One Stack to Run Them All*

Reducing Concurrent Analysis to Sequential Analysis
under Priority Scheduling

Nicholas Kidd, Suresh Jagannathan, and Jan Vitek

Purdue University
{nkidd,suresh, jv}@cs.purdue.edu

Abstract. We present a reduction from a concurrent real-time program
with priority preemptive scheduling to a sequential program that has
the same set of behaviors. Whereas many static analyses of concurrent
programs are undecidable, our reduction enables the application of any
sequential program analysis to be applied to a concurrent real-time pro-
gram with priority preemptive scheduling.

1 Introduction

Embedded systems are pervasive and are becoming ever more dependent on
complex software with significant correctness and reliability requirements. From
automobiles to the space shuttle, software is rapidly becoming the most signifi-
cant part of development time of new devices. Due to the drastic costs of software
errors, it is crucial that verification techniques handle the demands and specific
requirements of embedded systems. The goal of this work is to broaden the ap-
plicability of known software verification techniques from sequential programs
to a large class of real-time concurrent programs.

The programming model used in the vast majority of deployed devices defines
a set of periodic tasks—tasks that perform computation at a regular interval
(period)—that respond to or monitor events. Each task is typically assigned a
priority, and tasks are scheduled by a priority preemptive scheduler—a sched-
uler that always chooses to schedule the highest-priority task that is currently
runnable. A lower-priority task is preempted when a higher-priority task becomes
runnable, and is rescheduled only when the higher-priority task has finished.

The main contribution of our work is a general reduction from a concurrent
program with priority preemptive scheduling to a sequential program, which
makes the concurrent program amenable to recent research on automated testing
of sequential programs (e.g., DART [1], EXE [2], and KLEE [3], to name a few
such systems). Our only two restrictions are that the concurrent program has
a finite number of tasks, and that the tasks execute with interleaved semantics
(e.g., on a uniprocessor). In the embedded world, these restrictions are the norm
as they ensure predictability, which is oftentimes more important than absolute
performance.

* Supported by NSF under grants CCF-0811631 and CCF-0701832.

J. van de Pol and M. Weber (Eds.): SPIN 2010, LNCS 6349, pp. 245261] 2010.
© Springer-Verlag Berlin Heidelberg 2010

246 N. Kidd, S. Jagannathan, and J. Vitek

For the important case of finite-data concurrent programs, (i.e., can be mod-
eled as a Boolean program or multi-pushdown system), our reduction shows that
the problem of determining the set of all possible reachable program configura-
tions is decidable. (Deciding the set of reachable configurations subsumes many
testing notions such as statement and condition coverage). While finite-data may
seem restrictive, for embedded systems and especially safety-critical systems, it
is often the case that a program will pre-allocate the required amount of memory
to provide greater predictability (i.e., to remove unpredictable and potentially
costly invocations of the memory allocator).

The reason that it is not readily apparent that a concurrent program with pri-
ority preemptive scheduling could be reduced to a sequential program is because
all of the characteristics of traditional concurrent programs that make analysis
difficult are still present. There are multiple threads of execution, shared state,
locks, and preemption. Furthermore, each thread is likely to be non-terminating
as it must execute once per period. The key insight behind our reduction is that
because a preempted lower-priority thread is not rescheduled until the higher-
priority thread has finished, the two threads can share the same stack. That
is, preemption can be modeled as merely a function call. Thus, a concurrent
(multi-stack) program can be reduced to a sequential (one-stack) program.

Another important aspect of real-time programming is avoiding priority in-
verston. Priority inversion occurs when a higher-priority thread ¢; cannot make
progress because a lower-priority thread ¢; has ownership of a shared resource,
such as a lock. Even worse, a medium-priority thread ¢,, can preempt ¢;, in ef-
fect giving t,, priority over t;. Overall, priority inversion causes t5’s priority to
be lowered to that of ¢; so long as t; owns the resource. Coupled with priority
scheduling, priority inversion can lead to deadlock. Two common protocols [4]
for addressing priority inversion include:

1. Priority Ceiling Protocol (PCP) statically associates with each shared re-
source (lock) the priority of the highest-priority thread that may acquire
that resource. When a thread ¢ acquires a resource r, t’s priority is tem-
porarily raised to r’s priority, and is restored when 7 is released. Note that
due to the way priorities are assigned to resources, r’s priority must be at
least as high as ¢.

2. Priority Inheritance Protocol (PIP) temporarily elevates the priority of a
lower-priority thread ¢; that owns a resource r required by a higher-priority
thread t;, to that of ¢5 until ¢; has released r.

In comparison, PCP is an eager (or pessimistic) protocol, while PIP is a lazy
(or optimistic) protocol that avoids elevating priorities until strictly necessary.
Moreover, PCP guarantees dead-lock freedom [4], whereas PIP does not.

Our second contribution is to show that configuration reachability of a con-
current finite-data program with a priority preemptive scheduler (i) remains
decidable for a PCP-extended programming model, (ii) is undecidable in general
for a PIP-extended programming model, and (iii) is decidable for a PIP-extended
programming model with properly nested locks.

