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Managed languages such as Java and C# are increasingly being considered for hard real-time applica-
tions because of their productivity and software engineering advantages. Automatic memory management,
or garbage collection, is a key enabler for robust, reusable libraries, yet remains a challenge for analysis
and implementation of real-time execution environments. This article comprehensively compares leading
approaches to hard real-time garbage collection. There are many design decisions involved in selecting a
real-time garbage collection algorithm. For time-based garbage collectors on uniprocessors one must choose
whether to use periodic, slack-based or hybrid scheduling. A significant impediment to valid experimental
comparison of such choices is that commercial implementations use completely different proprietary infras-
tructures. We present Minuteman, a framework for experimenting with real-time collection algorithms in the
context of a high-performance execution environment for real-time Java. We provide the first comparison of
the approaches, both experimentally using realistic workloads, and analytically in terms of schedulability.
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1. INTRODUCTION

Managed languages such as Java and C# are increasingly being considered for real-
time applications. From both technical and scientific standpoints the most interesting
challenge this presents is how to reconcile efficiency and predictability in the memory
management subsystem of these languages. To relieve programmers from having to
deal with deallocation of data structures and to eradicate memory access errors, man-
aged languages rely on garbage collection for reclaiming unused memory. A number
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of time-triggered real-time garbage collection algorithms have been proposed in the
literature and implemented in commercial products. This article attempts to clarify
some of the claims that have been made about these algorithms in the scientific and
marketing literature. We do this analytically by comparing the schedulability char-
acteristics of the algorithms, and empirically through a careful repetition study in
which the algorithms were independently reimplemented in a different environment
and compared on real-time workloads and standard benchmarks.

Garbage collection is at heart a simple graph reachability problem, operating over
a directed object graph comprising objects (nodes) and their references (edges). An ap-
plication program dynamically allocates heap storage (objects) and manipulates those
objects by reference. References may be held by the application at any time in global
variables and thread stacks (including registers). The application may also create ref-
erences between objects by storing references in the heap. From the perspective of the
garbage collector (GC), the application program acts as a mutator of the object graph.
The job of the GC is to determine which objects are dead: no longer reachable by the
application. Dead objects can safely be reclaimed. The remaining objects are considered
to be live: accessible at some time in the future by the application. Live objects may
also be moved to reduce memory fragmentation.

In a real-time setting it is not practical to collect the heap atomically with respect
to the mutator, since stopping the mutator threads results in GC pauses that may
cause application threads to miss their deadlines. Thus, a real-time garbage collector
(RTGC) must work incrementally, interleaved with the normal execution of the real-
time tasks. Of course, this means that a real-time GC must cope safely with updates
performed by the mutator tasks while it is in the process of reclaiming memory. Work-
based collectors divide all collection work into fixed-size increments executed by the
application at allocation time. Time-based collectors, our focus in this work, perform
the collection work in a dedicated collector thread. Not surprisingly, there are many re-
search challenges to designing a real-time GC algorithm that is predictable, maximizes
throughput, decreases pause times, and keeps memory overheads low.

The context for our work is a Java virtual machine with RTGC and with support
for the Real-time Specification for Java (RTSJ) [Bollella et al. 2000], an extension to
the Java programming language that is suitable for hard real-time applications as
demonstrated by our previous work [Armbruster et al. 2007; Pizlo and Vitek 2008;
Honig Spring et al. 2007]. In our RTSJ implementation, a static compiler translates
Java code into C ahead of time and then compiles it to machine code using an off-the-
shelf C compiler such as GCC. Thus, programmers need not worry about the impact of
dynamic loading and just-in-time compilation on the predictability of their programs,
and we can focus on GC. We target uni-processors in general as they represent the
majority of today’s embedded market and, in particular, RTEMS and the LEON ar-
chitecture used by the European Space Agency for satellite control [Kalibera et al.
2009c].

The contributions of this article are the following.

—Minuteman. We have implemented a framework for experimenting with RTGC algo-
rithms that provides support for defragmentation and pluggable scheduling strate-
gies in a high-performance real-time execution environment.

—Schedulability. We provide schedulability tests for both periodic and slack scheduling
of GC, as well as a hybrid combination of the two. We have compared the scheduling
strategies based on simulated workloads.

—Evaluation. We empirically evaluate these alternative RTGC algorithms on a number
of standard benchmarks as well as on a real-time application. We have demonstrated
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the Minimum Mutator Utilization metric that has sometimes been advocated as a
way to evaluate real-time collectors is not suitable for measuring slack-based GCs.

—No Size Fits All. We find that neither slack nor periodic scheduling is superior to the
other. We show that some workloads are only schedulable with periodic GC, while
others only with slack GC. The hybrid approach performs best in our experiments.

—Repeatability. Our work is the only freely available, open source implementation of
the two leading time-based RTGC algorithms.

Minuteman is the first system in which meaningful “apples-to-apples” comparison of
different RTGC algorithms can feasibly be made, with results that are not confounded
by differences in the environment that are not relevant to GC. A modern GC has a pro-
found impact on aspects of the execution environment ranging from synchronization to
compiler optimizations. To evaluate a GC one must account for indirect overheads due
to choices such as data layout and code generation. This can only be done in the con-
text of a complete system with representative workloads. When GCs are implemented
in different systems, it is almost impossible to compare results, as performance dis-
crepancies may be due to spurious differences. One of our goals was to engineer an
experimental platform that is feature-complete and close enough in performance and
predictability to production-quality systems that it allows meaningful comparison of
different algorithms.

2. REAL-TIME GARBAGE COLLECTION

The goal of a real-time garbage collector is to bound space and time overheads of
memory management. Since many real-time applications must operate with limited
CPU and memory resources, it is essential that the overhead of the GC be small
enough to fit in that budget and to enable developers to reason about the impact of
a particular GC algorithm on their application. The sources of space overhead for GC
are the mark bits used to record reachable objects, the fragmentation resulting from
segregated allocation, the heap metadata, and the space reserves. Time overheads
come from reference tracing, object scanning, and any object copying performed by the
GC, plus the cost of barrier operations that may be imposed on the mutator tasks at
object allocation, at reads and writes of references in the heap, and on any other heap
accesses.

Time predictability is often the main concern when selecting a RTGC. From the
point of view of a real-time task that must meet a deadline, three things matter:
(a) what is the maximum blocking time due to GC, (b) how many times can it be
interrupted by GC, and (c) what is the worst-case slowdown due to the extra barrier
checks needed on heap reads and writes? From the point of view of the GC, the question
is whether it can keep up with allocation requests and ensure that the system will
not run out of memory. One important design dimension in GC algorithms is how to
schedule the GC task. The literature on time-triggered RTGC algorithms presents two
main alternatives: slack-based scheduling as first proposed by Henriksson [1998], and
adopted in the Sun Microsystems Java RTS product [Bollella et al. 2005], and the
periodic scheduling of Metronome [Bacon et al. 2003b] adopted in the IBM Websphere
Real-Time product [Auerbach et al. 2007]. Auerbach et al. [2008] later proposed a
hybrid extension of periodic scheduling, which aims at combining the advantages of
both alternatives.

Slack scheduling of GC runs the collector in a separate real-time thread which has
a priority lower than any other real-time thread. This has the advantage that the GC
will never preempt a real-time thread, thus providing a simple and easy to under-
stand answer to points (a) and (b). Complexity arises from the fact that the GC has
to be interruptible at any time by a higher-priority real-time thread, and that there
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GC needed GC doneGCmutator

(a) Without GC

(b) With slack-scheduled GC

(c) With periodic-scheduled GC

(d) With hybrid-scheduled GC

Fig. 1. Sample schedules for a periodic mutator task and different GC scheduling strategies. In Figures (c)
and (d) the GC thread preempts the mutator thread. In Figures (b) and (d) the GC thread runs during slack
time and can be preempted by the mutator thread.

must be enough “slack” in the schedule to leave time for the GC to satisfy the allo-
cation operations performed by the application. In particular, this means that there
must be enough available physical memory to sustain the peak memory needs of any
computation done by a periodic real-time thread during its release. Although the GC
does not directly interfere with application tasks, there is an indirect cost due to the
compiler-inserted barriers needed to make incremental collection possible (point (c) in
the previous paragraph).

Periodic scheduling of GC runs the collector thread according to a predefined GC
schedule at the highest real-time priority. This means that, at regular intervals, GC
will preempt application threads and perform a fixed amount of GC work. Since the
amount of work performed by GC is fixed and the intervals are known a priori, it
is possible to come up with an answer to questions (a) and (b). The peak memory
requirements that the system must sustain are now bounded by the maximum amount
of time the thread can run uninterrupted. As for (c), there are also compiler-inserted
barriers because the GC must be incremental.

Hybrid scheduling of GC ensures that the collector thread runs periodically, but al-
lows the collector to use system idle time like slack GC scheduling. This is semantically
equivalent to changing the priority of the GC thread from the lowest to the highest
in the system. While hybrid scheduling shows that the two approaches are not mutu-
ally exclusive, there has been no comparison of the tradeoffs involved in selecting a
particular strategy.

