
Efficient Intrusion Detection using Automaton Inlining

Rajeev Gopalakrishna Eugene H. Spafford Jan Vitek

Center for Education and Research in Information Assurance and Security
Department of Computer Sciences

Purdue University
{rgk,spaf,jv}@cs.purdue.edu

Abstract

Host-based intrusion detection systems attempt to identify
attacks by discovering program behaviors that deviate from
expected patterns. While the idea of performing behavior
validation on-the-fly and terminating errant tasks as soon
as a violation is detected is appealing, existing systems ex-
hibit serious shortcomings in terms of accuracy and/or effi-
ciency. To gain acceptance, a number of technical advances
are needed. In this paper we focus on automated, conser-
vative, intrusion detection techniques, i.e. techniques which
do not require human intervention and do not suffer from
false positives.

We present a static analysis algorithm for constructing a
flow- and context-sensitive model of a program that allows
for efficient online validation. Context-sensitivity is essen-
tial to reduce the number of impossible control-flow paths
accepted by the intrusion detection system because such
paths provide opportunities for attackers to evade detection.
An important consideration for on-the-fly intrusion detec-
tion is to reduce the performance overhead caused by mon-
itoring. Compared to the existing approaches, our inlined
automaton model (IAM) presents a good tradeoff between
accuracy and performance. On a 32K line program, the
monitoring overhead is negligible. While the space require-
ments of a naive IAM implementation can be quite high,
compaction techniques can be employed to substantially re-
duce that footprint.

1. Introduction

The goal of a host-based intrusion detection system (IDS) is
to identify an attacker’s attempts to subvert processes run-
ning on the system. An anomaly-based IDS achieves this by
identifying program behaviors that deviate from the known

normal behavior. Intuitively, IDS algorithms monitor a pro-
gram by observing event traces and comparing those traces
to some expected behavior. Most approaches use sequences
of system calls as a characterization of program behavior.
The “normal” program traces can be modeled by observ-
ing the program execution on known inputs (dynamic anal-
ysis) [2, 5, 7, 10, 11, 12, 19], by a domain expert who cre-
ates a specification of the program (manual analysis) [8], or
by automatically creating a specification of the program us-
ing static program analysis [1, 3, 4, 16, 17]. All approaches
must deal with false positives, when the IDS deems that a le-
gal program event is invalid, as well as false negatives, when
an attack goes unnoticed. Clearly false negatives are unde-
sirable as they denote failures of the IDS, but false positives
are often more harmful as they hamper correct execution of
the program. Dynamic analysis and manual specifications
can be accurate as they leverage both domain knowledge
and the program’s input data, but they are well known to
suffer from false positives. Static program analysis tech-
niques can construct conservative program models that are
guaranteed not to exhibit false positives. The accuracy of
these approaches is illustrated in Figure 1.

The design space of automated techniques for program-
model construction must balance the following concerns:
accuracy, as measured by the number of false negatives;
scalability, the size of programs that can be handled by the
algorithm; and efficiency, the runtime overhead of moni-
toring. There are two aspects of static analysis that affect
accuracy in model generation: flow-sensitivity and context-
sensitivity. A flow-sensitive model considers the order of
execution of statements in the program. The basic model
described byWagner and Dean [17] is an example of a flow-
insensitive model where the normal expected behavior is
the regular language S∗ over the set of program events S
(e.g. system calls issued from the program text). If the pro-
gram ever issues a system call outside S, an exception is
raised. Such a flow-insensitive approach, while sound and
efficient, is highly imprecise in practice because attacks us-

Valid Program ExecutionsAttacks

Manual
models

Dynamic
models

NFA

IAM

PDA

Figure 1. Accuracy of host-based IDS models.
The figure shows program traces indicating at-
tack and valid executions. Both Dynamic and
Manual models flag some valid traces as er-
roneous (false positives) and miss some in-
valid traces (false negatives). Automatically con-
structedmodels basedon static programanalysis
are conservative i.e. they do not suffer from false
positives, but have varying degrees of accuracy.
Pushdown Automata (PDA) are strictly more pow-
erful (i.e. they catch more attacks) than both IAM
and Non-deterministic Finite Automata (NFA), al-
though in the absence of recursion, the accuracy
of IAMs is the same as that of PDAs.

ing system calls included in S cannot be detected. In large
programs, it is quite likely that the set S encompasses all
‘dangerous’ system calls. For this reason, this paper con-
siders only flow-sensitive models: models that are able to
differentiate between sequences of system calls and raise
an alert if system calls are issued out of order.

A context-sensitive model keeps track of the calling context
of functions and is able to match the return of a function
with the call site that invoked it. In a context-insensitive
model, event sequences are allowed to start at a call site,
go through the called procedure, and return to a different
call site. This kind of impossible trace (i.e. sequence of
events that can not possibly occur in a normal program ex-
ecution) is a source of inaccuracy for context-insensitive
static models. In [17], for instance, a program is repre-
sented by a non-deterministic finite automaton (NFA) that
is flow-sensitive but does not capture the call-return seman-
tics of high-level programming languages. The advantage
of such NFA models is that they impose small monitor-
ing overheads. Context-sensitive models are more accurate
at the cost of higher program running times caused by the
overhead of maintaining context information.

