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Can Android Run on Time?
Extending and Measuring the Android Platform’s Timeliness
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Time predictability is di�cult to achieve in the complex, layered execution environments that are common in
modern embedded devices such as smartphones. We explore adopting the Android programming model for a
range of embedded applications that extends beyond mobile devices, under the constraint that changes to
widely used libraries should be minimized. �e challenges we explore include: the interplay between real-time
activities and the rest of the system, how to express the timeliness requirements of components, and how well
those requirements can be met on stock embedded platforms. We detail the design and implementation of our
modi�cations to the Android framework along with a real-time VM and OS, and provide experimental data
validating feasibility over �ve applications.
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1 INTRODUCTION
Embedded devices are being used in contexts that require increasingly complex so�ware stacks that
o�en combine real-time components with timing-oblivious so�ware elements. �is is certainly the
case of smartphones and tablets, but also holds for the Internet of �ings and other edge devices.
While many applications in these �elds have some timeliness requirements, they are typically
not wri�en using best practices for real-time systems. More o�en than not developers forsake
predictability in favor of ease of programming. �us one may see applications wri�en in dynamic
languages such as Java or Python running on stock operating systems.

�is paper investigates the viability of using the Android programming model to write so�ware
systems that mix real-time and non real-time components. In particular, we are interested in
minimizing the changes to the Android programming model and to its libraries. While the choice
of Android is motivated by its popularity on mobile devices, our goal is to broaden its applicability
to a larger class of embedded applications. Our approach is pragmatic—we have identi�ed a small
number of target applications and extend the platform to support those well. �ese applications
include personalized health care (e.g. a cochlear implant) [2], audio-based indoor localization [15],
harmonized sound reproduction [13], timely sound delivery [14], and UAV �ight control [3]. We
have also deployed our system on a wind turbine for blade health monitoring [18].

Android has a programming model based on the Java programming language with libraries
designed and optimized for mobile devices. �e system presented here is a natural extension of our
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�rst generation RTDroid system [31, 33] that focused on integrating the Fiji VM virtual machine
and Android system services with support for the Real-Time Speci�cation for Java (RTSJ) [7] on
top of a real-time operating system.

To retain a familiar style of development, we make only a small number of changes to the Android
abstractions and how they interact with the underlying system as well as each other. We aim to
leave legacy Android code una�ected, and expose real-time features to components which have
timeliness requirements. �e changes to Android fall in three categories:

• Components: We introduce real-time services, tasks, and receivers to represent timing-
aware so�ware elements. �e timeliness and resource requirements of these components
are de�ned declaratively in a manifest.

• Communication: We extend the platform’s communication primitives to provide control
over how components of di�erent priority communicate and mechanisms to interact with
legacy code.

• Memory Management: We expose a limited form of region-based memory that allows
programmers to circumvent the garbage collector and to ensure isolated regions of memory
for each component.

While our experience using Android for embedded tasks has been mostly positive, we should
mention some limitations of this work. Performance has not been a problem for our target ap-
plications, but clearly using a high-level language can come at a cost in throughput for some
compute-bound tasks. In addition, we have not optimized our system for small devices; there are
Java-based virtual machines for tiny devices but this usually comes with further degradation in
performance. Lastly, unlike the RTSJ which was designed with great care to cover many di�erent
real-time programming styles, our design was driven by the use-cases at hand and we make no
claims of generality.

�is paper extends our previous work [6, 32] and presents a comprehensive overview of the
RTDroid programming model. �e main additions are the implementation of a real-time sound
processing framework (Section 4), two additional applications (acoustic ranging and augmented
reality), the reproduction of results from [6] (surround sound), and two new microbenchmarks
measuring sound latency estimation and acoustic ranging performance.

�e paper is organized as follows. Section 2 introduces a smartphone powered cochlear implant
application to motivate the design of our programming model. Section 3 details the programming
model and its implementation. Section 4 provides a case study highlighting the integration of the
real-time audio framework of [6] into this paper’s programming model. We discuss two applications
and their implementation. Section 5 evaluates RTDroid. To validate our design and evaluate the
predictability of our implementation, we conduct stress test micro-benchmarks. We also report
on a series of applications developed with RTDroid. Our results illustrate that, at least in these
use-cases, the modi�ed platform delivers signi�cantly be�er time predictability than stock Android
and reduces code complexity as compared to the RTSJ.

2 AN ANDROID-ENABLED REAL-TIME APPLICATION
Using Android for real-time computing is challenging for several reasons. Android provides four
so�ware architectural elements, services, activities, broadcast receivers and content providers for,
respectively, background computation, foreground computation with user input, handling system-
wide events and data storage. �e Android framework that uses the Linux scheduler is not priority
aware and there is no mechanism to assign priorities to threads. All of these components are
executed with Android’s event-driven model which o�ers two primary event types: messages and
intents. Messages are received by a Handler which is a unique mailbox for all messages directed
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1 class ConfigurationUI extends Activity{
2 ClickListener l = new ClickListener() {
3 public void onClick(View v) {
4 //change processing config
5 } };
6 public void onStart(){
7 button.setOnClickListener(l);
8 } ...
9 }

Fig. 1. Audio configuration UI wri�en in Android.

1 class ProcessingService extends Service {
2 public void onStartCommand() {
3 /* periodic audio processing */
4 while (true) {
5 //process every 8 ms
6 }
7 }
8 ...
9 }

Fig. 2. Audio processing service wri�en in Android.

to a component. An Intent is an event that triggers execution of callbacks in components that
have registered for it. Application priority can be set with Thread.setPriority() and computations
can be assigned to the background, but these priorities are only e�ective in the current thread.
Callbacks and events posted to other components do not inherit their sender’s priority. �ere is
no notion of priority for messages and the FIFO queue associated with each handler can lead to
arbitrary latencies in processing. �e underlying scheduling mechanism does not run a priority
inheritance protocol to avoid priority inversion. Memory pressure is also a concern. Android
provides no mechanism other than garbage collection to manage memory, and its garbage collector
does not have real-time guarantees. To makes ma�ers worse, there is no way to bound memory
consumed by di�erent components. �us a stray non-critical component can a�ect the whole
system.

Even with theses limitations, the health care industry has been studying how to adapt Android
for wearable and implantable health devices, like cochlear implants. A cochlear implant restores
hearing abilities through an electronic device surgically inserted in the inner ear. It relies on
external components to capture ambient audio, convert it into digital signals, and translate the
signals into electrical energy. �ere is interest in leveraging smartphones [2] to provide additional
services such as on-the-�y translation or noise cancellation. In such a scenario, a smartphone
records audio streams and processes them. To provide acceptable performance sound samples must
be handled at rate of one every 8ms .

A plausible design for such an application would be to split the user interface that controls
volume and noise reduction from sound processing. �e UI can be implemented as an activity as
shown in Figure 1. �at activity could deal with con�guration parameters set by the user. On the
other hand, sound processing is best modeled as a service (Figure 2), which repeatedly processes
sound samples. Even in such a simple use-case, it is important to ensure that sound processing
is not be delayed by UI processing. When components have to interact through Android-based
communication mechanisms, ensuring non-interference can become quite tricky.

Figure 3 shows the architecture of our solution in RTDroid. It separates real-time (RecordingSer-
vice, ProcessingService, and OutputReceiver) and non-real-time components (VolumeReceiver and
ConfigurationUI). �e former have priorities a�ached and use communication services that pri-
oritize messages. ConfigurationUI has a Handler for other components to update the UI, and a
non-real-time receiver listens on volume key events. It also receives messages from real-time
components. Similarly, the ProcessingService receives messages from non real-time components
(VolumeReceiver and ButtonListener) and a real-tine component (RecordingService). RTDroid
allows these components to communicate while enforcing memory bounds. Each real-time com-
ponent is provided a �xed amount of memory for its exclusive use. �at memory is divided into
two sections, one persists for the lifetime of the component, the other is cleared each time the
component yields control. Both memory sections are implemented as RTSJ scoped memory areas
supported in Fiji VM [23] and managed in RTDroid framework. Messages are pre-allocated. Non
real-time components allocate messages in heap memory. RTDroid extends the Android manifest
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Fig. 3. Architecture of Cochlear Implant application.

