
A

A Data-Centric Approach to Synchronization†

JULIAN DOLBY, IBM T.J. Watson Research Center
CHRISTIAN HAMMER, Purdue University
DANIEL MARINO, UCLA
FRANK TIP, IBM T.J. Watson Research Center
MANDANA VAZIRI, IBM T.J. Watson Research Center
JAN VITEK, Purdue University

Concurrency-related errors such as data races are frustratingly difficult to track down and eliminate in
large object-oriented programs. Traditional approaches to preventing data races rely on protecting instruc-
tion sequences with synchronization operations. Such control-centric approaches are inherently brittle as
the burden is on the programmer to ensure that all concurrently accessed memory locations are consistently
protected. Data-centric synchronization is an alternative approach that offloads some of the work on the
language implementation. Data-centric synchronization groups fields of objects into atomic sets to indicate
that these fields always must be updated atomically. Each atomic set has associated units of work, code frag-
ments that preserve the consistency of that atomic set. Synchronization operations are added automatically
by the compiler. We present an extension to the Java programming language that integrates annotations
for data-centric concurrency control. The resulting language, called AJ, relies on a type system that enables
separate compilation and supports atomic sets that span multiple objects and that also supports full encap-
sulation for more efficient code generation. We evaluate our proposal by refactoring classes from standard
libraries as well as a number of multi-threaded benchmarks to use atomic sets. Our results suggest that
data-centric synchronization is easy to use, and enjoys low annotation overhead, while successfully prevent-
ing data races. Moreover, experiments on the SPECjbb benchmark suggest that acceptable performance can
be achieved with a modest amount of tuning.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming-parallel
programming; D.2.4 [Software Engineering]: Software/Program Verification-reliability; D.3.3 [Program-
ming Languages]: Language Constructs and Features — Data types and structures; F.3.1 [Logics And
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Languages, Theory

Additional Key Words and Phrases: Concurrent Object-Oriented Programming, Data Races, Serializability,
Programming Model

1. INTRODUCTION
Writing correctly synchronized concurrent programs is challenging. Whenever two
threads access the same memory location there is the potential for a data race and for
inconsistent results. Traditional techniques for concurrent programming have an oper-
ational, control-centric, flavor. Programmers must ensure that any access to a shared
data location is protected by synchronized blocks or other system-specific concurrency

Authors’ addresses: J. Dolby, F. Tip, M. Vaziri: IBM T.J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598; C. Hammer, J. Vitek: Dept. of Computer Sciences, Purdue University, 305 N University
Street, West Lafayette, IN 47907, USA; D. Marino: UCLA Computer Science Department, 3440 Boelter Hall,
Los Angeles, CA 90095.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Julian Dolby et al.

control primitives. The challenge is that protecting all accesses to shared locations re-
quires non-local reasoning: All control flow paths leading to a memory operation on
shared data must be dominated by a synchronization operation. A data race may occur
if the programmer forgets to synchronize even a single path. To make matters worse,
even if every access to shared data is protected, the program may still end up in an
inconsistent state due to a high-level data race [Artho et al. 2003]. This can occur
when there exists a consistency relation between multiple memory locations and the
programmer’s use of synchronization fails to ensure that this relation is maintained
at every instant. Analysis of real world software defects suggests that these kinds of
races occur frequently [Lu et al. 2007; Lu et al. 2008]. Avoiding high-level data races
requires the same kind of non-local reasoning but is further complicated by the fact
that multiple locks may have to be acquired in a specific order.

Data-centric synchronization is a declarative approach to concurrency control first
proposed by some of the present authors [Vaziri et al. 2006]. Data-centric synchro-
nization advocates that instead of focusing on the flow of control, programmers should
identify sets of memory locations that share some consistency property and group those
locations in atomic sets that will be updated atomically. Programmers need not spec-
ify where or what kind of synchronization operations to insert; instead, each atomic
set has an associated set of units of work, code fragments that preserve the consis-
tency of their associated atomic set. Synchronization code is automatically generated
by a compiler which is free to choose where and what type of synchronization to in-
sert. Such a declarative approach has the benefit that it is possible to change the
concurrency-control mechanism, e.g., going from standard locks to read/write locks
or even to transactional memory, without changing the program’s source code. In a
data-centric approach, the non-local reasoning that permeates traditional approaches
to synchronization is replaced by a focus on shared data. High-level data races are
naturally avoided as an atomic set can protect multiple locations and multiple atomic
sets can be manipulated atomically within the same unit of work.

The purpose of this paper is to evaluate the applicability and benefits of data-centric
synchronization in the context of a mainstream object-oriented language. To this end,
we have extended the Java programming language with language features for data-
centric synchronization and implemented a compiler that synthesizes concurrency con-
trol operations. The changes to the source language are unintrusive, and are limited to
five optional annotations on classes and variable declarations. Like Java, the resulting
language permits separate compilation, and the compiled code is in the standard Java
bytecode representation and is backwards compatible with plain Java. We refer to the
extended language as AJ. The criteria which we consider in our evaluation are:

expressiveness. Are there significant limitations to the range of concurrent problems
which can be solved with AJ?
programmer effort. How many program edits are required to make code thread-
safe?
performance. How does the performance of code generated by our AJ compiler com-
pare to that of traditional Java implementations?

While data-centric synchronization takes fine-grained control over placement and se-
lection of synchronization operations from the programmer, and is thus possibly going
to lead to reduced concurrency, it provides strong consistency guarantees. By making
the tradeoff explicit, we allow programmers to make an informed choice between the
two approaches.

In our previous work [Vaziri et al. 2006], we relied on static whole-program program
analysis to infer where synchronization operations should be placed in order to ensure
that units of work are serializable from the perspective of each atomic set, a property

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:3

we call atomic-set serializability. Preliminary experiments suggested that atomic sets
require fewer annotations than implementations based on synchronized blocks in Java
while eliminating known concurrency-related errors [Wang and Stoller 2006b; Ham-
mer et al. 2008]. However, while promising, the approach’s reliance on whole-program
analysis limited applicability and dimmed the prospects for adoption. Whole-program
analysis is prohibitively expensive for large code bases and does not easily accommo-
date dynamic loading, native methods and reflection which are integral parts of the
Java platform. Furthermore, that work did not support atomic sets spanning multiple
objects which led to inefficient code.

In this paper we present a variant of the atomic sets model of Vaziri et al. [2006].
We introduce a new mechanism for constructing atomic sets that span multiple objects
and for internal objects that provide strong encapsulation for data whose concurrency
is managed externally. The new approach obviates the need for whole-program anal-
ysis with a type system that guarantees that any well-typed program is atomic-set
serializable, which means that all operations performed on locations that belong to an
atomic set are serializable. To empirically evaluate the applicability of our ideas on
real-world code, we implemented AJ within the Eclipse development environment.

We then refactored classes from the Java Collections Framework and a set of Java
applications that includes the SPECjbb performance benchmark into AJ, and mea-
sured annotation overhead. We found that the collection classes required approxi-
mately 40 annotations per KLOC, and that the annotation overhead for the other ap-
plications ranged from 0.6 to 11.5 annotations per KLOC. For each of the applications,
we found that our data-centric approach required fewer annotations than the number
of synchronized blocks that were present in the original Java code. A number of minor
refactorings was needed to transform the subject programs into valid AJ programs, as
will be discussed in Section 7. For example, in several of our subject programs, field
accesses were replaced with calls to getter/setter methods, and calls to wait() and no-
tify() were replaced with uses of condition variables on atomic sets, a feature that will
be discussed in Section 6.

We also report on extensive performance measurements with AJ versions of the
SPECjbb benchmark. While the version that we obtained by naively introducing
atomic sets did not scale well, we were able to achieve nearly the same performance as
the original Java version after some performance tuning, without affecting annotation
overhead materially. Specifically, our tuned AJ version of SPECjbb achieves a through-
put of 90.8% of that of the original Java implementation when run with 98 threads.
We consider these results an indication that our approach is capable of generating code
with acceptable performance while providing a correctness guarantee that Java’s cur-
rent synchronization mechanism does not offer. In summary, we make the following
contributions:

— A data-centric approach to synchronization that permits separate compilation, multi-
object atomic sets and strongly encapsulated objects.

— A formalization of the type system for a core calculus and a proof that any well-typed
program is atomic-set serializable.

— A prototype implementation in a mainstream object-oriented language and an inte-
gration with a development environment.

— An empirical evaluation on several Java applications including widely used libraries
and a well-known performance benchmark.

Our prototype implementation does not support multiple atomic sets and our type
system does not deal with generics. Adding multiple atomic sets is simply a matter of
engineering, we do not forsee any major challenges. Supporting generics would com-
plicate the formal treatment without fundamentally affecting our results.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Julian Dolby et al.

The remainder of this paper is organized as follows. Section 2 reviews related work
on language designs and type systems that aim to prevent concurrency-related errors.
Section 3 presents an informal overview of the AJ language, using several motivating
examples. The implementation of AJ is presented in Section 5. Section 6 proposes a
number of small extensions to the core AJ language, including a generalized form of the
unitfor construct and condition variables. Section 7 presents an empirical evaluation
of our language design, by measuring annotation overhead and performance. Finally,
Section 8 presents conclusions and discusses possible avenues for future work.

2. BACKGROUND AND INFLUENCES
This paper builds on the atomic set programming model of Vaziri, Tip and Dolby [Vaziri
et al. 2006]. That work also introduced a notion of problematic interleaving scenarios
and then used this notion to define a correctness criterion, named atomic-set serial-
izability, which rules out high-level data races. Subsequent work by a subset of the
authors and by an unrelated group explored how to detect concurrency-related er-
rors based on this criterion (statically [Kidd et al. 2011] and dynamically [Hammer
et al. 2008; Lai et al. 2010]). Atomic sets share characteristics with data groups [Leino
1998] and regions [Greenhouse and Boyland 1999] which group mutable fields to en-
able modular verification and reasoning about program transformations. Like atomic
sets, regions and groups may be extended in subclasses, but unlike atomic sets, both
are hierarchical and regions overlap. Another data-centric approach was proposed by
Ceze et al. [2008], with a sketch of a possible transactional memory implementation.
Atomic sets can also be viewed as a generalization of Hoare monitors [Hoare 1974]
to multiple objects. In particular, we provide two mechanisms, unitfor and aliasing, for
merging distinct atomic sets, as well as a data-centric notion of condition variables.
Bergan et al. [Bergan et al. 2010] proposed a hardware assisted data-centric atomicity
violation detection and avoidance approach.

Data-centric concurrency control is but one alternative to explicit locking. Trans-
actional memory [Herlihy and Moss 1993] approaches concurrency control from a
database angle. Certain code fragments are specified to execute atomically, and it is up
to the implementation to enforce mutual exclusion. While programmers need not worry
about which data will be accessed in a transaction, they still have to identify where to
place atomic sections and thus some of the same non-local reasoning as with synchro-
nized statements is required. The main simplification is that it is not necessary to
identify and name locks. Another way to avoid explicit locking is to perform lock infer-
ence. Like transactional memory, programmers must annotate programs with atomic
sections, but instead of relying on a transactional memory mechanism, static analysis
is used to determine which locks to acquire [Cherem et al. 2008; McCloskey et al. 2006].
While more efficient than transactions, as there is no need to support abort/undo se-
mantics, lock inference relies on whole-program information and thus cannot deal with
the dynamic features of Java.

Type systems for atomicity and race-freedom are another influence on our work.
The type system of Abadi et al. [2006] guarantees the absence of data races. The gen-
eral approach is to have a programmer provide redundant type annotations on top
of a program with explicit lock operations. The type system thus only needs to check
that the synchronization and the type annotations are consistent. In that approach,
methods declare the locks they require and a guarded by construct is used to indi-
cate which lock protects a field. With 20 annotations per KLOC for the Java collections
framework, the approach is relatively lightweight, but unlike atomic sets the program-
mer must add explicit synchronization to the code. Moreover, atomic-set serializabil-
ity is a higher level property than data race freedom. The type system of Flanagan
and Qadeer [Flanagan and Qadeer 2003; Flanagan et al. 2008] guarantees atomicity,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:5

i.e., equivalence to a serial execution. As above, fields are annotated with guarded by
or write guarded by to indicate that (write) access to the field must be protected by a
lock. Methods are annotated with atomic to indicate their atomicity and with requires
to indicate which locks must be held by callers. Atomic-set serializability recognizes
some benign interleavings as correct that global serializability does not. Flanagan and
Qadeer evaluated their type system on Java library classes and report an average of
23.3 annotations per KLOC of code. However, similar to the approach by Abadi et al.
[Abadi et al. 2006] and unlike atomic sets, it is assumed that the programmer has
added synchronization to the code. Inference [Flanagan et al. 2008] reduces the an-
notation burden. More recent work has looked at building atomicity [Kulkarni et al.
2010] and determinism [Bocchino et al. 2009] directly in the programming language.

Our type system was influenced by ownership type systems which started out as an
attempt to control the sharing of references [Noble et al. 1998] and is typically used
to enforce a strong form of encapsulation. Our treatment of internal objects is close to
traditional ownership as all references to these objects are encapsulated. But unlike
the early owner-as-dominator type systems [Clarke et al. 1998] there is no single access
point. Indeed, in order to support iterators we have loosened the restriction of a single
owner and allow the elements of atomic sets that are not part of internal classes to be
viewed and manipulated from the outside. The ownership type system of Boyapati and
Rinard [Boyapati and Rinard 2001] ensures that Java-like programs are data race-
free. In that work, classes are parameterized with a list of owners and methods may
require that their callers hold particular locks. A simple unification-based form of local
type inference is used to reduce the annotation burden. While no direct comparison is
possible as the implementation of Boyapati and Rinard [Boyapati and Rinard 2001]
is not available, we believe atomic sets have lower annotation overhead overall, and
are better integrated into Java. Deadlocks can also be ruled out by ownership type
systems [Boyapati et al. 2002] but this comes at the price of expressiveness and an
increased annotation burden. We feel that some form of static analysis may be a better
fit to address deadlocks, but have left the matter to future work.

Attention to high-level data races is relatively recent. Many static [Engler and
Ashcraft 2003; Leino et al. 1999] and dynamic race detectors [O’Callahan and Choi
2003; Savage et al. 1997], as well as type systems [Boyapati and Rinard 2001; Flana-
gan and Freund 2000b] that guarantee race freedom are based on the common def-
inition of data races and therefore do not handle high-level races. An extension to
ESC/Java detects a class of high-level data races, called “stale-value errors” [Burrows
and Leino 2004]. The value of a local variable is stale if it is used beyond the critical
section in which it was defined. View consistency [Artho et al. 2003] is a correctness
criterion that ensures that multiple reads in a thread observe a consistent state. A
view is defined to be the set of variables that a lock protects. Two threads are view
consistent if all the views in the execution of one, intersected with the maximal view of
the other, form a chain under set inclusion. View consistency can be checked dynam-
ically [Artho et al. 2003] or statically [von Praun and Gross 2004]. In our approach,
however, the programmer indicates explicitly what sets of locations form an atomic
set, so this information does not need to be extracted from the locking structure of the
code, which may not be correct. Recently, Lucia et al. [2010] presented an approach for
detecting atomicity violations that involve multiple memory locations. In Lucia’s work,
related memory locations are identified by giving them the same color, and architec-
tural support is proposed to implement the technique efficiently.

The Serializability Violation Detector [Xu et al. 2005] is a tool that dynamically
infers atomic sections, based on data and control dependences, and then detects if these
sections are non-serializable by checking a rule based on strict 2-Phase Locking. One
of its key features is that it does not rely on the possibly buggy locking structure of the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Julian Dolby et al.

program to infer atomic sections. We share a similar viewpoint by having a definition
of data races that does not rely on locks. The detector produces both false positives and
false negatives, depending on the precision of the inferred atomic sections.

Deng et al. [2002] present a method that allows the user to specify synchronization
patterns that are used to synthesize synchronized code. The generated code can then
be verified using the Bandera toolset. In this approach, the user must specify explicitly
the regions of code that need synchronization, but we do not require this. Unlike them,
we focus on only one kind of synchronization pattern: exclusion between two regions
that access the same atomic set.