Context-sensitive models have been investigated by several
researchers. In [17], the behavior of a programwas captured
by a pushdown automaton (PDA), but the authors deemed
the runtime costs of the approach prohibitive and argued for
simpler models. More recent works [1, 4] have significantly
decreased these overheads, yet some monitored programs
can still run more than twice as slowly as the original un-
monitored code.

While there are obvious reasons why performance over-
heads are undesirable, there is an additional motivation for
keeping this overhead low. Flow- and context-sensitive in-
trusion detection systems can be tricked into overlooking an

attack if the adversary is able to embed the attack in a valid
program trace (a so-called mimicry attack [13, 14, 18]).
To make such attacks more difficult to carry out, intrusion
detection systems must either decrease the granularity of
events (i.e. observe more of the application’s behavior) or
be able to perform inferences on the values of arguments to
‘dangerous’ system calls (e.g. discover dynamically that ar-
guments to a call are not valid). These approaches have the
potential to improve the accuracy of IDSs but also increase
the amount of state needed for verification and thus further
increase runtime costs.

In this paper, we present a new abstraction of program
behavior referred to as an Inlined Automaton Model (IAM)
which is as accurate, in the absence of recursion, as a PDA
model and as efficient, in terms of runtime overhead, as
a NFA. We believe that this abstraction is well suited to
be the basis for more expressive intrusion detectors. The
contributions of this paper are as follows:

• Inlined Automaton Model: The IAM is a flow- and
context-sensitive model which is as accurate as a PDA,
up to recursion. The paper describes the construction
of inlined automata and relates our results to previous
work on context-sensitive models.

• Implementation: An implementation of IAM is pre-
sented. It is based on library interposition. In our sys-
tem, the events of interest are the invocation of library
functions. While it is clearly possible for us to track
system calls, we find that library functions give a more
accurate model as they are typically more frequent.

• Empirical evaluation: The IAM has been evaluated
on a benchmark suite that includes two of the same

programs used in [1] to enable direct comparison of re-
sults. We have shown runtime performance improve-
ments in both cases. In terms of scalability, our im-
plementation is able to scale to larger programs. We
demonstrate scalability by monitoring a 32K line pro-
gram. Previous experiments with a similar sized pro-
gram introduced unreasonable overheads and had to be
terminated [17].

• Automata compaction techniques: We present au-
tomata compaction techniques to reduce the space-
overhead of IAMs. These techniques are designed to
allow users to tune the footprint of the algorithm, with
some potential loss of performance.

The remainder of the paper is organized as follows.
Section 2 describes existing approaches to statically-
constructed model-based anomaly detection. Section 3 de-
scribes the construction of IAM and Section 5 discusses dif-
ferent automata compaction techniques. The implementa-
tion issues, a solution to reducing non-determinism in IAM,
and experimental results are described in Sections 4, 6,
and 7 respectively. Section 8 discusses the challenges faced
by existing approaches and Section 9 presents the conclu-
sion.

2. Static Analysis-based Automated Intrusion
Detection

Static analysis techniques can be used to construct conser-
vative models of program behavior in an automated fashion.
The seminal paper on automated program model construc-
tion for IDS is by Wagner and Dean [17]. They consider
four different models: trivial, digraph, callgraph, and ab-
stract stack. The trivial model represents the expected pro-
gram behavior using the regular language S∗ over the set
of system calls S made by a program. It completely ig-
nores the ordering of calls. The digraph model precomputes
the possible consecutive pairs of system calls from the con-
trol flow graph (CFG) of a program and at runtime checks
if the pair (previous system call, current call) is present in
the model. The callgraph model represents all possible se-
quences of system calls by modeling the expected program
behavior using a NFA derived from the CFG of the pro-
gram. The context-insensitivity arises because only a single
instance of a function’s CFG is represented in the NFA and
this leads to impossible paths (see Figure 2). Finally, the
abstract stack model eliminates such impossible paths by
modeling the call stack of a program using a PDA. How-
ever, [17] demonstrate that in practice the operational costs
of a PDA model are prohibitive in both space and time be-
cause of having to maintain and search all possible stack
configurations on transitions.

Giffin et al. [3] evaluate several interesting optimizations to
increase precision of NFA models and efficiency of PDAs.
The first optimization is to rename system calls (thus ex-
tending the set of events S) and allowing the model to dis-
tinguish among different invocations of the same function,
thus increasing accuracy. The second technique, argument
recovery, helps distinguish call sites by recovering static ar-
guments, i.e. arguments to functions that can be determined
at compile time, for example constant strings or scalar val-
ues. Again, this has the effect of enriching the set of observ-
able events and decreasing the number of impossible paths.
The last technique proposed in this work consists of a sim-
ple, meaning-preserving, program transformation which in-
serts null calls, i.e. calls to a dummy function, at selected
points in the program. These calls provide additional con-
text information to disambiguate event sequences. The pa-
per evaluates four null call placement strategies for preci-
sion and efficiency. Inserting null calls in functions with a
fan-in of five or greater provides a good balance between
precision and efficiency. Extending it to functions with fan-
in two or greater results in runtime overheads of up to 729%.
A PDA model with a bounded runtime stack is also inves-
tigated. However, gains in efficiency are observed only by
combining this model with null call insertion, which has its
own limitations.