The differences among the scheduling approaches are illustrated graphically in
Figure 1.
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3. THE MINUTEMAN RTGC FRAMEWORK

We have implemented a framework for experimenting with uniprocessor RTGC algo-
rithms called Minuteman. Our framework is built on top of the Ovm real-time Java
virtual machine. It is implemented, like the rest of Ovm, in Java, and compiled to
C by an ahead-of-time compiler. By slightly restricting the Java reflection API, it is
possible to compile the virtual machine statically together with all application code
and the needed libraries into a single binary executable for the target platform. A de-
tailed description of Ovm can be found in our previous work [Armbruster et al. 2007].
Ovm implements most of the Real-time Specification for Java [Bollella et al. 2000] and
has been deployed on ScanEagle unmanned aerial vehicles in a collaboration with the
Boeing Company.

The Minuteman framework supports a wide range of GCs that differ in scheduling,
incrementality, defragmentation, predictability of barriers, and the representation of
arrays. Scheduling options include slack and periodic, plus hybrid as a combination of
both. Incrementality support ranges from non-incremental collection, through selective
incrementality of different GC operations, up to full incrementality with incremental
stack scanning. Defragmentation can be disabled to obtain a non-moving GC, or it
can be enabled with Brooks [1984] forwarding pointers or replication [Nettles and
O’Toole 1993]. Barriers enabling incremental collection can be optimized either for
throughput or for predictability. Arrays can be represented either contiguously or split
into arraylets [Siebert 2000; Bacon et al. 2003b; Chen et al. 2003].

For this study, we selected a straightforward defragmenting garbage collection al-
gorithm with standard implementation that is suited to the different GC scheduling
strategies that we intend to study in this paper. We implement the collector architecture
introduced with Metronome [Bacon et al. 2003b], which is based on the mark-sweep
snapshot-at-the beginning Yuasa [1990] collector with weak tri-color invariant. It is
mostly noncopying, uses arraylets to limit external fragmentation, and has fully incre-
mental defragmentation using Brooks [1984] forwarding pointers. It uses a segregated
free-list allocator with a carefully selected set of supported object size classes to fur-
ther limit internal fragmentation. We configure Minuteman with barriers optimized for
predictability (with minimum branches and activated at all times, even outside of the
GC cycle). We build in support for periodic and slack GC scheduling, allowing us to
compare the two in otherwise identical configurations. We provide more details below.

3.1. Collection Cycle

Our GC is implemented in a single real-time thread as a loop repeating the following
steps. Each iteration is a GC cycle.

(1) Wait Until Memory Is Scarce.
(2) Scan Threads.
(3) Mark And Clean Heap.
(4) Clean Threads.
(5) Sweep.
(6) Defragment.

The GC periodically modifies the state of the heap, maintaining particular invariants
at each step. The key invariants are formulated in terms of object color (white, grey,
or black) and pointer classes (clean, dirty). The meaning of colors is that white is
unreachable, and black and grey are reachable. A pointer is dirty if it refers to the
old location of an object that moved during defragmentation. A pointer is white, grey,
or black if it respectively points to a white, grey, or black object. Brooks forwarding
pointers ensure that the mutator always uses the new location of a moved object. Each
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Java object has an additional field to store the forwarding pointer. A read barrier makes
sure that this indirection is always followed before the pointer is used. For instance,
every field assignment x.f=exp will be translated into x.forward.f=exp.

3.1.1. Wait Until Memory Is Scarce. At this stage, all existing objects are black, and new
objects are allocated black. Any pointer can be dirty, because objects may have been
moved during defragmentation in the previous cycle (stage 6). The GC waits until the
available memory reaches a predefined threshold. This threshold must be large enough
to ensure that there is enough memory left for allocations by the mutator that may
occur before the GC can actually free sufficient memory (stage 5). It must also cover
the allocation needs of the GC itself during defragmentation (stage 6).

3.1.2. Scan Threads. The graph traversal is started by flipping the values representing
black and white and thus making all objects in the heap white. The allocation color is
updated to remain black. The GC will reclaim all objects that were already unreachable
when the traversal started. Tricolor invariants are enforced by a combination of the
Yuasa [1990] “deletion” barrier and the Dijkstra “insertion” barrier [Dijkstra et al.
1978]. The Yuasa barrier enforces the weak invariant that every white object pointed
to by a black object is also reachable from some gray object through a chain of white
objects. Before every store to a pointer location in the heap, the Yuasa barrier captures
the old pointer being deleted from that location and marks the target of the pointer
gray. This prevents breaking a chain of references from a gray object to a white object.

To avoid long GC pauses, scanning of thread stacks for pointers is interruptible. This
means that some thread stacks are logically gray (still need to be scanned) while others
are logically black (have already been scanned). Before tracing begins all stacks are
gray and contain only white references. Scanning each stack flips it from gray to black.
Note that under the weak tricolor invariant even black thread stacks can subsequently
acquire white references by loading them from the heap. The weak tricolor invariant
means that such references remain reachable via a chain of white pointers from some
gray object. However, a pointer from a gray stack to a reachable (i.e., referenced from
black) but still white object may be the only pointer preventing that object from being
collected. Deleting such a pointer from the gray thread stack would violate the weak
invariant. This could be prevented by applying a Yuasa barrier to mutation of thread
stacks, but that would be prohibitively expensive since stack (and register) mutations
are very frequent. Instead, using a Dijkstra barrier prevents storing of white references
into the heap so that no reference from black objects to white objects can be created. This
barrier marks gray the target of any pointer stored to the heap. It applies only to heap
stores, which are much less frequent than stack/register mutation. The Dijkstra barrier
makes scanning of stacks for pointers interruptible between threads but scanning a
single thread must be atomic. Stack scanning is fast in Ovm due to the use of pointer
stacks [Baker et al. 2009]. Threads can be scanned independently as Java ensures
that communication between threads is done through shared heap locations (the same
would not be true in C where pointers to the stack can be created).

3.1.3. Mark And Clean Heap. Gray objects are scanned one by one, marking all reachable
white objects gray, and marking all scanned objects black. Scanning objects, including
arrays, is fully incremental. As objects are scanned, all dirty pointers they contain are
fixed to point to the forwarded locations, so that after the whole heap is scanned, all
pointers in black objects are clean. When marking, the new location of an object is
marked. The old location, if any, is left white. To prevent dirty pointers from spreading
into already-scanned objects, either from unscanned objects or from the stacks, dirty
pointers are also fixed in the write barrier. This is strictly necessary only until the
stacks are clean (see next step), but the code to do so is permanently compiled into the
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write barrier for predictability. In any case, the mutator must be prepared to see both
clean and dirty pointers for the same object, and thus even pointer comparison must
follow the Brooks forwarding pointers. Global variables are scanned similarly to gray
objects; global data is always assumed live. Once the heap is cleaned, there are only
white and black objects. White objects are garbage and black objects are assumed live,
although some of them might have died since the GC cycle started.

3.1.4. Clean Threads. Because the heap is now clean, no more dirty pointers can be
loaded to the thread stacks, and thus the stacks can be fixed to point to the forwarded
locations of moved objects. Fixing is again atomic with respect to each thread, but can
be interrupted after each stack is fixed.

3.1.5. Sweep. Now the mutator only has access to black objects and to new locations
of objects. The white objects (garbage and old locations of objects evacuated during the
last defragmentation) are reclaimed and the memory they occupy is made ready for
reuse. This involves some housekeeping of free memory and, since Java requires all
allocated storage to be zeroed, also zeroing the freed memory. While some collectors
zero memory on allocation on behalf of the mutator, we do so at sweep time by the
collector. Thus, high-priority tasks are not delayed by zeroing due to earlier allocations
by tasks with a lower priority. Also, zeroing at sweep time makes it easier to attribute
the resulting overhead to the collector. The sweep operation can be interrupted at
almost any time. This is achieved by making sure the allocator cannot see memory
that is not yet ready for reuse. Memory organization is relatively complex in order to
reduce fragmentation and minimize the amount of work done during defragmentation.
All memory is divided into equal-sized pages (2 kilobytes). These pages can be used
directly as arraylets or for large nonarray objects, or they can be further partitioned for
allocation of small objects. Large nonarray objects can create both external and internal
fragmentation, but they are rare in real applications.1 With arraylets, arrays cause no
additional fragmentation over small objects: all space in the arraylets is used by array
data, the remaining array data (smaller than an arraylet) is stored in a small object
called the spine, together with pointers to the arraylets. Small objects are rounded up
to a predefined set of object sizes. Within a single page, only small objects of the same
(rounded-up) size can be allocated. Page size is not always a multiple of (rounded-up)
object size, and thus there is some wasted space on each page. The amount of this per
page internal fragmentation versus per-object internal fragmentation can be controlled
by tuning the number of supported object sizes. Moreover, this amount is proportional
to the number of live objects and is relatively small. Yet another kind of fragmentation
is caused when only a few objects in a page die, while the others are still live. These
empty slots can be reused, but not for another object size. Thus, an unlucky sequence of
allocations can lead to running out of memory in a system with little memory actually
used. This is why the GC implements defragmentation. Free slots are organized in
general as segregated free lists. However, when the allocator needs a new page for
small object allocation, it first allocates from that page sequentially by incrementing a
pointer (so-called bump-pointer allocation). Thus, free lists are only initialized during
sweep by the GC, as it discovers pages that contain both live and dead objects.

