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Achieving sub-millisecond response times in a managed language environment such as Java or
C+# requires overcoming significant challenges. In this paper we propose Reflexes, a programming
model and runtime system infrastructure that lets developers seamlessly mix highly responsive
tasks and timing-oblivious Java applications. Thus enabling gradual addition of real-time features,
to a non-real-time application without having to resort to recoding the real-time parts in a different
language such as C or Ada. Experiments with the Reflex prototype implementation show that
it is possible to run a real-time task with a period of 45 ps with an accuracy of 99.996% (only
0.001% worse than the corresponding C implementation) in the presence of garbage collection and
heavy load ordinary Java threads.
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1. INTRODUCTION

The state of the art in real-time system development is that most real-time sys-
tem programming models are defined as a function of the hardware, operating
system and libraries available to the programmer. Not surprisingly this state of
affairs leads to non portable codes, and low rates of reuse across project based on
different infrastructures. The last decade, there has been a push by industry to
switch to high-level programming languages such as Java and C# which have ben-
efits such as memory safety and protability across operating systems and hardware
platforms. These languages have seen widespread adoption for multiple reasons,
not the least of which being higher developper productivity. Unfortunately, these
benefits come at a price, namely the heavy-weight runtime infrastructure needed
to support the execution of those languages. For instance, in Java the absence of
memory errors is predicated on the use of complex garbage collection algorithms
that can introduce pauses in the hundreds of milliseconds in a high-performance
implementation. Other popular runtime services such as dynamic class loading and
just-in-time compilation can also introduce pathological behaviors.

The goal of this paper is not to propose Java as a replacement for system’s
programming languages such as C or Ada. Instead, we take the position that there
are many systems that are predominently made up of timing-oblivious code with
little nuggets of soft- or hard-real-time behavior. The question we are investigating
is how to seamlessly extend a non-real-time application written in a high-level
language with real-time tasks without having to switch languages. We would like,
as much as possible, to retain the benefits of memory safety, portability, reusability
of Java, yet support the definition of real-time components. The solution space is
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constrained by our desire to keep the semantics of plain Java system intact. We
investigate a solution that relies on novel runtime support and static type checking.

Different approaches have already been explored to bring real-time capabilities
to Java. At one end of the spectrum, one can envision running unmodified Java
application in a virtual machine carefully engineered to avoid pausing user-code
and employ a real-time garbage collector to bound the latencies due to memory
management. The state of the art in real-time garbage collection is below 1 mil-
lisecond maximum pause times and a 2x slow down due to garbage collection over-
heads [Pizlo and Vitek 2008]. This approach has the benefit of requiring no changes
to programs and thus being perfectly backwards compatible. At the other end of
the spectrum, one could amend the Java language to better support real-time. This
is the approach chosen in the Real-time Specification for Java (RTSJ) [Gosling and
Bollella 2000] which changes and extends the semantics of Java to provide strong
real-time guarantees. RTSJ programs can execute without interference from the
garbage collector and thus potentially run much faster and with better response
times. The drawbacks of the RTSJ is that it is invasive; the whole program and all
libraries have to be aware that they may be executed in a real-time context. Fur-
thermore, some of the design choices underlying the RTSJ entail runtime overheads
and the possibility of memory access errors that are not caught by the type system.
We defer to [Pizlo et al. 2004] for a discussion of some of these drawbacks and to
[Auerbach et al. 2007; Dawson and Thwaite 2008; Armbuster et al. 2007; Bollella
et al. 2005] for a discussion of the challenges faced by implementers of the RTSJ.

This paper proposes a different approach. We introduce Reflexes, a programming
model for mixing highly-responsive tasks with timing-oblivious Java programs. This
work is based on the first author’s phd thesis [Spring 2008], and our VEE’07 [Spring
et al. 2007] and OOPSLA’07 [Spring et al. 2007] papers. While Reflexes require
a modified virtual machine, it does not entail changes to the libraries or user pro-
grams. Software components that have no time constraints are left untouched and
will be unaware that they are not on plain Java virtual machine. Real-time tasks,
however, are written using the Reflex abstractions. Reflex defines a restricted sub-
set of the Java language and libraries extended with a facility for safe region-based
memory management, obstruction-free atomic regions and real-time preemptive
scheduling. Reflex enforce strong static memory partitioning between data belong-
ing to plain Java threads and data used by Reflex tasks. This partitioning is done
by the compiler and does not incur run-time overheads.

We report on two implementation of Reflex. The first implementation effort was
carried out on top of the Ovm virtual machine [Armbuster et al. 2007] which pro-
vides support for real-time Java on uni-processor systems. Ovm is an ahead-of-time
compiler, the code of the entire application is translated to C and compiled with an
off-the-shelf compiler such as gcc. The second implementation uses a commercial
real-time Java virtual machine with chip-level multiprocessor support. Our exper-
iments show that Reflexes provide better latency than either a real-time collector
or the commercial implementation of the RTSJ. We have run tasks with periods as
low as 45 pus without background noise due to plain Java task and the Java garbage
collection and obtained an accuracy of 99.996%. This is only 0.001% worse than the
corresponding C implementation. We argue that Reflexes are a promising approach
to incorporate real-time processing in the Java language.
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2. RELATED WORK

The most closely related work to this paper is the Eventron [Spoonhower et al.
2006] and Exotask [Auerbach et al. 2007] real-time programming models developped
in parallel by Auerbach et al. at IBM Research. Both models have the goal of
extending Java in a non-intrusive way with real-time features. They differ in the
constraints they impose on programs and the real-time guarantees that can be
achieved.

FEventrons provide strong responsiveness guarantees at the expense of expres-
siveness. In the Eventron model, a real-time task cannot allocate new objects.
Furthermore, it is prevented, by load-time compiler inserted checks, from writing
to reference variables or even reading reference variables that may be modified by
other threads. The constraints on reference variables are particularly stringent and
entail that computation in an Eventron is limited to modification of scalar variables.
The motivation for these constraints is that they enable Eventron tasks to preempt
the garbage collector at any time, even when the heap is in the process of being
compacted and all references are not up-to date. This is the key to being able to
achieve response times in the microseconds on Java platform. Reflexes have similar
responsiveness but are less restrictive, we take advantage of our the type system
partition memory. In the memory partition that belongs to a Reflex allocation and
reading/writing reference variables is supported.

In later work [Auerbach et al. 2007], Eventrons were generalized to form a graph
of tasks called Exotasks. Like Reflex, the tasks partition the memory of the virutal
machine in disjoint areas which are kept disjoint. The main innovation in Exotasks
was that tasks could be garbage collected. As the memory used by individual tasks
is disjoint, the collection is task-local and can usually be carried out in very little
time. Tasks communicate by exchanging messages by deep-copy.

In a recent collaboration with IBM Research, we have successfully transitioned
the key ideas of Reflex (and it’s follow up called StreamFlex [Spring et al. 2007])
in the context of the IBM production virtual machine. The resulting envionment,
referred to as FlexoTask [Auerbach et al. 2008], adopts the ownership type system
introduced in this paper as well our obstruction-free atomic region abstraction.