The Dyck model [4, 1] improves on the above mentioned
null call technique by inserting code around non-recursive
call sites to user functions that issue system-calls. The ap-
proach basically increases the set of events S accepted by
the automaton with unique push/pop symbols; one such
guard pair is added for every function call site of interest.
This disambiguates call sites to the same target function
and thus achieves context-sensitivity. The runtime of the
program is affected by the overhead of the instrumentation.
The runtime costs can be reduced by dynamic squelching,
i.e. pruning from the model symbols guarding a function
that does not exhibit interesting behavior (e.g. does not
issue system calls). Nevertheless, slowdowns of 56% and
135% are reported for cat and htzipd. Recursive calls
are not instrumented for performance reasons.

The VPStatic model [1] is a statically-constructed variant
of the dynamic context-sensitive VtPath model [2]. It cap-
tures the context of a system call by a list (called the vir-
tual stack list) of call site addresses for functions that have
not yet returned. This information is obtained at runtime
by observing the stack of the monitored process. The vir-
tual stack lists of consecutive system call events are used
to determine if that transition is acceptable by the model.
While the Dyck model incurs runtime overhead in generat-
ing new context-determining symbols, the VPStatic model
introduces overhead because of the stack walks necessary
to observe existing context-determining symbols. However,

the overhead of stack walks is incurred only at system call
events unlike the overhead in the Dyck model which might
occur on execution paths without system call events. This
difference results in reduced slowdown of 32% and 97% for
cat and htzipd in the case of the VPStatic model. The
stack walks make up much of the slowdown.

3. The Inlined Automaton Model

The Inlined Automaton Model (IAM) is a flow- and
context-sensitive statically-constructed model of program
behavior that is simple, scalable, and efficient. The model
is generated by first constructing NFAs for each user func-
tion in the program. These automata are constructed by a
simple flow-sensitive intra-procedural analysis of the pro-
gram text. Then, in a second phase, nodes representing call
sites are inlined with the models corresponding to the called
functions. This process is repeated until all calls have been
completely expanded. Recursive calls are treated specially
as will be discussed below.

Figure 2 shows an example program and its NFA represen-
tation. The NFA abstraction is a union of statement-level
CFGs for each function in the program. Each function has
unique entry and exit nodes and call sites are split into
call and return nodes. Call nodes are connected to the
entry nodes of the invoked functions and the exit nodes of
the invoked functions are connected to the return nodes cor-
responding to these calls. The context-insensitivity in the
NFAmodel arises because only a single copy of a function’s
CFG is maintained in the representation. This results in im-
possible paths being considered by the model. For example,
in Figure 2, the system call sequence (start, write,
write, close, end) is an impossible path. start
and end are special symbols used to denote the start and
end of program execution.

Definition 1 Formally, an ε-NFAN for a program P is rep-
resented as N = (Q,Σ, δ, q0, F) [6] where:

Q is a finite set of states
Σ is a finite set of input symbols
q0, a member of Q, is the start state
F , a subset of Q, is a set of final states
δ is the transition function that takes a stateQ and an input
symbol in Σ ∪ {ε} as arguments and returns a subset of Q.

We associate a type T with every state in the NFA represen-
tation of a program. So, for each q ∈ Q,∃ T s.t. T (q) ∈
{E,X,C,R}, which represent entry, exit, call, and return
nodes respectively. We define successor of a state q as a set
of tuples (s, l), where s ∈ Q and ∃ l ∈ Σ∪{ε} s.t. δ(q, l) =

s. Fan-out of state q is defined as the cardinality of the
set successor(q). Similarly, we define the predecessor of
a state q as a set of tuples (s, l), where s ∈ Q and ∃ l ∈
Σ ∪ {ε} s.t. δ(s, l) = q. Fan-in of state q is defined as the
cardinality of the set predecessor(q).

The IAM representation of the program in Figure 3(a) is ob-
tained from the NFA model by inlining all the function calls
in the program. The resulting model is context-sensitive be-
cause the call-return semantics of function calls is modeled
by including a copy of a function’s CFG at every call to that
function. This model does not have, up to recursion, the
impossible paths resulting from context-insensitivity.

Formally, an ε-NFA N for a program P given by N =
(Q,Σ, δ, q0, F) is transformed into an ε-IAM M given by
M = (Q′,Σ, δ′, q0, F

′)where an additional property holds.

Definition 2 An ε-IAM M is an ε-NFA where for each q ∈
Q′, if T (q) = E then fan-in(q) = 1 or else if T (q) = X
then fan-out(q) = 1, provided E and X are entry and exit
nodes of a non-recursive and non-main function.

The final IAM representation shown in Figure 3(b) includes
only system call nodes and transitions, and discards the
other nodes. This ε-free IAM is obtained by performing
ε-reduction on ε-IAM. The definitions of successor and pre-
decessor are the same for an ε-free IAM except that ε is not
an input symbol.

A drawback of inlining is that it may result in state explo-
sion. This indeed is the reason [3] decided not to pursue this
approach. The state space can be somewhat limited by re-
stricting the model to states that characterize the observable
behavior of the program, e.g. system calls, or in our cur-
rent implementation, calls to library functions. Section 5
discusses space compaction techniques.

Recursion is one obvious limitation of inlining. To ensure
termination, it is necessary to treat recursion specially. We
perform inlining depth-first. On detecting recursion, we ter-
minate inlining. We connect the call node of the repeating
function to the entry node of its previously inlined instance
and the exit node of that instance to the current return node.
These transitions model the winding phase of recursion. We
also connect the call and return nodes of the repeating func-
tion to model the unwinding phase of recursion. Examples
of recursion bounding for both direct and indirect recursion
appear in Figures 4 and 5. Recursion introduces impossi-
ble paths, for example in Figure 4, the sequence (start,
open, write, end) is an impossible path, as it lacks
a call to close in the unwinding phase, but the path is al-
lowed by the model.

