating information about linearizability or just modifying
our simulation relation definition, exploring finer notions of simulation implied by our
refinement is an interesting way in which we could improve our results. (2) Discharging
the proof obligations related to our @Local annotations can be aided by an IR that
makes explicit facts about memory separation and interference (perhaps through the
easy expression of rely/guarantee conditions). While in this article we do not ascribe
to any particular discipline to discharge these proof obligations, designing an IR that
facilitates such proofs is our most immediate research direction. (3) Targeting more
relaxed memory models, such as PSO [SPARC 1994] and PowerPC [Sarkar et al. 2011]
are also interesting research directions that we might consider in the future.

Other, maybe more ambitious, research directions is the verification of concurrent
data structures that require low-level implementations, and are hence best imple-
mented at the compiler level. Examples of these are monitors and data structures that
for performance reasons use architectural artifacts not present in the high-level lan-
guage (such as fences for example). Similarly, the synchronization primitives of the
C11++ standard [Batty et al. 2011] could be verified under refinement, not without
major modifications of our refinement rules.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

Atomicity Refinement for Verified Compilation 6:29

ACKNOWLEDGMENTS

We thank the reviewers for their constructive comments that helped us improve the quality of this article.

REFERENCES

Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering - A New Definition. In ISCA. 2–14.
Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013. Software verification for weak

memory via program transformation. In ESOP. 512–532.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concur-

rency. In POPL. 55–66.
Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and enforcing robustness against

TSO. In ESOP. 533–553.
Stephen D. Brookes. 1993. Full Abstraction for a Shared Variable Parallel Language. In LICS. 98–109.
Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012. Concurrent library

correctness on the TSO memory model. In ESOP. 87–107.
Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis. 2009. Deny-guarantee reasoning. In

ESOP. 363–377.
Damien Doligez and Georges Gonthier. 1994. Portable, unobtrusive garbage collection for multiprocessor

systems. In POPL. 70–83.
Damien Doligez and Xavier Leroy. 1993. A concurrent, generational garbage collector for a multithreaded

implementation of ML. In POPL. 113–123.
Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Eliot E. Salant, Katherine Barabash, Itai Lahan, Yossi

Levanoni, Erez Petrank, and Igor Yanover. 2000. Implementing an on-the-fly garbage collector for Java.
In ISMM. 155–166.

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010. Simplifying linearizability
proofs with reduction and abstraction. In TACAS. 296–311.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2009. A calculus of atomic actions. In POPL. 2–15.
Xinyu Feng. 2009. Local rely-guarantee reasoning. In POPL. 315–327.
Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects.

ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.
C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 10 (1969),

576–580.
Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle semantics for concurrent

separation logic. In ESOP. 353–367.
Cliff B. Jones. 1983. Tentative steps toward a development method for interfering programs. ACM Trans.

Program. Lang. Syst. 5, 4 (1983), 596–619.
Xavier Leroy. 2009. A formally verified compiler back-end. J. Autom. Reasoning 43, 4 (2009), 363–446.
Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. 2012. The CompCert Memory Model,

Version 2. Research Report RR-7987. INRIA. http://hal.inria.fr/hal-00703441
Hongjin Liang, Xinyu Feng, and Ming Fu. 2012a. A rely-guarantee-based simulation for verifying concurrent

program transformations. In POPL. 455–468.
Hongjin Liang, Xinyu Feng, and Ming Fu. 2012b. A Rely-Guarantee-Based Simulation for Verifying Concur-

rent Program Transformations. Technical Report. University of Science and Technology.
Andreas Lochbihler. 2010. Verifying a compiler for Java threads. In ESOP. 427–447.
Andrew McCreight, Tim Chevalier, and Andrew P. Tolmach. 2010. A certified framework for compiling and

executing garbage-collected languages. In ICFP. 273–284.
Tom Ridge. 2010. A rely-guarantee proof system for x86-TSO. In VSTTE. 55–70.
Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding

POWER multiprocessors. In PLDI. 175–186.
Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2011.

Relaxed-memory concurrency and verified compilation. In POPL. 43–54.
Jaroslav Ševčı́k, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013.

CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM 60, 3 (2013), 22.
Inc. CORPORATE SPARC. 1994. The SPARC Architecture Manual (version 9). Prentice-Hall, Inc., Upper

Saddle River, NJ.

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

http://hal.inria.fr/hal-00703441

6:30 S. Jagannathan et al.

R. Kent Treiber. 1986. Systems Programming: Coping with Parallelism - RJ 5118. Technical Report. IBM
Almaden Research Center.

Aaron Joseph Turon and Mitchell Wand. 2011. A separation logic for refining concurrent objects. In POPL.
247–258.

Viktor Vafeiadis and Matthew J. Parkinson. 2007. A marriage of rely/guarantee and separation logic. In
CONCUR. 256–271.

Received September 2013; revised December 2013; accepted January 2014

ACM Transactions on Programming Languages and Systems, Vol. 36, No. 2, Article 6, Publication date: April 2014.