3. PROGRAMMING MODEL OVERVIEW

A Reflex program consists of a graph of Reflex tasks!' connected according to some
topology through a number of unidirectional communication channels. This relates
directly to graph-based modeling systems, such as Simulink and Ptolemy [Lee 2003],
that are used to design real-time control systems, and to stream-based programming
languages like StreamlIt [Thies et al. 2002]. A Reflex graph is constructed as a Java
program, following standard Java programming conventions, and using standard
Java development tools.

Reflexes can run in isolation or as part of a larger Java application. To interact
with ordinary Java threads, Reflex provides special methods which will ensure that
real-time activities do not block for normal Java threads. Fig. 1 illustrates a Reflex
program and its interaction with an ordinary Java thread.

INote, we use the term Reflexes to denote both the programming model as well as the tasks.
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Fig. 1. Hlustration of a Java application consisting of time-oblivious code (blue) and a time-critical
Reflex graph with three connected tasks.

A Reflex acts as the basic computational unit in the graph, consisting of user-
defined persistent data structures, typed input and output channels, and user-
specific logic implementing the functional behavior of the task. In order to ensure
low latency, each Reflex lives in a partition of the virtual machine’s memory outside
of the control of the garbage collector. Furthermore, Reflexes are executed with
a priority higher than ordinary Java threads. This allows the Reflex scheduler to
safely preempt any Java thread, including the garbage collector. Memory partition-
ing also prevents synchronization hazards, such as a task blocking on a lock held
by an ordinary Java thread, which in turn can be blocked by the garbage collector.

In terms of memory management, a Reflex is composed of stable objects, transient
objects and capsules. Stable objects include the Reflex itself as well as any internal
data structure that must have a lifetime equal to that of the graph. Transient
objects live only while the Reflex is active. This reflects the split between temporary
data needed during one activation of a periodic activity and data that persists for
the duration of a program. Capsules are data objects used as messages between
Reflexes. They persist as long as they are referenced by a channel or task. Their
contents is severely restricted. Specifying whether an object is stable, transient or
capsule is done at the class level.

The Reflex runtime infrastructure includes a scheduler that is responsible for
releasing Reflexes. While a Reflex can become schedulable any time new data
appears on one of its input channels, the scheduler does not, in general, attempt
to guarantee timeliness; only that each task will eventually be released. If the
programmer requires timely execution, clocks must be used. When a Reflex is
connected to a clock, the scheduler arranges for the task to be released according
to the clock’s period. Hence, with this scheme, a periodic activity is modeled with a
single Reflex connected to a clock. While multiple threads can drive the execution
of a graph, individual Reflexes are single-threaded.

3.1 Reflex Graph

A graph is constructed by extending the built-in abstract ReflexGraph class, and
implementing at least one of its constructors. The graph is, in turn, responsible
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of creating tasks and connecting them according to the desired topology. Once a
graph is fully constructed, the validate is invoked to check the well-formedness of
the graph. Safety of memory operations is checked statically as part of compilation
of the Reflex classes.

public abstract class ReflexGraph {
public ReflexGraph(int priority, int commAreaSize);
public final void start();
public final void stop();
protected final void validate() throws ValidationException;
protected final ReflexTask create(Class taskClass);
protected final ReflexTask create(Class taskClass, int stableSz, int transientSz);
protected final Clock createClock(int periodInMicros);
protected final void connect(Clock source, ReflexTask target, String targetField);
protected final void connect(ReflexTask source, String sourceField,
ReflexTask target, String targetField, int size);

Fig. 2. An excerpt of the abstract ReflexGraph class to be subclassed by the programmer in order
to create and connect tasks in the graph according to user-specific requirements.

Validation involves verifying that (1) channels are connected to fields of the
proper types; (2) that sufficient space is available within the private memory areas
of the tasks; and (3) the communication area (whose size is set in the Reflex-
Graph constructor), and that clocks are configured with periods supported by the
underlying virtual machine. Cyclic graphs are allowed in the validation phase as
they do not necessarily run indefinitely. Once validated, the graph’s topology is
fixed and the start () method can be invoked to schedule the Reflex in the graph.

Fig. 2 shows the methods for the reflective creation of Reflexes and channels.
Reflection is needed because the data structures representing these abstractions
must be allocated under the control of the runtime infrastructure in the proper
memory regions to make sure that they are not traversed by the garbage collector.

3.2 Reflexes

A Reflex is the computational unit in our model, and is constructed by extend-
ing the built-in abstract ReflexTask class. The programmer must implement an
execute () method, which defines the functional behavior of the task. Fig. 3 shows
an excerpt of this class.

The execute() method is invoked by the Reflex scheduler when the Reflex is
schedulable. This occurs upon the arrival of data on one of its input channels
according to the specified rate on the channels. More specifically, the rate specifies
how much data the task needs on its individual input channels in order to execute.
By default, each channel’s rate is set to one, but this can optionally be overridden.

By convention, the execute () method is expected to yield and give control back
to the runtime infrastructure — in most cases, it would be a programming error
for an activity to fail to yield as this could block all tasks in the graph and cause
deadline misses.
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public abstract class ReflexTask implements Stable {
public ReflexTask(int transientSize, int stableSize) {...}
public abstract void execute();
public void initialize() {}
protected final Capsule makeCapsule(Class c) {...}

}

Fig. 3. An excerpt of the ReflexTask class to be subclassed by the programmer. Its initialize()
and execute() methods provide the user-specific functional behavior.

A Reflex can also provide an initialize() method that is invoked by the in-
frastructure to initialize the task before it starts (but after the tasks in the graph
have been connected).

3.3 Memory Management

Reflexes execute in complete isolation from the Java heap, instead they run in their
own (heap-allocated) private memory region, illustrated in Fig. 4. The ReflexTask
instance itself is allocated within its own private memory region to shield it from
the garbage collector.

The memory region of a Reflex is partitioned between a stable heap and a tran-
sient area. The sizes of both regions are chosen at startup as illustrated in Fig. 3.
As the stable heap has a fixed size, the allocation of stable objects must be managed
carefully to avoid running out of memory. The transient area is also fixed in size
and serves as a per-invocation scratchpad. Once the execute() method returns,
all allocations made in the transient area during its execution will be reclaimed in
constant time; any allocations made on the stable heap will remain. Our design
assumes that the allocation of persistent state is the exception. Specifying whether
an object is stable or transient is done at the class level. By default, data allocated
by or within a task is directed to the transient area. Only objects of classes im-
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Fig. 4. Ilustration of the memory model of a Reflex task (hexagon) in its own private memory
area with its object graphs of stable (red) and transient (orange) objects (circles).
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plementing the Stable marker interface will be put on the stable heap and persist
between invocations.

The ReflexTask class is declared stable and will always be allocated in the stable
heap of its own private memory area. Given different lifetimes different the objects,
for memory safety reasons, stable objects are restricted from referencing transient
objects; whereas transient objects can reference both transient and stable types.
Referencing a transient object from a stable one could lead to a dangling pointer
once the transient area has been reclaimed. Finally, allocations made by a Reflex
are never directed to the public heap.