3.1.6. Defragment. The heap now contains only black objects, the allocation color is
still black, and all (live) pointers in the system are clean. Each object has only a single
copy. However, pages containing small objects may be fragmented. There may be a lot of
unused space in pages reserved for small objects of a particular size (size class of pages).

1We measured that the largest nonarray object uses only 432 bytes in the DaCapo, SPECjvm98, and pseudo-
JBB application benchmarks.
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This space can be reused only for objects of that size, but a request to allocate an object
of a different size may lead to running out of memory. Defragmentation is only started
if the amount of free memory is below a defined threshold. Starting defragmentation
too early is a waste of time, and starting defragmentation too late can be a problem
as it temporarily reduces the amount of free memory. Defragmentation starts with
pages from a size class for which most memory can be freed by defragmenting: moving
objects from less occupied pages to more occupied pages (this direction of copy is to
minimize the number of copied objects for a given number of freed pages). Each size
class has a list of nonfull pages, which is also used by the allocator. The defragmenter
incrementally sorts this list in order of decreasing occupancy. Then it copies the objects
from the tail of the sorted list (least occupied pages) to the head (more occupied pages).
This operation is incremental (except for the copying of each small object) and does
not harm the mutator. Termination is somewhat subtle, since the mutator may quickly
re-use the space intended as target for evacuation. In that case, the defragmenter bails
out and moves to the next size class. In the worst case, the defragmenter would bail out
from every size class (by default, the GC has 28 size classes). After copying an object,
the defragmenter (still atomically) updates the forwarding pointers, so that the new
copy of the object points to itself and the old copy points to the new copy. The evacuated
pages will become reusable for allocation during the sweep phase of the following GC
cycle.

4. SCHEDULABILITY ANALYSIS

The role of schedulability analysis is to answer the question of whether all tasks in a
given set can meet their deadlines. To obtain a precise answer, all costs and sources
of interference between tasks must be precisely accounted for. In the literature, it is
traditional to abstract most of these costs by a small number of input parameters that
are assumed to be obtained externally (either through analysis or careful measure-
ments) and focus on the essence of the scheduling problem. We follow suit and start
from well-known schedulability tests which model periodic tasks with fixed priorities
and without blocking [Joseph and Pandya 1986; Fidge 1998]. Additional parameters
such as interference due to mutual exclusion can be added but are mostly orthogonal.
We have chosen to study scheduling of garbage collection in the context of fixed-priority
preemptive scheduling strategy as this is the approach supported by commercial im-
plementations of the RTSJ. Accommodating dynamic scheduling algorithms, such as
earliest deadline first, would require changes to the response time analysis of mutator
threads and a tighter integration with the underlying scheduler.

In the model, tasks are identified by integers, which are also their priorities, 1
(highest) to n. We assume that the worst-case execution time of each instance of task
i is its cost Ci, a value that may be obtained either by static or dynamic analysis
[Wilhelm et al. 2008]. Each task has a deadline Ti which reflects the application’s
timing constraints. For simplicity we assume that the task’s period and deadline are
identical. The response time of task, Ri, is the longest duration between the time a task
becomes runnable and the time it completes executing. Thus for a schedulable task set
Ci ≤ Ri ≤ Ti. The response time of a task i can be computed by assuming that all tasks
of higher priority than i are released for execution simultaneously with task i and is
computed by Equation (1):

Ri = Ci +
i−1∑
j=1

(⌈
Ri

Tj

⌉
Cj

)
(1)
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Table I. Input Parameters for Schedulability Analysis

Ci [seconds] computation time task
Ti [seconds] period task
Ai [bytes] allocation task
Gi [seconds] GC work generated task
H [bytes] heap size system
Lmax [bytes] live memory system
Tgc [seconds] GC cycle duration (period) system
G0 [seconds] GC cycle overhead system

Thus the response time Ri is the cost of the task i and the sum of the preemption costs of
higher priority tasks. Note that the term � Ri

Tj
� is the maximum number of times task j

could be released during a single computation of task i. As all tasks j, 1 ≤ j ≤ i−1 have
a higher priority than i, they will preempt i at each of their release, hence prolonging
Ri by C j at each release. The recurrence is solved iteratively as follows:

R0
i := 0

Rn+1
i := Ci +

i−1∑
j=1

(⌈
Rn

i

Tj

⌉
Cj

)
.

The system is schedulable if and only if for every task i the equation converges to a
finite fixed point Ri, such that Ri < Ti.

4.1. Schedulability and Garbage Collection

Incorporating the garbage collector task into schedulability analysis requires enrich-
ing the execution model because the cost and period of the collector is dependent on
the behavior of other tasks. So, in addition to the costs Ci and deadlines Ti of individ-
ual tasks, information about the amount of work created by the application and the
characteristics of the GC must be provided. Under a fixed priority scheduling regime,
the priority of the garbage collection task is a key design decision. In slack-based GC,
the collector runs at the lowest priority. It can thus be preempted by all other tasks.
On the other hand, a periodic GC runs at the highest priority, preempting all other
tasks in the system. To bound the periodic GC’s impact on other tasks, it voluntarily
yields the processor at regular intervals. For both slack-based and periodic GC, the GC
task is triggered periodically. We assume that the period of the GC task, Tgc, is provided
by the user. It must be sufficiently large to allow for a complete GC cycle. The work to
be done during any GC cycle depends on the memory operations performed by mutator
tasks, such as allocations, and loads/stores to reference variables. The constant Gi cap-
tures the worst-case amount of GC work that a single instance of task i can generate.
The constant G0 is the upper bound on the per-cycle GC work that is not dependent on
the operations performed by the application. This covers operations such as scanning
of stacks and global variables. The maximum heap size, H, is a parameter chosen by
the user. Lmax is the maximum amount of live memory at execution. It can be obtained
either by program analysis or through measurement. The upper bound on allocation
per invocation of a task is Ai. The input parameters are summarized in Table I.

Schedulability of a set of tasks with GC requires that the application tasks and the
GC meet the following three conditions.

T1. mutator tasks meet their deadlines.
T2. GC meets its deadline and keeps up with tasks that use memory.
T3. the system does not run out of memory.
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The conditions can be formalized as three tests that can be be checked based on the
above mentioned input parameters. The formulation of tests T1 and T2 is dependent
on how the GC is scheduled, but T3 can be formulated independently of GC scheduling.
We can find an upper bound on the GC cycle duration that ensures that all allocation
requests can be fulfilled. We use a bound based on that of Robertz and Henriksson
[2003]:

Amax ≤ H − Lmax

2
. (2)

In Equation (2), Amax stands for the the maximum amount of allocation performed by
the application tasks during a GC cycle. It is easy to see that the condition is necessary
for the system not to run out of memory as objects that become unreachable during the
GC cycle in which they are allocated (they are called floating garbage) can only be freed
by the end of the subsequent GC cycle. Previous work has shown that this is a sufficient
condition [Robertz and Henriksson 2003; Schoeberl 2010]. The intuition behind the
proofs is as follows. The worst case occurs when the amount of live memory is Lmax
for all cycles. The maximum amount of floating garbage is the maximum allocatable
memory in the previous cycle (Amax) and the maximum permissible amount of memory
(Amax) is allocated in the present cycle. The system does not run out of memory as long
as Amax + Amax + Lmax ≤ H, and thus Equation (2) is sufficient.

The values of Amax and the related constant Gmax, which stands for the maximum
GC work, can be derived from the input parameters. When Tgc is a multiple of the hy-
perperiod (lcmi=1..n(Ti)) and all tasks are started simultaneously, a simplified equation
can be used:

Gmax = G0 +
n∑

i=1

Tgc

Ti
Gi

Amax =
n∑

i=1

Tgc

Ti
Ai.

Aligning Tgc to the hyperperiod may lengthen GC cycles and thus lead to higher memory
requirements. The following equations consider the general case. Making no assump-
tions about how the generation of GC work is distributed within each task, any task
that runs, even partly, during a GC cycle, will contribute its entire GC work to that
cycle:

Gmax = G0 +
n∑

i=1

(⌈
Tgc

Ti

⌉
+ 1

)
Gi (3)

Amax =
n∑

i=1

(⌈
Tgc

Ti

⌉
+ 1

)
Ai. (4)

The benefit of these equations is that Tgc can be smaller than the hyper-period, which
reduces the memory requirement H. These equations do not require tasks to be started
simultaneously.

