
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2000/03/06 v2.1]

Confined Types in Java

Jan Vitek1,∗ and Boris Bokowski2,†

1 CERIAS, Computer Sciences Department, Purdue University,
2 Object Technology International, Ottawa, CA

SUMMARY

The sharing and transfer of references in object-oriented languages is difficult to control.
Without any constraint, practical experience has shown that even carefully engineered
object-oriented code can be brittle, and subtle security deficiencies can go unnoticed. In
this paper, we present inexpensive syntactic constraints that strengthen encapsulation
by imposing static restrictions on the spread of references. In particular, we introduce
confined types to impose a static scoping discipline on dynamic references and anonymous
methods to loosen confinement somewhat to allow code reuse. We have implemented
a verifier which performs a modular analysis of Java programs and provides a static
guarantee that confinement is respected. Copyright c© 2000 John Wiley & Sons, Ltd.

key words: sharing, aliasing, Java, object-orientation, security

1. INTRODUCTION

Writing secure code is hard. The steady stream of security defects reported in production code
attests to the difficulty of the task. Software systems, such as the Java virtual machine, that
permit untrusted code to mingle with authorized code raise the stakes for security as trust
boundaries become thinner and fuzzier.

In this paper, we focus on the interaction of sharing and security in object-oriented
programming languages and propose a solution tailored for Java. In Java, like most modern
object-oriented languages, objects are manipulated exclusively through references. Basic
operations such as assignment and parameter passing will thus create aliases. Consequently,
controlling the spread and sharing of object references is difficult. Pervasive aliasing implies
that there can be no accurate notion of ownership – veryfing a priori if an object is reachable
from another is undecidable (static analysis is limited to conservative results [1]). In a partially

∗Correspondence to: J. Vitek, CERIAS, Computer Sciences Department, Purdue University, West Lafayette,
IN 47907, USA
E-mail: jv@cs.purdue.edu
†Part of this work was done while at the Freie Universität Berlin, Berlin, Germany.

Received 13 April 1999
Copyright c© 2000 John Wiley & Sons, Ltd. Revised 3 August 2000

2 J. VITEK AND B. BOKOWKSI

trusted environment, this means that any method may be called from untrusted code forcing
developers to program defensively. For example, to be safe, each method that accesses or
updates sensitive information must somehow verify that it is invoked by a trusted context. In
Java these checks are performed at run-time. Such dynamic checks not only impose a run-time
penalty but may also cause programs to fail during execution. So, for efficiency and reliability
it is preferable to shift the burden of verification to an earlier stage of the program life-cycle.
In this paper we focus on compile-time checks, other solutions are discussed in related work.

Practitioners are faced with a tension between security and efficiency. At one end of the
spectrum automatically inserted checks before every sensitive instruction – assuming such
instructions can be identified – could render a system secure but would lead to dismal program
performance. In practice, Java programs are secured by interspersing checks in the program
logic. The choice of which operations to guard left to the developer [2, 3]. Unfortunately with
such ad hoc approaches, nothing short of full-fledged program verification will ensure that no
check has been omitted running the risk of compromising the security of the entire system.

Reusability, one of the major benefits of the object-orientation, creates its own set of
problems for security. Just as with concurrency which gives rise to the well-known inheritance
anomaly [4], inheriting code from classes with different security policies may create security
anomalies. A class that is safe in one context may open a security hole when extended in
another context. Of course, from the point of view of the library designer, it is not feasible
to design classes that are secure in all contexts and, even if one could the performance of the
library would almost surely be unacceptable.

At least some of the difficulty involved in engineering secure code can be traced to aliasing
and to the lack of clear interfaces between trust domains. If references to a trusted object can
be acquired by untrusted code then this object must be secured against attacks. Unfortunately,
as we stand now a Java virtual machine manages objects of different protection domains —
code loaded from different sources — but imposes no boundaries between these domains. So,
from the security engineer’s viewpoint, there is no distinction between objects that may be
obtained by an adversary and secure ones. Thus there is no well-identified place to put security
checks.

One solution to this quandary is to separate objects that are internal to a protection domain
(for some definition of domain) from objects that may be accessible directly from the outside.
Internal objects can be code to implement a given behavior without concern to security, while
the remaining objects are the interface to other domains and must implement a security policy.
Such a separation of concerns is efficient since the core of the system can be written without
security checks. Moreover, it has the potential to improve security since a smaller set of classes,
the interface objects, become the focal point for security analysis. Current object-oriented
languages do not provide the means to enforce such a distinction between objects. Static
access modifiers restrict how certain object types are manipulated [5] — curtailing visibility
of methods and fields — and restrict the scope of types, but there is no encapsulation of
references [6]. As we will show in later examples the interplay of inheritance, subtyping and
reference semantics makes it quite hard to control the scope of references and thus to prevent
them from being leaked to untrusted code.

We propose confined types for Java as an aid for writing secure code. One way of thinking
about confined types is as a machine checkable programming discipline that prevents leaks

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 3

of sensitive object references. We are not proposing a change to the language, rather we are
suggesting guidelines how to use Java’s existing facilities to enforce the desired encapsulation
property. Given some definition of a protection domain, we say that a type is confined to that
domain if all references to objects of that type originate from within the domain. In other
words, code outside of the domain should never be allowed to manipulate confined objects
directly. Confinement differs from existing access control mechanisms in that it constrains
access to object references rather than classes. The difference is most visible when considering
subtyping. Class-based restrictions (such as the Java private keyword) can be circumvented
by casting the protected object to one of its unrestricted supertypes. With confined types this
is not allowed. For all practical purposes, confined types should be viewed as enforcing static
scoping on dynamic object references.

We have implemented a confinement checker for the Java programming language with
CoffeeStrainer [7], a framework for static checking of structural constraints on Java
programs. This implementation uses Java packages as protection domains. Packages are well
suited for the task since they group logically related classes and provide the basic access control
mechanisms that we need. The impact on the language is minimal. We extend Java with two
modifiers, one for classes (confined) and one for methods (anon). In our implementation
these annotation are embedded in comments for backwards compatibility with existing Java
compilers. While certain programming tasks may be clumsier with confined types, we argue
that these restrictions are mild and that reasoning about security is much simpler. One
significant aspect of the proposal is that the constraints are checked statically. Thus there is
no extra runt-ime overhead and confinement is guaranteed to hold at run-time — avoiding the
need to worry about “confinement breach” exceptions. Furthermore our confinement checker
is modular, working one class at a time, and only requires access to the confining package.
Outside code does not have to be checked and dynamic loading is supported. Because the
annotations do not affect program semantics, a valid program with confinement annotations
exhibits behavior identical to the same program without annotations.

Road Map. The paper is organized as follows. We start by reviewing language-based
protection mechanisms in Section 2. In Section 3, we argue that these mechanisms are not
sufficient using the example of a well-known Java security defect. Section 4 introduces one
part of the solution, anonymous methods, which, while independent from confined types, are
essential to allow confined code that inherits from library classes. We present confined types in
Section 5 and give a complete programming example in Section 6. Related work is discussed
in Section 7. We conclude with design choices, implications for genericity, and applications to
software engineering.