RTSJ Application

Application Framework

RT Runtime

RTOS Kernel

RT System Services

Libraries

Bionic lib with 
RT extension

RT Handler

RT Looper RealtimeService

RealtimeReceiver

Realtime Channels

RT Android 
Application

Stock Android

Android Application

Scoped Memory
Extensions

Fiji Virtual Machine

Fig. 4. RTDroid runtime architecture.
Gray elements are the extensions introduced in this paper. Notably, we now support multiple, interacting real-time applications,
real-time applications wri�en using an Android like programming model, as well as legacy code and stock Android applications.

to enable developers to declare properties of components that include priority, periodicity and
memory bounds.

3 REAL-TIME ANDROID
We now review the design and implementation of RTDroid, our real-time aware version of Android.
RTDroid is available in open source at h�ps://rtdroid.cse.bu�alo.edu. Our �rst release [33] integrated
a real-time Java virtual machine and a real-time operating system with the Android framework,
as well as re-designed some Android system services to support real-time tasks. �at release
relied on real-time garbage collection and was limited to running a single real-time application.
�e current version introduces high-level, real-time constructs with concrete memory bounds
(RealtimeService and RealtimeReceiver), low-level constructs for communication (Realtime Channels),
and a mechanism for specifying the real-time properties of the constructs shown in Figure 4. �ese
new constructs allow for programming real-time applications in an Android-like manner and for
communication between applications. We also support running stock Android applications in a
separate virtual machine.

It is important to realize that, while RTDroid supports dynamic loading of code, our system
has a dedicated bootstrap sequence divided into two stages: compile-time and application run-
time, shown in Figure 5. �e two stage process ensures that memory can be pre-allocated and
components are correctly con�gured. At compile-time, our framework parses the manifest �le
of an application, runs veri�cation checks, and emits con�guration bytecode for all components.
Veri�cation checks include validating that the speci�ed set of components are schedulable [34],
the memory necessary for each component, and inference of channel sizes based on speci�ed
communication pa�erns and scheduling parameters of communicating components. �e compile
time validation is performed for a single app. �is con�guration bytecode provides a unique handler
for each application component. At boot-time, the system goes through the list of handlers and
calls each handler to instantiate its corresponding application component. A�er instantiation, a
handler registers its component with our component manager. �is component manager manages
the lifetime of each component.
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Fig. 5. RTDroid bootstrap sequence.

3.1 Components
RTDroid supports three di�erent real-time components: services, tasks, and receivers. A Real-

timeService is a counterpart to an Android service and is used for one-shot aperiodic or sporadic
computation. As the notion of periodic computation (a computation that runs at �xed and pre-
dictable intervals) is foreign to Android, we introduce the PeriodicTask class to model such behavior.
Tasks are used internally within a real-time service. A RealtimeReceiver is used to react to system-
wide events delivered via intents. We do not provide a counterpart to Android’s activities and
content providers. �ey are used for UI programming and data persistence, and we have not ob-
served real-time requirements for those in the applications we designed. However, we do allow for
interaction between UI components and real-time components through message channels.

Real-time components are statically assigned the following: a priority, a starting time, a deadline,
and a memory limit. �is is done declaratively by extending Android’s manifest with properties
(priority, memSizes, release). �e association between a periodic task and its parent is also speci�ed
in the manifest by a periodic-task tag. �e manifest provides information for boot-time veri�cation
and pre-allocation of components. RTDroid ensures that the total memory requested speci�ed for
a component equals the objects in its persistent memory, its per-release memory, and that of its
sub-components. Figure 6 shows a manifest for the processing service of our running example.

Managing the lifetime of components requires: (1) ensuring priorities, deadlines, and periodicity
of components, (2) automatically managing memory allocated by components, and (3) guaranteeing
per-component memory bounds. We extend RTDroid’s priority based scheduler and introduce
a declarative speci�cation for con�guration of component requirements to ensure point (1). We
introduce memory regions and specialized channels for ensuring points (2) and (3). Our VM parses
this declarative speci�cation and pre-allocates all necessary constructs, memory regions, and
channels.

�e concept of region-based memory allocation comes from the Real-time Speci�cation for Java
(RTSJ) [7]. �e idea is to avoid having to manage individual objects, instead objects are allocated
in regions, which can be deallocated in one fell swoop. Furthermore regions can be nested thus
creating a stack of scopes within bounded lifetimes. �e RTSJ introduced this idea to Java to provide
an alternative to garbage collection. In the RTSJ, each thread was associated to a particular scope,
and scopes were nested to form a cactus stack. For RTDroid, region-based allocations has two
important bene�ts, threads that are using it need not be paused during garbage collection and they
make it possible to bound the amount of memory allocated by any thread. RTDroid supports a
much simpler form of scoped memory than the RTSJ. Each component has access to two scopes,
one is Persistent Memory for data that lives as long as the component and the other is Release
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Memory which is cleared before each release of a periodic task. �e size of these scopes is given
in the manifest. �e total memory of a component is the sum of its persistent memory, release
memory, and the memory of internal components.

1 <service name="pkg.ProcessingService" priority="79">
2 <memSizes total="3M" persistent="1M" release="1M" />
3 <release start="0ms">
4 <periodic-task name="processingTask">
5 <priority priority="79"/>
6 <memSizes release="1M"/>
7 <release start="0ms" periodic="8ms" />
8 </periodic-task>
9 <!-- subscribes to the msgHandler channel -->
10 <intent-filter count="2" role="subscriber">
11 <action name="msgHandler"/>
12 </intent-filter>

Fig. 6. An extended Android manifest.

Persistent Scope

RealtimeService

Release 
Scope

Release 
Scope

Release 
Scope …

Periodic
Task …

Intent Queue

Intent Queue

periodic 
logic

service
callbacks

periodic
logic

…Periodic
Task

Fig. 7. Scope structure for a Service.

3.1.1 Service. A real-time service is an abstract class; a programmer needs to implement its
callbacks. �ese callbacks are directly inherited from Android’s service and they are invoked at
di�erent points in the lifetime of a service. �e onCreate() callback is invoked at service creation.
�e onStartCommand() method is called at startup and usually implements application logic. Figure 8
shows a service that starts a periodic task. Unlike Android services which run in the main thread,
RTDroid services execute in dedicated threads. �is change is necessary in order to allow services
to run with di�erent priorities.

Services are bound to real-time threads from the underlying real-time virtual machine. By
default, when a service is initialized, it is assigned a persistent memory scope that has the same
lifetime as that service. �e scope is allocated when the service starts and deallocated when
the service terminates. Static initializers for the service are run in this scope thus all persistent
data for the service will be allocated in that scope and deallocated when the scope is freed. In
addition, if the service uses communication channels, intent queues are allocated in persistent
memory. Callbacks execute within the scope of release memory for the associated service. �e
release memory is cleared when the callback returns. Similarly, when a periodic task is started
in a service, it is also assigned a release scope. Note that our manifest requires speci�cation of
memory bounds for callbacks and periodic tasks, and this information is used to size release scopes
appropriately. Figure 7 depicts the scope structure for a service consisting of several tasks, as well
as the pre-allocated objects during boot.