4.1.1. Slack GC. Under slack-based scheduling, the GC does not interfere with the
other tasks in the system. This simplifies test T1 because mutator task deadlines can
be checked as if there was no GC. More precisely, since the GC is the lowest priority
task, it will not influence their response time and Equation (1) can be used as is.
Computing the response time of the GC tasks, Rgc, is required to check that test T2
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holds. Equation (5) simply states that Rgc depends on the maximum amount of GC
work per cycle and the time required by all other tasks.

Rgc = Gmax +
n∑

i=1

(⌈
Rgc

Ti

⌉
· Ci

)
. (5)

This recurrence is similar to the tests for mutator periodic tasks. The iterative process
to find Rgc is also similar, except that we can start with R0

gc := ∑n
i=1 Ci.

4.1.2. Periodic GC. Under periodic scheduling, the GC runs as the highest priority task
in the system, but rather than doing all of its work at once it cooperatively yields
the CPU to the mutator task. The GC cycle is divided into fixed-size time quanta.
Each quantum may be allocated either to the mutator tasks or to the collector. The
allocation is done statically, independently of the underlying real-time scheduler, and
gives rise to what we refer to as an MC schedule as it is expressed by a a sequence
such as CMCMCMCMM where M represents a mutator quantum and C a collector quantum.
The choice of quantum size and MC schedule are key parameters for schedulability
analysis. A typical implementation will block the collector thread at the start of a
mutator quantum, and unblock it at the end of the quantum. When there is no GC
work to be done, the mutator may be allowed to use a collector quantum.

To determine the response time of mutator tasks, it necessary to account for the GC
interruptions, and conversely the response time of the GC requires accounting for the
time yielded to the mutator. We do this with the notion of minimum utilization devised
by Cheng [2001]. The function mmu(t) gives the minimum mutator utilization (MMU)
for any window of length t; that is to say, what percentage of the CPU time is given
to mutator tasks in any interval of t seconds. The function mcu(t) is the minimum
collector utilization for a window t. Both functions depend on the MC schedule and can
be computed by a brute force algorithm. Consider the MC schedule CMM with a quantum
size of 100μs, the mmu(t) for a window t = 200μs is 200−100

200 = 50% because the worst
case is that the collector interrupts the mutator for one quantum. But mcu(200) = 0
because the worst case for the collector occurs when the mutator runs for two con-
secutive quanta. As t grows, the functions will converge to mmu(t) = 1 − mcu(t) = u,
where u (target utilization) is the ratio of mutator quanta Ms in a cycle. If q is the
length of a time quantum, then mcu(t) and mmu(t) are linear functions within each
interval [nq, (n + 1)q] for integer n. The task response time depends on mmu and on
the maximum amount of work per cycle for T1:

Ri = Ci +
i−1∑
j=1

(⌈
Ri

Tj

⌉
· Cj

)
+ min

{
(1 − mmu(Ri)) · Ri,

⌈
Ri

Tgc

⌉
· Gmax

}
. (6)

The time added by GC (the last term) is the maximum time the GC can take during
Ri, which is (1 − mmu(Ri))Ri. However, as expressed by the second argument of min, if
the GC cycle is shorter than Ri and the GC does all its work in a cycle, it will no longer
be taking time from the mutator.

The worst-case response time for the GC, needed for test T2, can be calculated as
follows.

Let Rgc be the smallest t such that t · mcu(t) ≥ Gmax and t ≤ Tgc. (7)

The recurrence cannot directly be solved iteratively, because mcu is not a monotone
function over its full range.

The Metronome collector [Bacon et al. 2003b] and its commercial implementations
invented the following approach for specifying the MC schedule. Rather than defining
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a schedule for the entire GC cycle, they define MC patterns, which are then repeated
to cover the entire running time of the application. The length of the pattern and the
quantum defines a window w. Since our implementation mimics Metronome, we can
leverage this to compute Rgc. Because the MC schedule is constructed by repeating the
MC pattern, mcu(t) is constant for any t being a multiple of the window size w. The
constant is equal to the ratio of collector quanta within the MC pattern. To calculate
Rgc, we thus first find a solution tw in multiples of the window size w:

tw = w

⌈
1
w

Gmax

1 − u

⌉
. (8)

We now know that the smallest t such that t ·mcu(t) ≥ Gmax is in the interval (tw −w, tw].
Given that mcu(t) is linear within time interval (tw −w, tw] and that mcu(tw) = mcu(tw −
w), it follows that the solution t is a multiple of the quantum size. There is only a limited
small number of quanta per window, so we can easily enumerate t · mcu(t) for all such
t and choose the best one.

4.1.3. Hybrid GC. Hybrid scheduling (originally devised to enable multiprocessor sys-
tems to offload collector work onto hardware threads [Auerbach et al. 2008]) is an
attempt to combine the periodic and slack-based scheduling approaches by allowing
the collector task to take additional quanta when all mutator tasks are idle. Response
time of mutator tasks is computed by Equation (6), as with periodic GC scheduling. The
intuition is that when the GC takes a mutator quantum, its priority is decreased to be
lower than that of mutator tasks and thus if the mutator needs the CPU it can simply
preempt the collector. The advantage of hybrid GC scheduling is that when there is
slack, Tgc and Gmax can be smaller than with periodic, because the GC work can finish
earlier for the same heap size. The GC response time for test T2 is defined as follows.

Let Rgc be the smallest t such that t · mcu(t) + slp(t) ≥ Gmax and t ≤ Tgc, (9)

where slp(t) is the guaranteed amount of slack in any window of length t provided that
a hybrid collector takes all quanta it can during this time, which is in turn reflected by
the term t · mcu(t). The function slp(t) is as follows.

Let slp(t) be the largest g such that ∃r ≤ t such that (10)

r = g +
n∑

i=1

(⌈
r
Ti

⌉
· Ci

)
+ min

{
(1 − mmu(r)) · r,

⌈
r

Tgc

⌉
· Gmax

}
.

Intuitively, we are looking for the maximum amount g of GC work we can do within
time t considering that the GC can be preempted by any task. The recurrence equation
for r comes directly from Equation (6) and is solved in the same fashion; r is the
response time of an imaginary lowest-priority task with computational cost g. The GC
response time can be found by exhaustive search in integer numbers or approximately,
using Equation (9), by checking for several t, Gmax ≤ t ≤ Tgc, if t ·mcu(t)+slp(t) ≥ Gmax,
and then taking a minimum of such ts. Any upper bound found is safe, but the selection
and number of tested ts affects how close the bound is. Calculating slp(t) also requires
an exhaustive search or approximation. We use a binary search, iteratively solving
Equation (10) at each step.

4.2. Schedulability Case Studies

While the set of applications that can be scheduled by periodic and slack-based GC
scheduling policies overlap, neither is strictly superior to the other. We prove this by
exhibiting two examples: in one the system is schedulable with a periodic GC and
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i Ti Ci Ai Gi
1 10 3 72 1
2 50 9 302 5
3 95 21 256 4

Lmax G0 H Tgc
300 10 25500 730

Quantum size: 0.5
Window size: 10
MC pattern: MCMCMCMCMCMCMMMMMMMM
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(a) Slack GC does not cause a deadline miss
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(b) Periodic GC causes a deadline miss

Fig. 2. Slack. Task 3 with periodic GC misses a deadline at 1045ms.

not with a slack-based GC, while in the other it is schedulable with a slack-based GC
but not a periodic GC. Hybrid scheduling is strictly more powerful than periodic, but
as shown by one example does not subsume slack-based. On the other hand, slack-
based scheduling does not subsume hybrid, either: we show an example of a system
schedulable with hybrid scheduling, but neither schedulable with periodic nor slack
scheduling.

For graphical demonstration of the different types of scheduling we have imple-
mented a simple GC scheduling simulator. In the simulator all mutator threads in all
of their releases take the worst-case execution time, allocate the maximum amount
of memory and generate the maximum amount of GC work. The initial task offsets
are configurable (and zero by default). If there is no accumulated GC work when the
collector starts running during a collection cycle, such as during the first cycle of the
simulation, the collector does not do anything in that cycle. If there is any accumulated
work, it performs that amount of work plus G0. The reclaimed memory is made avail-
able when the collection work in a cycle is finished. The allocation within a mutator
release is bunched at the beginning and the generation of GC work is bunched at the
end (indeed, these choices are arbitrary). In the following we show examples where
non-schedulability detected by the formula is also triggered in the simulator. The sim-
ulator works at the resolution of the time quanta of the periodic GC; its implementation
is a straightforward application of the GC scheduling algorithms.

4.2.1. Slack. The first case study is Figure 2, adapted from Henriksson [1998], which
has three mutator tasks labeled 1 to 3 ordered by priority (with task 1 having the
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highest priority). We start by testing if the mutator tasks always meet their deadlines
(T1). The iterative solution of Equation (1) based on the periods Ti and costs Ci gives
the response times, Ri and confirms that the tasks are schedulable (Ri < Ti in all
cases):

R1 = 3 < 10 = T1

R2 = 15 < 50 = T2

R3 = 45 < 95 = T3.