One Stack to Run Them All 247

2 Reduction

A concurrent program is a shared-memory computation by a finite number of
threads ¢4, ..., t, that execute with interleaved semantics. Associated with each
thread t;, 1 < ¢ <, is a priority, priority(¢;), and a period, period(¢;), in which
t; must perform its computation. We assume that each thread completes its task
once per period (i.e., all deadlines are met). In addition, our abstraction of time is
a hyperperiod H, which is the least common multiple of the periods of all threads.
Observe that each thread ¢;, 1 < i < n, must execute a; = H/period(t;) times
per hyperperiod H. Thus, we reduce a concurrent program with heterogeneous
periods to a concurrent program with a single period, namely H, by extending
the concurrent program to have a; copies of ¢;, where each copy has the same
priority. For the remainder of the paper, all threads are assumed to have the
same period H. Finally, each thread (copy) becomes schedulable (i.e., is awoken)
non-deterministically.

Remark 1. The reduction to a single hyperperiod is a sound over-approximation.
For example, a system with threads 77 and T with periods 2 resp. 3 will have
three copies of T7 and two copies of T, because the l.c.m. of the periods is H = 6.
The reduction to a single period H allows the schedule T} T1T1T>T5 which is not
allowed in the original system. A more precise reduction can be easily encoded
by adding additional scheduling constraints (i.e., a finite amount of data) to the
program.

The key insight behind our reduction is that because of priority preemptive
scheduling, all running threads can share the same stack. Consider the case
where a thread ¢ is executing with current stack contents u, and another thread
t', such that priority(t) < priority(¢') is awoken non-deterministically. At this
point, and with a traditional non-deterministic scheduler, a concurrent program
must maintain two active and distinct stacks, namely u and u’, because t' could
be preempted at any time to allow ¢ to resume execution. However, with priority
preemptive scheduling, it is guaranteed that ¢’ will not be preempted by ¢, or by
any thread t” where priority(t”) < priority(¢'). Thus, ¢’ can share the same stack
at t (see Fig. [I)).

The reduction is then as follows. First,
the priority preemptive scheduler is made ex- +
plicit by adding to the program the code
shown in Fig. The Hyperperiod proce- i i
dure in Fig. executes each thread one E i
time, choosing non-deterministically a sleep- u
ing thread to execute via the choose opera- o ,—1
tion, which returns an index that satisfies the
supplied guard. An infinite cycle of hyperpe-
riods is simulated by invoking Hyperperiod
in a non-terminating loop and ensuring to
reset the array Sleeping (see below) before
doing so. During each hyperperiod, the scheduler has two tasks: (i) it must ensure

Fig. 1. Sharing stacks u and u’

248 N. Kidd, S. Jagannathan, and J. Vitek

// Sleeping flags // Wake-up higher-priority thread
Sleeping[n] = {true,...,true}; ||void Schedule() {
// Thread priorities // Save current priority
Priorities[n] = ...; int prevPrio = Prio;
// Thread entry points for i in (1..n) {
Threads[n] = ...; if (Priorities[i] <= Prio)
continue;
// 0 => choose any thread if (nondet() && Sleepingli]) {
Prio = 0; Prio = i;
Sleeping[i]l=false;
void Hyperperiod() { Threads[i] .entry();
while (\/,Sleeping[il) { break;
j = choose j: Sleepingljl; }
Sleeping[j] = false; }
Threads[j] .entry(); // Restore priority
} Prio = prevPrio;
} }

Fig. 2. Pseudo-code to execute one hyperperiod

that each thread t is awoken so that ¢ can execute its task; and (ii) the wake-
ups should happen non-deterministically. The first task is handled by defining a
Boolean array of size n, where each entry in the array denotes whether a thread
t is sleeping or not. (In Fig. 2 the array is named Sleeping.) The scheduler
loops until all threads have been awoken and completed their periodic task.

The second task is handled by performing a source-to-source transformation
on the code of each thread so that it non-deterministically invokes Schedule
before each statement st. That is, if a thread is comprised of program state-
ments sty,...,stg, then the transformed program will have program statements
st},...,st,, where each st’ is defined as: st’ £ Schedule();st. In the definition
of Schedule in Fig.[2 the function nondet non-deterministically returns true or
false. When Schedule is invoked, the code of a higher-priority thread ¢;; than
the thread t; whose code is currently executing may be invoked, which corre-
sponds to t; being preempted by t;;. Before executing a thread ¢; by invoking
Threads[i] .entry(), the flag Sleeping[i] is set to false to ensure that ¢; is
executed exactly once per hyperperiod H.

Non-determinism plays a second role, namely, to enumerate all possible or-
derings of same-priority threads. With priority-preemptive scheduling, a thread
will only be preempted by a higher-priority thread. If two threads ¢ and ¢’ have
the same priority, and because our programming model uses non-deterministic
wakeups, schedules in which ¢ executes before ¢’ and vice versa must both be con-
sidered. Non-determinism allows for both schedules to occur. Moreover, in the
finite-data case that is discussed next, pushdown-system reachability algorithms
naturally consider both schedules.

One Stack to Run Them All 249

Table 1. The encoding of an ICFG’s edges as PDS rules

PDS Rule Control flow modeled

(p,n1) — (p,n2) Intraprocedural edge ni — nq

DyNe) — (P, ef Te all to f, with entry ey, from n. that returns to r.
¥ Call ith 7, B h

(p,zs) — (p,€) Return from f at exit

By reducing a concurrent program with priority preemptive scheduling to a
sequential program, existing automated techniques for sequential programs, such
as model checkers [5l6] and code-coverage techniques [1U213], can be applied to
the generated sequential program.