3.1.2 Periodic Task. A periodic task is a sub-component of a service. In addition to the charac-
teristics of its parent service, a task needs a period and a start time, both of which are speci�ed in
the manifest. �e period determines when the tasks will be executed by the RTDroid scheduler.
Figure 8 shows an example which processes audio input periodically. �e onRelease() callback is
implemented by the developer and contains the application logic that is run at each period.

3.1.3 Receiver. In Android a new broadcast receiver is allocated whenever an intent is received.
�is can lead to frequent object allocation and deallocation if many intents are sent from a compo-
nent. In RTDroid, a real-time receiver is a persistent construct, we reuse the same receiver to reduce
memory pressure and to ensure predictable footprint. As a direct consequence, a receiver can
only process a single intent at a time. Application logic is expressed in callbacks. �e onReceive()

de�nes logic to react to events, it is invoked when an intent is received. A new callback, onClean(),
resets class variables in a receiver. �is callback is used to cleanup any state between intents and
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is necessary if the programmer wishes to have stateless processing. �is callback is not needed
if the receiver only modi�es local variables as they live in release memory and will be cleared
automatically. In our running example we implement OutputReceiver as a receiver to react to the
processed audio output sent by the ProcessingService.

1 class ProcessingService extends RealtimeService{
2 PeriodicTask task = new PeriodicTask(){
3 public void onRelease(){
4 /* periodic audio processing logic */
5 } }; ...
6 public int onStartCommand(...){
7 /* Each registered task starts after the
8 onStartCommand() callback. */
9 registerTask("processingTask", task);
10 } }

Fig. 8. Real-Time Service and Periodic Task.

1 <channel name="msgHandler"
2 type="rt-msg" >
3 <order> priority-inheritance </order>
4 <execution>
5 component-priority
6 </execution>
7 <drop>priority&oldest</drop>
8 <data size="256B" \
9 type="app/octet-stream"/>
10 </channel>

Fig. 9. Real-time channel declaration.

One important design choice is the priority of a callback, RTDroid decouples intent delivery
from the callback execution. Intents are delivered according to policy enforced by real-time
channels (described later). Callbacks are executed at the priority of their component. Multiple
callbacks triggered by a series of intents are serialized and will be executed in-order. In the
cochlear implant applications, ProcessingService sends audio to OutputReceiver through a real-
time channel. �e channel guarantees that intents are delivered to the receiver with the priority
of the ProcessingService, and the callback is invoked asynchronously with the priority of the
receiver.

In implementation terms, a receiver is bound to an asynchronous event handler in the underlying
virtual machine and backed by a priority message queue. An asynchronous event handler can
serialize multiple releases from di�erent senders, and the priority queue ensures the intent delivery
order is based on the sender’s priority. �e callback is executed by the asynchronous event handler,
which is assigned the priority of callback method’s owner.

3.2 Communication
RTDroid provides four types of real-time channels for communication: (1) message passing chan-
nels, (2) broadcast channels, (3) bulk data transfer channels, and (4) cross-context channels to
communicate with non real-time components. Following Android conventions, programmers
declaratively specify channel name, events, data type, and size. Real-time components must specify
the number of messages that they send or receive per release. �is ensures that we can preallocate
the messaging objects and enforce memory bounds for all channels. �ere is one primordial cross-
context channel to facilitate interaction with other Android applications and services. All other
channels are explicitly created by programmers.

Figure 9 shows a real-time message passing channel declaration with a name a�ribute as an
event identi�er. Each channel should de�ne its runtime behavior via: type a�ribute (channel
communication type), order (message delivery order), execution (execution priority of the invoked
function), drop (message dropping policy), data size and data type. Components can use intent-

filter to identify themselves as publishers or subscribers of a channel and to specify the number of
messages sent or read in each callback release.

One of the major bene�ts of using declarative manifest in our programming model is that it
provides information for static veri�cation. RTDroid guarantees the correctness of the application
in two aspects: (1) memory bounds checking: the total memory of a component should be equal to
the sum of objects of its persistent memory, its release memory and the release memories of all its
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Fig. 10. Real-time message passing channel.

1 MessageClosure c =
2 new MessageClosure(){
3 @Override
4 public RTMSG genMsg(RTMSG m){
5 Bundle b = m.getData();
6 b.setInt(idx, 3);
7 ...
8 return m;
9 }
10 };
11
12 rmsg.send("channel", c);

Fig. 11. Message passing interface.

sub-components. (2) channel over�ow checking: the incoming message rates should not exceed
the message processing rates for each channel.

3.2.1 Message Channels. A real-time message passing channel allows components to communi-
cate with statically bounded memory usage while enabling dynamic message passing with best
e�ort at run-time. It has three distinctive characteristics: (1) there is only one receiving component
per channel. Each RealtimeHandler must be registered in its associated real-time service; (2) only
primitive arrays (or �xed length byte-bu�ers) can be exchanged; and (3) the number of in-�ight
messages is bounded.

To enforce the memory usage bounds of components’ communication, the implementation
creates a �xed-length message pool for each channel. Message objects are pre-allocated in the
persistent memory of the channel’s receiver. Figure 10 illustrates the scope memory hierarchy.
When a message is sent, the sender creates an instance of MessageClosure. As shown in Figure 11,
the message closure is allocated in the sender’s release scope. When the method send() is called,
it triggers the actual enqueuing operation and transfers the control of message enqueuing to the
receiver. �e receiver copies the message from the sender’s allocation context to its message pool.
�is ensures that a sender cannot utilize or �ll the allocation context of a receiver directly. �e
receiver must choose to receive the message. Since each channel is itself bounded, non real-time
senders cannot over�ow a channel. A message will only be copied to the receiver when that receiver
is ready to process the message. A�er the message is processed, the message object is returned the
message object pool.

�e memory dedicated to messages is constant in the message passing channel. �e sender
utilizes its own memory (heap or its release scope) to create the data that it wishes to send and
cannot use the receiver’s resources to store this data unless it is able to obtain a message object.
�euing of messages is handled based on the sender’s priority. If the pool is empty, high-priority
components can steal a message from a low priority sender i.e., the receiver can choose to drop
a low priority message to satisfy an enqueuing request from a higher priority sender. In such
cases, the system noti�es the low priority sender of the message being dropped by delivering
an AsynchronousInterruptedException. �is exception, de�ned in RTSJ, allows noti�cation across
threads. RTDroid’s components check and handle associated AsynchronousInterruptedExceptions
before and a�er each invocation of the execution of component callbacks.

3.2.2 Broadcast Channels. Real-time broadcast channels are used to invoke callbacks of real-
time components. We decouple the priority of intent delivery from invocation of callbacks which
execute at their own priority. Intents are, by default, delivered in priority order in the same way as
messages over a message channel. �e main di�erence between intents and messages is the number
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of recipients. For messages this is always one, while for intents this is the number of subscribers.
Subscription to an intent must be declared in the component’s manifest. Figure 12 shows how
an intent object persists in immortal memory until it is copied to the intent queues in multiple
subscribers. Although the message will be replicated for each subscriber, only one message is stored
in the channel itself. A count is associated with the message identifying the number of recipients
subscribed to the intent. On receipt, when the message is copied to the receivers intent queue the
count is decremented. �e last recipient releases the message back to the message pool in exactly
the same fashion as the message passing channel. �e memory usage of the broadcast channel is
bounded, because intent objects are pre-allocated in each subscriber’s intent queue based on the
size and type of data in the manifest as well as a bounded number of intent messages.

3.2.3 Bulk Data Channels. �e bulk data transfer channel allows zero-copy data transfers for
large messages between one-to-one communication pa�ern. To support bulk transfers we extend
the notion of nested memory regions with transferable nested scopes. A nested scope, which in
this case encapsulates the bulk data, is removed from the scope stack (a tracking structure used for
correctness guarantees) of the sending construct and pushed onto the scope stack of the receiving
construct. As a result, the sender can no longer allocate into the scope, nor can the sender write
to the memory of the scope. We observe that ownership transfer only works if the scope being
transferred is at the top of the scope stack and the scope stack is linear. Since our programming
model does not expose scopes to programmers, the constraints are ensured by the structure of the
channel as well as the real- time constructs. Communication with bulk channels thus entails, a
sender creating a transferable scope, populating it with data, and relinquishing access to the scope.