We can relate our approach to the formalization of [1].

main(int argc, char** argv) {
int fd;
if (argc == 1) {
write(1, "StdOut", 6);
foo(1);

} else {
fd = open(argv[1], O_WRONLY);
foo(fd); close(fd);

} }
void foo(int x) {

write(x,"Hello World",11);
}

X

R

main foo

write

write

close

open
E E

C

R

C

X

Figure 2. A sample program. In the NFA representation of the program, E, X, C, and R represent entry,
exit, call, and return nodes respectively. The dotted lines represent ε-transitions in the NFA.

X

X

write

main

E

open

close

C

C

C

(a) (b)

write open

close

main

E

E

R

CC

R

E

write write

write

write

XX

Figure 3. (a) The ε-IAM representation of the program in Figure 2. (b) An ε-free IAM representation.

Theorem 1 Let L(IAM (P)) denote the language ac-
cepted by an inlined automaton for some program P , and
L(PDA(P)) be the language accepted by the pushdown au-
tomaton of [1], then we have L(PDA(P)) ⊆ L(IAM (P)).

In the case of recursion-free programs, the languages are
equivalent.

4. Monitoring Programs with IAM

Our current implementation of IAM monitors library func-
tion calls. The runtime monitor is implemented as a library
interposition mechanism [9]. It intercepts calls to library
functions and checks them against the model. Figure 6

gives pseudocode for the monitoring algorithm and the data
structures used. The algorithm maintains a vector of current
states and for every transition, computes the states reachable
from that vector. If the set is ever empty, an alert is raised.

4.1. Monitored Events

It should be noted that the algorithm monitors more events
than other approaches because we track library functions ir-
respective of whether they make system calls or not. In the
IAMs of the four test programs (see Table 1), only about
25%-50% (26% in gnatsd) of the library functions made
system calls. So, this generally results in more states and
more transitions in our automaton. This bigger size in-

main(int argc, char** argv) {
if (argc > 1) foo(--argc, argv);

}
void foo(int argc, char **file) {

int fd;
if (argc != 0) {
fd = open(file[argc], O_WRONLY);
write(fd,"Hello World",11);
foo(--argc, file); close(fd);

}
}

C

E

C

R

C

X

R

C

E

foo
open

close

write

X

1

2 3

4

8
9

5

6

710

main

Figure 4. A recursive program. In the IAM representation of the program, dotted lines representing
ε-transitions have been retained for clarity. The node sequence 1-2-3-4-5-3-8-9-10 which translates
to the system call sequence (start, open, write, end) is an impossible path.

main(int argc, char** argv) {
if (argc > 1) foo1(argc, argv);

}
void foo1(int argc, char **file) {

if (argc != 0) foo2(--argc, file);
}

void foo2(int argc, char **file) {
int fd; fd = open(file[argc], O_WRONLY);
write(fd,"Hello World",11);
foo1(argc, file); close(fd);

}

C

C

R

CC

R

E

X

R

C E

write
open

foo1

E

close

main

X

X

foo2

Figure 5. An indirect-recursion program. The program does exactly the same thing as the program
in Figure 4 but using mutually recursive functions foo1() and foo2(). The dotted lines representing
ε-transitions have been retained for clarity.

creases the runtime overhead because of the greater search
space. Therefore, modeling libraries instead of system calls
is a worst case scenario with the possible exception of a
program mostly made up of calls to library functions that
make several system calls (e.g. some of the socket li-
brary functions). In this exceptional case, a model based
on system calls would be bigger and slower than our cur-
rent model. Otherwise, in most cases, the time and space
measurements presented in Section 7 can be considered an
upper bound for an implementation of a similar approach
based on system calls.

4.2. Handling Non-standard Control Flow

Function pointers, setjmp/longjmp primitives, and sig-
nals have to be handled to obtain a sound model. Function
pointers in C can be used to make indirect function calls.
The functions that can be invoked from a function pointer
call site are determined by an analysis of the program that
computes the possible values of the function pointer at that
program point. But the pointer analysis required to deter-
mine this itself requires interprocedural control-flow infor-
mation. This chicken-and-egg problem can be solved by ei-
ther ignoring function pointers completely or by combining
the construction of control-flow graph with pointer analy-

Data Structures

node {
unsigned int nodeid : 19
unsigned int funid : 8
unsigned int succ : 1

}

int funid

node[] curr

node[][] model

input: funid, curr, model
output: curr

succidx ← 0
foreach node n in curr do

pos ← 0
repeat

nd ← model[n.nodeid][pos++]
if nd.funid = funid then

if nd �∈ succ then
succ[succidx++].nodeid ← nd.nodeid

if nd.succ = 0 then break
end

end
if succidx = 0 then raise alert
copy succ to curr

Figure 6. IAM monitoring algorithm.

sis. Ignoring function pointers is unsound. In the current
implementation, we resolve function pointers to all defined
functions with the same number and type of arguments as
the function pointer invocations. Although this has been
sufficient to model our benchmark suite and workloads, this
is unsound in the presence of function pointer targets with
variable number of arguments and typecasts. Future work
should incorporate pointer analysis to more accurately re-
solve function pointers. This would significantly decrease
the model size for programs with heavy function pointer us-
age especially in the case of IAM which uses inlining.