2. PROGRAMMING LANGUAGE SECURITY

Security is turning into a software issue as the mechanisms used to implement security policies
are cheaper and more flexible in software than in hardware [8, 9, 10]. Security is often discussed
in terms of principals, objects, protection domains and security policies. We briefly introduce
these terms (see Gollman [11] for more complete definitions). Principals are the entities whose

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

4 J. VITEK AND B. BOKOWKSI

actions must be controlled. Principals invoke operations on objects. Here, the term object is
used in more general sense than in object-oriented programming. An object may be a datum, a
file, a hardware device, etc. The context within which a principal executes is called a protection
domain. Access to resources within the same protection domain is not checked, while cross-
domain operations must be authorized by a security policy. Implementing security policies at
the programming language level has been advocated for three main reasons. Firstly, language
semantics can help to reason about program behavior and thus to prove security properties.
Secondly, type systems and static analysis algorithms can reduce the run-time cost of security.
Finally, protection domains can be made lightweight and allow fine-grained interactions.

2.1. Safe Languages

Safe programming languages guarantee that the execution of programs proceeds without
overrunning memory, that types are not misinterpreted and data is not mistaken for executable
code. In Java, safety depends on four techniques: bytecode verification to ensure that programs
are well-formed, strong typing to guarantee that values are used according to their definition,
automatic memory management to prevent errors such as deleting a live object, and memory
protection to prevent array and stack operations from overflowing [12]. While safety is not the
same thing as security it is an essential foundation for the latter [13].

2.2. Information flow control

Over the last 20 years an abundant body of work has been devoted to information flow control.
Multilevel security policies [14], originally conceived for military applications, are based on the
notion that all data is labeled with security levels and that principals may only access data
for which they have security clearance. The objective being to guarantee non-interference
— a property which, informally, means that the values of low level security variables may
not depend on high level security variables [15, 16, 17]. This requires checking all channels
of communication that may create information flows (these include implicit channels such as
conditional expressions and loops, as well as the more exotic timing and probabilistic channels).
To date these techniques are still not used in practice. Part of the problem stems from inherent
restrictions; to achieve non-interference in a multi-threaded language Volpano and Smith [18]
had to forbid the guards of loops from depending on high security variables. Forbidding loops
in sensitive code is quite stringent, yet not sufficient since some probabilistic channels remain.
A more fundamental problem with information flow control is that it assumes a homogeneous
software system in which security labels are set once and for all, and all subsystems agree
on the labels and on their meaning. In a distributed system assembled from heterogeneous
components these assumptions do not hold as there are as many policies as protection domains
(e.g., applets), each of which may decide what data is sensitive. Some of these problems have
been addressed in a sequential subset of Java [19], but extending the approach to the full
language is still an open problem. To summarize, information flow provides a sound basis for
building secure systems, but current technology remains too restrictive for widespread usage.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 5

2.3. Access Control Policies

Discretionary access control mechanisms do not provide the same strong guarantees as
information flow control but are easier to use in practice. The idea is to perform security
checks before any potentially dangerous operation in order to verify that the current program
has the authority to perform the requested action. Schemes such as capabilities and access
control lists have been used to implement discretionary access control policies.

Static access control. Object-oriented languages provide two basic means for controlling
access to objects. The first is access modifiers such as private, protected, and public, to
restrict the visibility of attributes and classes. The second is type abstraction; abstract types
and subsumption can be used to limit the operations that can be invoked on an object [20, 21].
This second approach is not applicable in languages such as Java in which the run-time type of
objects can be retrieved by the program (e.g., through the instanceof operator or reflection).

Dynamic access control. Java provides dynamic access control mechanisms based on call
stack inspection to verify the privileges of the (transitive) caller of the current method [2].
Another scheme is to use objects as capabilities [22] by interposing a restricted proxy object
between the user and the target ([23], see also [24, 25, 26]).

2.4. Certified Code

Recently, a number of researchers have investigated the concept of certified code. Proof-
Carrying Code (PCC) proposed by Necula and Lee [27, 28] is the most general certification
framework. A great variety of properties can be specified in PCC and components need only be
bundled with a proof expressed in formal logic to provide assurance. Approaches that do not
rely on explicit proofs but rather on strong typing provide a more lightweight alternative to
PCC. In type-theoretic solutions the security properties that can be specified over components
are determined by the information provided by the type system. Essential properties include
language safety [13] as enforced by the byte code verifier in Java [12] or by Typed Assembly
Language [29, 30].

2.5. Summary

While information flow policies are too restrictive, neither discretionary access control nor
certified code directly provides a solution. Access control mechanisms dependent on dynamic
checks are error-prone since it is easy to forget one check. No guarantee can be given that
all potentially dangerous operations are protected by access checks. The static access control
mechanisms described above were originally conceived for software engineering purposes rather
than for security. Not surprisingly they only provide a partial solution. Finally, certified code
is undoubtedly a promising research direction, but it requires a substantial commitment from
both software providers and users, as well as a substantial implementation effort to reimplement
components so that they can be proved secure.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

6 J. VITEK AND B. BOKOWKSI

3. A SECURITY BREACH: THE JAVA CLASS SIGNING BUG

In Java, each class object – that is each instance of class Class – has a list of signers. These
signers are principals under whose authority the class acts. This list is used by the security
architecture to determine access rights of the class at run-time. A leak of a reference to this
internal data structure was the cause of a security flaw that allowed untrusted applets to gain
all access rights in JDK 1.1.

The breach was caused by the conjunction of two seemingly innocuous operations. The first
operation is a method of java.security.IdentityScope which allows any applet to find out
all the principals known to the system, amongst which some are likely to be trusted. The second
operation allows a class to get the list of principals that signed it. The method that returned
the array of signers erroneously returned an alias. Arrays being mutable data structures, the
applet then only needs to update the array with the signature of trusted principals to gain
that principal’s access rights.

3.1. The Security Breach in Detail

In Figure 1 signers is the system’s internal array of references to Identity object. Updating
this array is definitely a sensitive operation but the generic array class has no provisions for
checking the authority of the code that manipulates it. The security breach is caused by the
getSigners() method. The attacker need only invoke getSigners() to create an alias to the
array and thus be allowed to freely update the signatures. One simple fix for this bug is to
return a copy of the array as shown in Figure 2. This solution is ad hoc because we have no
guarantee that an alias to this object is not leaked by other parts of the package.

It is interesting to note that that none of the standard Java protection mechanisms seem to
help. Access modifiers and type abstraction are not relevant here. Restricting the use of the
Identity objects would do no good since the attack does not interact with Identity objects,
it only needs to acquire references to them and copy those references. Information flow control
does not apply either, since we do want to allow applets to read the signature information and
to see identities known to the system. Finally, inserting dynamic checks in the array update
operation, which is the point where the security policy is actually broken, is unrealistic since
all array updates performed in the JVM would incur the cost of a dynamic check.

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

return signers;
}

}

Figure 1. Signatures without confined types

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 7

public class Class {
private Identity[] signers;
public Identity[] getSigners() {

Identity[] pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++) pub[i] = signers[i];
return pub;

}
}

Figure 2. Ad-hoc fix of security problem

We now give a solution that guarantees that none of the key data structures used in code
signing escape the scope of their defining package. It is interesting to note that code of the
solution using confined type is very similar to the ad hoc solution of Figure 2. The advantage
of course is that confinement is checked automatically, while the correctness of the ad hoc
solution depends on the programmer.

3.2. Class Signing with Confined Types

To prevent software defects such as the one outlined above, we propose ensuring that references
to identity objects be confined to the java.security package. This can be achieved, for
example, by renaming the Identity class to SecureIdentity and declaring it confined.
Intuitively, the meaning of confinement is that references to instances of a confined class, or to
instances of any of its subclasses, cannot be disclosed to or accessed by other packages. That is
to say, only the classes defined in package java.security may interact with SecureIdentity
objects. Figure 3 outlines our solution.