By using class granularity for distinguishing between stable and transient ob-
jects, we relinquish the possibility of using the same class in both memory con-
texts. The alternative approach would be to introduce some per-object annotation,
e.g., one could write code like @stable HashMap h = @stable new HashMap()
where the annotation @stable is used to denote data that resides in stable mem-
ory. Unfortunately that is not sufficient. Specifically, the problem is that the
code within the HashMap class may itself perform allocations, and those allocations
would have to be destined in the exact same stable memory context to be con-
sistent. Here, an approach treating the annotation as a type parameter, e.g. new
HashMap<@stable>(), would help. However, this approach is notationally cum-
bersome and requires retrofitting all library classes with generic parameters. The
added effort and complexity does not seem warranted.

Another design choice is that the transient area is the default allocation context.
Unlike for stable classes, transient classes have no restrictions on the types of their
fields. This choice reflects the hypothesis that stable code is the smaller part of
a Reflex and that it is less likely that we need to reuse legacy libraries in stable
classes (part of the reason is that the allocation behavior of many library classes is
not appropriate for an environment where objects are not reclaimed).

3.3.1 Stable Arrays

As mentioned, the default allocation context is the transient area. Following this
design choice, primitive array objects allocated using statements such as int[] ia
= new int[10] are thus transient. It follows that stable objects cannot reference
standard array objects. It is not reasonable to forbid stable arrays, Reflex provides
two special cases. The Reflex API introduces a StableArray base class and pro-
vides a set of subclasses for each of the available primitive types. These classes
encapsulate the different primitive arrays, and, as their names indicate, enable the
allocation of these arrays in the stable heap. For reference types, Reflex takes the
position that an array of Stable types is considered stable.

3.4 Exceptions

Given this distinction between object lifetime, exception handling within a Reflex
requires special attention. When an exception is thrown within a Reflex, the object
and its stack trace are created in the transient area, and will be reclaimed like any
other object following the completion of the invocation of the execute () method.
If the exception propagates out of the execute () method, the stack trace is logged
and the graph is terminated.
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3.5 Reflex Communication

Reflex provides type-safe, non-blocking communication between the individual Re-
flexes and between ordinary, time-oblivious Java threads and time-critical Reflex
tasks.

3.5.1 Non-Blocking Channels

Inter-task communication is designed with a key requirement in mind; enabling
non-blocking, zero-copy messaging between Reflexes. A Reflex communicates with
other tasks solely through non-blocking channels. A channel is a fixed-sized, typed
buffer connecting two Reflexes. The infrastructure supports primitive type channels
(all of Java’s primitive types), time channels holding periodic time-stamps, and a
restricted set of objects belonging to subclasses of the Capsule base class.

Fig. 5 gives an overview of the CapsuleChannel class which is straightforward.
The TimeChannel class is different in order to avoid storing, potentially large,
numbers of clock ticks. Hence, it has two methods, one to put a current clock tick
in microseconds on the channel, and one to return the latest unread clock tick.

public class CapsuleChannel extends Channel {
public int size();
public put(Capsule val);
public Capsule take();

}

Fig. 5. Excerpts of the CapsuleChannel classe for transferring Capsule type data.

The operations performed on a channel during a given release are atomic. Once a
Reflex starts executing, its channels are logically frozen, no other task is allowed to
modify them. All changes to channels are published when the execute () method
returns. Channels are created when two ReflexTask instances are connected by a
call to the connect () method on the ReflexGraph class. The method will create
the channel with its given size, and set the fields of the Reflexes. The connection
is done by reflection based on the name provided as argument.

Channels are allocated in a memory region separate from any of the Reflexes using
them — the communication area, as depicted in Fig. 6. Capsules are also allocated
in this region. The region is, like the private memory area, free of interference from
the garbage collector. It is fixed-sized, and so the programmer has to carefully size
the communication area to account for channels and capsules it holds. While this at
first appears limiting, the actual number of capsule types used in an application as
well as the instances created of each type, in our experience, are typically bounded.
The actual allocation of the memory area is performed by the Reflex runtime as
part of the instantiation of the ReflexGraph.

Reflex does not support growable channels and, in case of overflow, silently drops
packets. Other policies have been considered but have not been implemented.
Variable sized channel, for example, can be added if users are willing to take the
chance that put operations take variable time.
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3.5.2  Capsules

Given the goal of zero-copy messaging, using capsules on channels turns out to be
challenging in the absence of a garbage collector. Indeed, the question of where
to allocate capsules, and when to deallocate them is a difficult one. They cannot
be allocated in the transient memory of a Reflex as they would be deallocated as
soon as the execute () method completes. Likewise, they should not be allocated
in stable memory for fear of running out of space. Instead, as mentioned above,
capsules are allocated from a pool managed by the infrastructure. The invocation
to makeCapsule() causes for a capsule of the requested type to be returned, this
is either an existing capsule or a newly allocated one. Capsules are returned to
the pool as soon they are not referenced by any task or channel. The Reflex type
system and runtime infrastructure ensure that a capsule can be accessed by at most
one task and be on at most one queue at a time. For pragmatic reasons, there is one
loophole in the zero-copy semantics, if a Reflex needs to put a capsule on multiple
output channels, the capsule will be copied in order to preserve the single-reference
invariant.

To guarantee memory safety, capsule classes are restricted. Specifically, to pre-
serve isolation between tasks, a Reflex must not retain a reference to a capsule that
has been pushed to its output channel, and a capsule should not retain references to
the task’s stable data. In fact, a capsule must not leak references. This is achieved
by restricting capsules to reference-immutable data types. Informally, an object is
reference-immutable if none of its reference fields, of transitively reachable refer-
ence fields, can modified. For pragmatic reasons, we restrict capsules a bit further
and limit their fields to primitive types and arrays of primitive types. While these
constraints have proved acceptable so far, one could loosen them if they prove to
be too stringent, e.g., by allowing capsules to have final fields of any reference-
immutable types. However, this will come at the price of more complex set of static
checks.
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Fig. 6. Reflex tasks communicate by passing around references to capsules on a shared channel.
Channels and capsules are allocated in a separate memory area managed by the Reflex run-time.
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3.5.3  Obstruction-free Communication with Atomic Methods

Reflexes prevent synchronous operations by replacing lock-based synchronization
with an obstruction-free communication scheme based on atomic methods [Manson
et al. 2005]. The principle behind atomic methods is to let an ordinary Java thread
invoke certain methods on the time-critical task. Once inside the atomic method,
the ordinary Java thread can access the data it shares with the Reflex. These
methods ensure that any memory mutations made by the ordinary Java thread
to objects allocated within a Reflex’s stable memory will only be visible if the
atomic method runs to completion. Again, given the default allocation context,
any transient objects allocated during the invocation of the atomic method will be
reclaimed when the method returns. If the ordinary Java thread is preempted by
the Reflex scheduler, all of the changes will be discarded and the atomic method
will be scheduled for re-execution. The semantics ensures that time-critical tasks
can run obstruction-free without blocking.

public class PacketReader extends ReflexTask {

@atomic public void write(byte[] b) {...}

}

Fig. 7. Example of declaration of method on ReflexTask class to be invoked with transactional
semantics by ordinary Java threads.

Atomic methods to be invoked by ordinary Java threads are required to be de-
clared on a subclass of the ReflexTask and must be annotated @atomic as demon-
strated with the write() method in Fig. 7. Methods annotated with @atomic are
implicitly synchronized, preventing concurrent invocation of the method by multi-
ple ordinary Java threads.