A call to setjmp saves the stack state in a buffer speci-
fied by the env argument. A call to longjmp restores the
environment saved by the last call of setjmp with the corre-
sponding env argument. In the absence of data flow analysis
to determine the pair of setjmp/longjmp calls with the same
env buffer (lexical matching would ignore effects of alias-
ing), we connect a longjmp call to every setjmp call in the
control flow graph.

Signals are used extensively in privileged programs and net-
work daemons. We identify the signal handlers in a program
and construct separate context-sensitive models for them.

4.3. Data Structures

The current implementation of the automaton is based on an
ε-free IAM model. The automaton is represented by a table
of nodes (see Figure 6). Each row in the table corresponds
to a state q, and each entry, a node, in the row corresponds
to an element of successor(q). Nodes are represented by a
node identifier nodeid (used as an offset in the table), li-
brary function identifier funid, and a succ bit to indicate
if this is the last node (the majority of rows are short; so a

bit per node is more efficient than a leading integer). Thus a
node represents a tuple (s, l) indicating the transition state
s for the input symbol l. The entire structure is packed into
28 bits to conserve space. The 19 bits and 8 bits bit-fields
used for the nodes are sufficient to represent all programs
we have encountered to date.

The calculations for the automaton compacted by including
ε-transitions and by using delta successor states (c.f. Sec-
tion 5) are based on the following data structure1. Nodes
have three fields: a one byte funid, another one byte length
for the number of bits used in the offset field for the delta
successors of that state, and finally a pointer to the delta
successors. If a node represents a library call then the fu-
nid is the identifier of the function. If not, it is zero. The
value of the length field depends on the delta successor with
the maximum (absolute) offset from the current state. We
cannot use different number of bits for each delta succes-
sor depending on its offset because the delta successors of
a state have to be of the same size to allow traversal by the
runtime monitoring algorithm. Each delta successor con-
tains the offset field, one bit to indicate if it is a positive or
negative offset, and another bit to indicate if there are more
delta successors.

5. Inlined Automata Compaction

The Inlined Model trades off space for time. This trade-off
is essential given the performance characteristics of exist-
ing approaches to context-sensitive real-time intrusion de-
tection. While IAMs obtain run-time performance better

1Note that this data structure is different from the one in Figure 6 which
is used in the current implementation.

Program Software Version LOC Description
cat Solaris 8 <1K A utility to concatenate and display files
htzipd LiteZipper-0.1.6 ≈7K A proprietary HTTP server implementation
lhttpd lhttpd-0.1 <1K A fast and efficient HTTP server capable of handling

thousands of simultaneous connections
gnatsd gnats-4.0 ≈32K The server daemon component of GNU GNATS, which is

a set of tools for tracking bugs reported by users

Table 1. Test programs.

ε-IAM ε-free IAM
Program states transitions states transitions
cat 99 342 90 791
htzipd 11,274 15,563 2,821 31,047
lhttpd 650 886 429 1,098
gnatsd 1,286,503 1,969,732 338,736 7,915,678

Table 2. Characteristics of IAM models.

than NFAs (which suffer from performance degradation be-
cause of increased non-determinism as a result of context-
insensitivity), the footprint of a naive IAM can be rather
large. In the previous section we presented a compact data
layout for the model. Here we study automata compaction
techniques. Table 1 describes the test programs in our
benchmark suite and Table 2 gives some basic character-
istics of their IAM models.

Coalescing Single-successor States. Straight-line code
leads to states with single successors (i.e. fan-out of 1).
Recall that state transitions occur on calls to library func-
tions. The first compaction technique that we present con-
sists of coalescing a single-successor state with that succes-
sor; in effect, having multiple symbols on a transition edge.
Formally, For each state sj ∈ IAM , if successor(sj) =
{(sk, l)}, then for each (si, l

′) ∈ predecessor(sj), trans-
form (sj , l

′) to (sk, l′l) in successor(si). In terms of the
transition function, replace δ(si, l

′) = sj and δ(sj , l) = sk

with δ(si, l
′l) = sk. The cost of this optimization is that the

monitoring code must keep extra state, a pointer in the ar-
ray of symbols for the current transition. This cost is rather
modest. The space savings come from the fact that a tran-
sition can be encoded as a sequence of bytes (one per sym-
bol) and that the state space is reduced as the nodes for the
single-successor state are not needed. Every coalesced state
would reduce the overall space requirements by approxi-
mately 52 bits by removing one row in the model and part
of a node.

Figure 7 gives the distribution of fan-out values for states
in our benchmark suite. Single-successor states range from
30% in htzipd to 58% in lhttpd. This shows that there

is potential for significant reduction in the number of au-
tomaton states using this technique.

Merging Final States. Functions such as exit, exit,
and abort terminate a process. Calls to such functions
denote final states in the automaton. We do not need to
maintain multiple instances of such final states in the inlined
model and can instead have a single final state. This is use-
ful especially when there is extensive use of error-handling
routines such as those present in network daemons. The
number of zero-successor states (fan-out = 0) ranges from
0.68% in htzipd to about 10% in gnatsd as shown in
Figure 7. For gnatsd, which has more than 300,000 states,
a 10% reduction is significant. Each final state that can be
removed saves approximately four bytes in the overall rep-
resentation. Furthermore, smaller state space could allow
us to reduce the number of bits required for the nodeid
field (currently 19).