In order to preserve the functionality of the original interface, we define a new class Identity
which is accessible outside of the security package. This new class acts as a facade: it implements
the public methods of SecureIdentity and keeps a private reference to a SecureIdentity
instance. Identity encapsulates the real identity object [23, 24]. The Identity class is purely
for external use, it is neither a subclass nor a superclass of SecureIdentity and thus cannot be
confused with a SecureIdentity object within the security package. Any attempt to return a
SecureIdentity object to an outside package will be caught at compile-time as a violation of
confinement. This solution preserves the functionality of the original program, in fact outside
code is not aware of the existence of confined types. But from a security engineering point
of view, attention is directed to the Identity class since it can be accessed by untrusted
components, and may thus (if deemed necessary) include dynamic security checks.

As mentioned above, the code of getSigners() is similar to the ad hoc fix of Figure 2. What
matters here is that it is the confinement rules that forced us to introduce the copy. Thus, it is
guaranteed that no leak can go unnoticed. The key to the solution is that the type of signers
is not related to the return type of the method. Furthermore, since confinement constraints

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

8 J. VITEK AND B. BOKOWKSI

confined class SecureIdentity . . . {
. . . // the original Identity implementation

}

public class Identity {
SecureIdentity target;
Identity(SecureIdentity t) { target = t; }
. . . // public operations on identities;

}

public class Class {
private SecureIdentity[] signers;
public Identity[] getSigners() {

Identity[] pub = new Identity[signers.length];
for (int i = 0; i < signers.length; i++)

pub[i] = new Identity(signers[i]);
return pub;

}
}

Figure 3. Signatures with confined types.

extend to arrays, this means that SecureIdentity[] is confined as well. getSigners() is
forced to allocate an unconfined array to which newly created objects of type Identity are
copied.

Confined types help in developing secure code by drawing a strong demarcation line between
internal representation objects and external interface objects. Before introducing confined
types, we will present anonymous methods which play a central role for the practicality of our
proposal.

4. ANONYMOUS METHODS

An anonymous method is a method that does not reveal the current instance’s identity
except to other anonymous methods. Therefore, it cannot introduce new aliases to the current
instance. Although anonymous methods are essential to allow confined types to inherit methods
from unconfined parents, they also have interesting properties in their own right which may
be useful in other contexts [31]. For example, in a language like Eiffel anonymous methods can
be safely invoked on expanded objects.

In Java parlance, an anonymous method is a non-native method that may use this only
for accessing fields of the current instance, calling other anonymous methods on itself, or for

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 9

class Example {
int count;

int anon ok(A arg) {
1 alsoOk(arg.foo());
2 return count ;

}
void anon alsoOk(int i) {

3 count = i + count ;
}
Example notOk(A arg) {

4 arg.bar(this) ;
5 arg.o = this ;
6 notOk(arg);
7 return this ;

}
}

Figure 4. Anonymous methods.

reference comparisons against other object references. Thus an anonymous method keeps its
implicit this parameter secret by not assigning this to a variable, nor providing this as a
method argument, nor returning this as the method’s return value, nor throwing this if the
method belongs to a subclass of Throwable. As a rule of thumb the body of an anonymous
method can always be rewritten so that the keyword this does not occur, because Java allows
implicit occurrences of this. There are two exceptions to this rule: The first exception are
reference comparisons involving this, and the second exception are accesses to fields hidden
by a parameter or a local variable of the same name or accesses to fields of a superclass which
are shadowed by a field with the same name in a descendant class.

Figure 4 presents a valid class Example with two anonymous methods (ok, alsoOk) and a
non-anonymous method (notOk). Lines (1 - 3) show examples of anonymity-preserving code,
while (4 - 7) show examples that do not preserve anonymity. Line (4) reveals this to method
bar. (5) stores this in a field of arg. Line (6) calls a non-anonymous method (don’t mind the
infinite recursion). Finally, (7) returns this.

Because the definition of anonymous methods is recursive, we require anonymous methods
to be declared as such explicitly. In our examples, we use the annotation anon, while in the
implementation we include an @anon tag in the method’s Javadoc comment for backwards
compatibility. Our checker verifies that each method declared anonymous conforms to the
definition. In addition to the constraint regarding the use of this, there is another constraint
regarding anonymity of overridden methods. Since anonymity is a property that potential

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

10 J. VITEK AND B. BOKOWKSI

callers rely on, methods in subclasses that override an anonymous method must be anonymous
as well.

We treat constructors as a special case of methods. They can be declared anonymous as well
with the same constraints. In Java, the first statement of each constructor is a call to another
constructor, which may be in the same class, or in the direct superclass of the current class.
Without an explicit call, the constructor of the superclass is called implicitly. An anonymous
constructor must thus ensure that explicit and implicit calls are made only to anonymous
constructors. The Object constructor, the only one that does not call another constructor,
is anonymous by definition, as are several other commonly used methods in Object: wait(),
notify(), notifyAll(), hashCode(), and finalize().

We summarize the constraints that apply to anonymous methods and constructors:

A1 – The reference this can only be used for accessing fields and calling
anonymous methods of the current instance or for object

reference comparisons.

A2 – Anonymity of methods and constructors must be preserved in subtypes.

A3 – Constructors called from an anonymous constructor must be anonymous.

A4 – Native methods may not be declared anonymous.

Clearly, anonymous methods rule out some perfectly safe programs. It is important to assess
how restrictive our proposal actually is and whether common programming idioms would
become too cumbersome to be practical or too inefficient. For instance, the visitor patternn
breaks anonymity to implement a form of double dispatching [32].

To obtain a better sense of the impact of anonymity declarations on programming style, we
analyzed JDK 1.1 to find out how many existing methods meet the above mentioned criteria
(A1, A2, A3, and A4). The data has been collected by iterating a static analysis detecting
anonymity violations. In each iteration, methods flagged by the analysis were declared as
non-anon. The process was repeated until a fixpoint was reached. The results, summarized
in Table I, are encouraging. Without changes to existing code, between 84% and 95% of the
methods are already anonymous. With some care a portion of those non-anon methods could
be re-written to become anonymous.

Package java.util java.awt
classes + interfaces 28 + 3 63 + 7
all methods 351 1246
anon methods 332 (95%) 1047 (84%)

Table I. Anonymous methods in existing code.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 11

Anonymous methods are related to Boyland’s concept of borrowed receiver [33] and Leino’s
captures [34]. Boyland defines a reference to be borrowed by a method if the method can
not store the reference and thus does not introduce any static aliases. Anonymous methods
are simpler more specialized instantiations of these concepts. Section 5.4 explains our use of
anonymous methods.

5. CONFINED TYPES

Objects of a confined type may not be referenced or accessed from outside of the
type’s protection domain. Confined types are introduced by annotating class or interface
definitions with the keyword confined. (In the implementation, confined types are declared
by implementing an empty interface (implement Confined) for backwards compatibility.)
Instances of confined types are called confined objects. We adopt packages as protection
domains to take advantage of access modifiers. Instances of confined classes may thus only
be referenced or accessed from within a single package. Confinement also applies to subclasses
of a confined class. We can unambiguously refer to an object’s confining package, meaning the
package in which the object’s class is defined. We can also refer to the package of a confined
type since all classes (or interfaces) that extend (implement) a confined class (interface) belong
to the same package. Figure 5 summarizes the relationships between an object obj in package
outside and the objects conf and unconf from package inside. A reference from obj to the
confined object is not allowed, but all other references, including from conf to objects outside
of the package are allowed.

obj

»»×

¸¸

inside
outside_ _ _ _ _ _ _ _ _ _ _ _ _ _

unconf

ss

XX

conf

55

TT

Figure 5. References between packages.