3. DATA-CENTRIC SYNCHRONIZATION WITH AJ
AJ extends the syntax of the Java programming language with annotations needed to
support the data-centric programming model of Vaziri et al. [2006]. An AJ class can
have zero or more atomicset declarations. Each atomic set has a symbolic name and
intuitively corresponds to a logical lock protecting a set of memory locations. Associ-
ated with each atomic set is a set of units of work, code fragments that, when executed
sequentially, preserve the consistency of their associated atomic sets. By default, the
units of work for an atomic set declared in a class C consist of all non-private meth-
ods in C and its subclasses. Given data-centric synchronization annotations, AJ infers
the placement of concurrency control operations in such a way that units of work are
serializable from the perspective of each atomic set, a property we call atomic-set se-
rializability. The inferred synchronization ensures that any execution is equivalent to
one in which, for each atomic set, its units of work occur in some serial order. One may
think of a unit of work as being an atomic section [Harris and Fraser 2003] that is
only atomic with respect to a particular set of memory locations. Accesses to locations
not in the set are visible to other threads. The AJ implementation is free to choose
the type of concurrency control operations and to optimize their placement. Thus, for
instance, methods declared private or called through this usually do not require syn-
chronization as their calling context has established atomicity. Methods that do not
operate on locations that are within an atomic set will typically not be synchronized
either.

Fig. 1 shows an integer counter class with atomic increment and decrement meth-
ods. Each instance of Counter has its own instance of its atomic set a. The locations
protected by the atomic sets are identified by annotating the corresponding fields with
atomic (a). Atomic set declarations are inherited by subclasses, so every instance of a
subclass of Counter has its own a and can add some of its fields to the atomic set. AJ
requires that fields belonging to an atomic set must be accessed through the (implicit)
this reference. Note that this is a stronger property than labeling the field private, as in
Java two instances of the same class can access each other’s private fields.

class Counter {
atomicset a;
atomic(a) int val;
int get() { return val; }
void dec() { val- -; }
void inc() { val++; }

}

Counter c = new Counter();
c.inc();
c.dec();
...

Fig. 1: A simple counter class.

It is often the case that an atomic set must protect fields belonging to more than one
object. While it is not possible to refer directly to another object’s atomic set, AJ allows

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:7

merging atomic sets using aliasing annotations. An atomic set a in an object pointed
to by a variable x may be aliased with an atomic set b in the object pointed to by this
by placing the alias annotation |a = this.b| on the declaration of x. This has the effect
of merging the atomic sets in these objects. Fig. 2 shows a PairCounter class which has
two integer counters, low and high, and a method, incHigh() that updates the difference
between them. To this end, it introduces a new atomic set b for the diff field, and it
aliases the atomic sets of the counters with b to form a single atomic set.

class PairCounter {
atomicset b;
atomic(b) int diff;
Counter|a=this.b| low = new Counter|a=this.b|();
Counter|a=this.b| high = new Counter|a=this.b|();
void incHigh() { high.inc(); diff = high.get()-low.get(); }
...

}

Fig. 2: Aliased atomic sets.

There are cases where a method needs to coarsen the granularity of atomicity for
some of its arguments. This is achieved by declaring additional units of work by an-
notating arguments with unitfor(a). If this annotation appears on some parameter p
of some method m of a class D, this indicates that m is an additional unit of work
for atomic set a of object p. Such cases—where a method is a unit of work for multi-
ple atomic sets—are treated as if the method is a unit of work for the union of these
atomic sets. Alias annotations have a similar effect. Fig. 3 illustrates this with a trans-
fer method which must atomically update two Counter objects with different atomic
sets.

class Transfer {
void transfer(unitfor(a) Counter from, unitfor(a) Counter to) { from.dec(); to.inc(); }

}

Fig. 3: Adding atomic sets to a unit of work using unitfor.

For performance reasons it may be advantageous to avoid synchronization around
objects that are used to implement the representation of a given data structure. This
is safe only if it is guaranteed that no reference to these representation objects ever
leaks to clients where it could be manipulated without synchronization. The internal
annotation is used to declare a class or interface and all of its subclasses as being
private to a data structure. Internal classes must always have their atomic sets aliased
to some enclosing data structure, which can be viewed as their “owner”. The AJ type
system enforces encapsulation of internal classes. The example of Fig. 4 illustrates the
use of internal classes. Here, class Cell is internal. Class Main creates an instance of
Cell, aliases its atomic set, b to its own atomic set a, and stores it in field c. Hence, the
type system ensures that the Cell object will only be manipulated by the corresponding
Main object.
It is noteworthy to observe that the internal annotation does not change the semantics of
the application; its purpose is to enable the implementation to remove some redundant
synchronization operations. While it would be possible to infer this annotation, doing
so would require interprocedural analysis which we avoid in this work.

These AJ data-centric synchronization annotations are summarized in Fig. 5.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Julian Dolby et al.

internal class Cell {
atomicset b; atomic(b) Object val;
Object getset(Object o) { Object old = val; val = o; return old; }

}

class Main {
atomicset a; final Cell|b=this.a| c = new Cell|b=this.a|();
void set(Object o) { c.getset(o); }

}

Fig. 4: An internal class.

3.1. Motivating Example
Fig. 6 shows some key fragments of a simplified version of the LinkedList class, a repre-
sentative of the Java Standard Collections framework, made thread-safe using data-
centric synchronization. The figure shows the abstract class AbsList which defines the
interface of all lists and a concrete list, LinkedList. The designer of the abstract list
has chosen to equip it with an atomic set a which is inherited by subclasses. Within
AbsList the only field that needs protection is the integer size. It is annotated atomic(a)
to denote that it belongs to a. The methods of AbsList and its subclasses are the units
of work for a.

The method addAll(unitfor(a) AbsList c) must operate on multiple atomic sets, namely
the receiver and the argument c. Logically, the list c must remain unchanged during
the entire execution of addAll. By annotating parameter c with unitfor(a), we merge the

atomicset a

A class or interface declaration may have multiple atomic set declarations.
Atomic sets are inherited and may be referenced in subclasses.

atomic(a)

Annotation on instance fields and classes.
A field can belong to at most one atomic set. Annotated fields can only be accessed from the
this reference. When added to a class declaration, this annotation is a shorthand for placing
the same annotation on all instance fields in the class and its subclasses.

unitfor(a)

Each method argument can be annotated by one or more unitfor annotations.
When the name is omitted, the annotated method becomes a unit of work for all atomic sets
in the parameter object.

internal

Annotation on class declarations which must be preserved by inheritance.
The type system tracks internal objects and ensures that no reference to an internal object
can leak outside of the object that constructs it.

|a=this.b|

Annotation on variable declarations and in constructor expressions.
This indicates that the atomic set a of the type of the annotated variable or constructed
object is aliased with the current object’s atomic set b.

Fig. 5: Data-centric annotations in AJ.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:9

public abstract class AbsList {
atomicset a;
atomic(a) int size;
public int size(){

return size;
}
public abstract ListIterator iterator();
public abstract void add(Object o);
public abstract boolean

addAll(unitfor(a) AbsList c);
public abstract Object get(int i);
}

internal class Entry {
atomicset b;
atomic(b) Object elem;
atomic(b) Entry next|b=this.b|;
atomic(b) Entry prev|b=this.b|;
...

}

class LinkedList extends AbsList {
atomic(a) Entry header|b=this.a|;
public LinkedList() {

header = new Entry|b=this.a|(null,null,null);
header.next = header.prev = header;

}
public void add(Object o) {

Entry newEntry|b=this.a| =
new Entry|b=this.a|(o, header, header.prev);

newEntry.prev.next = newEntry;
newEntry.next.prev = newEntry;
size++;

}
public ListIterator iterator() {

return (ListIterator)
new ListItr|I=this.a|(this,this.header, 0);

}
... // other list methods

}

Fig. 6: AbsList, LinkedList and Entry classes

atomic set a in the receiver object with the atomic set a in the argument object for the
duration of the method’s execution.

In class LinkedList, the header field points to a doubly-linked list of Entry objects.
LinkedList adds header to the atomic set a of its parent class to ensure that any method
accessing both header and size will have a consistent view of these fields. However,
note that the above is not sufficient for the data structure to be thread-safe: It is also
necessary to protect the doubly-linked list itself. This requires defining an atomic set
b in class Entry to protect the fields next and prev. Furthermore, units of work for the
LinkedList object must encompass the units of work for the Entry objects it refers to.
This is achieved by placing the alias annotation |b=this.a| on all allocation sites and
variables of type Entry inside LinkedList to indicate that the atomic set b of these Entry
objects should be combined with the list’s atomic set a. Similar annotations, |b=this.b|,
are placed on the fields next and prev of Entry. These imply that the atomic sets b of
objects pointed to by these fields are merged with the atomic set b of this. Together
with the annotation on header, they cause the entire backbone of the LinkedList to be
in a single atomic set. Any unit of work for the list, including its Entry objects, will be
performed atomically with respect to this merged atomic set. As an optimization, Entry
is declared internal. This means that the type system will guarantee that no instance of
Entry can be accessed without going through the methods of LinkedList. Thus, an imple-
mentation can omit synchronization for all of Entry’s methods and leave concurrency
control to the list object.

Each expression in our type system potentially has alias information. If there is
no alias information, this means that either the expression represents an object that
has no atomic sets, or that the object is an independent object that performs its own
synchronization. The type system tracks aliasing annotations and prevents, e.g., the
Entry object of one linked list from ending up within another linked list. Practically,
this means that some types of casts are disallowed. Casting away an alias annota-
tion (thus losing information) is allowed, but forging an alias annotation is not. For
instance, the iterator() method creates an object of type ListItr (a class that is private to

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Julian Dolby et al.

class LinkedList), which has an atomic set aliased to that of the linked list. This alias
information is cast away in the return statement of the method.

A non-internal class such as LinkedList can be instantiated in two ways: new Linked-
List() and new LinkedList|a=this.x|(). The former signifies a new instance of LinkedList
that is responsible for its own synchronization, while the latter means that the atomic
set of the new instance is the same as the atomic set x of the current object. The latter is
especially useful when defining new data structures in terms of other data structures.
For example, one could define a Stack in terms of a LinkedList and achieve correct
synchronization behavior by having an atomic set in Stack that is aliased to the atomic
set in the underlying LinkedList. This kind of compositionality is a key contribution
of this paper and was not supported in the original work by Vaziri et al. [2006]. For
internal classes such as Entry an aliased allocation site such as new Entry|b=this.a| is
the only valid instantiation because an internal object must share the atomic set of its
creator. As usual with type-based approaches, the bindings created by aliasing cannot
be modified after creation.

3.2. Arrays
Arrays are fully handled by our implementation. Supporting arrays requires being
able to specify atomicity constraints at three different levels. The declaration

atomic(a) B[] vals;

indicates that the reference to array vals is part of atomic set a, however the contents
of the array can be updated without synchronization. The declaration

atomic(a) B[] vals|this.a[]|;

indicates that not only is the reference to the array to be accessed atomically, but the
contents of the array are also part of atomic set a and must be accessed in a synchro-
nized manner. Finally, the declaration

atomic(a) B[] vals|this.a[]b=this.a|;

indicates that, additionally, the atomic set b of each of the objects contained within
the array should be merged with atomic set a. In our experience, we found all three of
these forms of array annotation to be useful.

3.3. Data Races and Deadlocks
AJ does not completely prevent programmer errors. Data races can occur within a
unit of work if the code manipulates data that is not part of the unit’s atomic set.
Thus it is incumbent on the programmer to correctly annotate all fields which share a
consistency property, and to place unitfor annotations on method parameters as needed.
Forgetting to annotate a field or method parameter can result in concurrency errors.

Our implementation of atomic set associates locks with atomic sets. There is thus
the potential for deadlocks when multiple non-aliased atomic sets are manipulated
by the same unit of work. We support a form of deadlock avoidance for methods that
have unitfor annotations, by atomically acquiring the locks for all atomic sets that the
method is a unit of work for. However, we cannot prevent deadlock when a thread
executes a unit of work for some atomic set a that (transitively) invokes a unit of work
for another atomic set b, and where another thread invokes a unit of work for atomic
set b that (transitively) invokes a unit of work for atomic set a. In this respect, AJ
programs are neither more nor less prone to deadlock than standard Java programs
that acquire multiple locks out of order. We do, however, believe that the declarative
nature of synchronization annotations in AJ simplifies the design of static analyses for

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:11

1

6

2

3

4

5

String

internal
Entry
|a|

ListIter
|a|

LinkedList
|a|

internal
Entry
|a|

String

Fig. 7: Example. The instance 1 of LinkedList is the owner of the atomic set composed of
objects 1, 2, 3 and 6. Since the two Entry objects are declared internal to the atomic set,
the type system will ensure that no references to these object may be leaked outside
of the atomic set. The ListIterator i (object 6) belongs to the atomic set but can also be
accessed from the outside. The elements contained in the collection (4 and 5) are not
protected by the atomic set and could potentially be modified concurrently.

detecting possible deadlocks, and this is a topic that we plan to investigate as future
work.

3.4. Complete LinkedList example
Fig. 8 and Fig. 9 show the complete LinkedList example, including a small client. Fig. 7
illustrates the structure of the atomic sets in the example program. Notice that only a
small number of data-centric synchronization annotations (highlighted) are needed to
ensure correct synchronization behavior. Consider the call to the ListItr() constructor on
line 34. The alias annotation |I=this.L| ensures that the atomic set I of ListItr is merged
with this.L. The constructor is declared on line 59. It requires a LinkedList parameter
l with an atomic set L that is merged with this.I. This alias annotation together with
the one at the constructor call site, ensures that iterator() returns a ListItr object that
corresponds to the list in question. Effectively, the methods in the iterator become
additional units of work for L, and will provide the same atomicity constraints as any
non-private method of the list. Notice that the return value of the iterator() method
is cast to ListIterator (line 34). In our type system, there are no implicit casts, and
therefore these upcasts must be applied explicitly. The ListItr constructor call results in
an object with alias information |I=this.L|. This information must be erased explicitly
with a cast before returning the object, since the return type has no alias information.
It is a type error to erase the alias information of internal objects.

Finally, consider the Client class. The main() method first creates LinkedLists x, y, and
z, and executes two threads that concurrently add the contents of the lists y ({a,a})
and z ({b,b}) to the list x. The client uses an iterator to traverse list x in the forward
direction to replace each ”b” with a ”c”. It then uses the same iterator to traverse the list
in the backward direction to print the contents of each node in the list. This example
was chosen to illustrate that our type system is capable of handling complex iterators
that can modify the state of an underlying collection.

In the absence of any synchronization (i.e., if we assume that the highlighted code
fragments have been omitted from the program), the execution of the two calls to ad-
dAll() on line 88 may be interleaved in arbitrary ways. As a result, the addition of the
elements from the lists y and z to the list x may be intermixed, so that the list x may
contain, for example, a, c, c, a, or c, a, a, c upon program termination. In fact, other
interleavings exist in which the program terminates with a NullPointerException (e.g.,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Julian Dolby et al.