3.2.4 Cross-Context Channels. Cross-context channels allow Android’s activities to communi-
cate with real-time components. In this scenario communication is occurring between two separate
VMs, one of which is executing the non real-time application and RTDroid executing a real-time
application. �is allows us to support interaction with both legacy Android code as well as other
Android applications. We note that cross-context channels are not required for communication
between multiple real-time applications as the Fiji VM supports multiple VMs in the same address
space.

To enable such communication an Android application must declare a service (RTsProxyService)
that subscribes to channels declared in a real-time application that uses our real-time constructs.
For communication in the other direction, a real-time application need only to subscribe to intents
the non real-time application has declared in its manifest. Since our manifest is an extension of
the Android manifest, no changes are required to the con�guration of Android. �e proxy service
allows non-real-time code to send an intent to real-time components. Communication in the other
direction requires that the activity can subscribe to intents de�ned by real-time code. To preserve
memory bounds, the number of intents in a cross-context channel is bounded and each intent has a
�xed-length payload. Figure 13 shows how the bi-directional communication is established through
sockets between RTDroid and Android. To do so, we leverage two proxy components in each
runtime, To avoid interference, the Android proxy component is executed in heap memory, and
it runs at the lowest real-time priority. �e incoming message objects are translated to real-time
intents or messages with the lowest priority and sent to the subscribing real-time components via
real-time channels. Only one message is deposited into a real-time channel at a time, preventing
non real-time components from exhausting memory used by real-time constructs. Non-real-time
components can exhaust the heap, but this will not a�ect real-time components using pre-allocated
memory regions.
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3.3 Memory Management
For real-time applications, providing memory usage guarantees implies that the underlying system
provides predictable allocation – object allocation should not be blocked by the memory usage of any
other construct, and predictable reclamation – the underlying memory management scheme should
not interfere with the execution of a real-time component. To achieve both, we use scoped memory,
a region based memory management scheme. Scoped memory provides �xed amount of memory
for real-time tasks through the usage of memory regions and predictable object allocation and
deallocation within scopes. Additionally, scoped memory ensures that real-time threads executing
within scopes are not blocked during GC if they only utilize scoped memory. �e RTSJ provides
three types of memory areas: (1) heap memory, which is garbage collected, (2) immortal memory,
which is never reclaimed, and (3) scoped memory, which provides bounded memory regions. To
guarantee referential integrity, RTSJ imposes a number of rules on how scoped memory must
be used, such as (1) the objects in a scope are only reclaimed a�er all threads in that scope have
�nished, (2) every thread must enter a scope from the same parent scope, and (3) a scope with a
longer lifetime cannot hold a reference to an object allocated in a scope with a shorter lifetime.

To achieve the predictable object allocation and reclamation, we leverage scoped memory to
provide memory bounds corresponding to the lifetime of di�erent computations as well as data
across computations. To provide memory boundary for each component, we group the computation
and associated allocations performed by the computation into two separate lifetimes: (1) the duration
of the lifetime of the component (persistent scope), and (2) the duration of one callback invocation
(release scope). �e scopes correspond directly to the types of memory de�ned by our system:
persistent memory and release memory respectively.

�e complexity of using scoped memory is hidden in RTDroid’s framework. From the pro-
gramming perspective, a developer only needs to specify memory sizes in RTDroid’s application
manifest for each real-time component as well as the number of messaging objects for the applica-
tion communication. For a given component, the component instance and its class variables are
allocated in its persistent memory; any other local variables are stored in the release memory. To
support the need of “persisting” objects, there is an extra API call that allows allocating objects
from the release memory to the persistent memory in the same component.

To enforce memory guarantees for real-time components, the immortal memory is used as a
substrate to allocate and keep track of references to various memories of real-time components and
broadcast channels. �e size of immortal memory is currently statically set in RTDroid manifest.
�is size can be calculated at compile time. Each component run is bound to its own thread of
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control that starts in the immortal memory. �is assures that the memory necessary for creating
the execution context for the thread is always available, even if the construct has to be terminated
and restarted.

4 CASE STUDY: A REAL-TIME AUDIO FRAMEWORK
�is section introduces a real-time audio service as a case study to show how we re-designed and
implemented real-time counterparts of Android’s built-in audio framework in RTDroid. Before
discussing the design of the new real-time audio service, we start with an overview of the existing
audio framework and explains what are the di�culties of using that framework in the context
of real-time application. �e remainder of this section illustrates real-time components in the
real-time audio framework and discusses how we overcame the above mentioned challenges.

4.1 Android Audio Framework
Developers can integrate audio and video functionalities using the Android multimedia framework
(a part of the android.media package). Here we describe the most common APIs used for playing
and recording audio.

4.1.1 Application APIs. �e MediaPlayer and MediaRecorder are the primary interfaces that
allow developers to playback and record multimedia streams, like video and audio, from a �le
or a speci�ed URI. �ey present higher-level abstractions of an audio stream and only accepts
compressed audio streams that are ready for playback. In contrast, AudioTrack or AudioRecord are
lower-level abstraction that have adjustable data frames associated with raw data bu�ers. Figure 16
shows an application using AudioTrack to play audio. Each instance of AudioTrack must specify
its bu�er size on initialization. �is size determines the minimum frequency at which to write
to the AudioTrack to avoid under-runs; which are undesirable as they lead to playback glitches
and stu�er. As the data is bu�ered in the framework, the bu�er size also a�ects playback latency.
Similar to AudioTrack, the AudioRecord can read the data from a PCM bu�er. Notice that multiple
application may create multiple instances of AudioTrack or AudioTrack at the same time, the design
of the framework should be able to handle device multiplexing.

4.1.2 System Services. As in most sound frameworks, Android provides a sound daemon to
handle multi-client requests. �is design does introduce unpredictability, that unpredictability can
result in higher latencies on the input and output paths due to the best-e�ort nature of the platform.
As shown in Figure 14, there are many components involved in performing audio playback—this
creates opportunities for communication and bu�ering delays. We examine each component and
explain sources of unpredictability next.

�e �rst layer that handles audio is the application framework. Writing audio data to the
android.media APIs discussed earlier is a push operation, which means that data wri�en is pushed
down by the audio framework and bu�ered in the native layer. �e framework is push-based for
playback; the audio data is bu�ered in the native layer rather than pulled by the audio driver when
it is ready to play more data. �is design decision can results in signi�cant latency. �e Android
framework in general does not provide any guarantees for predictability [33]. Push operations
can experience latency variations; especially when many threads compete for computational and
memory resources.

�e next layer includes a centralized AudioManager that is used to con�gure the sound device
and a native Media Server which implements the most important functionalities:

• It receives audio data from various applications.
• It bu�ers audio data if an application writes a bu�er bigger than the native bu�er on devices.
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Fig. 14. Architecture of the default audio framework.

• It resamples on the recording bu�er if the application data sampling rate di�ers from the
sample rate of the native audio chip.

• It mixes the audio data from di�erent processes.
• It writes the mixed and resampled data to the audio driver.

All these operations introduce unpredictable latency into the audio path. Typically, they require
inter-process communication between applications and system services via Android’s Binder calls
and add multiple periods to the latency depending on the bu�er size.