It is important to understand that we are not trying to prevent information from leaking
through covert channels, just to prevent references to confined objects from being transferred
out of their confining package.

5.1. Overview of the Problem

Before listing the confinement constraints, it is helpful to consider all constructs with which
object references may be transferred from a package inside to another package outside.
These points are illustrated in Figure 6. Each line labeled r1 to r10 demonstrates a reference
transfer.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

12 J. VITEK AND B. BOKOWKSI

package inside;

public class C extends outside.B {
void putReferences() {

C c = new C();
r1 outside.B.c1 = c;
r2 outside.B.storeReference(c);
r3 outside.B.c3s = new C[] {c};
r4 calledByConfined();
r5 implementedInSubclass();
r6 throw new E();

}
void implementedInSubclass() { }

r7 public static C f = new C();
r8 public static void C m() {

return new C(); }
r9 public static C[] fs = new C[]{new C()};
r10 public C() { }
}
public class E extends RuntimeException { }

package outside;

public class B {
r1 static inside.C c1;
r2 static void storeReference(inside.C c2) { // store c2 }
r3 static inside.C[] c3s;
r4 void calledByConfined() { // store this }

static void getReferences() {
r7 inside.C c7 = inside.C.f;
r8 inside.C c8 = inside.C.m();
r9 inside.C[] c9s = inside.C.fs;
r10 inside.C c10 = new inside.C();

D d = new D();
try { d.putReferences();

r6 } catch (inside.E ex) { // store ex }
}

}
class D extends inside.C {
r5 void implementedInSubclass() { // store this }
}

Figure 6. Transferring references.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 13

We start with reference transfers that originate from code of package inside. The possible
targets in package outside fall into three categories: fields, method and constructor parameters
(including the implicit parameter this), and parameters of catch clauses. Taking into account
that object references can be stored in arrays, we distinguish six cases for transfers from
inside:

r1 Package inside assigns a reference to one of its objects to a field in package outside,
r2 Package inside calls a method or constructor defined in package outside passing a

reference to one of its objects as an argument,
r3 Package inside wraps an object reference into an array (or multiple nested arrays) and

uses points r1 or r2 for transferring the array reference,
r4 Calling a method or constructor defined in a class in package outside from a subclass

of that class in package inside (the implicit parameter this is transferred),
r5 Calling a method defined in a class in package outside from a superclass of that class

in package inside (the implicit parameter this is transferred),
r6 Package inside throws an exception which is handled by a catch clause defined in

package outside (the exception object is transferred).

We now list reference transfers that originate in package outside. The possible sources in
package inside fall into three categories: fields, method return values, and references to newly
instantiated objects using the operator new. Again, taking into account that object references
can be stored in arrays, we distinguish four cases for reference transfers originating in package
outside:

r7 Package outside reads a field of package inside containing a reference to an instance
of a class defined in package inside,

r8 Package outside calls a method of package inside that returns an object reference to
an instance of a class defined in package inside,

r9 Package outside uses points r7 or r8 to obtain a reference to an array (or multiple
nested arrays), into which package inside has wrapped an object reference,

r10 Package outside instantiates an object of a class defined in package inside using the
new operator.

We now introduce the constraints that prevent reference transfers. The presentation proceeds
as follows: Section 5.2 gives constraints on class and interface declarations. Section 5.3 presents
constraints that prevent widening. Section 5.4 discusses constraints that deal with hidden
widening. Based on the constraints introduced so far, Section 5.5 explains why reference
transfers originating in the inside package cannot occur. Finally, Section 5.6 presents the
remaining constraints, which address reference transfers originating in outside packages.

5.2. Confinement in Declarations

The first two constraints restrict the declaration of classes and interfaces. The goal is to ensure
that confined types are only visible in their package and to guarantee that subtyping preserves
confinement.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

14 J. VITEK AND B. BOKOWKSI

C1 – A confined class or interface must not be declared public and must not
belong to the unnamed global package.

C2 – Subtypes of a confined type must be confined as well.

C1 ensures that confined types have package-local access. Confined types cannot belong to the
unnamed global package, since this package is “open” to extensions. C2 guarantees that if a
confined class (or interface) is extended (implemented) then the extending class (interface) is
also confined. Thus, the confinement property extends transitively to all subtypes of a confined
type. Note that C1 and C2 together imply that confined types may only have subtypes in the
same package.

5.3. Preventing Widening

To prevent references to confined objects from escaping their package, reference widening from
a confined type to an unconfined supertype cannot be allowed. Clearly, the root of the type
hierarchy, java.lang.Object, is not confined. Thus, if a confined reference can be widened
and stored in an Object variable, then the confined object may leak out of its package†. In
Java, reference widening may occur in either of:

• an assignment, if the declared type of the left hand side of the assignment is a supertype
of the assigned expression’s static type,

• a method call, if the declared type of a parameter is a supertype of the corresponding
argument expression’s static type,

• a return statement, if the declared result type of the method is a supertype of the result
expression’s static type,

• a cast expression, if the target type of cast is a supertype of the expression’s static type.

Widening must be prevented if it entails losing the confinement property of an object reference.
The following constraint enforces confinement.

C3 – Widening of references from a confined type to an unconfined type is
forbidden in assignments, method call arguments, return statements, and

explicit casts.

As noted in Section 3, Java arrays are a way to leak references as well. Consequently, the
constraint takes arrays into account as well. For a confined type A, we regard the array type A[]
to be a confined type as well, called a confined array type, so that they are a special case of C3. In
general, the constraints imply that confined objects may not be stored in unconfined collections
(of which arrays are just one example). Although this restricts common programming styles,

†Note that widening a reference so that its type is Object cannot be allowed because this already enables the
attack of our motivating example in Section 3. An object reference whose static type is Object can be stored
in an array whose static type is Object[] if the dynamic types of the object and the array match.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 15

the signed classes example showed that it is exactly this kind of potential leakage which is easy
to overlook. Thus, we think it is worth the effort to provide special-purpose confined collections
(or arrays) rather than trading security for the reuse of collection classes. Section 8.2 discusses
the impact of confined types on genericity.

5.4. Preventing Hidden Widening

In addition to the obvious widening of the previous section, implicit or hidden widening occurs
whenever a method inherited from an unconfined superclass is invoked on a confined object.
Upon entry in the inherited method the implicit parameter this which refers to the current
instance is widened from the confined type to the unconfined supertype.

Clearly, hidden widening should not be ruled out completely, since this would make it
impossible to derive confined classes from non-trivial unconfined classes. But allowing confined
classes to extend unconfined classes without restrictions is dangerous. The reference to the
current instance may leak out if a method in the superclass transfers it to any other object.
However, anonymous methods of Section 4 are safe since they do not leak this. We can now
give the constraints that ensure the safety of hidden widening. We say that methods defined
by a class are the (newly introduced or overridden) methods appearing in its body; all other
methods are inherited.

C4 – Methods invoked on a confined object must either be non-native methods
defined in a confined class or be anonymous methods.

C5 – Constructors called from the constructors of a confined class must either be
defined by a confined class or be anonymous constructors.