For reasons of type-safety, parameters of atomic methods are limited to types
allowed in capsules, i.e. primitives and primitive array types. Return types are
even more restricted, atomic method may only return primitives. This further
restriction is necessary to prevent returning a transient object, which would lead
to a dangling pointer, or a stable object, which would breach isolation.

3.5.4 Communicating through Static Variables

In addition to atomic methods, Reflexes can communicate with ordinary Java
threads through static variables. However, static variables pose a particular type-
safety problem as references to objects allocated in different Reflexes or on the
heap could easily breach isolation. Thus, their use is restricted to primitive and
reference-immutable types. Objects referenced from static variables must not be
moved by the garbage collector throughout the lifetime of the Reflex graph.

3.6 Scheduling

The Reflex programming model specifies a time triggered scheduling policy embod-
ied in the Clock task which causes connected tasks to be executed periodically. A
graph must have at least one Clock in order to execute. The Clock is connected
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to a ReflexTask by a TimeChannel as shown in Fig. 8. Upon firing, the Clock
publishes a time stamp on its output time channel, causing the Reflex attached to
this channel to become schedulable.

~ Public Heap

“’/ Reflex Graph Scheduler

ﬂ-"J‘—(-"‘J‘ﬁw§
Q y

Fig. 8. Each graph is under the purview of a time triggered scheduler. Threads are not bound
to tasks. At a minimum, a thread is assigned to each Clock but the infrastructure can choose to
increase the thread count in order to improve parallelism.

Threads are not required to be mapped to tasks following a one-to-one scheme.
However, as a minimum threads are assigned to Clock tasks that then, within the
period, simply traverse as far down in the graph possible and execute all schedulable
tasks, a simple scheme that makes sense on a uni-processor machine. On a uni-
processor platform, executing the Reflex graph using multiple threads would not
contribute to any true parallelism, but rather extend the total execution time of
the graph by introducing an execution overhead of context switching between the
threads. Contrary, on a multi-processor machine applying multiple threads would
be beneficial to parallelism as different threads are run by multiple processors.

To ensure backward compatibility with library classes, synchronized statements
and wait/notify are allowed. However, they are essentially treated as no-ops as
there is at most one thread active within a task.

4. EXAMPLE: INTRUSION DETECTOR SYSTEM

To illustrate the applicability of Reflexes, we have implemented a stream processing
application in the form of an Intrusion Detection System (IDS), inspired by [Sekar
et al. 1999], which analyzes a stream of raw network packets and detects intrusions
by pattern matching.

PacketReader TrustFilter VSIPFragment TearDrop Joiner PacketDumper

Fig. 9. Graphical representation of the Reflex graph of an Intrusion Detection System consisting
of six tasks and a clock task triggered periodically by a time triggered scheduler.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



12 : J. H. Spring et al.

Fig. 10 shows the declaration of the Reflex graph class IDSGraph, which instan-
tiates and connects the tasks that combined implement the intrusion detection
system. The argument to the IDSGraph constructor is the period in microseconds
provided to the clock. Fig. 9 provides a graphical illustration of the same Reflex
graph, its tasks, and how the tasks are connected.

public class IDSGraph extends ReflexGraph {
private Clock clock;
private PacketReader packetReader;
private ReflexTask trustFilter, vsipFragment, tearDrop, joiner, packetDumper;

public IDSGraph(int periodInMicrosecs) throws ValidationException {
super(PRIORITY, COMMAREASIZE);
clock = createClock(periodInMicrosecs);
packetReader = (PacketReader) create(PacketReader.class);
trustFilter = create(TrustFilter.class);

packetDumper = create(PacketDumper.class);
connect(clock, packetReader);
connect(packetReader, trustFilter, 10);
connect(trustFilter, vsipFragment, 10);
connect(trustFilter, "ok", joiner, 10);

connect(joiner, packetDumper, 10);
validate();

Fig. 10. The IDSGraph class extends the abstract ReflexGraph class, declares a constructor for
setting up the graph with default priority and communication area. Note, how at the end of the
constructor the validate method is invoked, causing the graph to be validated.

The capsules being passed around the system represent different network packets:
Ethernet, IP, TCP and UDP. Object-oriented techniques are useful in the imple-
mentation as nested structures of protocol headers are modeled by inheritance. For
instance, the IP capsule class (IP_Hdr) is a subclass of the Ethernet capsule class
(Ether_Hdr seen in Fig. 11) with extra fields to store IP protocol information.

public class Ether_Hdr extends Capsule {

public final int ETH_LEN = 6;
final byte[] e_.dst = new byte[ETH_LEN]
final byte[] e_src = new byte[ETH_LEN];

Fig. 11. An excerpt of the Ether Hdr capsule containing primitive byte arrays.
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Fig. 12 shows the PacketReader class that creates capsules representing network
packets from a raw stream of bytes. For our experiments, we simulate the network
with the Synthesizer class. The synthesizer runs as an ordinary Java thread, and
feeds the PacketReader task instance with a raw stream of bytes to be analyzed.
Communication between the synthesizer and the PacketReader is done by invoking
the write method on the PacketReader. This method takes a reference to a buffer
of data (primitive byte array) allocated on the heap and parses it to create packets.
The write method is annotated @atomic to give it transactional semantics, thereby
ensuring that the task can safely preempt the synthesizer thread at any time.

public class PacketReader extends ReflexTask {
private Channel out;
private Buffer buffer = new Buffer(16384);
private int underruns;

public void execute() {
TCP_Hdr p = (TCP_Hdr) makeCapsule(TCP_Hdr.class);
if (readPacket(p) < 0) underruns++; else out.put(p);

}

@atomic public void write(byte[] b) {
buffer.write(b);

}

private int readPacket(TCP_Hdr p) {
try {

buffer.startRead();
for (int i=0; i<Ether Hdr. ETH_LEN; i++) p.e_dst[i] = buffer.read_8();

return buffer.commitRead();
} catch (UnderrunEx e) { buffer.abortRead(); ... }

}
}

Fig. 12. An excerpt of the PacketReader task that reads packets received from the ordinary Java
thread and pushes them down in the graph. The write method, invoked by the ordinary Java
thread, is declared to have transactional semantics.

The PacketReader buffers data in its stable memory with the Buffer class,
shown in Fig. 13. Being referred from an instance field of the PacketReader task,
the Buffer class itself is declared stable (by implementing the Stable interface),
and in addition contains a primitive array of bytes. To satisfy the static safety
constraints, we use the StableByteArray class to represent the primitive array
within the stable class.

The reader uses the readPacket method to initialize capsules from the data
stored in the buffer. The capsule instance itself in which to read the data is retrieved
from the capsule pool through the makeCapsule call. The methods startRead,
commitRead, and abortRead are used to ensure that only whole packets are read
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public class Buffer implements Stable {
private final StableByteArray data;

public Buffer(int cap) {
data = new StableByteArray(cap);

}

Fig. 13. An excerpt of the Buffer class shared by the ordinary Java thread and the PacketReader
to exchange data. Note, that the class is declared stable as it is used as an instance field on the
PacketReader task (which inherently is stable), and that it uses the StableByteArray type to
represent a primitive byte array.

from the buffer. They do not need synchronization since (1) potential higher priority
tasks have no way to access the buffer (thanks to the isolation), and (2) ordinary
Java threads, that can access the buffer through the write method, cannot preempt
the Reflex task execution, assuming a priority-preemptive scheduling policy where
the task runs at higher priorities than ordinary Java threads.