�e next layer that handles audio is Android’s Audio Hardware abstraction layer that connects
the generic framework APIs to device-speci�c audio drivers and the underlying hardware. Commu-
nication between the media server and the audio HAL happens using standard interfaces that each
HAL implementation must provide. Vendors are free to implement their own HAL code. Vendors
usually implement closed-source functionality in the HAL like noise suppression or plugins to
improve audio clarity on their devices. Ideally, the audio HAL should be predictable in terms of
latency, but Android does not have any mechanism to guarantee that this the case.

�e last layer is the popular Advanced Linux Sound Architecture (ALSA). ALSA provides an
interrupt driven mechanism to play or consume data from the audio hardware. A period is de�ned
as the number of frames played or recorded between two sound interrupts. If the system is
con�gured with a long period, the kernel worker thread that reads/writes audio data can write a
larger bu�er and wait for a longer period before waking up again, this reduces unpredictability
related to scheduling of the worker thread but increases latency as applications must wait longer
to read/write audio data. If the system is con�gured with a shorter period, the kworker thread is
frequently invoked. Any variation due to scheduling will result in poor audio quality. �e vanilla
kernel used in Android does not provide any predictability guarantees in the scheduling of worker
threads.

4.2 Real-Time Audio Framework in RTDroid
Overview: To support multiplexing, RTDroid inherits Android’s centralized design. For be�er
predictability, it provides a real-time audio manager using the real-time constructs introduced
in RTDroid. �e new framework introduces the notion of an audio session that can be de�ned
by developers. A session is similar to Android’s AudioTrack and AudioRecord. However, instead
of manually con�guring them at run-time, the new framework requires that developers specify
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sessions statically in what we call the audio manifest so that the booting process can validate the
compatibility of sessions and con�gure the real-time audio manager with precise timing guarantees.
As mentioned in Section 3, our prior work discusses manifest validation in detail [34]; brie�y,
manifest validation checks whether or not the requirements of an application can be met at run
time, e.g., the schedulability, the amount of memory necessary, channel sizes, etc.

�e audio manifest allows programmers to express the requirements of their audio sessions
statically in an XML �le. Static audio session properties such as channel, sample rate, periodicity,
source (e.g., MIC), sink (e.g., speaker), etc., are all expressed in an audio manifest. At run time,
our audio manager guarantees that all the requirements expressed in an audio manifest are met.
Figure 17 shows an example manifest, which we describe in more detail later in this section.

Figure 15 shows an overview of the real-time audio framework, where the real-time audio
manager is implemented as a real-time service. It provides APIs to application components for audio
recording and playback and interacts with the native tinyALSA library to control the on-device
sound card. So�ware mixing and demultiplexing is performed within the audio manager. Our audio
framework introduces the notion of a user-de�ned audio session. Each audio session speci�es its
sampling rate and local bu�er size as part of component declaration in its application manifest.
Due to the limited range of audio capabilities on a modern smartphone, our audio framework
provides an abstraction, a user-de�ned audio session, with a frame size and a bu�er size. During
the application bootstrap, the RTDroid framework checks device capabilities and subsequently
allocates the user-de�ned session.
User-De�ned Audio Sessions: �e user-de�ned audio session is a subclass of PeriodicTask class,
a developer can implement the acoustic computation within onRelease() function. To create an
audio session, the developer must declare a periodic task with an <audio-session> sub-element
as listed in Figure 17. For example, when an MP3 playback session is created, the type of <audio-
session> is speci�ed as audio-tracker and the sampling rate and bu�er size are given. �en, the
framework initializes an instance of AudioTracker and a�aches it to the corresponding session.
Audio functionalities are accessed as shown in Figure 16. Rather than manually creating objects,
object allocation is hidden from developers. For recording, the session type is set to audio-recorder.

When multiple sessions are de�ned, the framework performs a compatibility check for the sound
device con�guration at compile-time. During bootstrap, protected objects are instantiated in each
session as audio I/O APIs. An instance of AudioRecorder is provided for receiving data from each
input device and an instance of AudioTracker is provided for sending data to output devices.
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1 /* Initiate audio track object with
2 * sampling rate and buf size.*/
3 AudioTrack track =
4 new AudioTrack(...);
5 track.play();
6 while(isPlaying){
7 //play audio data
8 track.write(buf, 0, bufSize);
9 }
10 track.stop();
11 track.release();

Fig. 16. Audio playback code in Android.

1 <periodic-task
2 name="pkgname.Audio">
3 <priority priority="51"/>
4 <memSizes release="1M"/>
5 <release start="0ms"
6 periodic="50ms" />
7 <!-- declears a playback session -->
8 <audio-session type="audio-tracker"
9 frame-size="44100Hz"
10 buffer-size="128kb" />
11 </periodic-task>

Fig. 17. Audio session declaration in RTDroid.

Real-Time Audio Manager: �e real-time audio manager serves as a sound daemon and pro-
vides audio functionalities to application components via the Audio Mixer and the Multi-Channel

Recorder. �e audio manager is implemented as a real-time service, and the Audio Mixer and the
Multi-Channel Recorder are implemented as two periodic tasks for audio mixing and recording for
multiple clients. �ey communicate with application components via real-time communication
channels. �e basic operation of the audio mixer/recorder is writing/reading audio frames to/from
the PCM card respectively. If there are no applications writing audio data, the playback thread pads
the PCM card with silent frames. By this, we ensure a bound latency as the device is still enabled
and ready to play any audio frames generated by an application.

Mixing and resampling is implemented in two periodic tasks con�gured during application
compilation. �ere are two parameters—the periodicity of the task and a bytes bu�er for upscaling
and downscaling audio samples. �e periodicity of task is simply chosen as the smallest periodic
amount of all tracking sessions or recording sessions in an application. �e bu�er size in mixing or
resampling task is calculated with the sampling rate and the session bu�er of each session as well.

�ere are two real-time communication channels declared, one for audio sample subscription
and the other for sample delivery. Both channels are created in RTDroid’s framework, which
provides constructs such as RealTimeHandler and handleMessage for real-time communication. �e
Audio Mixer and Multi-Channel Recorder leverage them to transfer audio data between application
components and the audio manager. �e communication channel insures data integrity and prevents
message over�ow during audio data transfer. A message passing channel is used for application
components to send audio data to the mixing task. A broadcast channel is used for the resampling
task to deliver recorded samples to application components. Both channels only accept data bytes
and the bu�er size of each audio session is used to pre-allocate messages for both channels.

Additionally, our audio manager performs the following audio-related tasks. First, an instance
of the audio manager is spawned on application bootup. On service start, the audio manager sets
up the device con�guration and opens up the PCM card. �e device con�guration parameters
speci�ed for each session are �rst veri�ed and checked to make sure of the following:

• All audio sessions use the same sample rate. �e periodicity of the playback and the size of
a shared bu�er is calculated according to the sample rate. If there are multiple sessions
with di�erent sample rates, we will have to bu�er data, incurring additional latency.

• �e sample rate speci�ed is natively supported by the PCM card. If the sample rate is not
natively supported, we may have to re-sample the frames causing additional latency.

A�er con�guration validation, the audio manager opens the PCM card using a native API
implemented in the Fiji VM, a real-time Java VM that RTDroid uses. �is pre-activates the audio
path for any future session and helps reduce the device activation latency associated with se�ing
up mixer paths for the hardware.
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�e audio manager utilizes the native audio APIs for opening, closing, reading from, and writing
to the PCM card. To implement these APIs we leveraged tinyALSA libraries to interface with the
kernel. tinyALSA libraries provides APIs for directly accessing the audio PCM card and changing
hardware mixer parameters which the native audio layer uses to set correct con�guration parameters
according to the requirements speci�ed in the audio manifest. �e library also provides the API pcm -

get buffer size() to determine the lowest possible bu�er size directly supported by the hardware,
this is required to enable low latency as we aim to reduce data bu�ered between layers. In our
native audio layer, we use the lowest bu�er size to transfer the required amount of audio data
to/from the audio manager and pcm write() and pcm read() APIs provided by the tinyALSA library
are used to write/read data from the hardware.