C4 constrains inherited methods, in the case of overridden methods, i.e., if a method defined
in a superclass is overridden in a confined subclass, it is safe to execute the method since it
preserves confinement. Similar to methods, constructors of unconfined superclasses that are
called by the constructors of a confined class need to be anonymous. This applies to instance
field initializers and instance initialization blocks as well, since these might also leak out a
reference to the object.

We should emphasize that these constraints need only be checked within the defining
package of the confined type since it is not possible to invoke methods of confined types
of another package. Also, note that methods and constructors defined by confined classes need
not be anonymous. Moreover, note that interfaces do not play a role here since they do not
introduce code. Anonymous methods ease the restrictions that would otherwise be imposed on
inheritance. Without them, it would be unsafe to invoke any inherited method of a confined
object.

5.5. Preventing Transfer from the Inside

In our list, points r1 to r6 involve transfers that originate in the inside package. Based on the
constraints introduced so far, points r1 and r2 — assigning to a field in an outside package,
and passing parameters to a method in an outside package — are not allowed for confined

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

16 J. VITEK AND B. BOKOWKSI

types. Since neither a confined type itself nor one of its subtypes is accessible from the outside
package (due to constraints C1 and C2), the type of the field or parameter can only be an
unconfined supertype of the confined type. But then, transferring the reference would require
reference widening which is ruled out by constraint C3.

Similarly, point r3 — wrapping references to confined objects in an array and transferring
the array reference by assigning it to a field or passing it as a parameter — is not possible,
because arrays of confined types are confined as well.

Reference transfers according to point r4 — calling a method in an unconfined supertype
— are not ruled out completely; rather, constraints C4 and C5 require the called methods
(resp. constructors) to be anonymous, as discussed in Section 4. Thus, it is possible to transfer
references, but only to code that can neither discloses the reference to a non-anonymous method
nor depends on the reference.

Item r5 — transferring this to a subclass by calling a method which is implemented in the
subclass — cannot transfer a confined reference to an outside package, because constraints C1
and C2 make sure that all subclasses of a confined type must reside in the same package as
the confined type.

With Java exceptions, there is another opportunity for transferring references which is rather
obscure: If an exception of a certain type is thrown, it may be caught with a catch clause whose
formal parameter is of a supertype of the actual exception that was thrown. Since we don’t
see important uses where exception objects should be confined to a package, we just disallow
subtypes of java.lang.Throwable to be confined types, thus disallowing reference transfers
according to point r6. The class java.lang.Thread also requires special treatment since one
of its static methods returns a reference to the currently executing thread object. We require
that:

C6 – Subtypes of java.lang.Throwable and java.lang.Thread may not be confined.

We now consider reference transfers that may be initiated outside of the confining package.

5.6. Preventing Transfer from the Outside

Reference transfers from the outside package to the inside (r7 – r10) have not yet been
addressed. They involve transfers that originate in some outside package. The new constraints
are:

C7 – The declared type of public and protected fields in unconfined types may
not be confined.

C8 – The return type of public and protected methods in unconfined types may
not be confined.

Fields whose declared types are confined types should not be accessible from outside the
package, i.e., confined fields in accessible (unconfined) types may not be public or protected
(C7), preventing object reference transfer according to point r7. Although the confined type
itself is not accessible from outside the package, confinement is not enforced in other packages.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 17

Thus, if a field of a confined type was accessible, it would be possible for the outside package
to widen the reference to an unconfined supertype.

By similar reasoning, methods in unconfined types which return a confined type should
not be accessible from outside the package, i.e., no method returning a confined type should
be public or protected (C8). Thus, point r8 is prevented as well. Again, note that confined
array types are a special case of the general constraint, so fields of confined array types and
methods returning confined arrays must have private or package-local access, preventing r9.
Instantiating a confined class from outside (point r10) cannot occur because confined classes
are not accessible from outside.

5.7. Implementation

We use CoffeeStrainer [7] to statically check confinement and anonymity constraints.
Modularity, support for dynamic loading and backwards compatibility are important design
goal for our confinement checker. Modularity is addressed by design of the constraint rules —
we have chosen rules that can be checked locally, one class at a time. Support for dynamic
loading is addressed by categorizing packages in three groups: (1) packages containing confined
types (confining packages), (2) packages containing unconfined superclasses of confined types
(extended packages), (3) and plain packages (outside packages). For confining packages
confined classes must be checked for constraints C1 and C3 – C6, all other classes in a
confining package must abide by rules C2 – C4 and C6 – C8 (and possibly A1 – A4 if they
have anonymous methods.). In extended packages, we need only check that methods declared
anonymous follow the rules A1 – A4. Finally, plain packages need not be checked at all. These
checks can be performed at compile time or postponed until load time. Figure 7 illustrates
these different checks. Dynamic loading is allowed in extended and plain packages (1,2). For
confining packages, dynamic loading must be restricted to prevent untrusted code from being
added to a trusted package. This restriction can implementing by using sealed JAR files [35, 36]
or by instrumenting directly the class loader. Our current implementation does not address
generic classes and nested classes.We are investigating extensions to the rules to cover both.

Parent

outside

other

Other
inside

Conf

A1,A2,A3,A4

C1,C2,C3,C4,C5,C6 C3,C4,C7,C8

Unconf

Figure 7. The confined class Conf in package inside extends Parent in package outside. inside is
a confining package, outside is extended by a confining package, and other is a plain package. The

constraints to be checked are indicated below each class.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

18 J. VITEK AND B. BOKOWKSI

6. USING CONFINED TYPES: PUBLIC-KEY CRYPTOGRAPHY

Public-key cryptography is one of the essential tools for security in distributed systems. The
implementation of public key cryptography must therefore be secure. Furthermore it should
be reusable. More specifically, our goal is to ensure that the random number objects that
generate keys should not be accessible outside of the implementation of the RSA algorithm
[37]. Further, we would like to offer the guarantee to clients of the RSA package that the
object that represent their private keys remain confined to their application and that under
no circumstance untrusted code be granted access to a private key.

KeyWriter ConfinedRandom?

Key PubKeyWriter

ffMMMMMMMMMMMMM
oo KeyFactory

OOii

secure
rsa_ _

PrivKey?

OO

PrivKeyWriter

OO

PrivKeyFactory?

OO

Main

OO^^

II

55

WW

Figure 8. Relationships between package rsa and package secure. Full arrows indicate subtyping
relations. Dashed arrows indicate implementation dependencies. Confinement is denoted by a ?.

We use confined types to achieve the desired security properties. It is noteworthy that the
solution requires little effort on the part of the client (the users) of the RSA library. We
structure the code in two packages:

• Package rsa: a reusable public-key cryptographic library.
• Package secure: one particular user of the rsa package.

The classes that we want to protect are ConfinedRandom, the random number generator, and
PrivKey, the actual private keys. The first class belongs to the rsa implementation and the
second is owned by the client of the library, the secure package. ConfinedRandom is confined
in package rsa, while PrivKey is confined in secure. Public keys are implemented by the Key
class and are not confined since clients may want to pass them around to other packages. Of
course nothing prevents a client package from making public keys confined as well.