Next, we test if GC can keep up with the mutator tasks. We compute the bound on the
GC work Gmax, which, in turn, requires the GC cycle overhead G0, Gi, and the period
of the GC task, Tgc. From Equation (3) we get

Gmax = 10 + 74 · 1 + 16 · 5 + 9 · 4 = 200.

Solving Equation (5) (T2) we get Rgc = 719. As this is less than the GC’s period of 730,
the GC can keep up with mutator. Last, we must check that the system does not run
out of memory (T3). For this we need to know the available heap size H, the allocation
rate of the tasks, Ai, and the upper bound on live memory Lmax. From Equation (3) we
get Amax = 12464, which satisfies Equation (2):

12464 <
25500 − 300

2
= 12600

The system thus does not run out of memory. With periodic GC, test T1 fails because
task 3 is not able to complete its work before its deadline, as computed by Equation (6).
The same test fails for the hybrid approach. Figures 2(a) and 2(b) show simulations of
this workload with a slack-scheduled and periodic GC. Figure 2(a) clearly shows how
the slack-based GC’s work is bunched towards the end of the period after tasks 2 and 3
are done with their work. It also shows the slack-based GC being preempted by task 1
and 2. In this example the CPU is fully utilized. Figure 2(b) shows that periodic GC is
active most of the time (according to its MC schedule). The deadline miss occurs quite
late in the run because there is no garbage at the start of the simulation and thus
the GC only kicks in once some work has been generated. The deadline miss occurs at
time 1045. The periodic GC runs frequently, interrupting the mutator’s progress, and
decreasing the response time of the mutator tasks: tasks 1 and 3 get less work done,
and task 3 misses its deadline.

4.2.2. Periodic. Now, consider our second case study described in Figure 3. We start
with a periodic GC, test T1, so Equation (6) gives task response times of 14 and 927.
The mutator tasks are thus schedulable. The upper bound on Tgc is 150 given the
available heap size. The system thus will not run out memory during the GC cycle.
For T2 we need to solve Equation (7): Rgc = 128, which is well within the GC cycle
length. This configuration is not schedulable by a slack-based GC because the GC cycle
Tgc = 140 is smaller than the cost of task 2, C2 = 490. This means that even if there is
enough slack, that slack comes too late—the system will have run out of memory before
the slack-based GC could help. Figure 3(a) shows the critical part of the schedule. The
GC misses its deadline at time 280 because task 2 is still running. Figure 3(b) shows
that in this case the periodic GC’s interruptions do not cause the mutator to miss their
deadline, and because the GC is able to preempt the long running task 2 it collects the
garbage in time.

4.2.3. Hybrid. Finally, consider the example of Figure 4 with a hybrid GC. The system
is schedulable with mutator task response times (T1, Equation (6)) of R1 = 6, R2 = 18,
R3 = 324 and GC response time (T2, Equation (9)) Rgc = 469. The maximum GC
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i Ti Ci Ai Gi
1 50 9 302 5
2 980 490 65 4

Lmax G0 H Tgc
300 10 3000 140

Quantum size: 0.5
Window size: 10
MC pattern: MCMCMCMCMCMCMMMMMMMM
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(a) Slack GC misses its deadline, cannot keep up with application
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(b) Periodic GC does not miss a deadline

Fig. 3. Periodic. The slack GC misses a deadline at 280ms (does not run at all in this cycle).

cycle length that ensures not running out of memory is (T3) 550. The example is not
schedulable with slack GC or periodic GC, as with both the GCs miss their deadlines.
The periodic GC misses a deadline because it cannot use slack quanta that belong
to the mutator: there is slack time wasted, despite GC work left to do. The slack GC
misses a deadline because of very uneven distribution of slack in the schedule. Note
that computation time of task 3 is as much as 130. Its response time with a slack-
based GC is 187. There can be two releases of task 3 within one GC cycle, thus there
can be only 156 of slack time within a cycle, but the maximum GC work generated
per cycle is 177. Over longer time intervals, the amount of slack would be sufficient:
there is enough slack time in a time interval of two adjacent collections to finish two
collections, and even more so for longer intervals. The hybrid GC can re-organize this
slack time by stealing mutator quanta, so that it meets the GC deadline. The slack GC
cannot, and thus fails. Note that increasing the heap size, and thus allowing a longer
GC cycle, could make the system schedulable also with the slack GC.

Figure 4(c) shows the critical part of the schedule where the periodic collector fails
(at the given time scale, the interruptions by the periodic collector appear very close).
The periodic GC fails to use slack time in the middle of the schedule, because the slack
is allocated to the mutator. The hybrid scheduler uses the slack time, and thus meets
the deadline (Figure 4(a)). Figure 4(b) shows the critical part of the schedule where the
slack scheduler fails in the simulator (it fails in a different part of the schedule). The
slack collector in the part of the schedule shown has more work to do than the hybrid
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i Ti Ci Ai Gi
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3 400 130 256 4

Lmax G0 H Tgc
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Quantum size: 0.5
Window size: 10
MC pattern: MCMCMCMCMCMCMMMMMMMM
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(a) Hybrid GC does not miss a deadline
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(b) Slack GC misses its deadline, cannot keep up with application
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(c) Periodic GC misses its deadline, cannot keep up with application

Fig. 4. Hybrid. Periodic and slack GCs miss their deadlines.

collector, because it starts later. Hence it misses its deadline, although it does even
more GC work in this interval than the hybrid scheduler.

5. REAL-TIME COLLISION DETECTOR

For the empirical evaluation, we use the Real-Time Collision Detector (RCD) bench-
mark [Kalibera 2009b]. The key component of this benchmark is a periodic real-time
task that detects potential aircraft collisions based on radar frames. Each invocation of
the task takes a new radar frame which contains up-to-date locations of aircraft with
their identifications, computes current motion vectors based on the previous known
locations of the aircraft, and then uses the motion vectors to detect collisions. The
detection algorithm has two stages: in the first stage the detector identifies smaller
two-dimensional quadrants containing multiple aircraft, while in the second stage
it performs three-dimensional detection in these quadrants. We use a version of the
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benchmark that pre-simulates all radar frames before the detector is started, to mini-
mize interference and unwanted time dependencies. We use the RTSJ scheduling and
timer API, but perform all allocation in the heap (no scopes or immortal memory). For
the purpose of our evaluation, we modified the original benchmark to support multiple
parallel detector tasks. Each parallel task uses the same detector algorithm, but dif-
ferent tasks run at different priorities, have different periods, and accordingly process
different numbers of radar frames. The benchmark reports response times of the colli-
sion detector tasks. The response times are measured from idealized release times (no
jitter, ideal timer) to the actual completion time within a task release. The idealized
release times are defined by absolute start time, which is rounded to avoid phase-shift
of real timers [Burns et al. 1995], and by the period. We use two parallel detector tasks
for this evaluation.

We use two different workloads, S and P, which are designed to favor, in turn,
slack and periodic/hybrid scheduling, and to exercise different parts of the memory
allocator, garbage collector, and collision detector. The S workload has 19 aircraft with
no collisions and detector tasks with periods of 8ms and 16ms. The P workload has
40 aircraft with collisions and detector tasks at periods of 10ms and 2s. To make the
workload more challenging to the garbage collector, we add a simple loop that allocates
a variable number of objects to the longer running task. In the P workload, we use
a simpler configuration of the allocator than in S, but also a smaller heap. In the P
workload, we allocate a million 64-byte objects per task invocation. Pointers to the
objects are stored into a cyclic buffer of 0.5 million objects, so that except for the first
invocation, 0.5 million old objects and 0.5 million new objects die after each invocation.
In the S workload, instead of a constant object size, the allocations follow a predefined
pattern, parameterized by maximum allocation request size and an allocation size
increment. The number of allocated objects per invocation is 1,000 and the cyclic buffer
for pointers has 10,000 elements. Thus, after 10 invocations 1,000 of these objects die
at each invocation. In both workloads, we run 10,000 invocations of the task with the
longer period. To focus on steady state performance, we skip the first 2,000 and the last
100 invocations. The initial invocations are subjected to initialization noise, while the
final invocation suffers noise due to shutting down individual detector tasks. For the
task with 2s period, we only skip 10 initial and 10 last invocations.

The periodic and hybrid schedulers use a 10ms window, 500μs quanta, a 1ms max-
imum pause time, and u = 0.7 target minimum mutator utilization (or MMU). These
are the defaults that are also used by IBM WebSphere. The MC scheduling pattern is
MCMCMCMCMCMCMMMMMMMM. The slack scheduler is configured so that GC runs at a lower
priority than the real-time detector tasks. The same priority is used as the lower prior-
ity of the hybrid scheduler. Our experimental platform is Ubuntu Linux 2.6.31, which
already has real-time support by default, running on an Intel Core2 CPU at 2.83GHz
with 6M Level 2 Cache. We built Ovm with the GNU GCC 4.4 compiler.