Use Cases: �ere are many use cases where real-time audio processing becomes necessary.
For example, latency estimation is necessary for coordinated playback across multiple mobile
devices as envisioned previously [13, 14]. Similarly, directional audio in museum exhibitions [4, 8]
allows for a be�er user experience for users. For such applications, latency estimation is done
by a device sending an estimation signal to another device, which returns an acknowledgment.
�e initial sender then measures the round-trip time from the initial signal release to response
signal detection. However, uncertainties in actual sending times and receiving times caused by
latency in device response could contribute to error in roundtrip time measurement. �us, real-time
predictability is necessary on both the sender’s device as well as the receiver’s device. Similarly,
latency estimation is necessary for acoustic ranging. Knowing the speed of sound, we can estimate
the distance between a sender and a receiver by sending and receiving an audio signal. Such
distance measurements have been used as a primitive to design applications which perform peer-
peer localization, device synchronization, and others. Ranging using sound is an a�ractive solution
as it does not require sophisticated hardware and can be deployed on devices with a speaker and
microphone. In Section 5, we evaluate RTDroid for latency estimation and acoustic ranging, and
further discuss the applications we implement to evaluate these techniques.

5 EVALUATION
�is section shows experimental results for micro-benchmarks and applications in RTDroid. To
evaluate the predictability and e�ciency of our programming model, we conduct a series of
stress tests for message delivery latency and three case studies which compare task processing
duration and code e�ciency between RTDroid and Android. �e applications are the cochlear
implant application of Section 2, an UAV �ight control system, jPapaBench [9], and a turbine health
monitoring application. We use these case studies to compare RTDroid with Android and the RTSJ.
To explore the correctness of our audio framework, we run stress tests as well as evaluate it on
applications that compute device coordination and distance estimation.

Results are collected on a Raspberry Pi Model B, which has a single-core ARMv6-based CPU
with 512 MB RAM, and runs Debian with Linux preemptive kernel v3.18 and a Google Nexus 5
smartphone, which has a quad-core 2.3 GHz Krait 400 Processor and 2GB RAM, running Android
v6.0.1. On both platforms we only enable one core and �x CPU frequency. For the turbine health
monitoring application, we use an external Wolfson audio codec in order to provide high-quality
audio playback and capture for vibro-acoustic analysis. Raw data and plo�ing scripts can be
found under the publications tab and cases study code under the application tab on our website:
h�p://rtdroid.cse.bu�alo.edu.
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5.1 Micro Benchmarks
�e benchmark for communication runs two real-time services and one non real-time service. One
real-time service acts as a sender that sends a message every 100 ms with the highest priority
and one as a receiver of the message. �e third service, executing in heap memory, starts 30
noise-making threads with the lowest priority to inject noise into the system. Similarly, the audio
micro-benchmark has a real-time service which contains a user-de�ned audio session and plays a
�xed number of audio data from a MP3 �le. To stress the system, we use three types of noise-making
threads: (1) heap noise that allocates an array of 512 KB in the heap memory every 200 ms , (2)
computational noise that computes π every 200ms , and (3) message noise for the message latency
measurement, which sends a low-priority message to the receiving service every 200ms , or stream
noise for the audio playback measurement, which delivers a �x-number of audio samples to play
every 200ms .

5.1.1 Message delivery latency in communication channels. Figure 18 shows performance of our
channel implementations. Message passing consists of message allocation by the sender, message
delivery, and context switch from sender to receiver. Figure 18a shows this breakdown with just
the sender and the receiver. �is is the baseline performance. �e �gure plots the latency of 2000
message passing events. For each event, the message allocation latency is the amount of time it
takes for a sender to instantiate a message. �e message passing latency is the time taken for
delivery. �e context switch latency is the di�erence between the time the sender sends a message
and before the receiver processes the message. As shown, all three types of latency are tightly
bounded across all events, and there is no outlier that takes much more time to process than
others. It shows that without any other background load, our implementation provides stable and
predictable performance. We have conducted a similar experiment to evaluate our Intent delivery

0
50

100
150
200
250
300
350
400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

Release Number

Message Passing Latency
Context Switch Latency

Message Allocation Latency

(a) Message Passing

0
50

100
150
200
250
300
350
400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

s

Release Number

Intent Delivery Latency
AsyncEvent Fire Latency

(b) Intent Broadcast

0
50

100
150
200
250
300
350
400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

s

Release Number

Intent Delivery Latency
AsyncEvent Fire Latency

(c) Bulk Data Transfer

Fig. 18. Real-time Communication Channels: baseline sca�er plot for micro-benchmarks.
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Fig. 19. Micro-benchmarks for Real-time communication channels.
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Fig. 20. Audio playback latency.

channel. �e experimental con�guration is the same except that we use our Intent broadcast
channel instead of message passing; the sender sends an Intent every 100 ms , and the receiver
executes a dummy callback that responds to the Intent. �e Intent delivery latency is the overall
latency for each Intent event, and the callback trigger latency is the amount of time it takes to
spawn a new callback. Figure 18b shows the baseline performance. Similarly Figure 18c shows
the baseline performance for bulk data transfer, which also leverages the Intent mechanism for
delivery, but is specialized to use the bulk data transfer channel.

Figure 19 shows cumulative distribution function (CDF) plots comparing the performance of
all three types of channels. �e CDF illustrates what percent of the total measured points are
equal to or less than a given value. For basic messaging, Figure 19a, our implementation provides a
predictable latency pro�le, regardless of the types of background load. Figure 19b reveals similar
characteristics for broadcast channels, though there is additional overhead as compared to message
passing. �is is to be expected as the intent broadcast creates a callback, which adds �xed overhead.
Figure 19c shows the CDF comparing the transfer latencies with di�erent sizes of data payload for
the bulk data transfer channel. �e transfer latency is the delivery time of an intent with a bulk
data payload. Instead of noise-making threads, we increase the size of data payloads to demonstrate
the performance of zero-copy data transfer.

5.1.2 Playback latency in real-time audio. Figure 20 shows the CDF of audio playback latency
calculated as a time variance between the time when a byte bu�er is sent from the session to the
audio manager and the time when the bu�er is transferred to native library and ready to delivery
to the kernel. Figure 20a is the CDF of the latencies on Android. �e �gure shows that memory and
computation noise induce delays. In the 2000 collected latencies, we observed between 10% and
20% of samples had increased latency due to noise. Notice that stream noise is almost imperceptible
since the audio manager mixes streams before sending them to the native tinyALAS library. With
RTDroid, Figure 20b shows that performance is much be�er (faster) and more predictable (sharper
step in the CDF and few outliers)

5.1.3 Latency estimation. Kim et al. [13] suggest that sound spatialization is a key acoustic
technique to enrich sound reproduction. Several multi-channel standards have been proposed
for this purpose. Key to spatial reproductions is maintaining accurate playback timing across
multiple speakers. Traditionally, all speakers are wired to a central mixer that carefully controls
playback timing. However, in a mobile audio scenario, identifying latencies between devices
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Fig. 21. Latency estimation and acoustic ranging.
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Fig. 22. Performance measurements on Raspberry Pi.

precisely will allow us to re-create surround sound experience without the need for wiring. Latency
estimation targets this suite of applications, and allows estimation of latencies between speakers
in the background. Shown in Figure 21a are round trip estimates between to static devices with
varying periodicity. Irrespective of periodicity, our estimator accurately estimates the latency. �is
latency is mostly dependent on the distance between the sender and the receiver.