1 class LinkedList extends AbsList {
2 atomic(L) private Entry header|E=this.L| = new Entry|E=this.L|(null,null,null);
3 public LinkedList() { header.next = header.prev = header; }
4 public void add(Object o) {
5 Entry newEntry|E=this.L| = new Entry|E=this.L|(o, header, header.prev);
6 newEntry.prev.next = newEntry; newEntry.next.prev = newEntry; size++;
7 }
8 public Object get(int index) {
9 if (index < 0 || index >= size()) throw new IndexOutOfBoundsException();
10 Entry e|E=this.L| = header;
11 for (int i = 0; i ¡= index; i++) e = e.next;
12 return e.elem;
13 }
14 public boolean equals(unitfor Object o) {
15 if (o == this) return true;
16 if (!(o instanceof LinkedList)) return false;
17 ListIterator e1 = iterator();
18 ListIterator e2 = ((LinkedList) o).iterator();
19 while (e1.hasNext() && e2.hasNext()) {
20 Object o1 = e1.next(), o2 = e2.next();
21 if (!(o1 == null ? o2 == null : o1.equals(o2))) return false;
22 }
23 return !(e1.hasNext() || e2.hasNext());
24 }
25 public int hashCode() {
26 int hashCode = 1; ListIterator i = iterator();
27 while (i.hasNext()) {
28 Object obj = i.next();
29 hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
30 }
31 return hashCode;
32 }
33 public ListIterator iterator() {
34 return (ListIterator) new ListItr|I=this.L|(this, this.header, 0);
35 }
36 public boolean addAll(unitfor(L) AbsList c) {
37 boolean modified = false;
38 ListIterator e = c.iterator();
39 while (e.hasNext()) { add(e.next()); modified = true; }
40 return modified;
41 }
42 }
43 internal class Entry {
44 atomicset E;
45 atomic(E) Object elem;
46 atomic(E) Entry next|E=this.E|;
47 atomic(E) Entry prev|E=this.E|;
48 Entry(Object elem, Entry next|E=this.E|, Entry prev|E=this.E|) {
49 this.elem = elem; this.next = next; this.prev = prev;
50 }
51 }

Fig. 8: Complete example program: LinkedList.

this may happen as a result of a thread being suspended in the middle of executing
add(), when the prev and next pointers associated with the newly inserted list element
are in an inconsistent state). We assume that it is the programmer’s goal to ensure that
all operations on lists are executed atomically. With the data-centric synchronization
annotations, the two concurrent calls to addAll() happen atomically. Therefore, when

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:13

52 class ListItr implements ListIterator {
53 atomicset I;
54 atomic(I) private Entry lastReturned|E=this.I|;
55 atomic(I) private Entry next|E=this.I|;
56 atomic(I) private int nextIndex;
57 atomic(I) final LinkedList list|L=this.I|;
58 atomic(I) final Entry header|E=this.I|;

59 ListItr(LinkedList l|L=this.I|, Entry h|E=this.I|, int index) {
60 list = l; header = h; lastReturned = header;
61 if (index < 0 || index > list.size()) throw new IndexOutOfBoundsException();
62 next = header.next;
63 for (nextIndex = 0; nextIndex < index; nextIndex++) next = next.next;
64 }

65 public boolean hasNext() { return nextIndex != list.size(); }

66 public Object next() {
67 if (nextIndex == list.size()) throw new NoSuchElementException();
68 lastReturned = next; next = next.next; nextIndex++;
69 return lastReturned.elem;
70 }

71 public boolean hasPrev() { return nextIndex != 0; }

72 public Object prev() {
73 if (nextIndex == 0) throw new NoSuchElementException();
74 lastReturned = next = next.prev; nextIndex–;
75 return lastReturned.elem;
76 }
77 public void set(Object o) {
78 if (lastReturned == header) throw new IllegalStateException();
79 lastReturned.elem = o;
80 }
81 }

82 public class Client {
83 public static void main(String[] args) throws Throwable {
84 final AbsList x = new LinkedList();
85 final AbsList y = new LinkedList();y.add(”a”);y.add(”a”);
86 final AbsList z = new LinkedList();z.add(”b”);z.add(”b”);
87 Thread t1 = new Thread(){ public void run(){ x.addAll(y); } };
88 Thread t2 = new Thread(){ public void run(){ x.addAll(z); } };
89 t1.start(); t2.start();
90 t1.join(); t2.join();
91 ListIterator it;
92 for (it = x.iterator(); it.hasNext();){
93 Object o = it.next(); if (o.equals(”b”)) it.set(”c”);
94 }
95 for (; it.hasPrev();) System.err.println(it.prev());
96 } // can print aacc or ccaa, but not acac, caca, caac, acca
97 }

Fig. 9: Complete Example program: LinkedList.

the threads finish, the list x will contain either a, a, b, b, or b, b, a, a. Executing the
remaining statements will result in replacing all b’s with c’s and printing the contents
of the list in reverse order. Hence, the program will print c, c, a, a, or a, a, c, c. Since
the program is properly synchronized, NullPointerExceptions cannot occur.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Julian Dolby et al.

4. A FORMAL ACCOUNT OF AJ
We formalize AJ in a core calculus in the style of Wrigstad et al. [2009], which is an
idealized version of Java extended with some of the key features of our proposal. The
goal of the formalization is to prove soundness of the type system and illustrate its key
properties. In particular, the type system ensures that references to instances of inter-
nal classes are encapsulated, and that atomic set aliasing constraints are preserved
by reduction. This notion of correctness is expressed by the definition of well-formed
configuration and run-time subtyping of Section 4.4. These properties allow us to show
the soundness of an implementation that associates a single lock with all objects that
have the same atomic set. The concurrency-control policy enforced by AJ is specified in
Section 4.5 and a proof of atomic-set serializability is given in Section 4.6.

We focus on the essential features of AJ, namely atomic sets, atomic annotations
on fields, alias annotations, and internal types. For simplicity, we restrict the formal-
ization to a single atomic set per class, and exclude unitfor annotations. While both are
important, they do not affect the type system which tracks aliases and internal classes.
Adding multiple atomic sets would require a small change to the semantics which cur-
rently uses the addresses of objects as identifiers for atomic sets (instead, fresh values
would have to be created for each atomic set). Adding unitfor would only require more
complex traces; details are provided in Section 4.7. For brevity we omit orthogonal fea-
tures of Java such as interfaces, control constructs, exceptions, final variables, primi-
tive data types, arrays, generics, and thread creation and thread death. We start with
a presentation of the syntax (Section 4.1), and static and dynamic semantics (Sections
4.2 and 4.3, resp.). Fig. 10 summarizes the main judgements of the static and dynamic
semantics of the calculus, definitions are given in the corresponding subsections.

τ <: τ ′ subtyping
cd OK well-typed class
fd OK in C well-typed method
md OK in C well-typed method
E ` s well-typed statement

H;T `−→ρ H
′;T ′ reduction

r <:rH τ run-time subtyping
H;T is WF well-formed configuration
H ′ is WF in H well-formed heap
T is WF in H well-formed thread
F is WF in H well-formed frame

Fig. 10: Summary of the main judgements used AJ’s static and dynamic semantics.

4.1. Syntax
The AJ syntax is given in Fig. 11. In our core calculus fields are strongly private (they
can only be accessed by dereferencing this) and methods are public. Without loss of
generality, we use a “named form,” where the results of fields and variable accesses,
method calls and instantiations must be immediately stored in a variable. A further
simplification is the elimination of implicit upcasts for arguments, return values, and
assignments. All casts are performed explicitly by cast statements which simplifies the
other rules as they can assume type equality. Downcasts are safe in AJ because, as in
Java, there is a run-time test to check that the object belongs to the target type. All

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:15

p ::= cd program
cd ::= ι class C extends D {as fd md} class
as ::= atomicset a | ε
fd ::= α τ f field
md ::= τ m (τ x) {τ z; s;return y} method
s ::= s;s | skip | x = this.f | x = (τ)y | statement

this.f = z | x = new τ () | x = y.m (z)

τ ::= C|a= this.b| |C type
α ::= atomic (a) | ε
ι ::= internal | ε

E ::= [] | E[x : τ] type env

Fig. 11: AJ’s syntax. C,D are class names, f,m are field and method names, and x, y, z
are names of variables or parameters. this is a distinguished variable. For simplicity,
we assume that names of classes, fields, methods and variables are unique.

AJ-specific properties are preserved by subtyping, i.e., subtypes have the same atomic
sets and are internal if their parent is internal. Upcasts are more interesting as they
involve loss of type information. For brevity, we assume the existence of a well-formed
class-table CT . Auxiliary functions are given in Fig. 12. We use the shorthand x <: τ to
denote the pointwise subtype relation x1 <: τ1, . . . , xn <: τn. The subtyping relation is
standard with the exception of the rule for types with alias annotations, which restricts
subtyping to be annotation invariant.

C <: D
C|a= this.b| <: D|a= this.b|

We define the viewpoint adaption predicate adapt such that the value of adapt(τ, τ ′)
is the view of type τ from type τ ′. If τ is a raw type C, then it is unchanged. If τ has
an alias annotation, such as C|a = this.b|, and it is viewed from a type D|b = this.c|,
then the value of this.b is substituted with this.c, yielding C|a = this.c|. In cases where
adapt is undefined a type error will be reported as the type is not accessible from that
particular viewpoint.

adapt(C, τ) = C

adapt(C|a= this.b|,D|b= this.c|) = C|a= this.c|

4.2. Type System
4.2.1. Classes, fields, and methods. A class definition C is well-typed if its fields are well-

typed in the context of C. Furthermore, all methods (including non-overridden inher-
ited methods) must be well-typed. In case the class inherits an atomic set, then it is
not allowed to define a new one. If the class is declared internal it must have an atomic
set, or inherit one. Finally, internal annotations must be preserved by inheritance. In
the definitions below, we use the notation C has a to indicate that class C declares or
inherits an atomic set a.

(T-CLASS)

fd OK in C methods(C) = md ′ md ′ OK in C (D has a implies as = ε)
(ι = internal implies C has a) (D is internal implies ι = internal)

ι class C extends D {as fd md} OK

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Julian Dolby et al.

Subtyping:

C <: C
C extends D

C <: D
C <: C′ C′ <: D

C <: D

C <: D
C|a= this.b| <: D|a= this.b|

Extends:

CT (C) = ι class C extends D {as fd md}
C extends D

Type lookup:

τ m(τx x){τz z; s; return y}∈methods(C)
typeof (C.m) = τx → τ

CT (C) = ι class C extends D {as fd md}
m is not defined in md

typeof (C.m) = typeof (D.m)

τ f∈fields(C)
typeof (C.f) = τ

CT (C) = ι class C extends D {as fd md}
f is not defined in fd

typeof (C.f) = typeof (D.f)

Local vars:

H(F (this)) = C|ω|(r′)
mbody(C.m) = (τx x; τz z; s; return y)

E ≡ x : τx, z : τz, this : C
locals(m, F) = E

Method lookup:

τ m(τx x){τz z; s; return y} ∈ methods(C)
mbody(C.m) = (τx x; τz z; s; return y)

CT (C) = ι class C extends D{as fd md}
m not in md

mbody(C.m) = mbody(D.m)

Internal lookup:

CT (C) = internal class C extends D {. . .}
C is internal

Fields lookup:

fields(Object) = ε

CT (C) = ι class C extends D{as fd md}
fields(D) = fd ′

fields(C) = fd ′ fd

Methods lookup:

methods(Object) = ε

CT (C) = ι class C extends D{as fd md}
methods(D) = md ′ md ′′ = md ′ −md

methods(C) = md md ′′

Valid Method overriding:

typeof (C.m) = τ ′ → τ ′ implies
τ = τ ′ and τ = τ ′

override(m,C, τ → τ)

Atomic set lookup:

CT (C) = ι class C extends D {as fd md}
as = ε D has a

C has a

CT (C) = ι class C extends D {as fd md}
as = atomicset a

C has a

Atomic lookup:

atomic(a) τ f∈fields(C)
C.f is atomic

Fig. 12: Auxiliary definitions.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:17

Atomic sets referred to in field declarations must exist.

(T-FIELD)
(τ ≡ D|a= this.b| implies (D has a) and (C has b)) (α = atomic (a) implies C has a)

α τ f OK in C

Checking a method requires typing its body in an environment E constructed by
composing the disjoint sets of parameters, x, local variables, z and the distinguished
variable this. If class C has an atomic set, the type of this is C|a = this.a|; This is the
default case when an object is in charge of its own synchronization (i.e., its atomic
set has not been aliased) and is needed to ensure that adapt is defined. The type of
the local variable y appearing in the return statement must match the return type of
the method, and if the method overrides an inherited method, the signature must be
unchanged.

(T-METHOD)
E ≡ x : τx, z : τz, this : τthis E ` s; return y E(y) = τ C extends D

(if C has a then (τthis ≡ C|a= this.a|) else (τthis ≡ C)) override(m,D, τx → τ)

τ m(τx x){τz z; s; return y} OK in C

Observant readers will note that we are checking inherited methods with the type of
this bound to the subclass C and not to the defining class of the method (we are using
the dynamic type of this). This prevents the implicit upcast in method invocation from
being used to subvert the type system. Consider the following program which, without
the above treatment of inherited methods, would leak a reference to an internal object.

class Id extends Object {
Id id() {

Id x;
x = this;
return x;

}
}

internal class E extends Id {
atomicset a;

}

class C extends Object {
atomicset b;
Id m() {

E|a=this.b| y;
Id z;
y = new E|a=this.b|();
z = y.id();
return z;

}
}

The instance of E is an internal class and should remain private to its owner (an in-
stance of class C). Yet, if the invocation of id() were allowed, it would be possible to
pass off the E object as an Id which is not protected. In our type system the assign-
ment x=this does not type check in the context of class E. This problem is standard in
ownership type systems. One could avoid type-checking inherited methods repeatedly
by declaring inherited methods anonymous, i.e., that they do not leak the this refer-
ence [Vitek and Bokowski 2001] or inferring the property by whole program analysis
as in the work by Grothoff et al. [2007]. In AJ, the only methods that need this are
methods inherited by an internal class.

4.2.2. Statements. There are two type rules for object creation. The first rule, (T-NEW-
RAW), covers the case where the object being created is not annotated with an alias.
If class C has an atomic set, this means we are requesting the construction of an

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Julian Dolby et al.

object that can take care of its own synchronization. The only restriction that must
be enforced in this case is that the class not be declared internal as internal classes
always depend on an owner. The second rule, (T-NEW-ASET), covers the case when a C
object is created with an alias |a = this.b|. In this case, we check that C indeed has an
atomic set a and that this refers to an object which has an atomic set b.

(T-NEW-RAW)
E(x) = C

C not internal

E ` x = new C()

(T-NEW-ASET)
E(x) = C|a= this.b|

C has a E(this) has b

E ` x = new C|a= this.b|()

There are three type rules for upcasts. (T-CAST-PLAIN) covers the case where neither
type has an alias annotation. Rule (T-CAST-ASET) allows annotation invariant upcasts.
Finally, (T-CAST-OFF) strips the annotation from a type. This is only allowed for non-
internal classes.

(T-CAST-PLAIN)

E(x) = D E(y) = C D <: C

E ` y = (C)x

(T-CAST-ASET)
E(x) = D|a= this.b| E(y) = C|a= this.b|

C has a E(this) has b D <: C

E ` y = (C|a= this.b|)x

(T-CAST-OFF)
E(x) = C|a= this.b| C not internal E(y) = C

E ` y = (C)x

The rule for method calls, (T-CALL), checks the types of the arguments and the return
type. Viewpoint adaption is necessary to ensure that the types of the arguments and
the return value are visible from the viewpoint of the receiver.

(T-CALL)
E(y) = τy typeof (τy.m) = τ → τ E(z) = τz
τz = adapt(τ , τy) τ ′ = adapt(τ, τy) E(x) = τ ′

E ` x = y.m(z)

Consider for instance calls (1) and (2) to method m() in the example below. The return
type of m is τ ≡ C|c = this.a|. At (1) τy ≡ A|a = this.b|, the value of adapt(τ, τy) = C|c =
this.b| indicating, as expected, that the C object shares the same atomic set as the
receiver. On the other hand, a2 is created with its own atomic set. Thus, at (2), the
result of adapt(τ,A) is undefined. The call does not type check because it would return
a value with an unknown alias.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:19

class A extends Object {
atomicset a;
C|c=this.a| m(){

C|c=this.a| x;
x=new C|c=this.a|();
return x;

}
}
class C extends Object {

atomicset c;
}

class B extends Object {
atomicset b;
A f() {

A|a=this.b| a1; C|c=this.b| c1; A a2;
a1 = new A|a=this.b|();
c1 = a1.m(); //(1) OK
a2 = new A();
c1 = a2.m(); //(2) ERROR
return a2;

}
}

The rules for field selection and update check that the type of the field matches that of
the variable it is stored into.

(T-SELECT)
E(this) = τ E(x) = τf

typeof (τ.f) = τf

E ` x = this.f

(T-UPDATE)
E(this) = τ E(y) = τf

typeof (τ.f) = τf

E ` this.f = y

4.3. Dynamic Semantics
We formulate AJ’s dynamic semantics as a small-step operational semantics. Fig. 13
shows the syntax used for heaps, threads, stacks, frames, and objects. An AJ configu-
ration H;T consists of a single heap H of locations mapped to objects and a collection
of threads T . Each thread T has its own stack S, plus a unique thread id denoted ρ. A
stack S is a sequence of triples 〈mF s〉 consisting of a method name m, a stack frame
F mapping variables to locations, and a statement s. At run-time, an object C|ω|(r),
consists of a class C, an atomic set owner ω (either a location r or empty) and values r
for the object’s fields (either locations or null).

H ::= [] | H[r 7→ v] heap
T ::= ρS | ρNPE thread
S ::= ε | S 〈mF s〉 stack

F ::= [] | F [y 7→ r]stack frame
v ::= C|ω|(r) object
ω ::= r | ε owner atomic set

Fig. 13: Syntax for heaps, threads, stacks, frames and objects.

We model multi-threaded Java programs with a fixed set of threads, T , each of which
initially starts with a call to a run method. Threads are terminated either when the
run method returns or by a null pointer exception (NPE). The reduction relation `−→ρ

represents a step of evaluation. The label ` describes the action and the thread identi-
fier ρ specifies the thread that performed it. Action labels can be one of the following:
↑ r.f (field select), ↓ r.f (field update), ← r.m (method return), → r.m (method call), or
ε (empty action). Labels will be used in Section 4.5 to define traces; they record oper-
ations that may lead to a data race (reads/writes) and operations that correspond to
potential unit of work boundaries (calls/returns). Basic thread-scheduling is modeled
as a non-deterministic choice in (D-SCHEDULE). Given a set of threads T TT ′, the rule
picks randomly one of the threads, T , for reduction.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Julian Dolby et al.