6. EMPIRICAL EVALUATION

The schedulability analysis of Section 4 is performed in an abstract model of computa-
tion to keep the formal treatment focused and compact. One could add features such
as lock-based concurrency control and priority inversion avoidance protocols which are
supported in Java [Bollella et al. 2000] and have well-understood formal treatment.
Adding dynamic thread creation would require admission control but would not change
our analysis. Getting values for the input parameters to the scheduling tests is more
tricky, especially when running on modern architectures that add some unpredictabil-
ity with features such as caches and pipelines. Estimating the cost Ci and Gi requires
a precise model of the architecture and of the flow of control through the program. The
state-of-the-art in worst-case execution time analysis [Wilhelm et al. 2008] suggests
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that it may be possible to obtain those values, but our practical experience with com-
mercial tools suggests that analyzing the rather complex code generated by a virtual
machine will require further research. An alternative would be to use a simpler proces-
sor where all operations have fixed, fully predictable costs [Pitter and Schoeberl 2010].
Allocation costs can be bounded by static analysis [Garbervetsky et al. 2009] but there
are no tools for computing precise bounds on the amount of GC work created by a task.

This section will side-step these issues and provide the first empirical evaluation
of the different GC scheduling approaches on an efficient virtual machine and with
realistic workloads. One of the goals of evaluating actual implementation is to reveal
any unforeseen overheads (such as excessive barrier costs, pathological cache behavior,
and operating system costs). Furthermore, the study gives a feeling for the average
performance of the different approaches which is important for soft real-time appli-
cations. We also demonstrate experimentally that there are cases where none of the
scheduling strategies is strictly better than the others.

We start with Section 6.1, where we illustrate the complexity of evaluating real-
time applications with the minimum mutator utilization metric. Section 6.2 measures
observed response times, which we argue are a better metric for comparing GCs. Sec-
tion 6.3 shows the impact of adding non-real-time activity to a real-time system. Finally,
Section 6.4 and Section 6.5 detail the overheads and relative costs of the GC algorithms.

6.1. Minimum Mutator Utilization

The minimum mutator utilization, or MMU, is a metric originally proposed to measure
the quality of work-based real-time garbage collectors [Cheng 2001; Cheng and Blelloch
2001]. The observation was that maximum pause times are not meaningful because a
collector with very short but very frequent pauses can be worse from the point of view
of a real-time mutator task than a collector with longer, but less frequent, pauses. The
idea of the MMU metric is thus to measure, for a time window of size t relevant to
the mutator tasks, the worst-case mutator utilization. This gives a lower bound on the
number of CPU cycles that the mutator can use in any given interval of size t.

While MMU works well for its original intent, the temptation to apply it more widely
to measure different kinds of real-time garbage collectors should be resisted.

We illustrate the discussion with Figure 5, which shows the MMU of the RCD bench-
mark, P workload with a 10ms period. The MMU is computed for window sizes ranging
from 100μs to 1s. For window sizes smaller than the longest GC pause, the MMU will
be zero and, as the window size increases the value of the MMU will eventually con-
verge towards the target MMU (which is a parameter of the Metronome algorithm).
Higher MMU values are better as they indicate a larger portion of the CPU cycles are
available to the mutator tasks. One intended use of Figure 5 is for developers to look
the MMU value for a window size matching the period of a mutator task and check if
there is enough CPU for the task to complete its work.

The problem is that MMU is unaware of scheduling. In particular, the metric is
computed without regard to slack which is particularly awkward when looking at
algorithms that exploit slack in the mutator threads. A naı̈ve reading of Figure 5
would suggest that both slack and hybrid scheduling are much worse than periodic
GC scheduling. Hybrid and slack practically overlap and, at best, offer a guarantee of
10% utilization to mutator tasks. Comparing this to the 70% utilization offered by a
periodic GC, there is no question which GC scheduling approach users should choose.
This conclusion is certainly wrong in the general case as we have shown that periodic
scheduling can fail to schedule workloads that are schedulable with a slack-based
scheduler. Even in the particular example of Figure 5, the MMU is misleading. It does
not account for the fact that slack-based GC (and hybrid) runs when the mutator tasks
are not runnable. From the point of view of the mutator, slack-based scheduling ensures
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Fig. 5. MMU. Computing minimum mutator utilization of the RCD benchmark. The x-axis indicates the
window size (ms, log scale). The y-axis is the percentage of CPU cycles available to the mutator (MMU).

100% utilization as the mutator can run whenever it needs to without interruption.
Another way to interpret Figure 5 is to observe that periodic GC converges to 70%
utilization which is the requested value. But in this benchmark the mutator has about
1ms of computation every 10ms period. Thus the MMU for slack-based is a measure of
the available slack which the GC will steal and thus finish its cycle earlier.

An additional drawback of MMU is that an implementation may not account for
all GC overheads. Allocation costs and the barriers inserted by the compiler around
memory operations are charged to the mutator threads. However, these costs are a
major feature of GC design with major impact on performance. This is not an issue
with our experiments as Minuteman allows us to retain the same mutator overheads
and only vary the scheduling policy, but for instance a work-based garbage collector
would technically have MMU of 100% as all of the GC work happens in the mutator
thread.

The MMU is thus not the metric we will choose for comparing different GC scheduling
strategies. Application specific metrics can be more appropriate [Printezis 2006], but
for our purposes we will stick to observing response time as this connects more directly
our experimental results to the schedulability tests.

6.2. Observed Response Time

Ideally, what we would want to know is the actual response time Ri of each mutator
task as this would let us test schedulability. The response time is more important
than the MMU as it accounts for all overheads and not just GC pauses. The observed
response time accounts for the scheduler operations, quality of system timer, context
switching cost, overheads of the virtual machine, mutator execution time, compiler
inserted GC barriers and interrupts by the GC. We can measure experimentally the
observed response time, which is defined as the duration between the time when a task
becomes runnable and the completion of computation in that release. A periodic task
becomes runnable at absolute times that are a multiple of the period plus the task’s
start time.

Figure 6 shows the response times of slack, periodic, and hybrid schedulers with the
P workload, task 1 with a 10ms period. For each scheduler we provide a histogram of the
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Fig. 6. Observed Response Times. Response times in ms for P workload.

measured times as well as box-plots (the bold central line marks the median, the hinges
mark the quartiles, and the whiskers are each 1.5× the interquartile range from the
closer quartile). We perform 50 executions of the benchmark (350,000 measurements).
We report maximum times (red triangle) and minimum times (green bullet) over all
executions, which characterize the true extremes of our system. The results show
that slack scheduling gives better response times than periodic and hybrid scheduling,
confirming our expectations. The distribution of response times with slack scheduling is
narrower (has smaller inter-quartile range) than periodic and hybrid scheduling, which
is again expected, given the periodic stealing of mutator quanta by the latter two. The
overheads of periodic scheduling can be explained by the periodic scheduling algorithm.
The 10ms window of the GC’s schedule is aligned with the 10ms period of the task.
Every task release that takes between 0.5ms and 1ms will be preempted by a single
0.5ms collector quantum. As the minimum response time measured with the slack
scheduler is 0.7ms, the expected minimum for periodic is 1.2ms, which matches the
measurements. The median response time with slack is 0.9ms and with periodic 1.5ms,
which is again close to the expected value of 1.4ms. The minimum and median response
times of hybrid are slightly smaller than that of periodic, which can be explained
by more frequent cases when the collection is not in progress (hybrid uses slack for
collection, and thus finishes it earlier than periodic). The maximum observed with slack
was 3.3ms. This would mean 6 quanta (3ms) taken by the collector, thus a maximum
of 6.3ms. However, the maximum of 5.1ms observed by periodic is smaller. This could
be explained by a lack of GC work during the release that actually has the worst-case
computation time. As the histograms show, the response time distribution has a long
tail, and thus the long computation times are very unlikely; it probably happens that
when they are triggered periodic collection is only active during part of the computation.

6.3. Schedulability Case Studies

This section mirrors Section 4.2 in our experimental setup. We use different RCD work-
loads to validate our conclusions about the respective power of the different approaches.
We demonstrate that there are configurations that can be scheduled by a periodic GC
and not by a slack-based one, and vice versa. We did not encounter a case where hybrid
was beaten by either of the approaches in this workload.
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We use two RCD workloads, P and S and artificially increase the amount of allocation,
Ai, of the tasks to stress the memory subsystem. We run RCD with two tasks, such
that task 2 does nothing else than create GC work and task 1 implements the collision
detection algorithm. The results of this experiment are illustrated in Figure 7. The
x-axis shows the number of objects allocated per release of task 2. The y-axis gives
the highest observed response time for the corresponding amount of allocation. The
end point of each line denotes the highest amount of allocation that can be generated
without missing a deadline in the mutator or the GC.