Combining Equivalent Transition Symbols. The above
two techniques reduce the number of states in the automa-
ton. This technique takes advantage of the commonality
of transition symbols. We know that non-determinism can
result in a state having multiple successors. If there are
multiple successors for the same transition symbol then
one can reduce the overhead by maintaining a single in-
stance of the transition symbol for all those successor
states. Formally, the representation for successor states of si

can be transformed from {(sj1 , l), (sj2 , l), . . . , (sjn , l), . . .}
to {({sj1 , sj2 , . . . , sjn}, l), . . .}. In our representation we
would save one byte per transition with a common function
symbol. Figure 9 shows the average number of successors

cat htzipd lhttpd gnatsd
0

10

20

30

40

50

60

70

80

90

100
D

is
tr

ib
ut

io
n

of
 fa

n−
ou

t v
al

ue
s

am
on

g
st

at
es

0
1
2−10
11−50
> 50

Figure 7. Percentage dis-
tribution of fan-out values
among automaton states af-
ter ε-reduction.

cat htzipd lhttpd gnatsd
0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

ut
io

n
of

 fa
n−

ou
t v

al
ue

s
am

on
g

st
at

es

0
1
2−10
11−50
> 50

Figure 8. Percentage dis-
tribution of fan-out values
among automaton states be-
fore ε-reduction.

cat htzipd lhttpd gnatsd
0

5

10

15

20

25

A
ve

ra
ge

 fa
n−

ou
t a

nd
 u

ni
qu

e
tr

an
si

tio
n

sy
m

bo
ls

 p
er

 s
ta

te avg. fan−out per state
avg. unique transition symbols per state

Figure 9. Average fan-out
and average unique transi-
tion symbols per automaton
state.

cat htzipd lhttpd gnatsd
−5

0

5

10

15

20

%
 m

em
or

y
sa

ve
d

us
in

g
de

lta
 s

uc
ce

ss
or

 s
ta

te
s

Figure 10. Percentage sav-
ings in memory if the model
uses delta successor au-
tomaton states.

cat htzipd lhttpd gnatsd
0

10

20

30

40

50

60

70

80

90

100

%
 d

ec
re

as
e

in
 a

vg
. f

an
−

ou
t a

nd
 a

ut
om

at
on

 s
iz

e

% decrease in avg. fan−out
% decrease in automaton size

Figure 11. Percentage de-
crease in fan-out and au-
tomaton size if the model in-
cludes ε-transitions.

cat htzipd lhttpd gnatsd
0

50

100

150

200

250

300

350

400

%
 in

cr
ea

se
 in

 n
um

be
r

of
 s

ta
te

s

Figure 12. Percentage in-
crease in number of states
if the model includes ε-
transitions.

and unique transition symbols per state. The number of suc-
cessors being much greater than the number of unique tran-
sition symbols per state (especially for gnatsd) illustrates
the potential for significant space savings.

Maintaining Delta Successor States. States are distin-
guished by identifiers that are also offsets in the table rep-
resenting the model. In our example, the default size is 19
bits. Delta successors do not use identifiers for the succes-
sors of a state, instead offsets (in the model) of the succes-
sors relative to the current state. Such successor states are
delta successor states. Figure 10 shows the memory sav-
ings obtained by maintaining delta successor states in the
automaton. For cat and lhttpd, which are smaller pro-
grams compared to the other two, the extra information that
is needed to use delta successor states outweighs the mem-
ory savings and results in a net increase in memory needs.

For gnatsd however, we can obtain up to 16.49% decrease
in memory needs on using delta successor states.

Including ε-transitions. Initially an IAM has entry, exit,
call, and return nodes for every function instance and call
site. Calls to library functions are represented using a sin-
gle call node because we do not analyze them. Of all these
nodes, only the call nodes to library functions are of interest
for intrusion detection. Once the basic IAM is constructed,
our implementation performs ε-reduction. We hypothesized
that this would not only yield a more compact representa-
tion but also better runtime performance by reducing the
search space to only library calls. The final IAM thus in-
cludes a single entry node (that of main) and call nodes for
each library function. However, the compaction increases
the degree of non-determinism in the model by introducing
more transitions per state. Each automaton state now has a

greater fan-out than before. The maximum fan-outs in the
ε-free IAMs for cat, htzipd, lhttpd, and gnatsd are
35, 136, 33, and 10,028 respectively. In gnatsd particu-
larly, there is a high degree of non-determinism in the pro-
gram text itself. There are switch statements with about
80-115 cases in the lexical analyzer and parser subsystems.

Figure 12 shows the percentage increase in the number of
states if ε-transitions are included in the automaton. The
number of states almost quadruples in the case of htzipd
and gnatsd. But the average fan-out per state decreases
considerably for all programs (see Figure 11). In the case
of gnatsd, it drops from 23.3 to 1.5 (a 93.45% decrease).
The percentage distribution of fan-out values in this case is
shown in Figure 8. Including ε-transitions in the automaton
and using delta successor states reduces the automaton sizes
of these programs by as much as 74.8% for cat and 72.2%
for gnatsd (see Figure 11). Given that single-successor
states make up between 49.5% to 81.3% of all states in this
case (Figure 8), coalescing can lead to further compaction.
However, inclusion of ε-transitions may result in additional
runtime overhead caused by traversal of the additional states
(because, in effect, the monitoring algorithm would have to
do an ε-reduction at runtime). Our current model represen-
tation (the ε-free IAM) is highly optimized for time. We be-
lieve that in memory-constrained contexts, one can benefit
from the above optimizations but expect additional runtime
overhead.