(D-SCHEDULE)

H;T T ′ T `−→ρ H
′;T T ′ T ′

H;T T T ′ `−→ρ H
′;T T ′ T ′

We abuse syntax a little bit and treat return y as a statement. Returning from a call im-
plies popping the topmost frame off the stack, and capturing the return value. Upcasts
and skip statements have the expected semantics.

(D-RETURN)
F (y) = r F (this) = r′

H;T ρS 〈m′ F ′ x = y′.m(z); s′〉〈mF return y〉 ←r
′.m−→ ρ H;T ρS 〈m′ F ′[x 7→ r] s′〉

(D-CAST)

H;T ρS 〈mF x=(τ)y; s〉 ε−→ρ H;T ρS 〈mF [x 7→F (y)] s〉

Field selection extracts one of the references stored in the object, while field update
modifies the content of the object at the proper location. We define H(r.fi) as follows:
H(r.fi) = ri if H(r) = C|ω|(r1 . . . ri . . . , rn) and fields(C) = f1, . . . fi . . . , fn.

(D-SELECT)
F (this) = r H(r.fi) = ri

H;T ρS 〈mF x= this.fi; s〉
↑r.fi−→ρ H;T ρS 〈mF [x 7→ ri] s〉

(D-UPDATE)

F (this) = r F (x) = rx H(r) = C|ω|(r, ri, r′) H ′ ≡ H[r 7→ C|ω|(r, rx, r′)]

H;T ρS 〈mF this.fi=x; s〉 ↓r.fi−→ρ H
′;T ρS 〈mF s〉

Object creation comes in three flavors. (D-NEW-PLAIN) covers the construction of plain
Java objects where the owner is empty. (D-NEW-SELF) takes care of creation of an in-
stance of a class that has an atomic set and for which no alias annotation is specified.
In this case, the owner is the newly created object itself. Lastly, (D-NEW-ALIAS) is for
the construction of objects which have an alias annotation of the form |a = this.b|. For
those, we look up the owner of this and set it as the owner of the newly created object.

(D-NEW-PLAIN)
v ≡ C|ε|(null1...nulln) r is fresh not C has a

H ′ ≡ H[r 7→ v] length(fields(C)) = n F ′ ≡ F [x 7→ r]

H;T ρS 〈mF x = new C(); s〉 ε−→ρ H
′;T ρS 〈mF ′ s〉

(D-NEW-SELF)
v ≡ C|r|(null1...nulln) r is fresh C has a

H ′ ≡ H[r 7→ v] length(fields(C)) = n F ′ ≡ F [x 7→r]

H;T ρS 〈mF x=new C(); s〉 ε−→ρ H
′;T ρS 〈mF ′ s〉

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:21

(D-NEW-ALIAS)
v ≡ C|r′|(null1...nulln) r is fresh C has a D has b
H ′ ≡ H[r 7→ v] |fields(C)|=n H(F (this)) = D|r′|(r)

H;T ρS 〈mF x=new C|a= this.b|(); s〉 ε−→ρ H
′;T ρS 〈mF [x 7→r] s〉

Method calls push a new frame on the stack with local variables initialized to null and
parameters bound to corresponding arguments. For brevity, null-pointer exceptions
cause threads to immediately get stuck. More accurate treatment of exceptions (e.g.,
catch-blocks and stack unwinding) is unnecessary for the problem at hand.

(D-CALL)

F (y) = r F (z) = r H(r) = C|ω|(r′) mbody(C.m) = (τx x′; τy y; s′; return y′)
F ′ ≡ [y 7→ null][x′ 7→ r][this 7→ r] S′ ≡ S 〈m′ F x=y.m(z); s〉〈mF ′ s′; return y′〉

H;T ρS 〈m′ F x=y.m(z); s〉 →r.m−→ ρ H;T ρS′

(D-CALL-NPE)

H;T ρS 〈m′ F [y 7→ null] x=y.m(z); s〉 ε−→ρ H;T ρNPE

4.4. Properties
We now proceed to establish preservation and progress for our type system. As usual
the proofs rely on a notion of well-formed heaps, threads and configurations as well
as run-time subtyping. We start with these auxiliary definitions. In a heap H, let
ownerH (r) = ω, ifH(r) = C|ω|(r). Let internalH (r) hold ifH(r) = C|ω|(r) and C is internal.
We write τ is raw to mean that type τ is of the form C and has no alias annotation and
τ not raw is the negation of τ is raw.

4.4.1. Run-time Subtyping Relation. The run-time subtyping relation, r <:ro

H τ indicates
that a reference r is an instance of type τ at run-time, in the context of a reference ro
and a heap H. Since types may contain alias annotations that refer to this, we need a
reference ro to give meaning to this. There are three cases: (i) if H(r) is null then the
relation holds for all τ , (ii) if H(r) is C|ω|(r) then if τ is a raw type, D, the relation holds
if C <: D and if C is not an internal class (to prevent leaking an internal object), and
(iii) if τ is an aliased type D|a= this.b|, we must check that r has the same owner as ro.

null <:ro

H τ

H(r) = C|ω|(r) C <: D
C not internal
r <:ro

H D

H(r) = C|ω|(r) C <: D
ownerH (r) = ownerH (ro)

r <:ro

H D|a= this.b|

Notice that the run-time subtyping relation satisfies the following property. If r <:ro

H τ
and r 6= null, then if τ is raw then not internalH (r), and if τ not raw then ownerH (r) =
ownerH (ro).

4.4.2. Well-formed configurations. A configuration is well-formed, written H;T is WF, if
the heap and threads are well-formed and the class table is well-typed, written ` CT .
A heap H is well-formed if it is empty or if all fields of all objects it contains are well-
typed, meaning that the reference corresponding to each field is a run-time subtype
of the static type of that field. A thread T is well-formed, written T is WF in H, if it
is stuck on a null pointer exception. Otherwise, a thread is well-formed if the topmost
frame is well-formed, and if the remainder of the stack is well-formed. If the receiver

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Julian Dolby et al.

(WF-CONFIGURATION)

H is WF in H T is WF in H ` CT

H;T is WF

(WF-EMPTY-HEAP)

[] is WF in H

(WF-NPE-THREAD)

ρNPE is WF in H

(WF-THREAD-BOT)
〈runF s〉 is WF in H not internalH (F (this))

ρ 〈runF s〉 is WF in H

(WF-THREAD-NOT-INT)
〈mF s〉 is WF in H ρS is WF in H

S ≡ S′〈m′ F ′ s′〉 s′ ≡ x = y.m(z′); s′′ not internalH (F (this))

ρS〈mF s〉 is WF in H

(WF-THREAD-INT)
〈mF s〉 is WF in H ρS is WF in H

S ≡ S′〈m′′ F ′′ s′′〉〈m0 F0 s0〉 . . . 〈mn Fn sn〉 sn ≡ x = y.m(z′); s′′

ownerH (F ′′(this)) = ownerH (F (this)) = . . . = ownerH (Fn(this))
internalH (F (this)) not internalH (F ′′(this))

internalH (F0(this)) . . . internalH (Fn(this))

ρS〈mF s〉 is WF in H

(WF-HEAP)

(C has a implies ω 6= ε) H ′ is WF in H fields(C) = α τ f rz <:rH τ

H ′[r 7→ C|ω|(rz)] is WF in H

(WF-FRAME)

locals(m, F) = E E ` s ∀ x ∈ dom(F), F (x) <:F (this)
H E(x)

〈mF s〉 is WF in H

Fig. 14: Well-formedness rules.

of the topmost stack frame is an instance of a class annotated as internal, then the
remainder of the stack may have zero or more frames with internal receivers followed
by at least one frame with a non-internal receiver, and the owners of the receivers of
all the frames must be identical. A frame F is well-formed if for each variable x in the
domain of F , the corresponding reference is a run-time subtype of the static type of x.
The rules appear in Fig. 14.

4.4.3. Type Soundness. We prove type soundness of AJ by showing preservation and
progress. Here, preservation means that reduction of a well-formed configuration re-
sults in a well-formed configuration, and the proof of preservation states that after a
step of reduction a well-formed configuration remains well-formed.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:23

We first define the notion of an active thread as a thread that has not stumbled on
an NPE or returned from its bottommost stack frame.

Definition 4.1. A thread T ≡ ρS is active, denoted active(T), if S 6≡ NPE and S 6≡
〈runF return y〉.

For simplicity, the proof will assume that the statements of Fig. 11 include the ex-
pression return y.

THEOREM 4.2. Preservation. If H;T T T ′ is WF and H;T T T ′ `−→ρ H
′;T T ′ T ′, then

H;T T ′ T ′ is WF.

PROOF. We proceed by structural induction on the derivation of H;T T T ′ `−→ρ

H ′;T T ′ T ′ with a case analysis on the last step as H ′;T T ′ T is obtained by repeated
application of (D-SCHEDULE). By (WF-CONFIGURATION) and active(T), we have T ≡
ρS〈mF s〉, F (this) = rthis, H(rthis) = Cthis|ω|(r) and mbody(Cthis.m) = (x; τz z; sm; return y)
and typeof (Cthis.m) = τm → τm. By (WF-CONFIGURATION), ` CT implies that all methods
are well-typed and in particular there is an E such that E ` sm.

Case (D-RETURN):
1. T ≡ ρS′〈m′ F ′ x = y′.m(z); s′〉〈mF return y〉 by (D-RETURN).
2. 〈m′ F ′ x = y′.m(z); s′〉 is WF in H by (WF-FRAME).
3.E(y) = τm by (T-METHOD).
4. F (y) = ry and ry <:rthis

H τm by (WF-FRAME).
5. T ′ ≡ ρS′〈m′ F ′[x 7→ ry] s′〉 by (D-RETURN).
6. F ′(this) = r′this, H(r′this) = C|ω′|(r′), mbody(C.m′) = (xm′ ; τm′ zm′ ; sm′ ; return y′), and
E(x) = τx and E(y′) = τy′ by (WF-CONFIGURATION).

7. τx = adapt(τm, τy′) by (T-CALL).
8. Show that ry <:r

′
this

H τx, by case analysis on ry.
8.1. If ry = null, then immediate by definition of run-time subtyping.
8.2. If ry 6= null. Let H(ry) = Cy|ωy|(r′′). We know that ry <:rthis

H τm.
8.2.1. If τm = D. Then τx = D by definition of adapt and Cy <: D, by the def-

inition of run-time subtyping. E(y) = τm is raw, so not internalH (F (y)).
Thus, Cy is not internal. Therefore, by the definition of run-time subtyp-
ing, ry <:rthis′

H τx.
8.2.2. If τm = D|a = this.b|. Cy <: D, by the definition of run-time subtyping.

Since τm not raw, we have ownerH (ry) = ownerH (rthis). We haveE(y′) = τy′

not raw, for otherwise τx would be undefined, by the definition of adapt.
We have F ′(y′) <:rthis′

H τy′ , by (WF-FRAME).
Therefore, ownerH (F ′(y′)) = ownerH (r′this). But F ′(y′) = F (this) =
rthis, by (T-CALL). So ownerH (rthis) = ownerH (r′this). Thus, ownerH (ry) =
ownerH (r′this). By the definition of run-time subtyping, ry <:rthis′

H τx.
9. T ′ is WF in H by (WF-THREAD-*).

Case (D-CAST):
1. T ≡ ρS〈mF x = (τ)y′; s′〉 by (D-CAST).
2.E(x) = τx and E(y′) = τ ′y by (T-METHOD).
3. F (y′) = r′y, and r′y <:rthis

H τ ′y by (WF-FRAME).
4. τx = τ by (T-CAST-*).
5. Show that r′y <:rthis

H τx by case analysis on τx and τ ′y:
5.a. If τ ′y = D and τx = C, then τ ′y <: τx by (T-CAST-PLAIN). Since τ ′y is raw, then

not internalH (r′y). So τ ′y is not internal. Therefore, by the definition of dynamic
subtyping, r′y <:rthis

H τx.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Julian Dolby et al.

5.b. If τx = D|a = this.b| and τ ′y = C|a′ = this.b′| then a = a′, b = b′, and τ ′y <: τx
by (T-CAST-ASET). τ ′y not raw, and since r′y <:rthis

H τ ′y, we have ownerH (r′y) =
ownerH (rthis), by (WF-FRAME). Therefore r′y <:rthis

H τx, by the definition of run-
time subtyping.

5.c. If τx = D and τ ′y = C|a = this.b|, then C = D and C not internal by (T-CAST-OFF).
Therefore r′y <:rthis

H τx, by the definition of run-time subtyping.
5.d. The case τx = D|a= this.b| and τ ′y = C, has no type derivation.

6. 〈mF ′[x 7→ ry] s′〉 is WF in H by (WF-FRAME) and (5).
7. T ′ ≡ ρS〈mF ′[x 7→ ry] s′〉 is WF in H by (WF-THREAD-*) and (6).

Case (D-SKIP): Immediate.
Case (D-SELECT):

1. T ≡ ρS〈mF x = this.fi; s′〉 by (D-SELECT).
2. typeof (Cthis.fi) = τf by (T-SELECT).
3.H(r.fi) = r′ and r′ <:rthis

H τf by (WF-HEAP).
4.E(x) = τf by (T-SELECT).
5. r′ <:rthis

H E(x).
6. 〈mF [x 7→ r′] s′〉 is WF in H by (5) and (WF-FRAME).
7. T ′ ≡ ρS〈mF [x 7→ r′] s′〉 is WF in H by (6) and (WF-THREAD-*).

Case (D-UPDATE): Similar to case (D-SELECT).
Case (D-NEW-PLAIN):

1. T ≡ ρS〈mF x = new C(); s′〉 by (D-NEW-PLAIN).
2. r′ is fresh, v = C|ε|(null), H ′ = H[r′ 7→ v], F ′ = F [x 7→ r′] and not C has a by

(D-NEW-PLAIN).
3.E(x) = C and C not internal by (T-NEW-RAW).
4. r′ <:rthis

H′ C by definition of run-time subtyping.
5.H ′(r′.f) <:r

′

H′ typeof (C.f)
6. 〈mF [x 7→ r′] s′〉 is WF in H ′ by (4) and (WF-FRAME).
7. T ′ ≡ ρS〈mF [x 7→ r] s′〉 is WF in H ′ by (6) and (WF-THREAD-*).
8.H ′ = H[r′ 7→ v] is WF in H ′ by (5) and (WF-HEAP).

Case (D-NEW-SELF):
1. T ≡ ρS〈mF x = new C(); s′〉 by (D-NEW-SELF).
2. r′ is fresh, v = C|r′|(null), H ′ = H[r′ 7→ v], F ′ = F [x 7→ r′], and C has a by (D-NEW-

SELF).
3.E(x) = C and C not internal by (T-NEW-RAW).
4. r′ <:rthis

H′ C by definition of run-time subtyping.
5.H ′(r′.f) <:r

′

H′ typeof (C.f)
6. 〈mF [x 7→ r′ s′〉 is WF in H ′ by (4) and (WF-FRAME).
7. T ′ ≡ ρS〈mF [x 7→ r] s′〉 is WF in H ′ by (6) and (WF-THREAD-*).
8.H ′ = H[r′ 7→ v] is WF in H ′ by (5) and (WF-HEAP).

Case (D-NEW-ALIAS):
1. T ≡ ρS〈mF x = new C|a= this.b|(); s′〉 by (D-NEW-ALIAS).
2.H(F (this)) = D|r′′= this.r|, r′ is fresh, v = C|r′′|(null), H ′ = H[r′ 7→ v] and C has a

by (D-NEW-ALIAS). Let F ′ = F [x 7→ r′].
3. ownerH (r′) = ownerH (rthis), by (2).
4. r′ <:rthis

H′ C|a= this.b| by definition of run-time subtyping.
5.E(x) = C|a= this.b| by (T-NEW-ASET).
6. F ′(x) <:rthis

H′ E(x) by (4) and (5).
7. 〈mF [x 7→ r′] s′〉 is WF in H ′ by (6) (WF-FRAME).
8. T ′ ≡ ρS〈mF [x 7→ r] s′〉 is WF in H ′ by (7) (WF-THREAD-*).
9.H ′(r′.f) <:r

′

H′ typeof (C.f), by the definition of run-time subtyping.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:25

10.H ′ = H[r′ 7→ v] is WF in H ′ by (9) and (WF-HEAP).
Case (D-CALL):

1. T ≡ ρS〈m′ F x = y.m(z); s′〉 by (D-CALL).
2. F (y) = r′, F (z) = r, H(r′) = C|ω|(r′), mbody(C.m) = (x′; τy y; s′′; return y′), F ′ ≡

[y 7→ null][x′ 7→ r][this 7→ r′], and S′ ≡ S 〈m′ F x = y.m(z); s〉〈mF ′ s′; return y′〉 by
(D-CALL).