3 Reduction for Multi-PDSs

For the important case of a finite-data programs, each thread can be modeled by
a pushdown system (PDS), and the concurrent program as a multi-PDS [7I8[9].
(We will use the term thread and PDS interchangeably.)

Definition 1. A pushdown system (PDS) is a tuple P = (P, I',70, 4), where
P is a finite set of control states, I" is a finite stack alphabet, 7 is the initial stack
symbol of P specifying the entry point of the modeled thread, and A C (P x
I') x (P x I'*) is a finite set of rules. A rule r € A is denoted by (p,v) — (p,u').
A PDS configuration (p € P,u € I'*) is a control state along with a stack. A
defines a transition system over the set of all configurations. From ¢ = (p,yu),
P can make a transition to ¢’ = (p/,u'u), denoted by ¢ = ¢/, if there exists a
rule (p,y) — (p',u') € A. The reflexive transitive closure of = is denoted by
=%

Without loss of generality, a pushdown rule is restricted to have at most two
stack symbols appear on the right-hand side, i.e., for (p,7) — (' v') € A,
|u'| < 2 [10]. A PDS naturally captures the interprocedural control flow of a
thread (see Tab.[I]). To model the program state, one typically encodes the global
state of the program in P and the local state (i.e., local variables to a function) in
I'. In addition, parameter passing and returning a value from a callee to its caller
is modeled by introducing global variables and their corresponding assignments.
We direct the reader to Schwoon’s thesis [I0] for a detailed description.

A concurrent program consists of a set of PDSs Py,...,P, that share a
common set of control states P. For PDS synchronization, any finite-state syn-
chronization protocol can be embedded in P. Because in §4l we consider proto-
cols for addressing priority-inversion in finite-data programs, we will require a
mechanism to associate priorities to sections of code that manipulate shared re-
sources (i.e., critical sections). A natural choice—and one common to real-time
programming—is to use locks to synchronize execution of critical sections. Thus,

250 N. Kidd, S. Jagannathan, and J. Vitek

we will facilitate these extensions by distinguishing the set L, a finite set of non-
reentrant locks[] We now require a mechanism to specify when a thread acquires
and releases a lock. We assume that for a PDS P = (P, I, 79, 4) and for each
lock [in L, the following subsets of A are defined:

— acq(l € L, P) is the set of rules that acquire I;

— rel(l € L, P) is the set of rules that release [;

— acq(P) & Uiz acq(l, P) is the set of rules that acquire any lock;
— rel(P) £ U, rel(l, P) is the set of rules that release any lock; and
— nolock(P) £ A\ (acq(P) Urel(P)) is the set of non-locking rules.

Altogether, a concurrent program consists of a global state space P, a finite set of
threads P, ..., P, that share the same state space P, and a finite set of locks L.
Because a concurrent program consists of a finite number of threads Py, ..., Py,
we assume that the threads are sorted according to their priority.

Definition 2. A multi-PDS is a tuple IT = (P, pg, P1, ..., Pn, L), where P is
the shared control state of each PDS P; = (P, I;,78, A;), 1 <i <mn;py € P is
the initial control state; and L = {l1,...,[|r|} is a finite set of | L| non-reentrant
locks. A global configuration (p,ui,...,un,0) is a tuple consisting of:

— a control state p € P modeling the global state of IT;

— a stack u; for each PDS P;, 1 < i < n, where u; € I U{T~{} and T ¢ I;
is a unique stack symbol that is used to denote a sleeping thread (discussed
below); and

— an ownership array o of length |L|, in which each entry indicates the
owner of a given lock: for each 1 < j < |L|, o[j] € {0,1,...,n} indicates the
identity ¢ of the PDS P; that holds lock I; (0 signifies that [; is free). Given
0, a state change in which P; acquires lock I, is denoted by 6[j — i], and a
state change in which P; releases lock [;—setting {;’s owner to 0—is denoted
by o[j — 0]. Let 6y denote o with all entries set to 0.

The set of all global configurations is denoted by G. The initial global config-
uration is go = (po, T¢,---» 178, 00). P; is active in a global configuration g,
denoted active(g, P;) if its stack contents u; # T~ V €, which stipulates that P;
is neither waiting to begin execution—u; # T~§—nor has finished execution—
u; # €. The priority of g, denoted priority(g), is the maximum of the active
threads: priority(g) = max({priority(P;) | active(g, P;)}).

A global configuration g = (p,uq,...,u,,0) can be thought of as representing
the set of (local) PDS configurations {(p,u;) | 1 <4 < n}. For the initial global
configuration go = (po, T8, ..., T4, 00), the special stack symbol T denotes
that each thread is waiting to begin execution.

Interleaved execution of IT is defined by the transition relation ~~C G x G
on global configurations. As is customary, we will use g ~ ¢’ to denote that

! Reentrant locks that are acquired and released at procedure boundaries are reducible
to non-reentrant locks [I1].

One Stack to Run Them All 251

(9,9") €~>. Intuitively, there are two types of transitions that IT can perform
to go from g to ¢g’. The first transition type is that a sleeping thread is awoken
non-deterministically. In the initial global configuration g, the stack contents of
each PDS P;, 1 <i < n, is T~{, where the special stack symbol T denotes that
P; is sleeping. For P; to be awoken, the special stack symbol T must be popped
from the top of P;’s stack. We observe that at a global configuration g where P;
is sleeping, delaying the wake-up of P; until after all currently-running higher-
priority threads (i.e., {Py | i # i’ A priority(P;) < priority(P;:) A active(g, Pi)})
have finished execution results in the same set of configurations being reachable
from g—{g'| g ~* g'}-—moduloT, where moduloT denotes that the stacks T~
and ¢ are considered equal. The reasoning is straightforward: even if P; were
to be awoken, it would not be able to perform any computation steps until P,
has finished execution, at which point non-determinism in ~~» would allow P; to
be awoken resulting in the same set of reachable configurations moduloT.