The package rsa, Figure 9, provides a class Key that encapsulates RSA encryption. Class
KeyFactory generates a key pair (pub, priv) such that a message encrypted with the public
key can be decrypted using the private key and vice versa, i.e., pub.crypt(priv.crypt (m))
returns m. The implementation of KeyFactory relies on class ConfinedRandom for generating
the keys.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 19

package rsa;

import java.math.BigDecimal;
import java.util.Random;

public class Key {
public BigDecimal mod;
public BigDecimal exp;

anon public String crypt(String msg) { /* return (msg^^exp)%mod */ }
}

confined class ConfinedRandom extends Random { }

public interface KeyWriter {
anon public void setValues(BigDecimal m, BigDecimal e);

}

public class KeyFactory {

private ConfinedRandom randomGenerator = new ConfinedRandom(
System.currentTimeMillis());

anon public void genKeyPair(KeyWriter pub, KeyWriter priv) {
// set internal values of both key objects,
// using random generator...

}
}

public class PubKeyWriter implements KeyWriter {
private Key key;

public PubKeyWriter(Key k) { key = k; }

anon public void setValues(BigDecimal m, BigDecimal e) {
key.mod = m;
key.exp = e;

}
}

Figure 9. Package containing RSA algorithm

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

20 J. VITEK AND B. BOKOWKSI

The package secure, Figure 10, introduces classes PrivKeyFactory and PrivKey to,
respectively, generate and represent private keys. A class Main is given to demonstrate how
keys are used. There are several other classes in the implementation, we will detail them in the
following paragraphs. Figure 8 illustrates the relationships between the two packages. Relevant
portions of the implementations of both packages are given in Figure 9 and Figure 10.

In class Key the fields mod and exp are public. Although this allows access to sensitive
information from the outside, a reference to a key is required to read the fields’ values. The
idea is to subclass Key in another package and to make this subclass confined. Accordingly, the
method crypt is declared anon since otherwise this method could not be called on a confined
object (C4).

Often confined types require only a trivial implementation, as can be seen in class
ConfinedRandom. This is an example of making an unconfined class confined in another
package by subclassing. The class ConfinedRandom is used in class KeyFactory for the field
randomGenerator. This field is declared private so that only the class KeyFactory has to
be reviewed by the programmer for potential leakage of a reference to the random generator
object or leakage of its internal state.

The class KeyFactory does not set the internal values of Key objects directly. Rather, it uses
the interface KeyWriter which normally would not appear in a design without confined types.
The reason for this is that both Key and KeyFactory will be subclassed and made confined
in another package. If KeyFactory referenced Key directly, the confined subclass of Key could
not be used with KeyFactory or a subclass of it because at some place a reference widening to
the original type Key would be needed, which is forbidden by C3. Class PubKeyWriter trivially
implements the interface KeyWriter.

Note also that PrivKey does not define any new methods or fields. However, a new
implementation of KeyWriter is needed for accessing the internal values of the confined type
PrivKey. Due to constraint C3, which prevents widening from PrivKey to Key, the previously
defined class PubKeyWriter cannot be used. The similarity of the new implementation
PrivKeyWriter to PubKeyWriter suggests that genericity would help here; this is discussed
in Section 8.2.

Similar to PrivKey, a confined subclass PrivKeyFactory is derived from KeyFactory. The
interesting point here is that the superclass has access, and uses, a confined class (namely
ConfinedRandom), but our restrictions guarantee that these values can not be leaked to the
subclass.

In class Main, a private and a public key object is created. Note that private or package-local
access for field privateKey is required by C7, while publicKey can be public. In main(), then,
a Factory object is created and genKeyPair() is invoked on it, providing two instances, one
of PubKeyWriter and one of PrivKeyWriter.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 21

package secure;

import rsa.*;
import java.math.BigDecimal;

confined class PrivKey extends Key { }

private class PrivKeyWriter implements KeyWriter {
private PrivKey key;

public PrivKeyWriter(PrivKey k) { key = k; }
anon public void setValues(

BigDecimal m, BigDecimal e) {
key.mod = m;
key.exp = e;

}
}

confined class PrivKeyFactory extends KeyFactory { }

public class Main {
private static PrivKey privateKey = new PrivKey();

public static Key publicKey = new Key();

public static void main(String[] args) {
PrivKeyFactory keyFactory = new PrivKeyFactory();
keyFactory.genKeyPair(

new PubKeyWriter(publicKey),
new PrivKeyWriter(privateKey));

// use keys for encryption and decryption...
}

}

Figure 10. Confining a type in a different package

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

22 J. VITEK AND B. BOKOWKSI

7. Related Work

The original impetus for the work presented here comes from difficulties of implementing secure
and reliable systems in Java. Some of these difficulties can be attributed to aliasing [38, 26].
Confined types follow up on work on flexible alias protection [6] in which we tried to control
aliasing at the level of individual objects. Related work can be divided into literature on alias
control and on security; we review both topics in the following two subsections.

7.1. Alias Control

Reference semantics permeate object-oriented programming languages, it is thus not surprising
that the issue of controlling aliasing has been the focus of numerous papers in the recent years
[39, 40, 34, 41, 6, 42, 43, 44]. We will discuss briefly the most relevant works.

In [6], we proposed flexible alias protection to control potential aliasing amongst components
of an aggregate object (or owner). Aliasing mode declarations specify constraints on sharing
of references. The mode rep protects representation objects from exposure. In essence, rep
objects belong to a single owner object and the model guarantees that all paths that lead to a
representation object go through that object’s owner. The mode arg marks argument objects
which do not belong to the current owner, and therefore may be aliased from the outside.
Argument objects can have different roles, and the model guarantees that an owner cannot
introduce aliasing between roles. In [44], Clarke, Potter, and Noble formalize representation
containment by means of ownership types. Both papers have been presented in the context of
a simple programming language without inheritance or subtyping. There is no obvious way to
maintain containment in the presence of either. Confined types were designed to support both
concepts.

Hogg’s Islands [40] and Almeida’s Balloons [41] have similar aims. An Island or Balloon is
an owner object that protects its internal representation from aliasing. The main difference
from [6] is that both proposals strive for full encapsulation, that is, all objects reachable from
an owner are protected from aliasing. This is equivalent to declaring everything inside an
Island or Balloon as rep. This is restrictive, since it prevents many common programming
styles: it is not possible to mix protected and unprotected objects as done with flexible alias
protection and confined types. Hogg’s proposal extends Smalltalk-80 with sharing annotations
but it has neither been implemented nor been formally validated. Almeida did implement an
abstract interpretation algorithm for deciding whether a class meets his balloon invariants.
But his approach requires whole-program analysis. The constraints presented in this paper
can be checked modularly, one class at a time.

The Sandwich types of Genius, Trapp, and Zimmermann [42] are a compromise between
flexible alias protection and balloons. The objects protected from aliasing are computed by
inspection of the type graph of the whole program. The criterion for protection is when a type
is only reachable from another (owner) type. The prototypical example is the class LIST CELL
which only appears in the implementation of LIST. The drawback of sandwich types is that
they require global program analysis, and do not deal with inheritance and subtyping.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 23

Lang. Inherit. Encaps. Enforce Modularity Granularity
Islands [40] Sm-80 Yes Full Static Class Object
Balloons [41] Toy Yes Full Static Whole-prg. Object
Flexible Alias [6] Toy No Partial Static Class Object
Sandwich [42] Toy No Full Static Whole-prg. Class
Kent [43] Eiffel Yes Partial Dynamic – Object
Confined types Java Yes Partial Static Class Package

Table II. Comparison of alias control techniques.

Finally, Kent and Maung [43] proposed an informal extension of the Eiffel programming
language with ownership annotations that are tracked and monitored at run-time. Confined
type are static, a choice better suited to security since errors are caught earlier.