5.1.4 Acoustic Ranging. Performing acoustic ranging on commodity devices has been a challenge,
and previous work builds ranging/distance measurement using sound [15, 21]. �e inherent
latencies associated to sound processing on smartphones and the unpredictability under varying
system loads are the major challenges. We use two devices running our application. Ranging is
initiated on one device that sends out an audio signal. On receiving this audio signal, the second
device plays a response signal. When the �rst device hears the response, the round trip time
between the ranging and response is recorded. �e distance between the two devices is estimated
using this round trip time. We performed ranging between two devices placed at di�erent distances.
We captured hundreds of measurements at each distance. Figure 21b shows the actual distances
between the devices and the distance measured by the application with the average and standard
deviation of the estimated distance. �e results show that the system is able to accurately estimate
the range between two devices with a resolution of under 10 cm.
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Fig. 23. CDFs of performance measurements on Raspberry Pi.
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Fig. 24. Performance measurements on Nexus 5.

5.2 Comparison to Android and RTSJ
We conduct three case studies consisting of a cochlear implant application, a UAV �ight control
system, and a turbine health monitoring application to compare RTDroid in realistic se�ings against
Android as well as RTSJ.

5.2.1 Simulated cochlear implant platform. �e cochlear implant application has a real-time
service for audio processing and a real-time receiver for output error checking. Each run of the
audio processing needs to acquire 128 audio samples, process them, and send processed audio
output to the output receiver. �is process should complete within 8ms [2]. Our main measurement
and comparison point is this audio processing task since it has a strict timing requirement. We
collected 40,000 release durations for each execution, and repeat the experiment 10 times.

5.2.2 jPapaBench. A real-time Java benchmark simulates autonomous �ight control. We have
ported it to our system as well as Android and divided the code into two services: (1) an autopilot
service that executes sensing, stabilization, and control tasks, (2) a �y-by-wire (FWB) service that
handles radio commands and safety checks. �e original communication is replaced with intent
broadcasts. We measure release durations of the autopilot stabilization task, which runs periodically
with a 50ms deadline, over 10 benchmark executions. Due variations in the physics simulator, each
execution takes roughly 91,000 releases to complete the same �ight path.

5.2.3 Wind turbine health monitor. �e wind turbine health monitoring application was de-
veloped originally using RTSJ. We have also created a version to execute on our system. Since
this application requires specialized hardware we did not implement an Android version. �e
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Application Cochlear Implant jPapaBench Wind Turbine
RTDroid RTSJ Android RTDroid RTSJ Android RTDroid RTSJ

Sampling Numbers 40,000 40,000 40,000 91,840 91,791 92,816 2,295 2,295
Mean (µs) 238 194 5,353 1,055 698 360 3,000 2,779

Standard Deviation (µs) 16 15 2,831 55 49 1,530 107 103
Deadlines Missed 0 0 5,160 0 0 14 0 0

Table 1. Task execution duration statistics.
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Fig. 25. CDFs of performance measurements of the Cochlear Implant on Nexus 5.

application performs crack detection on turbine blades based on vibro-acoustic modulation [18].
It consists of a probing task that imposes a clean sine-wave audio tone at one side of a blade, a
recording task that stores the captured audio from the other end of the blade, and an analyzing task
that detects cracks by analyzing the stored audio stream. �e audio recording task must be executed
every 50ms in order to capture meaningful data, and as such is our main point of measurement.
We collected release durations of the audio recording task over 2 hours, and only kept releases that
perform recording logic. �e size of the audio bu�er recorded per release is around 2MB and as
such we leverage our bulk data transfer channel for communication between the recording and
audio processing tasks for the version implemented in our system. �e RTSJ version uses a shared
memory bu�er.

5.2.4 Results. Figure 22 shows aggregated task execution durations over each application, and
plots the frequency of the execution for each release. In all three applications, both RTDroid and
the RTSJ easily meet the application-speci�c requirement, i.e. they �nish well ahead of the deadline.
In Figure 22(a) and (b) there is a clear di�erence in the execution time – the RTSJ is faster but
the performance penalty of using RTDroid is not prohibitive. �is observation is con�rmed by
the CDFs of Figure 23. �e curves of the CDFs for RTSJ compared to RTDroid have the same
shape. Based on this observation as well as similar standard deviations presented in Table 1, we
can conclude that RTDroid does introduce additional latency, but does not impact the predictability
of the code as compared to RTSJ.

Figure 24 compares the execution time of RTDroid and plain Android. �is clearly shows that
there is signi�cant variance in execution times on the Android platform. Andoid can, and does, miss
deadlines. In Figure 24(a), we observe the the cochlear implant application runs faster in RTDroid.
In Figure 24(b), one can observe that while Android can sometimes be faster than RTDroid, it can
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Fig. 26. CDFs of performance measurements of the jPapaBench stabilization task on Nexus 5.

Application Type of Code SLoCa Synb Manifestc

Cochlear Implant
Common 175 0 0

RTSJ 256 4 0
RTDroid 235 2 69

jPapaBench
Common 3,844 0 0

RTSJ 300 6 0
RTDroid 230 0 149

Wind Turbine
Common 1,387 3 0

RTSJ 539 9 0
RTDroid 387 0 52

Table 2. Code complexity measurements.

aSource Lines of Code as counted by David A.Wheeler’s SLoCCount.
bMethods or blocks protected by synchronized statements

cLines of XML cod
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Fig. 27. Surround sound coordination system:
Synchronization error in arrival time measurement.

also be several order of magnitude slower (note that the x-axis is in log scale). To quantify the
overhead imposed by our system, we report the statistical results of each application in Table 1.
Both our system and RTSJ have similar standard deviations even in the presence of scoped memory
and channel based communication. Our system’s overhead is particularly visible in the stabilization
task of jPapaBench. In the RTSJ version, the stabilization tasks reads sensor data from global
shared memory bu�ers, performs at tight numeric computation, and produces control commands
for the motors, which are also stored in global shared memory bu�ers. �e version executing on
our system, in comparison, receives sensor readings and sends control commands over channels,
instead of reading from global bu�ers. Figure 25 and Figure 26 show the CDFs of the experiments
detailed in Figure 24. Not the di�erence in the x-axis, latency in android is much larger with
much more variability. Although not surprising, our numbers indicate that a non trivial portion of
releases in Android exhibit signi�cant delays, even when not in the presence of a loaded system.

Although our system does induce additional overhead when compared to applications wri�en in
RTSJ, it does provide tangible bene�ts in terms programability. In addition to hiding the complexity
of writing code that leverages scoped memory, our system also decouples con�guration from
application logic and simpli�es interactions between components via Android like communication
over channels. Table 2 shows code metrics over three types of code—the common code in both
versions of implementation (mostly the application logic), speci�c code to our system, and RTSJ
speci�c code, but excludes common libraries (i.e. the FFT and signal processing libraries for the
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Fig. 28. Experimental setup for augmented reality application: Circles denote location of listener during the
experiment. Device 1 is on the le�, Device 2 in the middle, and Device 3 on the right.

cochlear implant). It shows that applications wri�en for our system are implemented with fewer
lines of code. �is occurs because RTSJ requires developers to manually instantiate all tasks, and
provide release logic with the multi-threading APIs. In our system all application components are
declared in the manifest and the boot process initiates and starts them. Additionally, since our
system uses message passing, it removes explicit programmer wri�en synchronization between
interacting components. �ere are two important consequences to the reduction of source code in
favor of manifest complexity: (1) our system can automate reasoning about manifest �les [34], and
(2) removal of synchronization (critical regions) reduces interference costs and simpli�es validation
of system schedulability.

5.3 Multiplexed Sound Applications
We evaluate the correctness of our audio framework by using two applications, device coordination
and distance estimation. We discuss the applications and the results in the rest of the section.