The packets first go to the TrustFilter, which looks for packets that match
a trusted pattern; these packets will not require further analysis. Other packets
are forwarded to the VSIPFragment task. This task detects IP fragments that are
smaller than TCP headers. These are dangerous as they can be used to bypass
packet-filtering firewalls. The TearDrop task recognizes attacks that involves IP
packets that overlap.

The three tasks, TrustFilter, VSIPFragment, and TearDrop have a similar
structure: an input channel (in) for incoming packets to analyze and two out-
put channels, one for packets caught by the tasks (ok or fail), the other one for
uncaught packets (out). These tasks also mark caught packets with meta-data
that can be used in further treatment, logging or statistics. The task implementa-
tions rely on an automaton stored in stable space to recognize patterns on packet
sequences that correspond to attacks.

The Joiner is used to transform a stream of data from multiple input tasks to
a single stream of data. The last Reflex task, PacketDumper, gathers statistics of
the whole intrusion detection process thanks to the meta-data written on packed
by the previous tasks.

5. STATIC SAFETY CHECKS

Reflexes use an approach inspired by previous work on ownership type systems to
statically enforce isolation, prevent dangling pointers or access to heap-allocated
objects. Ownership types were first proposed in [Noble et al. 1998] as a way to
control aliasing in object-oriented systems. Typically, these systems track aliasing
by imposing a tree-shaped ownership structure on object graphs. Objects belonging
to one particular owner can only be accessed through that owner, direct references
that bypass the owner are disallowed. Most ownership type systems require fairly
extensive annotations which tend to be cubersome and require invasive changes to
legacy code.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



Reflexes: Abstractions for Integrating Highly Responsive Tasks into Java Applications.

In contrast, Reflexes rely on an implicit ownership type system [Zhao et al.
2008] in which no ownership parameters need to be added to variable and method
declarations. Instead, the ownership is defaulted using straight-forward rules; every
task encapsulates and owns all objects allocated within its private memory region.
Given this ownership, the static checks ensure that references to objects owned
by a Reflex are never accessed from outside, that Reflexes cannot reference heap-
allocated objects (with a few exceptions), and that stable objects cannot reference
transient ones. Fig. 14 illustrates legal and illegal object references.

An important property of the static safety checks is that the restrictions they
enforce only apply to the time-critical parts of the application code. In other
words, the legacy code interacting with Reflexes is not affected by the restrictions.
One exception here is the data being shared between the time-oblivious code and
Reflexes; since such data is referenced from a Reflex context it will be checked.

Public Heap

-

Private Memory Aréﬁ

ReﬂexTe@

Stable Heap

; """ Transient
< | %

Time-Oblivious Code Time-Critical Code

Fig. 14. The legal (green) and illegal (red) object references in and out of a Reflex task that static
safety checks must ensure are respectively allowed and caught. The figure illustrates a ReflexTask
with its stable and transient object graphs as well as a number of heap-allocated objects (blue)
and static variables (black), of which some are pinned to the location on the heap.

The remainder of this section informally describes a set of rules that we argue are
sufficient to ensure that neither Reflexes nor ordinary Java threads will experience
dangling pointers nor observe heap-allocated objects in inconsistent states.

5.1 Partially Closed-World Assumption

A key requirement for type-checking a Reflex is that all classes used by it must be
verified. To do so, we first construct a summary of classes, W, used within a Reflex
based on an approximation of the live class set. The classes in WV are categorized
in three disjoint sets: stable, transient and capsule classes.

The first thing the type checker has to ensure is that no class outside of W can be
instantiated within any task in the program. This can be done in a straightforward
fashion by inspecting the methods of the classes in W and checking that new objects
are instances of class in W.
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R1: Consider a class instance creation expression new C(...) occurring in class C’. If
C’> or a subclass of C* is in W then C must be in W. O

The type checker will validate all classes in W and their parent classes. Classes
that are not in W need not be checked. The checker will ensure that classes having
static methods invoked from within a task belong in WW. Taken together rule R1
and R2 ensure that no object of a class that is not in W will ever be created while
evaluating code in W.

We add class whose static methods are used in Reflex to W.

R2: Consider any invocation of a static method C.m() occurring in class C’. If C’ or
a subclass of C? is in VW then C must be in VW. O

While W is clearly an over approximation of the code that will be used in a Re-
flex, we have not found the imprecision of the analysis to cause practical problems.
Substituting a more precise analysis, such as done in [Auerbach et al. 2007], can be
done without affecting the soundness of the type system.

5.2 Implicit Ownership

The key ownership property to be enforced is that objects allocated within a Reflex
task are encapsulated. This means that no object allocated outside of a Reflex task
may refer to a stable or transient object of that Reflex (except to the ReflexTask
instance itself). Conversely, no stable or transient object may refer to an object
allocated outside of the Reflex.

R3: The declaration of a non-private instance field of type T on a ReflexTask class, or
subclass thereof, is only allowed if T is a primitive type. O

Requiring that reference fields in a ReflexTask class to be private, ensures that
isolation cannot be breached by accessing or updating fields of a Reflex.

R4: The declaration of a non-private method m on a ReflexTask class, or subclass
thereof, is only allowed if m is declared @atomic. O

The above rule ensures that interaction between Reflexes and ordinary Java
thread will be non-blocking and data race free.

R5: Methods declared @atomic on a ReflexTask class, or subclass thereof, are restricted
to declaring parameters of primitive and primitive array types, and can at most return
primitive types. O

Any method that can be invoked from ordinary Java runs the risk of leaking
references through arguments or return values. Limiting signatures to primitive
types is definitely safe but too restrictive. The type system allows arrays of primitive
types in argument position, this does not create a breach of isolation by virtue of
the treatment of arrays as transient, i.e. references that can not be retained in the
Reflex.

Finally, the creation of Reflexes must be performed by the infrastructure and be
initiated from outside of a Reflex. Without this rule, it would be possible for an
instance of some subclass of ReflexTask to create another instance of the same
class and breach isolation by accessing private reference fields.
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R6: Calling new on a ReflexTask class, or subclass thereof, is illegal. Invoking methods
of ReflexGraph within W is illegal. O

Dangling pointers within the ReflexTask instance are prevented by segregating
stable from transient references. No (long-living) stable object may acquire a ref-
erence to a (short-lived) transient object. This is done at the class granularity. If
a class is declared stable, then it can only refer to other stable classes.

RT7: The type T of an instance field declaration in a stable class or a parent of a stable
class is legal if T is a primitive type or if T is a stable class. O

Since the set of static safety checks tracks classes, it is critical to prevent in-
stances of transient classes from masquerading as stable types. This is achieved by
mandating that descendant of stable classes are stable.

R8: Assume C is a stable class in W, for any class C’ in W. If C’ extends C then C’
must be stable. O

Following from here, since the ReflexTask class is declared stable by implement-
ing the Stable interface, any subclass thereof can only declare instance fields of
primitive or stable types.