Table II compares the proposals discussed above. Partial encapsulation allows selective
protection of components. Enforcement of constraints can either be done at compile-time
(static) or at run-time (dynamic). Verification can require analysis of the entire program
(whole-program) or be modular at the class level (class). Granularity of protection can be
either: at the object level, meaning that individual objects are protected, at the class level,
meaning that all instance of a class are treated as a single encapsulation domain, and finally
at the package level, meaning that all instances of all classes belonging to the same package
are grouped in a single domain.

7.2. Security

Confined types depart from the work on information flow control [45, 19, 17]. We are not
trying to protect the information content of objects, as shown by the class signing example
of Section 3, rather we control the flow of language level objects, or more precisely, object
references. Further, confined types are as much about integrity as secrecy.

The elegant paper of Leroy and Rouaix [20] has similar goals as the work presented in this
paper. The authors formalize the security properties of applets written in a strongly typed
programming language. They propose a technique based on type abstraction to guarantee
that certain locations in the store will not be written by untrusted components. Leroy and
Rouaix did not deal with subtyping or inheritance. They chose a simple functional language
(an idealization of Caml), our work can be viewed as an extension of theirs to object-oriented
languages.

Another recurrent theme is the use of objects as capabilities or guards [23, 46, 24]. Different
variants of this scheme boil down to the facade pattern [32] in which a facade object protects
access to one or more targets. The facade implements the security policy for access to the
targets. The proposals typically do not provide any strong security guarantees, since some
reference to one of the targets may still be leaked to an adversary. Confined types strengthen
this approach. If target objects are confined, then no reference can be revealed to outside code.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

24 J. VITEK AND B. BOKOWKSI

8. Discussion

8.1. Design alternatives

Unlike flexible aliasing protection [6], our proposal protects entire packages. This flat protection
model can be limiting. First, the objects we want to protect need not all be in the same package.
Second, it is not possible to compose larger systems out of components.

We have considered different designs allowing a class to be confined to a group of classes
which need not be in the same package. For example, we could define the notion of a reference
protection domain, then each class would be declared to belong to some domain. The following
declaration bundles three classes in a protection domain.

domain java.security.Identity, java.lang.Class,
java.security.SecureIdentity;

The SecureIdentity class is still defined as confined, but now it will be visible only to the
other two classes in the domain. The drawback of external domains is that we cannot use
package visibility to define methods that may only be used by classes in the same domain.

This idea could be extended further to hierarchical protection domains. This requires named
domains. Next we define two domains, one is the aforementioned domain, the second is a larger
domain encompassing all security classes.

domain IdentityDomain is
java.security.Identity, java.lang.Class,
java.security.SecureIdentity;

domain SecurityDomain is
java.security.*, IdentityDomain;

While possible, hierarchical domains are pushing towards more complex models such as flexible
alias protection [6, 44]. The cost in complexity may outweigh the gains.

8.2. Confined Types and Genericity

As has already been noted in sections 5.3 and 6, confined types could profit from parameterized
types. Because parameterized types reduce the need for reference widening (e.g., when storing
objects in collections), much more reuse would be possible if confined types were combined with
parameterized types. Interestingly, we found that confined types may influence the ongoing
discussion about how to incorporate genericity in Java because they do not fit equally well
with all proposals that have been put forward so far. There are two observations:

The first observation concerns the translation scheme used to translate generic types to
normal classes and interfaces so that they can be executed on unmodified Java virtual machines.
With a homogenous translation scheme [47, 48], different instantiations of a parameterized
type are translated to a single class or interface. Because parameterized types instantiated
with a confined type then cannot be distinguished at run-time from those instantiated with

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 25

unconfined types, references to confined objects could leak out by confusing them with
references to unconfined objects. Thus, confined types fit better with proposals that have
a heterogenous translation scheme [49, 50], in which different instantiations of parameterized
types are translated to different classes or interfaces.

When looking at the example presented in Section 6, another observation for the discussion
about genericity can be made: In the example, the two classes Key and KeyFactory had to
be decoupled by the intermediate interface KeyWriter. Although this interface would not be
needed in a conventional design, the decoupling was required for subclassing both Key and
KeyFactory in package secure. This suggests that virtual types [51] might be a better fit for
confined types, since they allow subclassing of a whole family of classes in such a way that use
relationships between classes in the original family become use relationships between classes
in the derived family.

8.3. Software Engineering

Confined types may be useful from a software engineering point of view as well. Confined types
can be viewed as the representational components of a framework which cannot be accessed
from the outside. The external interface of the framework would then consist of unconfined
types that usually do not contain functional code but make up a facade [32] through which
the framework must be used. Based on this architecture, a package designer may decide to
change the interface of a confined type, knowing that the effects of that change are limited to
the single package and will not break client code.

Note that unlike techniques such as guards and capabilities (see Section 7.2), in which every
possible access path to otherwise unprotected objects needs to be controlled, confined types
take the opposite approach. The default is to disallow any direct access to confined types, and
then facades may be used to grant access for certain uses.

8.4. Optimization

Confined types can help program optimization. Since the scope of a confined type is limited
to a package, aggressive optimizations can be applied within the package. For instance, static
analysis of the package code contains all uses of that package’s confined types. It may thus be
possible to remove methods that are not called in the package, since they are dead code, and
even modify the structure of confined objects or of the class hierarchy [52].

Restricting widening improves the precision of concrete type inference and thus helps
generating better code for confined types.

Finally, Genius, Trapp, and Zimmermann have shown that aliasing restrictions can be used
to improve locality of memory access and have obtained significant speed up on small scale
programs [42].

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

26 J. VITEK AND B. BOKOWKSI

9. Conclusion

Software security is a difficult problem. This paper introduces two new language mechanisms,
confined types and anonymous methods, that can be used for controlling the dissemination of
object references. This control eases the task of writing secure code, since the interface between
components is sharper.

Confinement and anonymity are enforced by a set of syntactic constraints which can
be verified statically. Thus, our proposal incurs no run-time overhead and all confinement
violations are caught before running the program.

We have implemented a confinement verifier for Java using CoffeeStrainer [7]. The
verification procedure is modular since classes are analyzed individually. Our extensions are
transparent, annotated classes can be compiled by the standard Java compiler.

Acknowledgments

The authors whish to thank John Boyland, Doug Lea, James Noble, Jens Palsberg, Philip
Wadler, the participants of the Intercontinental Workshop on Aliasing in Object Oriented
Systems, and the anonymous reviewers for their comments and suggestions. An earlier version
of this paper was presented at the OOPSLA’99 conference.

REFERENCES

1. Landi W. Undecidability of static analysis. ACM Letters on Programming Languages and Systems, 1992;
1(4).

2. Gong L. Inside the Java 2 Platform Security Architecture: Cryptography, APIs, and Implementations.
The Java Series. Addison-Wesley Pub Co, 1999.

3. Tardo J, Valente L. Mobile agent security and Telescript. IEEE CompCon, 1996.
4. Matsuoka S, Yonezawa A. Analysis of inheritance anomaly in object-oriented concurrent programming

languages. In Research Directions in Concurrent Object-Oriented Programming, G. Agha PW, Yonezawa
A (eds.). The MIT Press, 1993, chapter 4; 107–150.

5. Gosling J, Joy B, Steele GL. The Java Language Specification. The Java Series. Addison-Wesley: Reading,
MA, USA, 1996.

6. Noble J, Potter J, Vitek J. Flexible alias protection. Proceedings of ECOOP’98, vol. 1543 of LNCS.
Springer-Verlag: Brussels, Belgium, 1998.