The second transition type is that the highest-priority thread that has already
been awoken is able to update the global state and its (local) stack. Only the
highest-priority thread is able to make a transition because the programming
model uses a priority preemptive scheduler. We now formally define exactly
when g ~ ¢’ holds for II.

Lodpyut, .y TY8, oo yun, 0) ~ (pyut, ..., Ye, ... un,0) iff priority(g) <
priority(P;). Thread P; is only awoken if P; has a higher-priority than the
currently executing thread.

2. Dy ULy ey Yilliy e ey Uy O) > (P ur, e W UG, U, O
priority(g) = priority(P;) and r; = (p,v) — (p',u’) € A; and:

(a) If r; € nolock(P;), then &' = 6. The transition enabled by r; does not
update the state of any lock [; € L.

(b) If r; € acq(l; € L,P;) and 0[j] = 0, then & = 5[j — 4. The lock I; must
be free in g, and is owned by P; in ¢’

(c) If r; € rel(l; € L,P;) and 6[j] = 4, then & = &[j + 0]. The lock /; must
be owned by P; in g, and is free in ¢'.

The reflexive transitive closure of ~» is denoted by ~»*.

3.1 Model Checking Problem

As is common in PDS-based model checking [T2/T3|[7I]], the problem of interest
is to compute reachability.

Problem 1. Given IT and g € G, compute the set of forwards reachable configu-
rations G’ = {¢' | g~*¢'}.

We restrict ourselves to reachability from a single global configuration g not
for any technical reason, but because of the nature of embedded software. As
discussed in §2], the target application consists of a finite set of periodic tasks
(threads), and it is assumed that each thread has the same period and completes
one task each period (i.e., makes its deadline). Hence, the concurrent program

252 N. Kidd, S. Jagannathan, and J. Vitek

consists of an infinite cycle of periods, where for the finite-data case, the only
difference between starting configurations is the initial state p, which is py at
program onset. Given a black box to solve Problem [(i.e., to compute the set
of single-period reachable configurations G’ from g € G), then the set of all
reachable configurations can be computed via repeated queries—there are only
a finite number of states p to start from because P is finite, the stack of each
PDS P; always begins in the initial stack T+, and a successive period can only
begin from a state p in the set {p | (p, €1, ..., €en, 00) € G'} B

Problem [1] is decidable for II, and shown by reduction to context-bounded
analysis (CBA) [7,14]@

Theorem 1. Given II = (P,po,P1,...,Pn,L) and g € G, the set G' = {g' |
g ~* g'} of single-period forwards reachable configurations from g is computable
in at most O(n) execution contexts.

Proof. A thread P; can preempt another thread P; at most one time because
once P; preempts P;, by definition P; cannot restart execution until P; has
finished execution. Thus, the number of preemptions is bounded by O(n) which
also bounds the number of execution contexts by O(n). O

3.2 A More Efficient Reduction

We now present a reduction from a multi-PDS I with priority preemptive
scheduling to a single PDS Pj7, the benefit of which is that all of the known
existing techniques for model checking PDSs, including those for expressive log-
ics both linear and branching [I2JT5], can be used for model checking multi-PDSs
with priority preemptive scheduling. Moreover, the most efficient algorithms for
CBA [14] require creating a copy of the global state space for each execution con-
text, resulting in an algorithm to solve Problem [with complexity O(|P x O|?*"),
where O is the finite set of all ownership arrays Because of priority preemp-
tive scheduling, our reduction avoids the need to create copies, resulting in a
complexity on the order of O(|P x O|*2"), where the 2" factor accounts for the
n bits in the array Sleeping that track whether a thread has run during the
(current) hyperperiod. In other words, our reduction adds n bits, whereas [14]
would add n copies of P. (We note that [I4] solves a harder problem because it
allows for the non-deterministic preemption of any thread, i.e., a stack must be
maintained for each thread.)

2 We assume that each thread releases its acquired locks before completing the desired
task. Otherwise, one would also have to possibly enumerate over the ownership arrays
when starting a new period as well.

3 CBA is a program analysis that only considers executions with a bounded number
of execution contexts, where an execution context is one continuous (sequential)
execution of a single thread (albeit there can be many execution contexts of a thread
due to context switching).

* O is finite because there are a finite number of locks and threads (indices), and can
thus be encoded in the control state of a PDS.

One Stack to Run Them All 253

Combining P1,...,P,, and ownership arrays. The first part of the reduc-
tion follows naturally from the definition of IT, G, and ~» from {3l Recall that
the PDSs of IT and, in particular, their constituent stack contents in a configu-
ration g = (p, u1,...,un,0) € G are sorted based on priority. Because of priority
preemptive scheduling, one can view g as having a stack of stacks. For example,
consider a concurrent program IIs that consists of three PDSs Py, Pa, and Ps
and set of locks Ls, and let g3 = (p, u1, u2,us,0) be a configuration of IT5. To
represent g3 as a single-PDS configuration cs, we must rearrange the stacks into
a single stack as follows: cg = (p, ugusui). We must also store the ownership
array o somewhere in c3, and the natural solution is to pair it with the control
state p, yielding c3 = {(p, 0), usuguz). Of course, if a thread has yet to be awoken
(e.g., uz = T'yS’), then it must not be included in c3, for otherwise threads of
lesser priority (e.g., P1 and Ps) would not be able to make progress.