3. typeof (C.m) = τ → τ , E(y) = τy, E(z) = τz, τz = adapt(τ , τy), τx = adapt(τ, τy),
E(x) = τx by (T-CALL).

4. r <:rthis

H τz by (WF-FRAME).
5. Show r <:r′H τ . Consider ri, show ri <:r

′

H τi, by case analysis on τi:
5.a. If τi is raw. We have τzi

= adapt(τi, τy), so τzi
= τi. ri <:rthis

H τi, by (4). So
not internalH (ri). Therefore ri <:r

′

H τi by the definition of run-time subtyping.
5.b. If τi not raw. We have τzi = adapt(τi, τy). τy not raw for otherwise, adapt would

be undefined, and τzi not raw. ownerH (ri) = ownerH (rthis), since ri <:rthis

H τzi .
ownerH (r′) = ownerH (rthis), since r′ <:rthis

H τy. So ownerH (ri) = ownerH (r′).
Therefore ri <:r

′

H τi by the definition of run-time subtyping.
6. Show r′ <:F

′(this)
H E(this), by case analysis on C:

6.a. If not C has a. Then E(this) is raw. C not internal, by (T-CLASS). So r′ <:F
′(this)

H
E(this), by the definition of run-time subtyping.

6.b. If C has a. Then E(this) not raw. We have ω 6= ε by (WF-HEAP). So ownerH (r′) 6=
ε, and r′ <:F

′(this)
H E(this), by the definition of run-time subtyping.

7. 〈mF ′ s′; return y′〉 is WF in H, by (5) and (6).
8. Show ∃〈m′′ F ′′ s′′〉 ∈ S′ such that: ownerH (F ′′(this)) = ownerH (F ′(this)) and not

internalH (F ′′(this)), by case analysis on r′:
8.a. If not internalH (r′). Immediate, 〈m′′ F ′′ s′′〉 is
〈mF ′ s′; return y′〉.

8.b. If internalH (r′). Then τy not raw. ownerH (r′) = ownerH (rthis), since r′ <:rthis

H τy.
We know that ρS〈m′ F x = y.m(z); s′〉 is WF in H. So ∃〈m′′ F ′′ s′′〉 ∈
S〈m′ F x = y.m(z); s′〉 such that ownerH (F ′′(this)) = ownerH (rthis) =
ownerH (r′) and
not internalH (F ′′(this)).

9. ρS′ is WF by (7), (8), and (WF-THREAD-*).
Case (D-CALL-NPE): Immediate by (WF-NPE-THREAD).

Progress requires that if there exists an active thread in a well-formed configuration,
this thread should be allowed to make a step.

THEOREM 4.3. Progress. If H;T T T ′ is WF and active(T), then H;T T T ′ `−→ρ

H ′;T T ′ T ′.

PROOF. We obtain H ′;T T ′ T by repeated application of (D-SCHEDULE). We pro-
ceed by structural induction on s when T ≡ ρS〈mF s〉. By (WF-CONFIGURATION)
and active(T), H(F (this)) = C|ω|(r) and mbody(C.m) = (xm; τm zm; sm; return y). By (WF-
CONFIGURATION), ` CT implies all methods are well-typed and there is a E such that
E ` sm.

Case [s ≡ return y]:
(a) By ` CT and (WF-THREAD), E(y) = τy, F (y) = ry, F (this) = r.
(b) By active(T) and (WF-THREAD), S = S′〈m′ F ′ x = y′.m(z); s′〉.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Julian Dolby et al.

(c) By b) we can apply (D-RETURN) to obtain
H;T T ′ ρS′〈m′ F ′ x = y′.m(z); s′〉.

Case [s ≡ s′; s′′]: Follows immediately by the induction hypothesis.
Case [s ≡ skip; s′]:

(a) By (D-SKIP) we obtain H;T T ′ ρS〈mF s′〉.
Case [s ≡ x = y.fi; s′]:

(a) By ` CT and (WF-THREAD), E(y) = τy, F (y) = ry, F (this) = r.
(b) By a) either ry = null or H(ry) = D|ω′|(r′).
(c) By b) if ry = null then by application of (D-SELECT-NPE) we obtain H;T T ′ ρNPE.
(d) By b) if H(ry) = D|ω′|(r′), by (T-SELECT) and (WF-HEAP) there is a ri ∈ r′ corre-

sponding to fi.
(e) By d) and (D-SELECT) we obtain H ′;T T ′ ρS〈mF s′〉.

Case [s ≡ x.fi = y; s′]: Similar to the previous case.
Case [s ≡ y = (τ)x; s′]: Immediate by application of (D-CAST).
Case [s ≡ x = new τ(); s′]:

(a) Either τ ≡ D or τ ≡ D|a= this.b|.
(b) If τ ≡ D|a = this.b|, then by (T-NEW-ASET) C has a and E(this) has b, recall that

H(F (this)) = C|ω|(r), then by (D-NEW-ALIAS) we obtain
H[r 7→ D|ω|(null)];T T ′ ρ 〈mF [x 7→ r] s′〉 with r fresh.

(c) If τ ≡ D, then if D has a, by (D-NEW-SELF) we obtain
H[r 7→ D|r|(null)];T T ′ ρ 〈mF [x 7→ r] s′〉 with r fresh, otherwise by (D-NEW-PLAIN)
we obtain H[r 7→ D|ε|(null)];T T ′ ρ 〈mF [x 7→ r] s′〉.

Case [s ≡ x = y.m′(z); s′]:
(a) By (WF-THREAD), (WF-HEAP) and application of (D-CALL) we obtain

H;T T ′ ρS〈mF s〉〈m′ F ′ s′〉.

4.5. Concurrency Control
The AJ semantics is purposefully silent about synchronization to allow for different
concurrency-control strategies. Our implementation uses mutual exclusion locks, our
previous work used read-write locks, and a transactional implementation would be an-
other possibility. The execution of a program can be characterized by a trace t which is
a sequence of events e1 . . . en performed by individual threads. For any implementation
of AJ, we define the concurrency-control policy as a predicate over traces. We say that
any trace accepted by an implementation is well-formed. The current implementation
disallows multiple invocations of methods on objects having the same owner to execute
concurrently by associating mutual exclusion locks to atomic set instances. We formal-
ize this with the following definition of valid event. Let an event e be a tuple (H,T , `, ρ)
consisting of a configuration, an action label and a thread id. We say that an event is
valid if it has any action label other than a method call. An event with a method call
on an object of an internal class is valid. For calls to non-internal classes, an event is
valid if there are no outstanding method calls of objects with the same owner in other
threads.

Definition 4.4. An event e = (H,T , `, ρ) is valid if and only if:
when ` =→ r.m, H(r) = C|r′|(r) and C not internal
then 6∃ ρ′S ∈ T .ρ′ 6= ρ and 〈mF s〉 ∈ S and H(F (this)) = D|r′|(z).

In our implementation, a well-formed trace is a trace in which every event is valid and
every configuration is WF. This property, enforced by the AJ run-time system, is not
sufficient in itself to prevent data races. The type system provides the additional guar-

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:27

antee that all objects belonging to an atomic set are accessed only through methods
that are units of work for the atomic set.

4.6. Atomic-Set Serializability
Serializability of atomic set operations follows from the above restriction to valid traces
(mutual exclusion of methods of non-internal classes operating on the same atomic
set) and the fact that all fields labeled atomic(a), including those of internal classes, are
accessed within a method of a non-internal class operating on that atomic set. Given a
well-formed trace t and an event e in t, asett(e) gives the owner atomic set accessed by
e, if any.

asett(e) =


r′ if e = (H,T , `, ρ) ∧ ` ∈ {↑ r.f, ↓ r.f}
∧ H(r) = C|r′|(r) ∧ C.f is atomic

ε otherwise.

We introduce unit of work identifiers, ranged over by meta variable u, in a trace t as
follows. We consider the projection of t onto each thread ρ, which is a succession of
events from the same thread. By considering method calls and returns (→ r.m,← r.m),
we determine where units of work start and end. We assign each unit of work a unique
identifier u, and update all frames in the trace t to reflect not only the method name,
but also the unit of work identifier u, as follows: 〈muF s〉. Given a well-formed trace
t, and an event e, uowt(e) is the unit of work to which e belongs. uowt(e) is computed
by examining the call stack of the thread that performs e, finding the first frame on
the stack with a method on an object having the same owner as asett(e), declared in
a non-internal class, and returning the unit of work identifier corresponding to this
method.

uowt(e) =



u if e = (H,TρS, `, ρ) ∧ ∃〈muF s〉 ∈ S s.t.
ownerH (F (this)) = asett(e)
∧ not internalH (F (this))
∧ 6 ∃〈m′ u′ F ′ s′〉 . . . 〈muF s〉 ∈ S
s.t. ownerH (F ′(this)) = asett(e)
∧ not internalH (F ′(this))

⊥ otherwise

Lemma 1. If e = (H,T , `, ρ) is an event in a well-formed trace t and asett(e) 6= ε, then
uowt(e) 6=⊥.

PROOF. Let e = (H,TρS〈m′ F ′ s′〉, `, ρ). Since asett(e) = r′ 6= ε, we have ` ∈ {↑
r.f, ↓ r.f}, H(r) = C|r′|(r), and C.f is atomic. Fields can only be accessed from this, so
r = F ′(this). By (WF-THREAD), we know that there exists a frame 〈mF s〉 in S such that
ownerH (F (this)) = ownerH (F ′(this)) = asett(e), and not internalH (F (this)). Therefore,
uowt(e) 6=⊥.

The events of a unit of work u in a trace t are all the events e in t such that uowt(e) =
u. Given a well-formed trace t and an atomic set r, we define the set of units of work
corresponding to r as the set that contains uowt(e) for each e in t such that asett(e) =
r. By Lemma 1, we know that uowt(e) is well-defined for an event e such that asett(e)
6= ε, meaning each access to a location in an atomic set is performed within a unit of
work corresponding to that atomic set. Since valid traces provide mutual exclusion of
units of work, we obtain atomic-set serializability.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Julian Dolby et al.

THEOREM 4.5. Atomic-Set Serializability. Given a well-formed trace t and an
atomic set r, the events of each of the units of work corresponding to r happen serially.

PROOF. By contradiction. Assume that t contains 3 events e, e′, and e′′ in this order,
such that: asett(e) = asett(e′) = asett(e′′) = r, and uowt(e) = uowt(e′′) 6= uowt(e′). Assume
that e′ is performed by a different thread than e and e′′, and that e′ = (H ′, T ,→ r.m, ρ).
Since trace t is well-formed, we know that e′ is valid. By the definition of valid event,
there is no other thread in the configuration of e′ that has an invocation of a method in
the same atomic set on its call stack. However, since e and e′′ belong to the same unit
of work, this means when e′ occurs, unit of work uowt(e) has not yet ended. Therefore,
e′ is not valid, which is a contradiction. Therefore no invocation by another thread of
a method on atomic set r may be interleaved between e and e′′. Since all accesses to r
happen inside a method operating on r, no other event accessing r by another thread
may be interleaved. So units of work corresponding to r happen serially.

4.7. Adding unitfor
AJ provides a feature to dynamically expand a unit of work to multiple atomic sets.
This is done by annotation of method arguments with the unitfor modifier. At run time,
the locks of all the named atomic sets are acquired and the method is serializable with
respect to these atomic sets. Consider a hypothetical method addAll2() in the LinkedList
class:

class LinkedList extends AbsList {
...
void addAll2(unitfor(a) AbsList l1,unitfor(a) AbsList l2) {

...

The programmer specified that the method is a unit of work for the receiver of the
call as well as for both arguments. This is the only way to ensure that neither the
receiver nor the arguments are modified concurrently. Semantically, the method in-
vocation will acquire all locks atomically. (Our implementation uses a lock ordering
protocol to prevent deadlocks.) We now sketch the changes to the formalism to support
unitfor. First, the syntax of the calculus is extended with optional unitfor annotations on
method arguments.

u ::= unitfor (a) | ε
md ::= τ m (u τ x) {τ z; s;return y}

Next, the type checking rule for methods is adapted. As atomic sets are inherited, we
deem it natural to enforce the constraint that subclasses preserve the synchronization
behavior of their parent. The new type rule assumes that the override predicate checks
that the unitfor specifications, u match those of the method declaration D.m.

(T-METHOD’)
E ≡ x : τx, z : τz, this : τthis E ` s; return y E(y) = τ C extends D

(if C has a then τthis ≡ C|a= this.a| else τthis ≡ C) override(m,D, u τx → τ)

τ m(u τx x){τz z; s; return y} OK in C

The next change is in the dynamic semantics. Whereas before, it was sufficient to
record method calls as pairs of receiver object and method name, →r.m−→ ρ, we now also
record the subset of the method’s arguments that have associated unitfor annotations,
→r.m ru−→ ρ. The new rule for a method call relies on predicate units(C,m, r) to return
the subset of the arguments ru corresponding to unitfor parameters. Call frames are

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:29

extended from triples 〈mF s〉 to quadruples 〈mF ru s〉 by addition of the unitfor argu-
ments.

(D-CALL’)

F (y) = r F (z) = r H(r) = C|ω|(r′) mbody(C.m) = (τx x′; τy y; s′; return y′)
F ′ ≡ [y 7→ null][x′ 7→ r][this 7→ r] ru = units(C,m, r)
S′ ≡ S 〈m′ F r′u x=y.m(z); s〉〈mF ′ ru s′; return y′〉

H;T ρS 〈m′ F r′u x=y.m(z); s〉 →r.m ru−→ ρ H;T ρS′

No other changes are required to the semantics. The definitions of well-formed config-
urations and the proofs are unchanged. The definition of valid events must be adjusted
to treat the extra arguments on call events as locks requiring mutual exclusion. This
is achieved by ensuring that the set of locks required by an event e are disjoint from
those of any stack frame in the configuration.

Definition 4.6. An event e = (H,T , `, ρ) is valid if and only if:
when ` =→ r.m ru, H(r) = C|r′|(r)
then 6 ∃ ρ′S ∈ T .ρ′ 6= ρ and 〈mF r′u s〉 ∈ S and

(
H(F (this)) ∪ ru

)
∩
(
D|r′|(z) ∪ r′u

)
= ∅.

The treatment of concurrency must be adjusted slightly to account for the fact that
methods are protected by multiple atomic sets. This affects the definition of uow and
the statement of the theorem. The result follows as expected.

5. IMPLEMENTATION: TRANSLATING AJ TO JAVA
We implemented a proof-of-concept AJ-to-Java compiler as an Eclipse refactoring that
rewrites the original source into a new project that holds the transformed code. The
type checker assumes that data-centric synchronization annotations are given as Java
comments. It parses these annotations and enforces the type rules of Section 4. Type
errors are reported using markers in the Eclipse editor. The compiler uses standard
Java synchronized blocks to enforce exclusion for each atomic set. A limitation of our
prototype is that it supports only one atomic set per class. Furthermore, it does not
handle generics and nested classes. We emphasize that this is not a limitation of the
approach, but an engineering tradeoff. With Eclipse’s rudimentary support for AST
manipulation handling those features would entail a considerable effort. Therefore,
when these features are encountered in Java code to be used in AJ, we perform man-
ual refactorings to side-step the problem. Generics are eliminated by removing type pa-
rameters and replacing occurrences of these type parameters with type Object. Nested
classes are dealt with in two steps. First, any non-static nested class is changed into a
static nested class by introducing an explicit pointer to the surrounding object. Then,
the nested classes are changed into top-level classes.

The prototype implements a four-step transformation that ensures that each non-
private method of a non-internal class acquires the locks for all atomic sets for which
it is a unit of work. We also experimented with an alternative implementation, based
on reentrant locks from java.util.concurrent but found the performance inferior to the
current implementation that is based on synchronized blocks.

5.1. Transformation steps
5.1.1. Create lock fields. The compiler generates a lock field $lock S in any class C that

declares an atomic set S. Atomic sets declared in super-interfaces of C will have a lock
field in C unless that same atomic set is present in C’s superclass. For each lock field,
an accessor method getLockForS() is created.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Julian Dolby et al.

5.1.2. Transform constructors. Constructors of classes with atomic sets are transformed
to take additional parameters that are the lock objects to use. For classes that declare
atomic sets, the constructors assign these parameters to the lock fields; for classes that
inherit atomic sets, these lock objects are passed to superclass constructors.