It should be noted that the above rule does not prevent a class declared stable in
some W to have subclasses that do not respect R7 (i.e., they are not valid stable
classes as they, e.g., declare non-stable reference type fields). That is allowed as
long as these are not in W, i.e., not used from within a Reflex.

5.3 Static Reference Isolation

Enforcing encapsulation also requires static variables to be controlled. Without
any limitations, they can be used for sharing references across encapsulation bound-
aries. A drastic solution would be to prevent the code in W from reading or writing
static reference variables. Clearly this is safe, but is it too restrictive? While it
may be possible for newly written code to replace static variables with objects that
are threaded through constructors, the same can not be said for library classes that
could be difficult to refactor. Furthermore, if one did, backwards compatibility
would be lost.

The key observation here is that static variables are not dangerous if they are
never modified. This suggest introducing the notion of reference-immutable types.
These are basically types that are transitively immutable in their reference fields
and mutable in their primitive fields.

R9: A field F in class C is effectively final if it is either (1) declared final and of
reference-immutable type, or (2) declared private, of reference-immutable type, and not
assigned in any non-constructor methods in class C and parent classes of C. O

R10: A class C in W is reference-immutable if all non-primitive fields in the class and
parent classes are effectively final. O

Inference of which types must be immutable is based on the use of static variables.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

17



18 : J. H. Spring et al.

R11: Let T be a class in W or a parent of a class in W. A static field access expression
occurring in T is legal if the field is a primitive or if the field is effectively final and it can
be statically determined that it is assigned a null or a value of reference-immutable type.
An assignment statement occurring in T is legal if the left-hand side of the assignment
is a static field of a primitive type. O

This last rule represents a pragmatic attempt to balance the desire for expressive-
ness, in particular to support the reuse of library code, with the ability to statically
ensure type-safety. However, it turns out that enforcing this rule statically is non-
trivial. Because of subtyping, it is not sufficient to look at the type of the declared
field, but also the possible types of the values that can be assigned to the field.
Thus, to declare a static field of type T safe, all values that can be assigned to it
must be of reference-immutable type. If the type of the declared field is a final
type (declared final) and is a reference-immutable type according to R10, then it
follows that reading from this static field is safe. For non-final types determining
this property may not be possible statically.

We use an approximation on the set of live classes based on the following princi-
ples. This set of live types W for the static variable can be found by analyzing the
class initializer, or <clinit>, of the class declaring it, and from here looking at all
the types that are used directly or indirectly by the class initializer. To calculate
this live set, we use a simple and conservative algorithm where all methods reach-
able from the class initializer are analyzed together with their bytecodes, thereby
refraining from doing any control-flow and data-flow analysis. The algorithm is
shown in Fig. 15.

function analyzeMethod (M)
set live set Siive := {@}
for all instructions ¢ in method M do:
if (7 is a new instruction of type T') then Sive := Siive U {T}
else if (i is an invocation of a method M’ with return type T') then
if (T is void) then ignore, does not affect live set
if (T is declared final) then Siie := Siive U {T'}
if (T is not declared final) then potential safety problem!
else if (i reads a static variable declared in type T') then
Stive := Stive U {analyzeMethod(<clinit> method of T')}
else if (i reads an instance variable of type T')
if (T is declared final) then Sive := Siive U {T'}
if (T is not declared final) then potential safety problem!

Fig. 15. A simple and conservative algorithm for inferring the possible value types that can be
assigned to a static variable of reference-immutable type.

Having analyzed the class initializers and calculated a live set of classes from here,
all classes that are type incompatible with the type of the static field being read are
discarded from the live set as they can never be assigned to the field. The remaining
classes in the live set are then checked for reference-immutability following the rule
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in R10, and in the event that one or more types are not reference-immutable, there
is a safety problem, and the violating code statement will have to be rejected.

Finally, we assume that all static variables are either initialized eagerly before
the instantiations of the Reflex graph or that the infrastructure ensure that class
initializers never allocate in transient memory.

5.4 Capsules

A capsule is manipulated in a linear fashion. At any given time, the following
must be enforced: there is at most one reference to the capsule from a data chan-
nel, and at most one Reflex can have references to the capsule from its stack or
transient objects. With these invariants, the implementation can achieve zero copy
management of capsules.

R12: A capsule is an instance of a subclass of Capsule, which declares only fields of
primitive types and £inal primitive array types, and declares only private constructors.
O

The above rule is a pragmatic choice that effectively and easily ensures that
capsules are reference-immutable (without permitting general reference-immutable
data structures) and can only be instantiated by the Reflex infrastructure. This
has two purposes: (1) it prevents creation of capsules in transient memory which
could lead to dangling pointers; and (2) it ensures that all capsules are allocated
off one infrastructure-controlled memory pool.

R13: Capsule types in W are transient types. O

From the point of view of stable and transient classes, a capsule is “just” like any
other transient class. Thus, we inherit the guarantee that when execute () method
returns there will be no reference to the capsule in the state of a Reflex.

5.5 Arrays

Primitive arrays are by default transient types. Reflexes must use the set of pro-
vided array wrappers for storing primitive arrays in the stable heap, as described
in Sec. 3.3.1. Array of reference types have the same allocation context as their
element type. Thus any array of T is stable if T is stable and transient otherwise.
So, for instance, assuming that S is a stable class, the statement Object[] ms =
new S[1] is valid since ms is transient variable referring to a stable array.

5.6 Further Restrictions

Furthermore, the static checker restrict classes in W from the use of finalization as
this would hamper the constant time deallocation guarantee of the transient area,
thread creation as scheduling is controlled by the infrastructure, and the use of
weak, soft, and phantom references. While not restricted, native code invoked from
a Reflex poses problems. Likewise, the use of reflection to, e.g., load of classes,
is illegal as such classes would not be statically checked. As it is not verified,
native code could perform operations that impact predictability, e.g. by blocking,
or memory safety, e.g., through JNI callbacks. We currently rely programmer to
manually ensure that native code is fit for use in a Reflex.
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6. IMPLEMENTATION

Our implementation builds on the Ovm [Armbuster et al. 2007] real-time Java vir-
tual machine, which comes with an optimizing ahead-of-time compiler and provides
an implementation of the Real-time Specification for Java. The virtual machine was
designed for resource constrained uni-processor embedded devices and has been suc-
cessfully deployed on a ScanEagle Unmanned Aerial Vehicle in collaboration with
the Boeing Company.

We leverage the RT'SJ support in Ovm to implement some of the key features of
the Reflex API. For instance, the stable and transient memory areas in a Reflex are
implemented by reusing the Ovim RTSJ ScopedMemory implementation, and the
threads executing the Reflex tasks are subclasses of the standard RealtimeThread
construct. The virtual machine configuration described here uses an optimizing
ahead-of-time compiler to achieve performance competitive to commercial virtual
machines [Pizlo and Vitek 2006]. Furthermore, in our implementation, we switched
off memory boundary checks on the ScopedMemory that are normally performed
by RTSJ-compliant virtual machines, as these guarantees are provided statically
through our static safety checks.