7. Bokowski B. CoffeeStrainer: Statically-checked constraints on the definition and use of types in Java.
Proceedings of ESEC/FSE’99, 1999.

8. Chase J, Levy H, Baker-Harvey M, Lazowska E. Opal: A single address space system for 64-bit
architectures. Proceedings of the Fourth Workshop on Workstation Operating Systems, 1993; 80–85.

9. Grimm R, Bershad BN. Security for extensible systems. Proceedings of 6th Workshop on Hot Topics in
Operating Sytems, 1997; 62–66.

10. Lucco S, Sharp O, Wahbe R. Omniware: A Universal Substrate for Web Programming. World Wide Web
Journal, 1995; 1(1):359–368.

11. Gollman D. Computer Security. John Wiley & Sons, 1999.
12. Yellin F. Low level security in Java. Fourth International Conference on the World-Wide Web, 1995.
13. Kozen D. Language-based security. Technical Report TR99-1751, Cornell University, Computer Science,

1999.
14. Denning D. A lattice model of secure information flow. Communications of the ACM, 1976; 19(5):236–

243.
15. Volpano D, Smith G. Confinement properties for programming languages. SIGACT News, 1998; 29(3):33–

42.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

CONFINED TYPES IN JAVA 27

16. McLean J. Security models. In Encyclopedia of Software Engineering, Marciniak J (ed.). Wiley & Sons,
1994.

17. Volpano D, Smith G. A type-based approach to program security. Proceedings TAPSOFT’97, vol. 1214
of LNCS. Springer-Verlag: Berlin, Germany, 1997.

18. Smith G, Volpano D. Secure information flow in a multi-threaded imperative language. Conference Record
of POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1998; 355–364.

19. Myers AC. Jflow: Practical static information flow control. Proceedings of the 26th ACM Symposium on
Principles of Programming Languages (POPL 99), 1999.

20. Leroy X, Rouaix F. Security properties of typed applets. Conference Record of POPL ’98: The 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 1998; 391–403.

21. Riecke JG, Stone CA. Privacy via Subsumption. Fifth Workshop on Foundations of Object-Oriented
Languages, 1998.

22. Levy H (ed.). Capability Based Computer Systems. Digital Press, 1984.
23. Gong L. Guarding objects. Mobile Agents and Security, Vigna G (ed.), vol. 576 of LNCS. Springer-Verlag:

Berlin, Germany, 1998; 1–23.
24. Hagimont D, Mossière J, de Pina XR, Saunier F. Hidden software capabilities. 16th International

Conference on Distributed Computing System. IEEE CS Press: Hong Kong, 1996.
25. Wallach D, Balfanz D, Dean D, Felten E. Extensible Security Architectures for Java. Proceedings of the

16th Symposium on Operating System Principles, 1997.
26. Vitek J, Bryce C. The JavaSeal mobile agent kernel. First International Symposium on Agent Systems

and Applications and Third International Symposium on Mobile Agents (ASA/MA’99), 1999.
27. Necula GC. Proof-carrying code. Conference Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, 1997; 106–119.
28. Necula GC, Lee P. Safe, untrusted agents using proof-carrying code. In Mobile Agents and Security,

Vigna G (ed.), vol. 1419 of LNCS. SV, 1998; 61–91.
29. Morrisett G, Crary K, Glew N, Walker D. Stack-based typed assembly language. Second International

Workshop on Types in Compilation, Leroy X, Ohori A (eds.), vol. 1473 of LNCS. Springer-Verlag: Kyoto,
1998; 95–117.

30. Morrisett G, Walker D, Crary K, Glew N. From System F to Typed Assembly Language. Twenty-fifth
ACM Symposium on Principles of Programming Languages, 1998; 85–97.

31. Boyland J. Deferring destruction when reading unique variables. Technical report, University of Wisconsin
– Milwaukee, 1999.

32. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns – Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

33. Boyland J. Alias burying: Unique variables without destructive reads. Software—Practice and Experience,
2000. In this issue.

34. Detlefs D, Rustan K, Leino M, Nelson G. Wrestling with rep exposure. Technical report, Digital
Equipment Corporation Systems Research Center, 1996.

35. Microsystems S. Support for extensions and applications in the version 1.2 of the Java platform. 2000.
36. Zaks A, Feldman V, Aizikowitz N. Sealed calls in Java packages. OOPSLA ’2000 Conference Proceedings,

ACM SIGPLAN Notices. ACM, 2000.
37. Rivest R, Shamir A, Aldeman L. A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems. Communications of the ACM, 1978; 21(2).
38. Vitek J, Serrano M, Thanos D. Security and communication in mobile object systems. In Objects at

Large, Tsichritzis D (ed.). University of Geneva, 1997.
39. Hogg J, Lea D, Wills A, de Champeaux D, Holt R. The Geneva convention on the treatment of object

aliasing. OOPS Messenger, 1992; 3(2).
40. Hogg J. Islands: Aliasing Protection in Object-Oriented Languages. Proceedings of the OOPSLA ’91

Conference on Object-Oriented Programming Systems, Languages and Applications, 1991; 271–285.
Published as ACM SIGPLAN Notices, volume 26, number 11.

41. Almeida PS. Balloon types: Controlling sharing of state in data types. ECOOP’97—Object-Oriented
Programming, 11th European Conference, Aksit M, Matsuoka S (eds.), vol. 1241 of LNCS. Springer-
Verlag: Jyväskylä, Finland, 1997; 32–59.

42. Genius D, Trapp M, Zimmermann W. An approach to improve locality using Sandwich Types. Proceedings
of the 2nd Types in Compilation workshop, vol. LNCS 1473. Springer Verlag: Kyoto, Japan, 1998.

43. Kent S, Maung I. Encapsulation and Aggregation. Proceedings of TOOLS PACIFIC 95 (TOOLS 18).
Prentice Hall, 1995.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

28 J. VITEK AND B. BOKOWKSI

44. Clarke DG, Potter JM, Noble J. Ownership types for flexible alias protection. OOPSLA ’98 Conference
Proceedings, vol. 33(10) of ACM SIGPLAN Notices. ACM, 1998; 48–64.

45. Heintze N, Riecke JG. The SLam calculus: Programming with secrecy and integrity. Proceedings of the
25th POPL, 1998.

46. Hawblitzel C, Chang CC, Czajkowski G, Hu D, von Eicken T. Implementing Multiple Protection Domains
in Java. Technical Report 97-1660, Cornell University, Department of Computer Science, 1997.

47. Odersky M, Wadler P. Pizza into Java: Translating theory into practice. Proc. 24th ACM Symposium
on Principles of Programming Languages, 1997.

48. Bracha G, Odersky M, Stoutamire D, Wadler P. Making the future safe for the past: Adding genericity
to the Java programming language. In OOPSLA Proceedings. ACM Press: Vancouver, BC, 1998.

49. Myers A, Bank J, Liskov B. Parameterized types for Java. In POPL Proceedings. ACM Press: Paris,
France, 1997.

50. Bokowski B, Dahm M. Poor man’s genericity for Java. In JIT Proceedings. Springer-Verlag: Frankfurt,
Germany, 1998.

51. Thorup KK, Torgersen M. Unifying genericity – combining the benefits of virtual types and parameterized
classes. In ECOOP’99, LNCS. Springer-Verlag: Lisbon, Portugal, 1999.

52. Tip F, Laffra C, Sweeney PF, Streeter D. Size matters: Reducing the size of Java class file archives.
Technical report, IBM Research Report RC 21321, 1998.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