5.1.3. Transform object allocations to set locks. For objects not involved in alias relation-
ships, new statements are transformed by passing a fresh lock object to the constructor.
For objects in an alias relationship, the lock to use is read from the owner by calling
the getLockForS() accessor method and passed to the constructor to initialize the lock
field.

5.1.4. Transform units of work to acquire all needed locks. This involves taking the lock of
the atomic set of the declaring class and the locks for the atomic sets of any unit-
for parameters. If only a single lock is required, a single synchronized block suffices.
However, when multiple locks are needed, they must be acquired without inducing un-
necessary deadlock. This is accomplished by introducing an ordering: each lock object
is given an id when allocated, and locks are acquired in order of increasing id. There
is a minor complication here: when the type of the argument is too general to denote
an atomic set unambiguously, a unitfor must be used that omits the name of the atomic
set (this situation arises, e.g., for the argument of equals() methods, see section 6.2). To
this end, each class with atomic sets implements an interface Atomic, which declares a
method getLock() that returns the lock for its atomic set.

class F {
atomicset f;
B myB |b=this.f|;
atomic(f) long fCounter;
...
void foo(unitfor(b) B b1, B b2) {

fCounter++;
b1.bar(myB); //no-lock version
b2.bar(myB); //locking version

}
}

class B {
atomicset b;
atomic(b) long bCounter;
...
void bar(unitfor(b) B that) {

this.inc(); //no-lock version
that.inc(); //no-lock version

}
void inc(){ bCounter++; }

}

Fig. 15: Example where the compiler can determine that locks need not be reacquired.

A few straightforward optimizations were implemented. If the compiler can deter-
mine that all members of an atomic set accessed in a method and in any methods it
may call are final, then it will not introduce locking code. Furthermore, all transformed
methods have two versions, one with locking code and one without; when the compiler
can determine that all needed locks are already held in a particular context, it will call
the version that does not take locks. Consider the code in Figure 15 as an example.
The compiler knows that while executing method foo(), locks for atomic sets this.f and
b1.b are held. Furthermore, the aliasing annotation on myB indicates that myB.b and
this.f are in fact the same lock. Therefore, the call b1.bar(myB) can be translated to use
the version of bar that does not acquire any locks since all necessary locks are already
held. The comments in the figure indicate whether the locking or non-locking version
of a method will be called at each call site.

5.2. Translation Example
To illustrate the translation described above, we show the translated version of the

code in Figure 15: class F in Figure 16 and class B in Figure 17.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:31

1 public class F implements atomicsets.Atomic {
2 /*atomicset(f)*/
3 F(OrderedLock f) {
4 super();
5 $lock_f = f;
6 }
7

8 public final OrderedLock getLockForf() {
9 return $lock_f;

10 }
11

12 public final OrderedLock getLock() {
13 return this.getLockForf();
14 }
15

16 B myB /*b=this.f*/;
17 /*atomic(f)*/ long fCounter;
18

19 void foo_internal(/*unitfor(b)*/ B b1, B b2) {
20 fCounter++;
21 b1.bar_internal(myB); //no-lock version
22 b2.bar(myB); //locking version
23 }
24

25 void foo(B b1, B b2) {
26 OrderedLock l1 = null, l2 = null;
27 OrderedLock l3 = b1.getLockForb();
28 OrderedLock l4 = this.$lock_f;
29 if (l3.getIndex() > l4.getIndex()) {
30 l1 = l3; l2 = l4;
31 } else {
32 l1 = l4; l2 = l3;
33 }
34 synchronized (l1) {
35 synchronized (l2) {
36 fCounter++;
37 b1.bar_internal(myB); //no-lock version
38 b2.bar(myB); //locking version
39 }
40 }
41 }
42 protected final OrderedLock $lock_f;
43 }

Fig. 16: Translation for class F in Figure 15

(1) Create lock fields. The lock fields themselves are added to each class that declares
an atomic set, as illustrated with the locks at line 42 in Figure 16 and 43 in Fig-
ure 17. Note that the locks are of type OrderedLock; we impose a global order on all
locks allocated and we use this global order to ensure that we do not get spurious
deadlocks from trying to acquire the same locks together in a different orders at
different points in the code. The getLock() methods for the declared atomic sets are
shown in lines 8-14 in Figure 16 and lines 4-10 in Figure 17.

(2) Transform constructors. The classes F and B each declare an atomic set, so their
constructors take a parameter that denotes the lock object to use. In class F, the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Julian Dolby et al.

constructor is on lines 3-6 and the assignment of the passed-in lock object is on
line 5. Class B is similar.

(3) Transform object allocations to set locks. This example has no instances of object
creation, but creations of these objects would receive additional lock objects as pa-
rameters.

(4) Transform units of work to acquire all needed locks. The method inc() of class B
illustrates the simple case of a unit of work on a single atomic set, in this case b.
Two versions of the code are generated. One version takes the one needed lock in a
standard synchronized block; this is shown in lines 37-41 of Figure 17. The internal
version (line 35) takes no lock and is used when the caller is known to have the lock
already, for instance in the calls within bar() on lines 30, 31.

The method foo() in class F (lines 19-41 in Figure 16) illustrates some more trans-
lation issues. Note that myB is declared aliased with the F object, as indicated by the
b=this.f aliasing annotation on line 16. This means that the referent shares the same
lock as the F object itself, and hence calls on the referent’s units of work require no
additional locking. This is implemented by using the special internal version of such
units of work that do not take locks, as shown on line 21 and line 37. The foo() method
also declares the parameter b1 to be unitfor, meaning foo() is a unit of work for that
object as well. This means that foo() must also take the lock for b1. The OrderedLock
class allows the system to take locks in a global order so that multiple units of work
trying in parallel to take multiple locks will not encounter spurious deadlocks. This
locking code is shown on lines 26-35; the system determines which lock is earlier in
the global order, and takes that lock first followed by the second needed lock.

6. EXTENDING AJ
This section presents extensions to the basic AJ programming model to support bet-
ter integration with traditional Java programming idioms. In particular, Section 6.1
defines a notion of condition variables at the level of atomic sets, in order to support
explicit synchronization between threads analogous to Java’s wait() and notify(). Sec-
tion 6.2 presents a generalized form of the unitfor construct, which is useful in cases
where the name of an atomic set in an object is not known at compile time. Section 6.3
presents dynamic casts, a feature for converting a raw type into an aliased type (which
requires a run-time check). In Section 6.4, we slightly extend the language to allow
unitfor constructs to refer to final fields. Section 6.5 defines a fastread modifier on meth-
ods to achieve a relaxed synchronization policy that we found to be useful for achieving
good performance in optimal solution search problems. Finally, Section 6.6 presents a
notunitfor construct that programmers should use judiciously, to indicate that a given
method is not a unit of work for the atomic set(s) in its declaring class.

6.1. Supporting Wait/Notify Synchronization
In Java, the Object class provides three additional methods for synchronizing the ex-
ecution of multiple threads, wait(), notify() and notifyAll(). The Java monitor semantics
requires that, in order for a thread to evaluate an expression such as obj.wait(), the
thread must have acquired the receiver’s lock. The call to wait() has the effect of releas-
ing the lock associated with obj and suspending the thread. The thread is reactivated
when some other thread calls obj.notify() or obj.notifyAll().

In AJ, Java’s wait()/notify() mechanism cannot be used because this construct is not
aware of the locks associated with atomic sets. For instance, consider the Count class in
Figure 18(a), which declares an atomic set a and a method add(). Calling wait() within

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:33

1 public class B implements atomicsets.Atomic {
2 B(OrderedLock b) { super(); $lock_b = b; }
3

4 public final OrderedLock getLockForb() {
5 return $lock_b;
6 }
7

8 public final OrderedLock getLock() {
9 return this.getLockForb();

10 }
11 /*atomicset(b)*/
12 /*atomic(b)*/ long bCounter;
13

14 void bar_internal(/*unitfor(b)*/ B that) {
15 this.inc_internal(); //no-lock version
16 that.inc_internal(); //no-lock version
17 }
18

19 void bar(B that) {
20 OrderedLock l1 = null, l2 = null;
21 OrderedLock l3 = that.getLockForb();
22 OrderedLock l4 = this.$lock_b;
23 if (l3.getIndex() > l4.getIndex()) {
24 l1 = l3; l2 = l4;
25 } else {
26 l1 = l4; l2 = l3;
27 }
28 synchronized (l1) {
29 synchronized (l2) {
30 this.inc_internal(); //no-lock version
31 that.inc_internal(); //no-lock version
32 }
33 }
34 }
35 void inc_internal(){ bCounter++; }
36

37 void inc() {
38 synchronized (this.$lock_b) {
39 bCounter++;
40 }
41 }
42

43 protected final OrderedLock $lock_b;
44 }

Fig. 17: Translation for class B in Figure 15

the body of the method is not allowed by Java semantics as the current thread does
not hold the lock on this.1
However, some common Java programming idioms rely on wait() and notify() and it
would be very difficult to do without this feature (in particular, some of the benchmark
programs that we refactored into AJ rely on this feature). Therefore, we extend AJ
with a special form of wait()/notify() which lets programmers write expressions such

1 Our implementation does allow uses of Java’s wait()/notify() that involve locks unrelated to atomic sets.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Julian Dolby et al.

class Count {
atomicset a;
atomic (a) int cnt;
void add(int x) {

this.wait();
cnt =+ x;

}
}

class Count {
atomicset a;
atomic (a) int cnt;
void add(int x) {

this.a.wait();
cnt =+ x;

}
}

(a) (b)

Fig. 18: (a) A problematic usage of wait()/notify() in AJ. (b) Example illustrating AJ’s
data-centric wait()/notify() construct.

as this.a.wait() where a is an atomic set in the receiver object. Figure 18(b) shows a
revised version of the example that uses this construct. The semantics of this data-
centric wait()/notify() construct are to release the lock(s) associated with the current
unit of work and block the current thread. This effectively turns the method into two
units of work, which are separated by the call to wait(). Thus, in the add() method in
Figure 18(b), wait() would release the lock associated with atomic set a in the receiver.
After notification, the thread will attempt to reacquire the same lock atomically. At
present, our implementation supports wait()/notify() only in methods that are units of
work for one atomic set.

6.2. Generic unitfor
Maintaining backwards compatibility with libraries is sometimes inconvenient as
the signatures of common methods are too general. This is nicely illustrated by the
equals(Object obj) method which does not expect an object with atomic sets. Of course,
usually the argument obj is of the same type as the receiver and has the same atomic
sets. Consider a Point class that has two mutable fields. To compare two objects of this
class it is desirable to observe consistent states of the points. In Java this could be
achieved by declaring the equals() method synchronized and acquiring the lock on the
argument using a nested synchronized block.

class Point {
int x,y;
...
public synchronized boolean equals(Object o) {

if (o==null || !(o instanceof Point)) return false;
Point p = (Point)o;
synchronized(p) { return x == p.getX() && y == p.getY(); }

}
}

The above, of course, may result in a deadlock if two threads evaluate p.equals(q) and
q.equals(p) in parallel. The equivalent solution with atomic sets requires an additional
method, eq, with a unitfor argument to prevent concurrent modifications to the argu-
ment Point object.

class Point {
atomicset a;
atomic(a) int x,y;
...
public boolean equals(Object o) {

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:35

if (o==null || !(o instanceof Point)) return false;
return eq((Point)o);

}
private boolean eq(unitfor(a) Point p) {

return x == p.getX() && y == p.getY();
}

}
Unfortunately, the AJ solution runs the same risks as the Java solution. A deadlock

can occur when two points are compared in parallel. This situation arises because a
lock on the receiver’s atomic set is automatically acquired when equals() is called, and
a second lock is acquired when eq() is called.

We propose a solution based on the notion of generic unitfor annotations. A generic
unitfor annotation does not specify the name of the atomic set that has to be acquired.
It has the semantics of atomically acquiring all atomic sets of the corresponding argu-
ment. If the argument is null or doesn’t have atomic sets, nothing is done. The equals
method can now be expressed more naturally.

public boolean equals(unitfor Object o) {
if (o==null || !(o instanceof Point)) return false;
Point p = (Point) o;
return x == p.getX() && y == p.getY();

}
This solution does not run the risk of causing deadlocks as the locks on all atomic sets
are acquired atomically. No changes to the type system are required.

6.3. Dynamic Casts
In order to support legacy code it is sometimes convenient to go from raw types to
aliased types. The AJ type system allows casts from alias types to raw types, but not the
other way around. Supporting dynamic casts to aliased types requires comparing types
and atomic sets. To support this, we extend the the type system with one additional
rule.

(T-DOWNCAST)
E(y) = C|a= this.b| C has a E(this) has b E(x) = D C <: D

E ` y = (C|a= this.b|)x

Furthermore, the dynamic semantics must be extended with a downcast rule that per-
forms a dynamic check on classes and compares the atomic set of the object being cast
to the atomic set of the receiver.

(D-CAST’)

H(F (this)) = C|ω|(r, ri, r′) H(F (y)) = D|ω′|(r′, r′i, r′′) D <: C ω = ω′

H;T ρS 〈mF x=(C—a = this.b—)y; s〉 ε−→ρ H;T ρS 〈mF [x 7→F (y)] s〉

As an example, consider an equals() method, which takes an Object as argument. In
order to call this method it is necessary to convert the type of the argument to the
general Object type, even if the only sensible value for equals() is one that matches the
type of the receiver. Consider a Tree class with an equals() method. In this design the
programmer chose coarse grained locking. This choice is manifested by the constraint
that the left and right fields of a Tree instance must have the same atomic set a.

class Tree {

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Julian Dolby et al.

atomicset a;
atomic(a) Tree left|a=this.a|, right|a=this.a|;
Tree|a=this.a| getLeft() { return left; }
...
boolean equals(Object o) {

if (!o instanceof Tree) return false;
if (o == this) return true;
...

}
void setLeft(Tree t) { ... }

}

The body of the equals() method starts with the standard boilerplate Java idioms test-
ing for null values and subtyping, and for reference equality. The ellipsis can be filled
by the following code fragment:

Tree t = (Tree) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

Here the argument o is cast to the raw type Tree. This means that there is no guarantee
that the object has the same atomic set. The call to t.getLeft() will have to acquire a lock.
Of course if the argument has the same atomic set as the receiver, the lock is already
held and it simply needs to be reentered.

With dynamic casts, the implementation could also include the following code:

Tree|a=this.a| t = (Tree|a=this.a|) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

In this case, since the AJ compiler knows that t is protected by the same atomic set, no
additional lock needs to be acquired. Putting all this together the proper implementa-
tion of equals() would look as follows:

boolean equal(Object o) {
if (o == null || !o instanceof Tree) return false;
if (o == this) return true;
if (o instanceof Tree|a=this.a|) {

Tree|a=this.a| t = (Tree|a=this.a|) o;
return left.equals(t.getLeft()) && right.equals(t.getRight());

else { return eq((Tree)t) }
}
boolean eq(unitfor(a) Tree t) {

return left.equals(t.getLeft()) && right.equals(t.getRight());
}

Another reason for having dynamic casts is to support assignments. Consider the
setLeft(Tree) method. It takes a Tree object and should set the left field, but this is
only permitted if the argument has the same atomic set as the receiver. The imple-
mentation of the methods would be:

void setLeft(Tree t) {
if (t instanceof Tree|a=this.a|)

left = (Tree|a=this.a|) o;
else

... // error
}

In order to implement this feature, we rely on the fact that our implementation stores
the lock associated with an atomic set in a field. We use these lock fields as a basis

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:37

for comparisons. Every instance of a class that has an atomic set has a non-null value,
and comparing the values of two fields will tell us if the atomic sets are the same.
Internal classes can be treated specially as the type system does not allow upcasts to
non-atomic set classes.

6.4. Generalized unitfor for Fields
In object-oriented code, it is natural for methods to manipulate fields of the object to
which they belong. As such, it is sometimes useful to specify atomicity requirements on
these fields. But the basic AJ programming model allows unitfor annotations to modify
only method parameters. While this doesn’t limit expressiveness, it leads to inelegant
code when a method is a unit of work for some component object’s atomic set; the
method must call a helper method that accepts the field as a parameter. To avoid this,
we extend our implementation to allow an additional form of unitfor annotations on
methods. These unitfor method annotations indicate that the method is a unit of work
for an atomic set of an object stored in a specified field. In order to avoid unsound-
ness arising from concurrent field updates, we require that fields specified in unitfor
annotations be final. This restriction is conservative; a more permissive implementa-
tion could allow a non-final field as long as the field itself was part of an atomic set and
the annotated method was also a unit of work for that atomic set.