6.1 Scheduling

Scheduling is implemented in the Ovm virtual machine supporting priority-pre-
emption for real-time threads with a complete range of priorities from 1-42, the
subrange 12-39 are real-time priorities used by Reflex tasks and the remaining are
used for ordinary Java threads. The virtual machine’s mostly-copying garbage
collector is run in an ordinary Java thread.

The ReflexTask instances in each Reflex graph are executed by a single thread
with real-time priorities according to the priority of the graph it belongs to. The
thread is started as a result of an invocation of start on the Reflex graph, which
basically causes the thread of the Clock task to start. Having started, upon reach-
ing its period, the Clock will put the latest time stamp on channel, and traverse
downstream in the graph and execute any schedulable tasks.

6.2 Memory Management

For each ReflexTask, the implementation allocates a fixed size continuous mem-
ory region for the Reflex’s stable area and another region for its transient area.
The size of each of the above is set programmatically in the Reflex API, as shown
in Fig. 3. Furthermore, a buffer is set aside for the transactional log. In our proto-
type implementation, the size of the transaction log is growable, but not shrinkable,
but the log can be reset and already allocated entries reused between transactions.
However, note that the transaction log only holds mutations to stable objects. The
ReflexTask object, the transaction log and all other implementation specific data
structures are allocated in the Reflex task’s stable area, and thus not subject to
garbage collection.

The default allocation area for ordinary Java threads is of course the public heap.
For real-time threads executing the execute method, this area is the transient area
of the task. When an ordinary Java thread invokes a transactional method on
a Reflex, the memory area has to be switched to the transient area of the task
throughout the invocation, and reset once the invocation returns. To enable this,
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the bytecode rewriter of the Ovm compiler has been modified to bracket all invo-
cations of atomic methods declared on the ReflexTask subclass with invocations
to the native setCurrentArea/reclaimArea methods to switch between regions.
Whereas the method setCurrentArea changes the allocation area for the current
thread, the method reclaimArea causes for the objects in the provided area to be
reclaimed by resetting the allocation pointer to the start of the area in constant
time.

The virtual machine also is responsible for redirecting the allocation of stable
classes into the stable heap. For this purpose, another native method, setAlloc-
Kind(graph, class), is exposed for internally identifying stable classes. This
method is invoked by the Reflex run-time once for each stable class used by the
tasks in the graph to be executed. The list of stable classes is provided to the Reflex
run-time engine as a result of the type checking of the given Reflex graph.

Finally, the virtual machine supports allocation policies for meta-data. In par-
ticular, we rely on a policy for lock inflation ensuring that a lock is allocated in the
same area as the object with which it is associated.

6.3 Atomic Methods

To implement the atomic methods, we exploit the preemptible atomic regions [Man-
son et al. 2005] facility of the Ovmm virtual machine, a non-standard facility not
supported by standard compliant commercial Java virtual machines. Any method
annotated @atomic is treated specially by the Ovm compiler. More specifically,
the compiler will privatize the call-graph of a transactional method, i.e., recursively
generate a transactional variant of each method reachable from the transactional
method. This transactionalized variant of the call-graph is invoked by the ordinary
Java thread, whereas the non-transactional variant is kept around as the Reflex
task might itself invoke (from the execute() method) some of the methods, and
those should not be invoked with transactional semantics.

We have applied a subtle modification to the preemptible atomic region imple-
mentation. Rather than having a single global transaction log, a transactional log
is created per ReflexTask instance in the graph, assuming that it declares atomic
methods. This change ensures the encapsulation of each ReflexTask instance, and
enables concurrent invocation of different atomic methods on different ReflexTask
instances.

The preemptible atomic regions use a roll-back approach in which for each field
write performed by an ordinary Java thread on a stable object within the trans-
actional method, the virtual machine inserts an entry in the transaction log and
records the original value and address of field. With this approach, a transac-
tion abort boils down to replaying the entries in the transaction log in reverse
order. Running on a uni-processor virtual machine, no conflict detection is needed.
Rather, the transaction aborts are simply performed eagerly at context switches.
Specifically, the transaction log is rolled back by the high-priority thread before it
invokes the execute method of the schedulable Reflex. Whereas the complexity
of transaction aborts is proportional with the number of writes performed in the
transactional method at the time of preemption, starting and committing a trans-
action can be done in constant time. Upon resuming, the ordinary Java thread will
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discover that it was preempted, and will subsequently retry the invocation of the
transactional method.

6.4 Exceptions

Several exception cases need to be considered:

—If an exception occurs within the transient area of a Reflex during the invoca-
tion of the execute() method, we rely on standard Java semantics causing the
exception object and its stack trace to be allocated in transient memory.

—If the exception propagates out of the execute method, the stack trace is printed
and the task’s computation terminates.

—If the exception occurs during an ordinary Java thread’s invocation of an atomic
method and the exception propagates out of the outermost atomic method, we
rely on standard RTSJ behavior. The problem here is that the exception object
is allocated in the transient area within the task, and thus is out of reach of
the receiving Java thread allocated on the public heap. Leveraging RTSJ spe-
cific behavior, rather than receiving the specific exception object, the ordinary
Java thread will receive an unchecked ThrowBoundaryError with a String based
description of the actual thrown exception.

6.5 Pinning of Objects

The Ovm garbage collector supports pinning for objects such that the objects are
not moved or removed during a collection, and will therefore always be in a consis-
tent state when observed by referent objects from other memory areas, including a
Reflex task. We do not pin static variables, but instead for convenience allocated
them in ImmortalMemory area giving us the same guarantees. In contrast, argu-
ments to atomic methods are heap-allocated objects and must be pinned when the
ordinary Java thread invokes a transactional method and unpinned again when the
invocation exits. We have modified the bytecode rewriter of the Ovm compiler to
instrument the method bodies of the atomic methods to pin any reference type
objects passed in upon entry and unpin again upon exit.

7. EVALUATION

The conducted experiments were performed using the Ovm virtual machine built
with support for POSIX high resolution timers, and configured it with an interrupt
rate of 1 ps, disabled the run-time memory region integrity checks (read/write
barriers) and set the heap size to 512MB. Finally, non-determinism due to just-
in-time (JIT) compilation is avoided through Ovm’s ahead-of-time compiler. As
execution platform we used an AMD Athlon 64 X2 Dual Core processor 4400+
with 2GB of physical memory running Linux with kernel version 2.6.17 extended
with high resolution timer (HRT) patches and configured with a tick period of 1

1S,
7.1 Predictability

To evaluate predictability of Reflexes, we implemented a simple Reflex graph con-
taining a single null task, scheduled it for a 45 us period (equivalent to frequency of
22.05 KHz, a standard audio frequency), and let it execute over 10 million periods.
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We also implemented a C variant of the same code, though the C variant relies on
POSIX real-time extensions.
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Fig. 16. Histograms of inter-arrival time for (a) Reflex graph with a null task, and (b) a C variant
both scheduled for 45 ps periods. The x-axis shows the logarithm of the inter-arrival time in us
and the y-axis shows the logarithm of its frequency.