Our first step towards defining Py is to define the PDS PJ* that models the
execution of PDSs Py, ..., P, of II. From the above example configuration cs, we
can see that the ownership array 6 must be encoded in the control state, and the
PDS rules of P{* must perform updates to the embedded ownership array. With
O being the set of all ownership arrays, we define for each PDS P;, 1 < i < n,
the PDS P! whose PDS rules have been modified to account for ownership arrays
as follows:

Definition 3. Given a PDS P; and set of ownership arrays O, define P! as
follows: P! = (P x O, T},~, Al), where P x O encodes an ownership array in
each control state of P/, I'; and ~{ are unchanged from the definition of P;, and
Al contains a set of rules for each rule r = (p,y) — (',u) € A;, where each
set is r extended to update ownership arrays, defined as follows:

r € acq(l; € L,P;), then A contains the set of rules: {{(p,0),7) —
/

p.d),u)|6€ONd[j]=iNd =a[j— 0]}.
r € nolock(P;), then Aj contains the set of rules: {{(p,0),7)
pl,0),u) | o€ O}

\
o~ o~ =~ =~

f

(p',0

tr € rel(l; € L,P;), then A, contains the set of rules: {{(p,0),7) —
(¢’ 0

f

(

Definition 4. Given II = (P,po,P1,...,Pn,L), and for each P; =
(P, T, ~v8, A;), 1 < i < n, define P/ = (P x O, T},~i, Al) according to Defn. [3]
then the PDS PJ* that models the execution of II's constituent PDSs is defined
as: PP = (P x O, I =, I, 7¢, Ay = U, AY).

From Defn. @ we can see that a control state (p,d) of PJ* is a pair that models a
control state p € P from I, as well as an ownership array 0. The stack alphabet
is merely the union of the stack alphabets of the constituent PDSs. By defining
P! for PDS P;, the set of PDS rules have been modified to properly update
the ownership array when a PDS transition is made. Overall, P* models the
execution of each PDS, as well as tracking the ownership status of each lock [€ L.
What is missing is the priority preemptive scheduler that non-deterministically
awakens threads and schedules the highest-priority active thread.

254 N. Kidd, S. Jagannathan, and J. Vitek

Ezxplicit Scheduler. The scheduler shown in Fig. [2 on page 248 is finite-data
(i.e., a Boolean program [16]), and thus convertible into a PDS [I0], which we
will refer to as Psched = (Psched, L sched; Vi, Asched), Where

— Pichea = {1...n} x {0,1}" is a pair where the first component holds the
current value of Prio, and the second component is the Boolean array
Sleepingﬁ

— Lsched = {1...n} x Locs is a pair where the first component is the current
value of prevPrio and the second component is the set of program locations
for the code in Fig.

— ~g is the program location for the start of the Hyperperiod procedure in
Fig.

— Agched is defined using standard Boolean program-to-PDS conversion [10].
(Essentially, interprocedural control flow is encoded via the template in
Tab. [0 and global resp. local Boolean variables are encoded in the PDS
control state P resp. stack alphabet I".)

Combining P* with Pschea. We now define from PJ* and Psched, the PDS Ppr
whose transition system = simulates the multi-PDS IT with transition system ~.
Observe that the transition system of P must include both P and Psched, and
thus to the first degree the two PDSs are joined together. The only modification
to either PDS is to stitch the set of control states together, and reflect this join
in the final set of PDS rules of Pyy.

Definition 5. Given P} = (PP, I7,7, A7) and Psched = (Pscheds {sched,
Y Asched), define Py = (P, I'ir,vm, Arr), where

— P = Piched X P* is a pair where each component holds a value from its
constituent set of control states. Recall that Pschea = {1...n} x {0,1}" is a
priority and an array that determines whether a PDS is sleeping or not, and
P = P x O is P, the original set of control states of IT, paired with O, the
set of ownership arrays.

— I'm = I'T U I'schea is the union of the constituent stack symbols.

— g is the program location for the start of the Hyperperiod procedure in
Fig.

— Ay consists of the following two sets of rules:

1. For each rule r = {(p,0),v) — ((p/,0),u') € A} and control state
(,b) € Psched, Aqr contains the set of rules:

{{(s,b,p,0),7) = ((s,b,p',0),u),((s,6,,0),7) — ((s,b,p,0),ms7)}

In the set, the first rule is r extended with a control state from Picheq.
The control state is not modified as the rules from A} do not modify
the state of the scheduler. The second rule implements a function call
to Schedule in Fig. 2] which will non-deterministically invoke the code
of a higher-priority thread or return. Moreover, from a configuration
{(,b,p,0),vyu) of Prr, Prr non-deterministically chooses to simulate P}
or Pyched depending on which rule is invoked.

5 The number of distinct priorities is bounded by n because there are only n threads.

One Stack to Run Them All 255

2. For each rule r = ((c,b),7) — ((¢’,V'),u’) € Aschea and control state
(p,0) € P*, A contains the set of rules:

{<<<767pa 5),’}/> — <(§/,5/,p, 6),u’)}.