As an example of using the generalized unitfor, we can write a transfer function for
a linked account object that contains two bank account objects, each of which has an
atomic set a, as follows:

class LinkedAccount {
final Account checking, savings;
...
void unitfor(checking.a) unitfor(savings.a) transferToChecking(int amt) {

savings.withdraw(amt);
checking.deposit(amt);

}
}

Fig. 19: Generalized unitfor example.

To allow programmers maximum flexibility, we allow the unitfor annotations to spec-
ify atomic sets in fields of fields, fields of parameters, fields of fields of fields, and so
on to an arbitrary depth. Again, to avoid unsoundness, each of the fields involved in
naming the atomic set must be final or be part of an atomic set for which the method is
also a unit of work.

6.5. Fast-read Annotations
While analyzing the performance impact on a benchmark that solves the traveling
salesman problem (see Section 7), we noticed that the AJ version was significantly
slower. Much of this slowdown was due to additional synchronization when reading a
field that indicates the length of the best solution found so far. In the original Java
version, this field was synchronized only for (relatively rare) updates. The original
synchronization discipline was correct since the read of the field did not rely on its con-
sistency with any other field. A similar situation would arise in any optimal solution
search problem, and certainly in other contexts as well. Therefore, we generalized this
pattern and updated our AJ implementation to allow programmers to indicate when
certain field reads can be optimized. The typechecker enforces the following discipline:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Julian Dolby et al.

class MinSolutionSoFar {
atomicset(m);
atomic(m) fastread int minLength = Integer.MAX VALUE;
atomic(m) int[] minPath = new int[MAX PATH SIZE];
void updateMin(int newPathLength, int[] newPath) {

if (newPathLength < minLength) {
for (int i =0 ; i < newPathLength; i++) minPath[i]=newPath[i];
minLength = newPathLength;

}
}
int getMinSoFar(){ return minLength; }

}

generates the following code:

class MinSolutionSoFar {
OrderedLock $lock m;
volatile int minLength = Integer.MAX VALUE;
int[] minPath = new int[MAX PATH SIZE];
void updateMin(int newPathLength, int[] newPath) {

synchronized($lock m){
if (newPathLength < minLength) {

for (int i =0 ; i < newPathLength; i++) minPath[i]=newPath[i];
minLength = newPathLength;

}
}

}
int getMinSoFar(){ return minLength; }

}

Fig. 20: Fast-read example.

(1) Any number of fields in an atomic set can be annotated as fastread.
(2) No unit of work may write to a fastread field more than once, nor may it write to

more than one fastread field from the same atomic set.

The AJ code generator may then leave unsynchronized those units of work whose only
access to an atomic set is a single read of a single fastread field. The code generator
also marks all fastread fields as volatile in order to ensure that a thread that repeatedly
reads a fastread field will eventually see updates from other threads. Figure 20 shows
a slightly simplified version of a class from the AJ version of the traveling salesman
problem along with the generated code.

The typechecker currently enforces condition 2 above using a simple, conservative,
intra-procedural analysis. A straightforward effect system could be added to maintain
modularity and make the analysis less conservative, but was not needed for our bench-
marks. The fast-read optimization can be extremely beneficial: we observed a speedup
of over 60× for the traveling salesman problem when compared to the AJ version with-
out the minLength field annotated as fastread.

6.6. notunitfor Annotation
In order to preserve atomic-set serializability at run time, our type system needs to
make conservative assumptions about which atomic sets an invoked method might
access. Consider the example in Figure 21. Here, class Foo declares an atomic set F
that protects a field count. Method f() first calls aStaticMethod() and then calls the

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:39

class Foo {
atomicset(F)
atomic(F) long count = 0;
void f() { aStaticMethod(); g(); }
void g(){ count++; }
static void aStaticMethod(){ globalFoo.g(); }
static Foo globalFoo;

public static void main(String[] args){
globalFoo = new Foo(); globalFoo.f();

}
}

Fig. 21: Example for complex nesting of atomic set access

instance method g() on the current object. The question is now, whether f() needs to be
synchronized. On the surface, it contains only a single method call that could access
the atomic set F, so it should be sufficient to synchronize the call to g(). However,
examining the implementation of aStaticMethod(), reveals that it accesses the current
object’s atomic set using an alias that was stored in a global variable. Thus, in order to
ensure atomic-set serializability, the entire body of f() needs to be synchronized, such
that it appears atomic to other threads that might, e.g., call g() concurrently.

While further analysis could detect such aliasing situations, we decided to make code
generation conservative so as to always acquire the lock for the respective atomic set
when a method calls another method. We found the overhead induced by this measure
to be acceptable for the vast majority of cases. SPECjbb was the only benchmark that
contained a complex situation where the over-synchronization introduced excessive
slowdown (see the evaluation in Section 7). For cases where further analysis or manual
inspection determines that introducing synchronization is unnecessary for atomic-set
serializability, we introduce the notunitfor annotation. A method with that annotation
will not acquire the lock(s) associated with atomic sets declared in its declaring class.
As an example, all private methods of a class are implicitly annotated with notunitfor, as
they can only be called from other methods in the same class that already synchronized
on the appropriate atomic sets.

7. EMPIRICAL EVALUATION
To evaluate the AJ language design, we performed several experiments. First, we con-
ducted an experiment in which we created AJ versions of a significant number of
classes from the Java Collections Framework; Section 7.1 reports on the annotation
overhead and effort involved. Second, we manually refactored several multi-threaded
Java applications into AJ; Section 7.2 reports on the annotation overhead and issues
encountered during these experiments. Finally, Section 7.3 reports on a number of per-
formance measurements using an AJ version of SPECjbb, a well-known performance
benchmark.

7.1. Java Collections Framework
As a first experiment, we investigate the effort involved in using atomic sets to cre-
ate properly synchronized versions of representative classes from the Java Collections
Framework. Specifically, we selected ArrayList, LinkedList, HashMap, LinkedHashMap,
LinkedHashSet, HashSet, and TreeMap from package java.util in Sun’s JDK 1.5 class
libraries, along with any types on which these classes transitively depend. Each of
these classes depends on several supertypes as well as several auxiliary classes (e.g.,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Julian Dolby et al.

TreeMap declares nested classes SubMap and EntryIterator, as well as several anony-
mous nested classes). In total we included 63 types comprising 10,338 LOC. The col-
lection classes we consider here do not contain any synchronization and are assumed
to be used in conjection with synchronization wrappers2 when accessed concurrently.

Determining the placement of atomicset and atomic annotations was straightfor-
ward. The collection classes we consider are comprised of 5 distinct inheritance sub-
hierarchies, and we introduce one atomic set in each of the types Collection, Map, Iter-
ator, LinkedList Entry, and Map Entry, which are the roots of these sub-hierarchies. All
instance fields were added to the atomic set that we introduced for the sub-hierarchy
in which its declaring class occurs. This is accomplished by adding an atomic annota-
tion to the class declaration. We placed unitfor annotations on constructors that take
other collections as an argument, on “bulk” methods such as addAll(), and on equals()
methods in order to avoid concurrency bugs that could otherwise arise if the collection
object that is passed as an argument is modified concurrently during the manipulation
of the collection object pointed to by this. Such concurrency-related bugs are known to
be problematic in the Java Collections Framework, as was previously pointed out by
several researchers [Flanagan and Freund 2000a; Wang and Stoller 2006a; Hammer
et al. 2008]. Our approach completely avoids them.

Introducing alias annotations required somewhat more thought, as this involves
atomic sets in two classes. For example, the allocation of an AbstractList ListItr object
in class AbstractList was annotated as follows: new AbstractList ListItr |I=this.L|(...), indi-
cating that atomic set I in the newly created iterator-object is aliased with atomic set
L in the list pointed to by this. Of the classes we annotated, only LinkedList Entry was
made internal. Map Entry could not be made internal because it is exposed to client code
via methods such as Map.entrySet() that provide a direct view on the map. Our type
system prohibits this as internal types cannot be returned by public methods.3

The introduction of annotations required a few minor textual code changes. In partic-
ular, atomic fields must be accessed through accessor methods. Making LinkedList Entry
internal caused the LinkedList.addBefore() method to be rejected by our type-checker as
it returned an internal class. This method could not be made private because it was
invoked by LinkedList ListItr.add(). However, as add() ignored the return value of this
method call, we resolved the problem by creating a method addBefore2() with identical
functionality as addBefore(), but with return type void.

On the whole, the amount of effort that was needed to create AJ versions of the col-
lection classes was manageable. Ignoring the time that was spent to eliminate the Java
features (generics and nested classes) that our implementation does not support yet,
we estimate that it took us a few days to convert the 63 classes under consideration
into AJ. Most of this time was spent on understanding the workings of the collection
classes, and only a small fraction of the time was spent on inserting the new AJ lan-
guage constructs. We conjecture that, for code developed from scratch, the amount of
effort involved in writing AJ code is the same or less than that of writing properly
synchronized Java code.

2 Synchronization wrappers are objects that add synchronization to an existing collection. They define the
same methods as the collection that they “wrap around”. These methods synchronize on a lock object that is
associated with the wrapper and then delegate the operation to the underlying collection. In Java, standard
synchronization wrappers are provided in class java.util.Collections.
3One could clearly work around this issue by making Map.entrySet() return a map with copies of map entries
and a link back to the original collection to handle mutations. However, this would have substantial cost.
In general, the way the Collections API exposes mutable, derived data structures creates situations where
multiple distinct-seeming data structures are in fact linked in complex way such that operations on one can
result in failures in the other. Especially for concurrent code, this would ideally be avoided.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:41

benchmark LOC files sync atomic atomic atomic unitfor alias alias not- total
sets (class) (field) (ref.) (array) unitfor

collections 10846 63 N/A 0 5 0 53 330 40 0 428
elevator 609 6 8 0 1 0 0 6 0 0 7
tsp 754 6 6 0 2 9 0 0 0 0 2
weblech 1971 14 8 2 0 4 0 0 0 0 6
jcurzez1 6639 49 58 5 2 7 15 23 1 0 53
jcurzez2 6633 49 48 4 3 2 6 3 1 0 19
cewolf 14002 129 14 0 6 0 0 2 0 0 8
SPECjbb (naive) 17639 64 187 0 18 0 2 13 24 0 57
SPECjbb (tuned) 17730 64 187 2 15 34 1 0 24 4 80

Table I: Annotations required to create AJ versions of several Java applications. The
table shows, for each subject program, the number of lines of code, files and synchro-
nized blocks that were present in the Java version. The subsequent columns count the
number of annotations of each type, and the last column counts the total number of
data-centric annotations.

The first row of Table I classifies the annotations in the 63 annotated classes. As
mentioned, these classes did not contain any synchronization originally, hence the ‘N/A’
in the column that counts the number of synchronized blocks. As the table shows, we
need a total of 428 annotations in 63 classes comprising 10,846 LOC. The majority of
these annotations are related to ownership (aliasing), due to the pervasive use of itera-
tors and auxiliary data structures such as list entries. This amounts to approximately
40 annotations per KLOC of source code, which is somewhat higher than the anno-
tation overhead of the type systems by Flanagan et al. that guarantee race-freedom
[Flanagan and Freund 2000a; Abadi et al. 2006] or atomicity [Flanagan and Qadeer
2003]. However, in our case, we generate properly synchronized code and guarantee se-
rializability from these annotations alone, whereas Flanagan et al. require a program
that is already synchronized using Java’s synchronized construct.

7.2. Refactoring Java Applications into AJ
In order to validate our approach further, we manually refactored several multi-
threaded Java applications into AJ. The bottom 8 rows of Table I show some key
characteristics of these applications, as well as the the number of data-centric an-
notations of each type that we needed to introduce. The elevator and tsp benchmarks
have been used by several other researchers in projects related to data race detection
(see e.g., von Praun and Gross [2004]). The weblech program4 is a web crawler that re-
cursively downloads all pages from a web site. The jcurzez program is a Java version of
the popular ncurses program which allows building text-based user interfaces for sim-
ple terminals. Since the original jcurzez code did not have clearly defined support for
multi-threading, we first created two new Java versions of the code with well-defined
behavior in the presence of concurrency: jcurzez1 achieves this behavior in a coarse-
grained fashion while jcurzez2 does so using more fine-grained synchronization. The
cewolf 5 program is framework for creating various types of graphical charts. Finally,
SPECjbb is a widely used multi-threaded performance benchmark6.

The columns labeled “LOC”, “files”, and “sync” of Table I report the number of lines
of source code, the number of files, and the number of synchronized blocks that were
present in the Java versions of these programs. As can be seen from the number of
data-centric annotations reported for the subject programs in Table I, the annota-

4 See http://weblech.sourceforge.net.
5 See http://cewolf.sourceforge.net.
6 See http://www.spec.org/jbb2005.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://weblech.sourceforge.net
http://cewolf.sourceforge.net
http://www.spec.org/jbb2005

A:42 Julian Dolby et al.

tion overhead ranges between approximately 0.6 annotations per KLOC for cewolf to
11.5 annotations per KLOC for elevator. For the largest three applications, jcurzez,
cewolf, SPECjbb (naive), and SPECjbb (tuned) the annotation overhead is a manage-
able 8.0/KLOC, 0.6/KLOC, 3.2/KLOC, and 4.5/KLOC, respectively. As can be seen from
Table I, in all cases the number of data-centric annotations is less than the number
of synchronized blocks that were present in the original Java versions. These results
are highly encouraging because they suggest that data-centric synchronization com-
bines reduced annotation overhead with a correctness guarantee that standard syn-
chronized blocks do not offer. With the exception of SPECjbb, where we spent a signif-
icant amount of time on performance tuning as will be discussed later, the amount of
effort involved in converting the subject programs into AJ was quite manageable, and
usually required a small number of hours, with most of this time spent on understand-
ing the existing concurrency in the programs.

We conclude this section with a few remarks on specific issues that we encountered
while refactoring the subject programs from Java into AJ. In most cases, the trans-
formations were very straightforward, and required only minor refactorings such as
extracting code fragments into methods so that our unitfor annotations could indicate
the desired units of work.

7.2.1. jcurzez. The two versions of the jcurzez benchmark demonstrate that AJ is ca-
pable of expressing synchronization at different granularities. It is interesting to note
that converting the fine-grained Java version (jcurzez2) to AJ was more natural than
converting the coarse-grained version (jcurzez1). This is reflected in its lower annota-
tion overhead. The coarse-grained Java version was very close to the original source
code, but with additional synchronized blocks included to enforce reasonable multi-
threaded behavior. The fine-grained Java version required more changes to the origi-
nal code, mainly making method-local copies of some helper data structures that might
be concurrently updated. But, the resulting Java code was much more natural to con-
vert to AJ because most objects were responsible for their own synchronization rather
than being aliased to containing objects. Simple tests show that the level of concur-
rency in the AJ versions were roughly equal to their Java counterparts and that the
fine-grained versions indeed allowed much more concurrency than the coarse-grained
versions.

7.2.2. elevator. The elevator benchmark is another example where AJ encourages a
more encapsulated style of object-oriented programming. The original elevator code
had a Controls object whose methods directly accessed data fields of a set of Floor
objects stored in an array. Before accessing the fields of a particular Floor, it would
synchronize on that object. We found the cleanest way to convert this code was to first
move some code from the Controls class into Floors, which arguably led to cleaner
Java code. Once this refactoring was complete, converting to AJ was straightforward.

7.2.3. tsp. After creating an initial AJ version of tsp, we noticed that this version was
significantly slower than the original Java version. Much of this slowdown was due to
additional synchronization when reading a field that indicates the length of the best
solution found so far. In the Java version of tsp, this field was synchronized only for
(relatively rare) updates. The original synchronization discipline was correct since the
read of the field did not rely on its consistency with any other field. This issue can be
resolved by placing a fast-read modifier on the method, as discussed in Section 6.5.

7.2.4. SPECjbb. The SPECjbb benchmark simulates a server-side application with
classes representing entities like companies, customers, warehouses, and performing
activities such as generating orders and making deliveries. Customers are represented
by driver threads and database storage is simulated using the TreeMap binary tree

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:43

class. SPECjbb uses synchronized statements and methods for ensuring mutual exclu-
sion during order processing and wait()/notify() for coordinated ramp up and shut down
of threads. We studied the existing synchronization in SPECjbb’s source code in order
to understand how atomic sets could be introduced. In the course of this analysis, we
observed several issues:

Inconsistent synchronization. Synchronization appears to be somewhat haphazard.
For instance, class Customer initializes shared fields in its constructor and in set-
UsingRandom(). Some of these fields have synchronized accessors, whereas others,
like address, have unsynchronized accessors. Several methods (e.g., TreeMapDataS-
torage.deleteFirstEntities()) should logically be executed atomically, but there is no
synchronization to enforce this.
Redundant synchronization. Many accessor methods in class Stock are synchro-
nized even though the accessed fields are written only once, in a method called
only by the constructor (e.g., Stock.getId()).
Use of wait/notify. The wait() and notify() methods are used to implement barriers
that coordinate the threads of the multiple warehouses so that they ramp up, run,
and shut down in a synchronized manner.
Ownership issues. Several data structures rely on collections from the Java Col-
lections Framework to store data. For example, TreeMapDataStorage relies on a
TreeMap to store its data. As mentioned, several methods of this class (e.g., delete-
FirstEntities()) should logically be executed atomically but do not contain synchro-
nization to achieve this.