Hybrid Automata. Following [1], we discuss a hybrid
model that addresses two problems of IAMs: footprint and
accuracy. The idea of a hybrid model is to give users more
control over space/time tradeoffs. Although there is not nec-
essarily a direct correlation between program size and IAM
size (the size of the IAM is affected by issues such as the
number of library functions, the number of call sites, the
average fan-out), program size remains a good approxima-
tion. Very large programs as well as pathological cases will
occur and it is desirable to have a strategy to deal with those.

A hybrid automaton model hIAMk combines inlining with
the guarded calls proposed for the Dyck model. A hIAMk

is constructed bottom up starting with leaf functions, i.e.
functions that do not call other user functions. Inlining is
applied iteratively so that at each iteration, all functions that
only call leaf functions are selected for inlining. Modulo re-
cursion, this process will terminate when all functions have
been transformed to leaf functions. The main difference
with an IAM is that in hIAMk, the inlining is controlled by
a user defined constant k which determines the maximum
size for an inlined function. Any function with a number of
states larger than k will not be inlined. To retain accuracy,
the hybrid model must transform the source program to add
guards to calls of non-inlined functions, in the same manner

as the Dyck model. Thus, assuming that the program con-
tains a call to f() (and that this is the 23rd call site to that
function) and the NFA for f is larger than k, the following
program transformation is applied:

pre("f",23);
f(); =⇒ f();

post("f",23);

Clearly, k has an impact on performance: at the extreme if
k is 1 then hIAM would degenerate into an instance of the
Dyck model.

6. Deterministic Markers

A high degree of non-determinism results in large fan-
outs for the automaton states. A larger fan-out translates
to greater runtime overhead for the monitoring algorithm
which has to check every successor state for matching tran-
sition symbols. Furthermore, although the monitoring algo-
rithm starts with a single current state (entry of main), non-
determinism and the existence of several successor states
for the same transition symbol quickly introduce ambigu-
ity about the current state. This causes the monitoring al-
gorithm to maintain a set of current states and check suc-
cessors for each of them at runtime. The overhead intro-
duced because of this can be significant for a program like
gnatsd which has a high average fan-out and a low aver-
age unique transition symbol per state (see Figure 9). We
introduce the concept of deterministic markers as a solution
to reduce such overhead.

Deterministic markers are unique transition symbols intro-
duced in the program text to reduce the search space (cur-
rent states and successors) of the runtime monitoring algo-
rithm. Conceptually, they are similar to the renaming and
null call insertion techniques described in [3, 4, 1]. The
difference is that they are not needed for determining the
calling context (inlining takes care of that) but for disam-
biguating the current state (program counter) and reducing
the fan-out of frequently occurring high fan-out states (such
as a library function call in a loop followed by severe non-
determinism).

Currently, we use such markers only for gnatsd along the
paths exercised by the workloads. Eleven sites were man-
ually identified and null library calls were introduced. The
performance gains were substantial for the minimal effort
involved in identifying instrumentation sites. It is reason-
able to assume that the selection of instrumentation sites can
be automated at model construction time. This can be done
by detecting high fan-out and high ambiguity states in the ε-
free IAM and by maintaining a mapping of the model states

Program Workload
cat Concatenate 38 files totaling 500 MB to a file
htzipd Service 500 client requests simultaneously, transferring 152.2 MB of data in total
lhttpd Service a single client request, transferring 151.7 MB of data
gnatsd Service 2000 commands requested by a client

Table 3. Workloads.

Program Unmonitored Base Monitored %
cat 58.95 59.14 59.04 0
htzipd 13.22 13.35 14.46 8.3
lhttpd 29.17 28.82 29.08 0.9
gnatsd 35.61 36.29 34.36 0

Table 4. Program runtime in seconds.

Unoptimized Compacted
Program Code Automaton % Automaton %
cat 1,232 3.44 0.2 0.8 0.1
htzipd 1,840 132.3 7.1 77.1 4.1
lhttpd 1,888 5.9 0.3 4.3 0.2
gnatsd 1,992 32,243 1,618 8,966 450

Table 5. Memory usage in KB.

% Runtime Overhead % Memory Overhead
Program Dyck VPStatic IAM Dyck VPStatic IAM
cat 56 32 0 49 194 0.2
htzipd 135 97 8.3 38 183 7.1

Table 6. Comparing models.

to program points to help identify instrumentation sites in
program text. Automating the selection of instrumentation
sites and evaluating its impact on model size is part of future
work.

7. Evaluation

Program models for on-the-fly intrusion detection can be
evaluated on two criteria: accuracy and efficiency. Greater
accuracy makes these models useful by reducing false neg-
atives and increased efficiency makes them usable by re-
ducing time and space overheads. The IAM model has a
runtime efficiency equal to that of a NFA model, which is
the most efficient model possible.