5.3.1 Coordinator with surrounding sound playback. �e application is inspired by existing work
that proposes a class of audio mobile applications [13, 14]. One example shows surround sound
playback from a set of mobile devices, re-creating surround sound experience in mobile scenarios
and others. Such applications require timeliness and the ability for the devices to communicate
using audio beacons for synchronization. Our application is designed to work as follows. We build
the surround sound system using one smartphone as a coordinator which sends out an inaudible
tone for synchronization every 200ms . Other smartphones in the vicinity (worker devices) running
the system respond to this synchronization signal with a signal of a certain frequency associated
to the device. �e coordinator collects the arrival times of the responses from the worker devices
by analyzing the frequency response of the received audio data. Using these arrival times, we
can estimate latency in coordination between devices. �is information is then used to carefully
schedule multi-channel playback from the speakers. For accurate localization, such systems need a
high synchronization accuracy as mentioned in previous works [13, 15, 21, 24]. Figure 27 presents
the synchronization errors over 1000 synchronization beacons. We can see that the synchronization
error is always well below 1ms . �is gives us con�dence that our system can be further used to
build more complex systems using sound.

5.3.2 Simulated interactive museum display. �e application simulates a large museum display
with both an audio and visual components. �e display has several speakers located at di�erent
locations of the display. Our objective is to determine the speaker that is closest to the visitor, and
use that speaker for audio playback for enhanced user experience [4, 8]. Such systems can also be
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Fig. 29. Actual vs. estimated distance from speakers.

used for enhancing indoor gaming experience, where the system detects if the player is near an
obstacle/checkpoint and can play sound e�ects, narratives for the story, instructions and others. We
implement a simpli�ed version of this application using our framework. We use three smartphones
as speakers (with �xed location) and the user’s smart phone which can change its position with
respect to the speakers. �e smartphone has our app, and periodically sends out inaudible audio
signals. When the �xed devices detect the signals, the �xed devices initiate distance measurement
with the mobile device. Upon determination of range of each of the speakers from the mobile phone,
it signals the nearest speaker to start playback. Our application setup is shown in Figure 28. Points
1-8 in the �gure show di�erent locations of the listener. We evaluate the system by measuring how
accurately the speaker devices are able to calculate the location of the listener. Figure 29 shows the
distances measured by the speaker devices at each point. We can see that the �xed speaker devices
can accurately range if the listener is close, and even triangulate his position if required (given that
there are three speakers). Using separate frequencies for di�erent speakers, the smart phone is able
to determine how far it is from each of them. It then informs the nearest speaker to engage for
audio playback. Shown in Figure 29 is the timeline diagram for the interaction between the user’s
smartphone and the speakers at a particular display.

6 RELATEDWORK
Previous a�empts to make Android amenable to real-time include the work of Maia et al. who
proposed four di�erent architectures [16, 17, 19, 22, 26] that enforce a strict separation between
real-time and non real-time apps. Kang et al. [12] and Ruiz et al. [27] implemented such separation
in the standard Linux kernel, assigning one or more cores for real-time tasks and isolating those
cores from the rest of the system. Our work strives to make such interactions safe. Prior work [5, 10]
on real-time garbage collection for Android focused on reducing the latency the GC could induce
on computation. �is was accomplished by modifying the Dalvik VM to explicitly trigger the GC
based on heuristics to reduce pause time during critical periods. Choosing when to run the GC is
unfortunately di�cult and requires reasoning about the schedule of tasks in the system as well as
when those tasks allocate memory. �is is exacerbated when communication between applications
is permi�ed. Prior work has also explored how components interact through intents, providing a
mechanism to prioritize intents [11], but did not provide any memory bounds on communication.
Our work provides static bounds on memory consumption of communication between tasks, allows
communication between real-time and non real-time tasks, and observers that only prioritizing
intents can induce priority inversion in the callbacks that handle those intents. Other e�orts have
the le� the Android framework unmodi�ed [20], instead focusing on exposing the degree of ji�er
present in sensor data in the system so that applications can make necessary adjustments. Our
system strives to eliminate such ji�er.
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In addition to integrating a real-time capable VM and a real-time operating system, RTDroid [33]
explored how to add priorities to three exemplar constructs in Android and to study the feasibility
of adding guarantees within the internals of the Android framework. We adopt the priority
mechanisms provided by RTDroid for communication with framework services such as sensors, but
observe that they are not enough to correctly encode intents nor to provide memory bounds. �e
channels provided by our system replace the communication mechanism of the original RTDroid.
�e original RTDroid did not provide a mechanisms for interacting with legacy code and did not
provide support for Android APIs; programmers were stuck using libraries provide by the VM and
the RTSJ. Our work provides an Android-like programming model that hides the complexities of
the RTSJ, allows for interaction with legacy code, and disentangles con�guration from application
logic.

Our work leverages previous results on region-based memory management [30]. Scope memory
was introduced in the RTSJ [7] to avoid GC interference. Scope memory allows the system
designer to prove properties about the predictability of the overall system including static memory
bounds [28]. In our system scopes are mostly hidden from the programmer. �e developer needs to
con�gure the system to specify necessary bounds, but does not need to worry about adhering to
the scope memory rules enforced by RTSJ. Bounds are speci�ed declaratively through our manifest
extensions, instead of programmatically, thereby abstracting out con�guration from function.
Since services communicate through message passing the complexity of reasoning about cross
scope references and scope nesting levels (scope stacks) is handled seamlessly by our underlying
system. �is largely removes the cognitive burden from the programmer of using scope memory in
application development.

6.1 Sound Processing on Android
Android applications with real-time timing constraints and low latency audio processing require
signi�cant development e�ort. OpenSL ES [1] has been customized and integrated into Android’s
NDK, which provides low latency audio playback, recording, and other high-performance audio
features. It mainly serves as an alternative to the MediaPlayer and MediaRecord. However, such
integration of OpenSL ES [1] only provides native interfaces to the Android application developer.
Use of these native APIs can complicate an applications deployment, since it may require root
privilege for some advanced features. In academia, researchers are also interested in using the
audio resources provided by Android based devices for various applications with timing constraints.
For instance, indoor localization and sensing applications [21, 24, 25, 29, 35] require the emission of
high-frequency acoustic signals to achieve acceptable accuracy; Surround sound play [13] requires
less than 1ms synchronization. �is work provides a mechanism to realize such applications with
time sensitive audio requirements on the Android platform.

SounDroid [14] outlined two main challenges of real-time audio management in Android: 1) tight
timing requirement of audio requests; 2) unpredictable dispatching latency for audio playback and
record. It addressed these two problems via SounDroid framework APIs, which provides customized
earliest deadline �rst scheduling and acoustic frequency division scheduling for audio requests,
and device bu�er padding for unpredictable device latency. While SounDroid makes signi�cant
contributions in terms of scheduling requirements for Real-time sound, it does not directly address
the inherent latency and unpredictability of the system. Our work aims to address this issue, and
also provides a lower latency implementation of the sound system with session management and a
declarative manifest which application developers can leverage to use our proposed sound system.
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7 CONCLUSION
Real-time capabilities have the potential of increasing the range of applications that can be wri�en
on the Android platform. �is paper is a step towards turning Android into a high-level real-time
programming environment in which developers can freely mix time-critical code with code that
is unaware of any timing constraints. In this paper we have shown that the changes required
to the Android programming model from the programmers perspective are quite modest. Our
constructs, which expose familiar Android interfaces, additionally provide statically speci�ed
memory bounds and priority awareness. We report on a number of experiments to validate our
system. �e micro-benchmarks present some evidence that the implementation of our extensions
are robust to memory and computational stress. �e application benchmarks shown that our
system outperforms the Android platform on real-time metrics and is easier to program than the
Real-time Speci�cation for Java. Overall, we argue that RTDroid is viable point in the design space
of embedded development environments.
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