Figure 7(a) shows the maximum observed times for both tasks with the RCD S
workload. Task 1 has a mostly flat response time because the work performed each
release is small and more or less constant. The figure shows that slack is faster than
hybrid and periodic because task 1 is not preempted by the former. The maximum
time of task 2 increases as we ask it to allocate more objects per release. Again, the
difference between periodic and slack is explained by the fact that the periodic GC
preempts both tasks and thus slows them down.

Figure 7(a) clearly shows that periodic “fails” by running out of memory earlier than
either hybrid or slack. The slack and hybrid schedulers can sustain a larger level of
allocation. Periodic-scheduled collection cannot keep up with the mutator because it
does not make use of slack in the schedule. Even during idle time, it pauses periodically.
Hybrid gives worse maximum response times than slack, because it also steals quanta
from the mutator, in this case unnecessarily.2

Figure 7(b) is similar but uses the P workload and allocates millions of objects. In
this example, the failures of periodic and hybrid are due to missed deadlines for the
mutator tasks. In this configuration the periodic and hybrid schedulers can sustain a
larger level of allocation. Task 2 has a period of 2s and allocates more memory than is
available in the system. The collector must interrupt the task to avoid running out of
memory. Slack-scheduled collection cannot do this, and thus the system crashes due to
running out of memory. While the curves for hybrid and periodic schedulers overlap,
the maximum response time is smaller for hybrid than for periodic. This is shown for
task 1 in Figure 7(c). The figure also reveals an oscillation of the response times of
slack and periodic within the range of 0.5 ms (for 1.2 to 2 millions of allocated objects).
This is easily explained by the quantum length of 0.5 ms. A very small fluctuation in
the maximum response results in different numbers of quanta stolen by the collector
per mutator task release.

6.4. Relative GC Overheads

We have measured execution time overheads of the GC that we used for the comparison
of slack and periodic scheduling over a nonincremental GC without any barriers. These
overheads (Table II) quantify the cost in terms of execution time for turning a non-real-
time GC into a real-time one. The percentage overhead o(c, b) of GC configuration c
running benchmark b is calculated as

o(c, b) = 100 · met(c, b) − met(cnonrt, b)
met(cnonrt, b)

,

where met(c, b) is mean execution time of benchmark b with GC configuration c over a
number of iterations, selected on a per-benchmark basis, and configuration cnonrt is of
non-incremental GC without any barriers. The choice of arithmetic mean is common

2Anecdotally, in our experiments with Ovm, we observed rare but large pauses, about 40ms, that we could not
explain at first. After careful study we found out that they were caused by the operating system discarding
a memory page containing code. Reloading the page from disk generated the pause. Luckily, instructing the
OS to lock all pages when they are first mapped fixed the problem.
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per release of Task 2. The y-axis gives the maximum observed response time (ms) of the tasks for different
GC scheduling algorithms (lower is better).
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Table II. Percentage Execution Time Overheads of a Real-Time GC
(smaller is better)

Non RT Arraylets Defr. Defr.&Arr.
Antlr −2 4 61 58
Bloat 27 40 114 121
Fop 1 5 38 39
Hsqldb 30 −4 41 30
Luindex 6 22 108 102
Lusearch 1 −15 47 27
Pmd 10 19 77 71
Xalan −5 −2 25 20
Compress −12 32 224 186
Jess −6 3 62 66
Db 4 8 49 42
Javac 4 11 79 82
Mpegaudio 4 26 253 120
Mtrt −14 −2 100 84
Jack −6 7 60 62
Geo-Mean 2 9 81 69

and natural, as the sum of execution times has a physical meaning [Lilja 2000; Jain
1991]. The cnonrt is a fair base as it does not include the feature of interest (feature
that distinguished c from cnonrt) and is conservative because relating to it leads to
numerically larger relative overheads than if cnonrt was in the numerator. We also
include a geometric mean gmo(c) of the overheads over all benchmarks, which we
calculate as

gmo(c) = 100 · exp

(
1

#bench

∑
b

ln
(

met(c, b)
met(cnonrt, b)

))
− 100.

We use geometric mean on the grounds that we are looking for a relative overhead
that is independent on the size of the workloads, but rather depends on their type [Jain
1991]. Geometric mean is quite robust to outliers and is used commonly, but the choice
of a particular mean is not uncontroversial and some argue strongly against the use
of geometric mean [Smith 1988; Lilja 2000]. We also show the individual benchmark
overheads, allowing independent interpretation.

The results are obtained with selected benchmarks from the DaCapo [Blackburn
et al. 2006a] and SPECjvm98 suites. Both suites include a diverse set of real and non-
trivial applications from multiple domains, which are run on large data sets. Excluding
standard libraries, the numbers of loaded methods are 152-1011 (SPEC) and 494-2433
(DaCapo) [Blackburn et al. 2006a]. The source code size of the DaCapo benchmarks
is 850,000 lines of code (excluding libraries). Workload characterization of both SPEC
and DaCapo benchmarks in respect to GC behavior has been provided in the DaCapo
technical report [Blackburn et al. 2006b]. On average over all benchmarks (calculated
by geometric mean), the execution time overhead of a full RTGC (defragmentation and
arraylets) is 69%. The independent overhead of arraylets is 9% and the independent
overhead of defragmentation is 81%. This means that arraylets, on average, cause a
speedup when added to defragmentation, which is an interesting result, but not consis-
tent over platforms. Our earlier measurements [Kalibera et al. 2009] with a different
compiler and platform have shown joint overhead of 58%, independent overhead of ar-
raylets 34%, and independent overhead of defragmentation of 40%. We have identified
the compiler as a significant source of the difference. Now we use the recent version,
GCC 4.4. We have verified that with GCC 4.1, which we used earlier [Kalibera et al.
2009b], arraylets do incur a slowdown even on the current platform: the joint over-
head is 50%, the independent overhead of arraylets is 12%, and of defragmentation
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Table III. Percentage of time spent in mutator (1) and percentages of time spent in different phases of the
collector (2-6) as described in Section 3.1

Collection Cycle Phase
Mutator Collector

(1) (2) (3) (4) (5) (6)
Antlr 94.3 0.2 38.7 0.2 55.4 5.6
Bloat 97.7 0.0 16.3 0.0 79.1 4.6
Fop 95.4 0.1 35.6 0.0 51.9 12.3
Hsqldb 87.1 0.0 71.5 0.0 22.4 6.1
Luindex 96.4 0.2 39.9 0.1 58.1 1.7
Lusearch 93.0 1.0 47.3 0.8 50.6 0.3
Pmd 91.5 0.1 24.6 0.0 72.8 2.5
Xalan 94.3 0.2 56.6 0.2 40.0 2.9
Compress 98.8 0.3 62.0 0.2 37.2 0.2
Jess 92.8 0.2 43.0 0.1 51.0 5.7
Db 96.6 0.1 71.1 0.1 28.2 0.4
Javac 93.2 0.0 33.7 0.0 49.9 16.3
Mtrt 87.2 0.2 55.3 0.2 41.1 3.4
Jack 91.4 0.2 34.7 0.1 55.0 9.9
Geo-Mean 93.5 0.0 41.9 0.0 47.1 2.8

(1) Wait Until Memory Is Scarce
(2) Scan Threads
(3) Mark And Clean Heap
(4) Clean Threads
(5) Sweep
(6) Defragment

46%. In our later work [Kalibera 2011], we identified the cause of the speed-up of ar-
raylets when added to defragmentation with GCC 4.4—this version of the compiler did
not inline many dereferences of Brooks forwarding pointers used for defragmentation,
but it always inlined all dereferences to arraylets. Hence, with defragmentation, array
accesses were faster with arraylets than without. We fixed the problem in [Kalibera
2011] by enforcing inlining of dereferences of Brooks forwarding pointers. With the
fix, we obtained 8% independent overhead of arraylets, 10% independent overhead of
defragmentation, and 16% joint overhead of arraylets and defragmentation (measured
on another platform, but with the same compiler).

6.5. Relative Costs of GC Cycle Phases

We have measured the relative costs of different collection phases, presented in
Table III. The first column refers to Wait Until Memory is Scarce, the number shown
is the percentage of time spent in this phase relative to the whole program execu-
tion. On average using the geometric mean, 93.5% of time was spent in this phase,
thus the collector only ran 6.5% of the total time. The percentages of time spent in
individual collector phases are shown in the next columns, relative to the total time
spent in the collector. The percentages are averaged using geometric mean from a num-
ber of iterations of each benchmark. These iterations are also from several executions
of each benchmark to average out performance implications of non-deterministic ini-
tialization. The table shows that most of the collector time is spent in marking and
sweeping of the heap (phases 3 and 5). The cost distribution between these two phases
is, however, highly benchmark dependent. On average, 41.9% of time is spent in mark-
ing and 47.1% in sweeping. The relative costs of defragmentation also differ greatly
among benchmarks. On average, 2.8% of collector time is spent in defragmentation.
The costs of scanning and updating thread stacks (phases 2 and 4) are negligible, which
is because of the use of pointer stacks [Baker et al. 2009].