These rules combine the rules of Pycneq with the control states PJ* of
PT. Similar to the above set of rules, the control state of PJ* is “passed
through” unmodified because the scheduler does not affect that control
state of PT'.

3.3 Correctness

Correctness of the reduction is established by defining a weak bisimulation be-
tween the transition systems of II and Pr. Weak bisimulation is used because
in Pp, the scheduler is made explicit whereas it is implicit in the definition of
~» for II. Thus, configurations of Pj; should only be considered wisible if the
top-of-stack symbol is not a member of [scheq. Formally, for a configuration
c = ((s,b,p,0),yu) of Prr, we define vis(c) = v ¢ (Ischea \ {7#}), and extend
vis to sets of configurations in the usual way. Finally, we define the transition
relation = between visible configurations of Py as follows:

¢ =is | vis(e) Avis(d)ATer, ... ek ie= = o= o= /\ —wis(¢;)
1<i<k

We define the relation =C G x vis(C) from the set G of all global configurations
of IT to the set vis(C) of all visible configurations of Py as follows: g > ¢ iff g =
(P, Uty ... Un,0) A= ((priority(g),b,p,0),un o - -+ 0 uy), where bfi] = u; = T},
o denotes stack concatenation with the exception that the “sleeping stack” T~}
for thread P; is considered a neutral element with respect to concatenation.
In addition, we special case the initial global configuration by defining gy >
((0,b,p0,00),ver) (note that b is true in each position because u; = T~ for all i

in go).

Theorem 2. The binary relation =C G X vis(C) is a weak bisimulation between
the transition systems (G,~») and (C,=vis) of II and Py, respectively.

Proof (Sketch). The proof proceeds by showing that for g > ¢ and g ~ ¢’, then
there exists a configuration ¢’ € vis(C) such that ¢ =5 ¢ and ¢’ > ¢. Likewise,
if g > ¢ and ¢ =5 ¢’, then there exists a global configuration ¢” such that
g~ g" and ¢” ~ ¢”. The complete proof is given in the accompanying technical
report [17]. O

4 Priority Inversion

In systems with priority preemptive scheduling, a situation known as priority in-
verston occurs when a higher-priority thread P; cannot make progress because

256 N. Kidd, S. Jagannathan, and J. Vitek

it waits on a resource (lock) currently owned by a lower-priority thread P;. Two
protocols for addressing priority inversion are Priority Ceiling Protocol (PCP)
and Priority Inheritance Protocol (PIP). We next define each protocol, and show
that Problem [lis (i) decidable for PCP-extended semantics, (ii) undecidable in
general for PIP-extended semantics, and (iii) decidable for PIP-extended seman-
tics when lock usage is properly nested.

4.1 Priority Ceiling Protocol

Priority Ceiling Protocol (PCP) statically associates with each shared resource
(lock) the priority of the highest-priority thread that may acquire that resource.
When a thread acquires a resource, that thread’s priority is temporarily set to
the priority of the resource, and is restored when the resource is released.

A multi-PDS IT is extended as follows to define the PCP-extended semantics:

1. IT is equipped with a map My, from (sets of) locks to (sets of) priorities.

2. For a global configuration g = (p,u1, ..., un, 0), define LocksHeld(P;) = {i, |
o0[j] = i} to be the set of locks held by P; at configuration g.

3. The PCP-extended priority of P;, denoted by prioritypcp (P;), is the maximum
of P;’s statically determined priority and of the set of locks held by P;:
prioritypcp = max(priority(P;), M (LocksHeld(P;)).

We now show that for the PCP-extended semantics, Problem [remains de-
cidable. Decidability follows from Thm. [0l Though not presented here, it is also
possible to extend the construction of P to support PCP-extended semantics,
which would benefit from the improved complexity.

Theorem 3. For concurrent program II = (P,po,P1,..., Pn, L, ML) with pri-
ority preemptive scheduling and PCP-extended semantics, Problem[is decidable.

Proof. Thm.Blfollows from Thm.[Il PCP-extended semantics reduces the number
of threads that can preempt the currently executing thread P;: if P; has acquired
a lock l; such that Mg(l;) > priority(P;), then fewer threads can preempt P;
until P; releases ;. Thus, the number of execution contexts remains bounded by
O(n) because the number of valid schedules (i.e., preemptions) of PCP-extended
semantics is a subset of non-extended semantics, and the problem is decidable.

O

4.2 Priority Inheritance Protocol

Priority Inheritance Protocol (PIP) temporarily elevates the priority of a low-
priority thread that owns a resource required by a high-priority thread to that
of the high-priority thread until it has released the resource. The PIP-extended
semantics is defined by extending II in the following ways:

1. Let [' = Ui I;. Extend each I, 1 <1 < n, with the set of fresh stack symbols
{L; |1 € L} where for each I € L, 1; ¢ I'. The new symbol 1; is used to
denote that a thread is waiting to acquire the lock [.

One Stack to Run Them All 257

2. For a global configuration g = (p,uy, ..., u,,0) and lock I, define Waiting(l)
to be the set of threads whose top-of-stack symbol is L;, i.e., Waiting(l) =
{Pi | ui = Ll Al € T}, The set Waiting(1) is the set of threads that are
blocked waiting to acquire the lock I. We extend Waiting to operate over sets
of locks in the natural way.