Our approach was to add atomic sets in a straightforward way. Since we did not know
the exact semantics of SPECjbb and the benchmark does not perform meaningful self-
checking, we assumed that it was correct and verified that any synchronized section
in the original code would be a unit of work in the AJ version. This check was done
manually, by comparing the translated AJ code to the original benchmark. The atomic
set annotations solved the issue of inconsistent synchronization mentioned above, as
all accesses to fields that are part of an atomic set are guaranteed to be protected.
For the ownership issue related to collections, our code reused the AJ versions of the
collections of Section 7.1. Dealing with wait()/notify() required a bit of work as care is
required to avoid deadlocks when calling wait(). We refactored SPECjbb to contain a
dedicated barrier class that has a single atomic set and that uses the AJ wait()/notify()
construct previously discussed in Section 6.1. Our compiler translates this construct
to wait()/notify() calls on the generated lock object associated with this atomic set.

In the next section we will discuss further changes to the AJ version of SPECjbb that
were required to obtain decent performance. For comparison, we will henceforth refer
to the AJ version of SPECjbb discussed above as the naive AJ version of SPECjbb.

7.3. Performance Experiments
After writing the naive AJ version of the SPECjbb benchmark, we examined the over-
head our naive conversion induced. We found that the AJ version scaled almost linearly
up to at least 25 cores, with throughput ranging from 81.9% to 77.7% of the original
version.7 However, with more cores, the throughput of the naive AJ version degraded
significantly, reaching only 13.8% of that of the original Java version at 98 threads.

Therefore, we investigated how the performance of the AJ version of SPECjbb could
be improved, by examining the synchronization operations it performed at run time.

7 All performance measurements reported in this section were taken on an Azul Vega 3 Series 3300 with two
54-core processors using 30GB of RAM with Azul’s Java 1.6.0 07-2. On this machine, 10 cores are typically
reserved for OS purposes, so our experiments are performed with up to 98 threads.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Julian Dolby et al.

After some profiling, we identified SPECjbb’s maps as a bottleneck and found that
these were not synchronized in the original Java version. We investigated why this
is the case and found that calls that access such a data structure are either already
synchronized, or the data structure is read-only after initialization (which happens
before threads are started). In such cases, the Java memory model guarantees that
not having the data structure synchronized is safe. Therefore, we removed the atomic
set from the map class altogether, and the read-only fields from the atomic sets of the
classes that contained them. We will refer to the resulting AJ version of SPECjbb as
the basic AJ version of SPECjbb.

This basic version of SPECjbb scaled up to about 30 threads with throughput rang-
ing from 80.5% to 90.3% of that of the original Java version of SPECjbb. However, with
more than 30 threads, the throughput of the basic AJ version degraded again, reaching
only 28.0% of that of the original Java version at 98 threads.

Further profiling revealed that our AJ compiler still inserted synchronization oper-
ations in 4 methods that accessed only read-only maps, which were no longer declared
in the atomic set of the respective class. This is due to the fact that the compiler must
conservatively assume that such calls may access a field of the current atomic set (see
the discussion in Section 6.6) As the memory model does not require synchronization to
access read-only data, we annotated these 4 methods with notunitfor to obtain the tuned
AJ version. This version scales well to 98 threads, as we will discuss shortly. Table I
shows the annotation overhead for both the naive and the tuned versions SPECjbb,
which is very similar. These results show that tuning a program with data-centric
synchronization does not need to affect annotation overhead significantly.

Figure 22 compares the performance of the original Java implementation of
SPECjbb to that of the naive, basic and tuned AJ implementations. It reports the num-
ber of SPECjbb2005 bops, which is a measure of the number of transactions per sec-
ond, obtained from 2-minute runs with increasing numbers of threads (ranging from
1 to 98) for each version. From these measurements, it can be seen that, for a single
thread, the naive AJ implementation of SPECjbb achieves a throughput of approxi-
mately 81.9% of that of the original implementation and that the basic AJ implemen-
tation of SPECjbb achieves a throughput of approximately 90.3% of that of the original
implementation. The tuned implementation performs the same, reaching 90.2% of the
throughput of the original implementation. The graph shows that the naive AJ version
scales up to about 30 threads, but degrades significantly with more than 40 threads,
while the basic AJ version scales only up to about 30 threads and degrades only slightly
from there. Specifically, for the situation with 98 threads, we measure a throughput of
13.8%, 28.0%, and 90.8% of that of the original Java version, for the naive, basic and
tuned versions, respectively. The remaining overhead of the tuned version can be at-
tributed to some of the additional locking introduced by atomic sets, which at the same
time renders the synchronization much more consistent and thus safe.

8. CONCLUSIONS
We have presented a type-based approach for data-centric synchronization, based on
atomic sets and units of work. Our new type system guarantees atomic-set serializabil-
ity while enabling separate compilation and atomic sets that span multiple objects. We
implemented this approach in AJ, a significant subset of Java extended with atomic
sets, and created an AJ-to-Java compiler. We demonstrated that our approach has low
annotation overhead, by manually rewriting into AJ several classes from the Java Col-
lections Framework, and a set of Java applications that includes SPECjbb, a widely
used multi-threaded performance benchmark.

In our experiments, the annotation overhead was approximately 40 annotations for
each KLOC of source code in Java Collections, and ranged from 0.6 to 11.5 annotations

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:45

●
●

●
●

●
●

●

●
●

●
●

●
●●

●
●●

●
●

●●
●

●●
●

●●

●●
●

●
●

●●

●
●

●●
●

●
●

●
●●

●●
●●

●●●

●●
●

●
●●●

●
●●

●●

●●
●●

●
●

●●●●●
●

●●
●

●●●
●●

●●
●●

●●●

●●
●●●●●●

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95

● Java
AJ−tuned
AJ−basic
AJ−naive

Fig. 22: Performance measurements for SPECjbb. The figure shows the number of
bops (a measure of throughput, higher is better) achieved by the original Java code,
and by the naive, basic, and tuned AJ versions, for up to 98 threads.

per KLOC for the other applications. In each of these applications, this amounted to
fewer annotations than the number of synchronized blocks that were present in the
original Java version. Our performance experiments with SPECjbb revealed that the
naive AJ version did not perform well. However, with some minor performance tuning
we were able to achieve nearly the same performance as the original Java version.

We expect SPECjbb to be representative of the majority of user written code where
concurrency concerns are only a small part of the code. As performance optimizations
were not the main focus of this work we consider the reported results to be an en-
couraging indication that our approach is capable of generating code with acceptable
performance while providing a correctness guarantee that Java’s current synchroniza-
tion mechanism does not offer.

In future work, we plan to explore several avenues for improving performance, in-
cluding the use of program analysis to tighten the scope of synchronization. We also
plan to explore the use of static analysis for detecting possible deadlock.

Additional information about this project at http://sss.cs.purdue.edu/projects/aj.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Grants CCF 1048398, CCF
0938232, CNS 0716659 and CCF 1048398. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 Julian Dolby et al.

REFERENCES
ABADI, M., FLANAGAN, C., AND FREUND, S. N. 2006. Types for safe locking: Static race detection for Java.

ACM Transactions on Programming Languages and Systems 28, 2.
ARTHO, C., HAVELUND, K., AND BIERE, A. 2003. High-level data races. Softw. Test., Verif. Reliab. 13, 4,

207–227.
BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND GROSSMAN, D. 2010. Coredet: a compiler and

runtime system for deterministic multithreaded execution. In Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 53–64.

BOCCHINO, R., ADVE, V., DIG, D., ADVE, S., HEUMANN, S., KOMURAVELLI, R., OVERBEY, J., SIMMONS,
P., SUNG, H., AND VAKILIAN, M. 2009. A type and effect system for deterministic parallel Java. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 97–
116.

BOYAPATI, C., LEE, R., AND RINARD, M. 2002. Ownership types for safe programming: Preventing data
races and deadlocks. In Conference on Object-Oriented Programming Systems, Languages and Applica-
tions (OOPSLA).

BOYAPATI, C. AND RINARD, M. 2001. A parameterized type system for race-free Java programs. In Confer-
ence on Object-Oriented Programming Systems, Languages and Applications (OOPSLA).

BURROWS, M. AND LEINO, K. R. M. 2004. Finding stale-value errors in concurrent programs. Concurrency
- Practice and Experience 16, 12, 1161–1172.

CEZE, L., VON PRAUN, C., CASCAVAL, C., MONTESINOS, P., AND TORRELLAS, J. 2008. Concurrency control
with data coloring. In Workshop on Memory Systems Performance and Correctness (MSPC). 6–10.

CHEREM, S., CHILIMBI, T., AND GULWANI, S. 2008. Inferring locks for atomic sections. In Conference on
Programming Language Design and Implementation (PLDI).

CLARKE, D., POTTER, J., AND NOBLE, J. 1998. Ownership types for flexible alias protection. In Conference
on Object-Oriented Programming, Languages, and Applications (OOPSLA).

DENG, X., DWYER, M. B., HATCLIFF, J., AND MIZUNO, M. 2002. Invariant-based specification, synthesis,
and verification of synchronization in concurrent programs. In International Conference on Software
Engineering (ICSE). 442–452.

ENGLER, D. R. AND ASHCRAFT, K. 2003. Racerx: effective, static detection of race conditions and deadlocks.
In Symposium on Operating Systems Principles (SOSP). 237–252.

FLANAGAN, C. AND FREUND, S. 2000a. Type-based race detection for Java. In Conference on Programming
Language Design and Implementation (PLDI).

FLANAGAN, C. AND FREUND, S. N. 2000b. Type-based race detection for Java. In Proceedings of the ACM
Conference on Programming Language Design and Implementation (PLDI). 219–232.

FLANAGAN, C., FREUND, S. N., LIFSHIN, M., AND QADEER, S. 2008. Types for atomicity: Static checking
and inference for Java. ACM Transactions on Programming Languages and Systems 30, 4.

FLANAGAN, C. AND QADEER, S. 2003. A type and effect system for atomicity. In Conference on Programming
Language Design and Implementation (PLDI).

GREENHOUSE, A. AND BOYLAND, J. 1999. An object-oriented effect system. In European Conference on
Object Oriented Programming (ECOOP).

GROTHOFF, C., PALSBERG, J., AND VITEK, J. 2007. Encapsulating objects with confined types. Transactions
on Programming Languages and Systems 29, 6, 32–73.

HAMMER, C., DOLBY, J., VAZIRI, M., AND TIP, F. 2008. Dynamic detection of atomic-set-serializability
violations. In ICSE.

HARRIS, T. AND FRASER, K. 2003. Language support for lightweight transactions. In Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA). 388–402.

HERLIHY, M. AND MOSS, J. E. B. 1993. Transactional Memory: Architectural Support for Lock-Free Data
Structures. In International Symposium on Computer Architecture (ISCA).

HOARE, C. A. R. 1974. Monitors: an operating system structuring concept. Communications of the
ACM 17, 10, 549–557.

KIDD, N., REPS, T., DOLBY, J., AND VAZIRI, M. 2011. Finding concurrency-related bugs using random
isolation. International Journal on Software Tools for Technology Transfer (STTT) 13, 495–518.

KULKARNI, A., LIU, Y. D., AND SMITH, S. F. 2010. Task types for pervasive atomicity. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 671–690.

LAI, Z., CHEUNG, S. C., AND CHAN, W. K. 2010. Detecting atomic-set serializability violations in multi-
threaded programs through active randomized testing. In International Conference on Software Engi-
neering (ICSE). 235–244.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A Data-Centric Approach to Synchronization A:47

LEINO, K. R. M. 1998. Data Groups: Specifying the modification of extended state. In Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA).

LEINO, K. R. M., SAXE, J. B., AND STATA, R. 1999. Checking Java programs via guarded commands. In
ECOOP Workshop Reader. 110–111.

LU, S., PARK, S., HU, C., MA, X., JIANG, W., LI, Z., POPA, R. A., AND ZHOU, Y. 2007. Muvi: automatically
inferring multi-variable access correlations and detecting related semantic and concurrency bugs. In
Symposium on Operating Systems Principles (SOSP). 103–116.

LU, S., PARK, S., SEO, E., AND ZHOU, Y. 2008. Learning from mistakes: a comprehensive study on real world
concurrency bug characteristics. In Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 329–339.

LUCIA, B., CEZE, L., AND STRAUSS, K. 2010. Colorsafe: architectural support for debugging and dynami-
cally avoiding multi-variable atomicity violations. In International Symposium on Computer Architec-
ture (ISCA). 222–233.

MCCLOSKEY, B., ZHOU, F., GAY, D., AND BREWER, E. 2006. Autolocker: Synchronization inference for
atomic sections. In Symposium on the Principles of Programming Languages (POPL).

NOBLE, J., POTTER, J., AND VITEK, J. 1998. Flexible alias protection. In European Conference on Object-
Oriented Programming (ECOOP).

O’CALLAHAN, R. AND CHOI, J.-D. 2003. Hybrid dynamic data race detection. In Symposium on Principles
and Practice of Parallel Programming (PPOPP). 167–178.

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P., AND ANDERSON, T. E. 1997. Eraser: A dy-
namic data race detector for multi-threaded programs. In Symposium on Operating Systems Principles
(SOSP). 27–37.

VAZIRI, M., TIP, F., AND DOLBY, J. 2006. Associating synchronization constraints with data in an object-
oriented language. In Symposium on the Principles of Programming Languages (POPL).

VITEK, J. AND BOKOWSKI, B. 2001. Confined types in Java. Software Practice & Experience 31, 6, 507–532.
VON PRAUN, C. AND GROSS, T. R. 2004. Static detection of atomicity violations in object-oriented programs.

Journal of Object Technology 3, 6, 103–122.
WANG, L. AND STOLLER, S. D. 2006a. Accurate and efficient runtime detection of atomicity errors in con-

current programs. In Principles and Practice of Parallel Programming (PPoPP).
WANG, L. AND STOLLER, S. D. 2006b. Runtime analysis of atomicity for multithreaded programs. IEEE

Transactions on Software Engineering 32, 2.
WRIGSTAD, T., PIZLO, F., MEAWAD, F., ZHAO, L., AND VITEK, J. 2009. Loci: Simple thread-locality for Java.

In European Conference on Object Oriented Programming (ECOOP).
XU, M., BODIK, R., AND HILL, M. D. 2005. A serializability violation detector for shared-memory server

programs. In Conference on Programming Language Design and Implementation (PLDI). 1–14.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	1 Introduction
	2 Background and Influences
	3 Data-centric Synchronization with AJ
	3.1 Motivating Example
	3.2 Arrays
	3.3 Data Races and Deadlocks
	3.4 Complete LinkedList example

	4 A Formal Account of AJ
	4.1 Syntax
	4.2 Type System
	4.2.1 Classes, fields, and methods
	4.2.2 Statements

	4.3 Dynamic Semantics
	4.4 Properties
	4.4.1 Run-time Subtyping Relation
	4.4.2 Well-formed configurations
	4.4.3 Type Soundness

	4.5 Concurrency Control
	4.6 Atomic-Set Serializability
	4.7 Adding unitfor

	5 Implementation: Translating AJ to Java
	5.1 Transformation steps
	5.1.1 Create lock fields
	5.1.2 Transform constructors
	5.1.3 Transform object allocations to set locks
	5.1.4 Transform units of work to acquire all needed locks

	5.2 Translation Example

	6 Extending AJ
	6.1 Supporting Wait/Notify Synchronization
	6.2 Generic unitfor
	6.3 Dynamic Casts
	6.4 Generalized unitfor for Fields
	6.5 Fast-read Annotations
	6.6 notunitfor Annotation

	7 Empirical Evaluation
	7.1 Java Collections Framework
	7.2 Refactoring Java Applications into AJ
	7.2.1 jcurzez
	7.2.2 elevator
	7.2.3 tsp
	7.2.4 SPECjbb

	7.3 Performance Experiments

	8 Conclusions