7. RELATED WORK

Henriksson [1998] derived an initial schedulability analysis for a slack mostly concur-
rent two-space copying GC, which he then extended [Robertz and Henriksson 2003].
The core of the extended analysis applies, as shown in Schoeberl [2010], to any slack
based single-heap GC, and thus we also use it in this paper. In this analysis, the
GC is scheduled as a periodic task with lower priority than all other hard real-time
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tasks. One period of the GC corresponds to one GC cycle. The analysis applies to non-
defragmenting and certain defragmenting GCs, but it does not apply to our GC with
defragmentation enabled. It is an open problem to find tractable memory bounds for
Metronome-style defragmenting GC. However, the GC proposed by Henriksson [1998]
has a significant weakness for hard real-time deployment. All live objects must be
copied during collection, including large arrays. The GC must not prevent hard real-
time tasks from running, and thus it can be interrupted even when copying. The GC
must then restart the copy from the beginning because the mutator may have changed
the original object. Frequent aborts slow down the GC, risking running out of memory.
Moreover, GC progress is not guaranteed. This problem should either be addressed in
schedulability analysis, proving that a system does have progress and does not run out
of memory (based on the largest possible object that can be in the heap at any time),
or in the implementation by avoiding the need for restarts or large memory copies.
In other copying GCs, the need for restarts of copies is sometimes avoided by putting
more responsibility on the mutator. In Baker [1978], a software barrier is proposed
that redirects writes to the correct location, even if the object is being currently copied.
The software solution however has a significant overhead [Schmidt and Nilsen 1994].
Smaller overheads were obtained by implementing the redirection using the memory
hardware [Schmidt and Nilsen 1994]. A similar solution for copying GCs is always to
access old copies of objects and store modifications to a mutation log, which can later
be replayed by the collector [Nettles and O’Toole 1993].

Further extensions to schedulability analysis for a Henriksson-style copying GC as-
sume that the GC is an aperiodic task running using a polling server at arbitrary
fixed priority (not necessarily the lowest or highest priority in the system) [van Ass-
che et al. 2006]. The traditional definition of the polling server is modified, so that an
aperiodic task does not have to be ready at polling time to be serviced—it can get the
(rest) of the server capacity even when it is ready after the polling time, but before the
server runs out of capacity. The modified version of the polling server also differs from
the deferrable server [Strosnider et al. 1995], because the server capacity is reduced
while the server is waiting for an aperiodic task to be ready. This work focuses mainly
on estimation of worst-case response times for an aperiodic task being run using a
polling server, which is of general use for real-time systems. However, it does not ad-
dress estimation of worst-case execution times for the GC in a GC cycle. Analyzing
GC response time as an aperiodic task is itself already far more complex than the
analysis of Robertz and Henriksson [2003]. The work is theoretical, with no tie to any
existing GC implementation, though a version of the copying GC like Henriksson’s is
assumed. It explicitly ignores problems with re-starting object copying. Being sched-
uled by a polling server, GC scheduling is somewhat similar to periodic scheduling
as used in existing GCs and as we describe it (if the polling server has the highest
priority in the system). It also shows the advantage of periodic over slack scheduling,
where a GC cycle being too long results in high memory requirements. However, a
single polling server can only accurately describe a trivial interleaving of mutator and
GC targeting 0.5 utilization, which is not used in today’s periodic GCs. Modeling the
GC as an aperiodic task as opposed to a periodic one is more realistic, though more
complex.

Schedulability analysis for systems with RTGC has also been explored by Kim et al.
[2001]. Again, a Henriksson-style copying two-space GC is assumed, with some pro-
posed improvements. The GC work is modeled as an aperiodic task run using a sporadic
server, at the highest priority in the system. Again, this model is similar to existing
implementations of periodic scheduling for GC, but does not allow time schedules used
by current periodic GCs. The work is evaluated using trace-driven simulation. It is
unclear if the GC itself has been prototyped.
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Metronome [Bacon et al. 2003b, 2003a] introduced periodic scheduling, based on
the observation that it can absorb any unpredictable short-term allocation rate within
the long-term allocation rate that is typically more predictable in most applications.
Metronome used the Yuasa [1990] snapshot-at-the-beginning algorithm because it
bounds collector work. Metronome uses arraylets to control external fragmentation and
incremental defragmentation as a last defense against internal fragmentation, which is
nevertheless rare because of Metronome’s segregated free-list allocator. Metronome is
the basis for IBM’s WebSphere Real-Time product, which adds multiprocessor support,
but lacks dynamic defragmentation. The published empirical evaluations of Metronome
focus on verifying the intended low pause times and the MMU distribution. Although
these are important for schedulability of systems with this type of GC, to our knowl-
edge, we are the first to actually provide schedulability analysis together with memory
requirement bounds that apply to Metronome.

Hybrid scheduling was introduced with Metronome-TS [Auerbach et al. 2008] which
combined slack and periodic scheduling for multiprocessor systems, allowing the shift-
ing of collector work to available processors, even in the presence of multiple real-time
Java virtual machines running on the same system. It can use slack, if available in the
system, but also can steal some mutator quanta as in periodic scheduling. Metronome-
TS keeps track of the amount of slack time used by the collector, and also accounts
for the nontrivial collector work performed by mutator threads. As long as the ac-
cumulated amount of GC work done during slack time is high enough, the collector
refrains from stealing quanta from the mutator. This feature could provide better re-
sponse times than our implementation of hybrid scheduling, though it remains an
unanswered question how significant that improvement would be for worst-case time.
Providing schedulability analysis for such a system remains an open research problem.

Siebert [1999] implemented another style of real-time GC for Java. His GC is work-
based—there is no explicit GC thread to schedule—instead each allocation performed
by the program performs a fixed quantity of collection work. Unfortunately, there has
been no head-to-head comparison with time-triggered GCs. Conducting schedulability
analysis of a work-based GC is straightforward: with no GC thread per se all the GC
costs are imposed on the mutator threads. Their worst-case execution time increases
proportionally to the number of operations they perform and traditional schedulability
analysis can be performed to get response times. An additional test has to be added
to ensure that work-based GC can reclaim memory fast enough to keep up with the
mutator.

Generational GCs take advantage of the common generational behavior of applica-
tions, where young objects tend to die quickly, while older objects tend to survive several
collections. These GCs collect two or more generations of objects independently, reduc-
ing the overhead of the collection, as the old generations do not have to be collected
as often as the young ones. Even nonincremental generational GCs may thus have
smaller pauses than nongenerational GCs. The problem for hard real-time, however, is
that not all applications always display generational behavior, and thus small pauses
would not be guaranteed. Still, incremental generational collection can be plugged into
an RTGC to reduce the GC overhead for applications that do have generational be-
havior [Frampton et al. 2007]. Other applications, however, can suffer from slow-down
and/or increased memory requirements [Frampton et al. 2007].

8. CONCLUSION

Real-time systems are designed to meet their deadlines and stay within their memory
budget. GC must not get in the way of either requirement. Here, we have investigated
the impact of scheduling policies on GC behavior. We have focused on time-triggered
real-time GC algorithms and the two fundamental approaches to scheduling them:
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periodic and slack-based scheduling. Both approaches are used in commercial products
and are now being deployed in applications. We have developed schedulability tests
for both approaches for fixed-priority scheduling and demonstrated that they have
distinct limitations. In some cases, a system may be schedulable by only one of the
scheduling policies. These results suggest that choosing the scheduling strategy is a
key part of the design of real-time applications that use GC. Our implementation in the
Minuteman framework on top of Ovm validates our results and shows that scheduling
strategy matters. In order to present a fair comparison of both approaches we have
reimplemented them independently. The two fundamental approaches are not entirely
in conflict. A hybrid of time-based and slack-based scheduling has been proposed by
others, yet not compared to the two original policies. We developed schedulability tests
also for hybrid scheduling and implemented hybrid scheduling in Ovm. While hybrid
scheduling can run systems that periodic or slack cannot, it does not eliminate the
importance of policy selection: some systems can be run with slack, but not hybrid
policy.

Our experimental results let us draw a number of conclusions. First, the minimum
mutator utilization metric proposed in previous work as a way to characterize RTGC
does not accurately depict the results of slack-based scheduling. Second, all application
threads are affected by the GC design due to barriers inserted by the compiler on
memory accesses. We have observed a mean of 69% slowdown on computational tasks.
This overhead is 16% in a newer version of our virtual machine and could possibly
be further reduced by additional compiler optimizations [Bacon et al. 2003b]. Still,
some overhead will remain and has to be accounted for when designing a real-time
application. Thirdly, our experimental results have demonstrated that neither of the
basic scheduling strategies is strictly preferable. There will be applications than can
be scheduled with a periodic GC and others with a slack-based GC. This also appears
in our theoretical results. Overall hybrid scheduling performs best, but for any given
application the optimal scheduling is highly dependent on the amount of the available
slack and the rate of allocation.
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