3. The PIP-extended priority of thread P;, denoted by prioritypp(P;), is defined
as the maximum of P;’s statically determined priority and of the threads that
wait on a lock owned by P;:

prioritypp (P;) = max(priority(P;), prioritypp (Waiting(LocksHeld(P;)))).

The recurrence of prioritypp in its own definition ensures that P;’s priority
includes the transitive closure of all threads that are blocked because of the
locks P; holds, i.e., the threads waiting on locks held by P;, the threads
waiting on locks held by those threads, and so on.

4. Extend ~» to include transitions to and from global configurations where
threads are waiting to acquire a lock [as follows:

(2) 9= (DU, oy Yilliy.enyUp,0) > (DyUL, .oy LiYillsy .oy Un, O) Iff
priority(g) = priority(P;) and r; € acq(l € L,P;) and 6[l] # 0. This rule
defines a set of transitions where the highest-priority thread in global
configuration g attempts to acquire a currently held lock [. Because [is
held by another thread, P; makes a transition to the waiting state by
pushing 1; on the top of its stackd

(b) g={(D,u1,. .y Yilliy .o, Up,0) ~ (P uf, ... 0wy .. ul, 0 iff
priority(g) = priority(P;) and r; = (p,v;) — (p’,u') and r; € rel(l,P;),
where ¢’ = o[l — 0] and uj, = v} if up = L;u) and ui otherwise. By
removing |; from the top of the stack of all threads, those threads that
were waiting to acquire [can now re-attempt to do so (while still adhering
to priority scheduling).

Each of the listed modifications extends IT by only a finite amount of data and
hence the same effect could be achieved by augmenting IT with additional state
and PDS rules to encode the scheduling logic.

We consider two cases, that of non-nested and nested lock usage, where lock
usage is said to be properly nested if for all program paths, locks are released in
the opposite order in which they were acquired. We show that Problem [1] for a
concurrent program with PIP-extended semantics is undecidable in general, and
decidable for properly nested locks.

Non-nested locks. When lock usage is not restricted to proper nesting, Prob-
lem [for a concurrent program with PIP-extended semantics is undecidable. The

5 We assume that if PDS P; attempts to acquire a lock it has no other transition
that can fire from (local) configuration (p,vy;u;). (Such can be made the case via
the addition of new stack symbols and rules.) Otherwise, when P; is released from
waiting (see the next item), it could non-deterministically decide to not acquire the
lock and hence violate priority scheduling.

258 N. Kidd, S. Jagannathan, and J. Vitek

proof of undecidability follows from Kahlon et al. [8]. Consider a 2-PDS with
three locks (P, po, P1, Pe, {l1,12,13}), where Py has a higher priority (2) than
Py (1). One way to show that reachability analysis is undecidable in general for
such a system is to develop a scenario where P; and P; move in lock-step, which
would allow the 2-PDS to determine the emptiness of the intersection of two
context-free languages—a well-known undecidable problem. To make P; and Po
move in lock-step we must use the PIP-extended semantics. Namely, the PDSs
need to acquire and release locks in such a fashion that Ps, which has a higher
priority than P;, repeatedly needs to acquire a lock that is held by P;. Thus, P
will repeatedly inherit Po’s priority so that it can release the lock.

In [§], this is accomplished by acquiring and releasing the three locks {15 in a
cycle using hand-over-hand locking. Assume that P; currently owns l1, then P
will first acquire Iy before releasing [, and subsequently will acquire I3 before
releasing l2, and so on ad infinitum. In the same scenario, assume that P, which
in our programming model has a higher priority than P;, currently owns [and
acquires and releases the locks in the same fashion. We can see then that P, will
acquire 3, release I3, and then attempt to acquire /1, which causes P; to inherit
the priority of P,. However, instead of reaching a state when P; releases the
resources needed by Ps, P; acquired Iy and then releases [1, which will cause Py
to again wait on P; then next time it completes the cycle and needs l5. The end
result is that P; and P, chase each other around the lock cycle, which leads to
an unbounded number of execution contexts and the ability to solve undecidable
problemsﬁl

Theorem 4. For concurrent program II = (P,po,P1,. .., Pn, L) with priority
preemptive scheduling and PIP-extended semantics, Problem [l is undecidable.

Proof. The proof follows from the proof of Theorem 8 [8] Section 11]. O

Nested locks. When lock usage is properly nested, Problem [1lis decidable for
the PIP-extended semantics. The proof is by reduction to CBA.

Theorem 5. For concurrent program II = (P,po,P1,. .., Pn, L) with priority
preemptive scheduling, PIP-extended semantics, and nested locks, Problem [l is

decidable.

Proof. From Thm. [I] each thread P; can still perform at most one preemption.
Once P; is executing, it can cause lower-priority threads to inherit its priority
at most |L| times because lock usage is properly nested and hence the number
of locks held by a lower-priority thread is monotonically decreasing with each
priority inheritance. Thus, for n threads there is at most one preemption and
|L| inheritances per thread which bounds the number of execution contexts by
O(n|L|). a

7 For the reader concerned with reaching a configuration where P1 owns [1 and P2
owns lg, refer to [8, Appendix].

One Stack to Run Them All 259

5 Related Work

Lal and Reps [14] gave a reduction from analysis of a concurrent program under
a context bound to analysis of a sequential program. A context bound is re-
quired because reachability analysis is undecidable in general for their program-
ming model. By considering only programs that run under priority preemptive
scheduling (and not the general preemption model considered by Lal and Reps),
the problem becomes decidable. Hence, our reduction is sound and complete,
i.e., it is not an under-approximation aimed at bug-finding but a technique for
verifying properties of concurrent real-time programs.