As depicted in Fig. 16 nearly all interesting observations centered around the 45
us period, though the Reflex variant appears to be slightly less timely than the C
variant, because the spread in inter-arrival time is wider. Also note the observations
clustered around 200-250 us for both variants, which we attribute to perturbations
in the underlying operating system. Similar observations for an equivalent base
performance benchmark are reported in [Spoonhower et al. 2006].
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Fig. 17. Missed deadlines over time for (a) a Reflex graph with a null task, and (b) a C variant
both scheduled for 45 ps periods. The x-axis shows the executions (1 million shown) of the periodic
task and the y-axis shows the logarithm of the size of the deadline misses.

Fig. 17 depicts missed deadlines for both Reflex and the C variants. More pre-
cisely, with Reflexes 99.996% of the periods are completed in time compared to
99.997% for the C variant. Interestingly, Fig. 17 indicates some pattern in deadline
misses around 100-200 us for both Reflex and the C variants, though for the C
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variant there seems to more consistency in that pattern. Also, it appears that both
versions experience an equivalent amount of deadline misses, but Reflexes have
more variation in the actual sizes of the misses than the C variant. In both cases,
given the similar patterns in the missed deadlines lead us to believe that these must
be caused by the underlying operating system.

7.2 Performance

We next measured the performance of Reflexes using a music synthesizer applica-
tion, developed for Eventrons [Spoonhower et al. 2006], which we modified to make
use of Reflexes, including a transactional method. In short, the scenario involves
an ordinary Java thread that generates music samples, and writes these to a buffer
on the ReflexTask instance through a transactional method. These samples are
then periodically read by an audio player Reflex scheduled with 45 us periods and
which then writes the samples individually to the sound device for playing. For
the sake of comparison, we implemented a corresponding C variant of the music
synthesizer.
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Fig. 18. Histograms of inter-arrival time for (a) a Reflex and (b) a C variant of an audio player
task scheduled for 45 us periods. The x-axis shows the inter-arrival time in ps and the y-axis
shows the logarithm of its frequency.

Fig. 18 depicts the inter-arrival time of the time-critical audio player thread
for both the Reflex and C variants. As already noted in Fig. 16, outlier clusters
around the 200-300 us range can also be seen in Fig. 18 for both the Reflex and its
C variants. However, in Fig. 18 these outliers appear to have been enhanced, which
we attribute to the effects of buffering congestion in the sound device to which the
time-critical task is writing (twice per execution)?.

The outlier clusters seen in Fig. 18 also seem to have a direct impact on the
missed deadlines as seen in Fig. 19. Specifically, for Reflexes 99.869% of the peri-
ods complete in time and do not cause deadline misses compared to 99.949% for
the C variant. Of particular interest in Fig. 19 is to see how the perturbation
causes regular deadline misses around 180 ps. We consider these anomalies to most

2First the upper 8 most significant bits of the short value are written to the sound device followed
by the 8 least significant.
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Fig. 19. Missed deadlines over time for (a) a Reflex and (b) a C variant of an audio processing
task scheduled for 45 us periods. The x-axis shows the periodic executions (1 million shown) of
the time-critical task and the y-axis shows the logarithm of the size of the deadline misses.

likely be caused by buffering on the sound device or to stem from other interactions
with the underlying operating system, and we have learned (through private con-
versations) from the Eventrons project that they experienced equivalent behavior
at these frequencies. With Reflexes, however, there seems to be further frequent
deadline misses in the ranges 2-3 us, 5-6 ps and around 110-120 ps. These we
attribute to the jitter in timeliness as described earlier and depicted in Fig. 16 and
which also appears to cause similar missed deadlines as seen in Fig. 17.

7.3 Intrusion Detection

We evaluate the Intrusion Detector System implementation, described in Sec. 4.
The graph was configured with a period of 80 us, meaning that the PacketReader
creates capsules at a rate of 12.5 KHz. At this rate, the packet synthesizer, an
ordinary Java thread, is able to generate packets in to the attack detection pipeline
without experiencing underruns, i.e., at a rate which matches the rate with which
the IDS can analyze them. The time used to analyze a single network packet (from
the capsule creation to the end of the TearDrop task) varies from 3 pus to 23 us
with an average of 6 us. One reason for this variation is that some packets are
identified as a possible suspects by one of the tasks, and thus require additional
processing in the automata. If we consider raw bytes instead of network packets,
our IDS implementation delivers an analysis rate of 77MB per second.

7.4 Atomics on Multicore Virtual Machine

One of the limitations of the Ovm implementation is that the virtual machine is op-
timized for uni-processor systems. In order to validate applicability of our approach
we ported much of the functionality of Reflexes to the IBM WebSphere Real-Time
VM, a virtual machine with multi-processor support and a RTSJ-implementation.
The implementation of atomic methods in a multiprocessor setting is significantly
different. They use a roll-forward approach in which an atomic method defers all
memory mutations to a local log until commit time. Having reached commit time,
it is mandatory to check if the state of the Reflex has changed during the method
invocation, and if so abort the atomic method. The entries in the log can safely
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be discarded, in constant time, as the mutations will not be applied. If the task
state did not change, the atomic method is permitted to commit its changes with
the Reflex scheduler briefly locked out for a time corresponding to O(n), where n
is the number of stable memory locations updated by the atomic method. We rely
on a combination of program transformations and minimal native extensions to the
VM to achieve this.

We evaluate the impact of atomic methods on predictability using a synthetic
benchmark on an IBM blade server with 4 dual-core AMD Opteron 64 2.4 GHz
processors and 12GB of physical memory running Linux 2.6.21.4. A Reflex task is
scheduled at a period of 100 us, and reads at each periodic execute the data available
on its input buffer in circular fashion into its stable state. An ordinary Java thread
runs continuously and feeds the task with data by invoking an atomic method on
the task every 20 ms. To evaluate the influence of computational noise and garbage
collection, another ordinary Java thread runs concurrently, continuously allocating
at the rate of 2MB per second. Fig. 20 shows a histogram of the frequencies of
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Fig. 20. Frequencies of inter-arrival times of a Reflex with a period of 100 us continuously in-
terrupted by an ordinary Java thread invoking an atomic method. The x-axis gives inter-arrival
times in microseconds, the y-axis a logarithm of the frequency.

inter-arrival times of the Reflex. The figure contains observations covering almost
600,000 periodic executions. Out of 3,000 invocations of the atomic method, 516 of
them aborted, indicating that atomic methods were exercised. As can be seen, all
observations of the inter-arrival time are centered around the scheduled period of
100 ps. Overall, there are only a few microseconds of jitter. The inter-arrival times
range from 57 to 144 us.
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8. CONCLUSIONS

We presented a new programming model, Reflexes, for programming highly-responsive
systems in Java. Reflexes combine control and data to provide high-frequency and
predictable real-time tasks. They avoid garbage collection pauses with a region-
based memory model that is both simple and statically type safe. A Reflex can
thus be scheduled periodically by a priority preemptive scheduler running at higher
priority than any other thread in a Java virtual machine including the garbage
collection thread. While Reflexes are protected from interference, they are not
completed isolated. They can communicate with standard Java threads through a
transactional memory abstractions that prevents priority inversion by preemption
and roll-back of non-real-time tasks.

Source code for our Ovm implementation and examples can be found at:
http://www.cs.purdue.edu/homes/jv/reflex.
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