Jhala and Majumdar [18] showed that interprocedural analysis of concurrent
asynchronous programs is decidable. Whereas they take advantage of asynchrony,
we take advantage of having a priority preemptive scheduler. Atig et al. [I9] gen-
eralized the asynchronous programming model to allow for a finite number of
priority levels. They show that reachability analysis of the more general program-
ming model is decidable by reduction to the reachability problem of Petri nets
with inhibitor arcs. Their model is more general; however, they do not consider
important protocols for addressing priority inversion and moreover our reduction
to a single-PDS is more efficient.

KISS [20] coined the merging of two-threaded programs into single-threaded
programs. Our scheduler concretization is the generalization of their technique
where thread T7 non-deterministically invokes thread 715 and the return to 7} is
also non-deterministic. We take advantage of the properties of priority preemp-
tive scheduling to show that the model checking problem is in fact decidable.

Lindstrom et al. [21I] use Java PathFinder (JPF) [22] to model check Real-
Time Java [23]. While they also consider priority preemptive scheduling, and
other RTSJ details not covered here, their approach is a bug-finding approach
because JPF is an explicit state model checker that in general cannot explore
the entire state space.

6 Concluding Remarks

Our reduction shows that a concurrent real-time program is, in essence, a se-
quential program under the covers. By reducing the multi-PDS IT to a PDS Py,
we are able to leverage efficient algorithms for sequential program analysis to an
important class of concurrent ones. A limitation of our approach is the lack of a
model of time. For future work, we intend to consider how timed automata [24]
could be integrated with I, and how it would affect the reduction to Pry.

Acknowledgements. The authors would like to thank Tomas Kalibera, Akash
Lal, and Pavel Parizek.

References

1. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In:
PLDI 2005: Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 213-223. ACM, New York (2005)

260

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

N. Kidd, S. Jagannathan, and J. Vitek

Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: Automati-
cally generating inputs of death. ACM Trans. Inf. Syst. Secur. 12(2), 1-38 (2008)
Cadar, C., Dunbar, D., Engler, D.R.: Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In: 8th USENIX Symposium on
Operating Systems Design and Implementation, pp. 209—224. USENIX Association
(2008)

. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach

to real-time synchronization. IEEE Trans. Comput. 39(9), 1175-1185 (1990)

. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of in-

terfaces. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 103-122. Springer,
Heidelberg (2001)

. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Sympo-

sium on Principles of Programming Languages, pp. 58-70. ACM, New York (2002)

. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.

In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93-107.
Springer, Heidelberg (2005)

. Kahlon, V., Ivancic, F., Gupta, A.: Reasoning about threads communicating via

locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505-518. Springer, Heidelberg (2005)

. Kahlon, V., Gupta, A.: On the analysis of interacting pushdown systems. In: Sym-

posium on Principles of Programming Languages, pp. 303-314. ACM, New York
(2007)

Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, Technische Univer-
sitdt Miinchen (2002)

Kidd, N., Lal, A., Reps, T.: Language strength reduction. In: Alpuente, M., Vidal,
G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 283-298. Springer, Heidelberg (2008)
Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135-150. Springer, Heidelberg (1997)

Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. Elec. Notes in Theor. Comp. Sci. 9 (1997)

Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37-51.
Springer, Heidelberg (2008)

Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor,
S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 127-138. Springer,
Heidelberg (2000)

Ball, T., Rajamani, S.K.: Bebop: a path-sensitive interprocedural dataflow engine.
In: PASTE 2001: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pp. 97-103. ACM, New York
(2001)

Kidd, N., Jagannathan, S., Vitek, J.: One stack to run them all. Technical Report
10-005, Purdue University (May 2010)

Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007: Proceedings of the 34th annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 339-350. ACM, New York (2007)
Atig, M.F., Bouajjani, A., Touili, T.: Analyzing asynchronous programs with pre-
emption. In: TARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, Schloss Dagstuhl - Leibniz-Zentrum Fuer In-
formatik, pp. 37-48 (2008)

20.

21.

22.

23.

24.

One Stack to Run Them All 261

Qadeer, S., Wu, D.: Kiss: Keep it simple and sequential. In: PLDI 2004: Proceedings
of the ACM SIGPLAN 2004 Conference on Programming Language Design and
Implementation, pp. 14-24. ACM, New York (2004)

Lindstrom, G., Mehlitz, P.C., Visser, W.: Model checking real-time java using java
pathfinder. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp.
444-456. Springer, Heidelberg (2005)

The Java PathFinder Team: Java PathFinder (2010),
http://babelfish.arc.nasa.gov/trac/jpf/

Bollella, G., Gosling, J., Brosgol, B., Dibble, P.; Furr, S., Turnbull, M.: The Real-
Time Specification for Java. Addison-Wesley, Reading (2000)

Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183-235 (1994)

http://babelfish.arc.nasa.gov/trac/jpf/

	One Stack to Run Them All
	Introduction
	Reduction
	Reduction for Multi-PDSs
	Model Checking Problem
	A More Efficient Reduction
	Correctness

	Priority Inversion
	Priority Ceiling Protocol
	Priority Inheritance Protocol

	Related Work
	Concluding Remarks