We demonstrate the efficiency of our model by testing it
with the four real-world programs shown in Table 1. For
comparison purposes, we have chosen programs used in the
literature. Tests were run on a Sun V100 550MHz Ultra-
SPARC II with 256MB of RAM and running Solaris 9. Ta-
ble 3 shows the workloads used in testing. Table 4 shows

the runtime overhead for our model. Runtime is measured
using the UNIX time utility. Time measurements are cal-
culated over several runs. The base runtime represents the
cost of library interposition and the monitored runtime in-
cludes the cost of operating the automaton. The monitored
runtime does not include the setup time needed to load the
program model from the disk (except in the case of cat).
The difference between the base runtime and the monitored
runtime represents the model operation overhead. The per-
centages compare this overhead against the base runtime.
We attribute the slight variations between expected times
(because of interposition and monitoring) and actual times
to measurement noise. Except for htzipd, the runtime
overhead for the programs is negligible. We are confident
that the runtime overhead for htzipd can be reduced by
using deterministic markers. Note that our solution scales
efficiently to gnatsd which is a 32K program.

Table 5 shows the memory usage of the programs. The
unmonitored memory usage of the code is obtained using
the pmap command, which displays information about the
address space of a process. The percentages compare the

automaton overhead against the unmonitored memory us-
age of the code. The automaton overhead is significant for
gnatsd when compared to others. But this can be reduced
by as much as 72.19% by including ε-transitions and delta
successor states as described in Section 5. Also, note that
the same automaton can be used if multiple instances of the
program are running at the same time. Table 6 compares the
runtime and memory overheads of the Dyck, VPStatic, and
IAM models for common test programs. The IAM model is
clearly more time and space efficient for these programs.

7.1. Discussion

In this paper, we demonstrated the efficiency of the IAM
model by monitoring library calls instead of system calls as
done in previous work. This choice is motivated by prag-
matic considerations. Analyzing the source code of C li-
braries is a challenging task [17] (other approaches typically
analyze statically-linked binaries [3, 4, 1]). The static anal-
ysis infrastructure used in our prototype was simply not able
to handle these libraries; we plan to address this problem in
future work. But, we also believe that switching to system
calls will not affect our results. Library functions give a
finer grained program model as they are usually more fre-
quent. It is thus likely that overheads reported here are an
upper bound on the costs of the approach. However, from
an effectiveness perspective, monitoring the library inter-
face alone is not sufficient for intrusion detection.

There are several approaches to handling recursion. The
simplest solution is of course to allow imprecision at re-
cursion points in the model based on the assumption that
the actual loss of accuracy is small. The implication of this
to mimicry attacks has to be considered. Furthermore, re-
cursion is only a problem if there are library calls in the
unwinding phase (i.e. if a library call is reachable in the
control flow graph between the recursive call site and the
function’s exit), if not the attacker would gain absolutely
nothing by following impossible paths. Thus, if a function
g() is recursive and has library calls in an unwinding path,
its calls can be transformed into guarded calls in the hybrid
model. However, this can have an impact on the perfor-
mance (which is why the Dyck model does not instrument
recursive calls). None of the existing approaches, ours in-
cluded, demonstrate an efficient way of handling recursion.

Our implementation has targeted C programs and extending
it to object-oriented languages with dynamic binding raises
concerns for accuracy and scalability. This is because, in
C++ for example, virtual methods are invoked through func-
tion pointers and thus we would have to inline all possible
implementations of the method at every call site. Static pro-
gram analysis techniques can help. Experience with Java

programs suggests that upwards from 90% of call sites can
be devirtualized [15], i.e. it is possible to determine unam-
biguously which implementation will be invoked.

8. Limitations

The existing approaches to anomaly detection address only
a part of the IDS problem: accurate and efficient monitoring
of system call sequences. This is the simplest, yet impor-
tant, concern for intrusion detection because an attacker has
to use system calls to interact with the underlying operating
system to cause harm (with the possible exception of DoS
attacks). By accurately modeling the acceptable sequences
of system calls, the models limit the attacker to only those
expected system call sequences. However, there are several
limitations that diminish the precision of these models.

Path Sensitivity. All the proposed models, ours included,
treat branches in a conservative manner without evaluat-
ing the branch predicates because it needs more sophisti-
cated static and dynamic program analysis. Such a path-
insensitive modeling can be exploited by an attacker as il-
lustrated in [1].

Granularity of Events. Granularity of events is a trou-
blesome issue. Ideally, an IDS would monitor every single
statement executed by the target program and validate each
machine instruction. Clearly this is not possible and exist-
ing models are approximations at different levels of gran-
ularity. The coarser the approximation, the easier it is to
mount a mimicry attack. So for example, restricting the ob-
servable events to system calls, means that library function
calls are not captured in the model. Yet, library functions
are common entry points for attackers because of their sus-
ceptibility to buffer overflow and format string vulnerabili-
ties. Some vulnerable library functions such as the string
family of functions do not make any system calls. Thus, a
coarse model may not be able to observe the deviant be-
havior at the library interface and would have to rely on an
out-of-sequence system call to detect an intrusion.

Library interposition techniques, such as the one used in this
paper, allow to monitor the library functions called by a tar-
get program. However, an IDS based solely on library inter-
position will not be effective because if an attacker manages
to exploit a vulnerability without setting off the IDS then he
can further evade the IDS by directly issuing system calls
in the “attack code.” Therefore, coupling library interposi-
tion with kernel-level system call interposition is necessary.
Such a combined IDS appears feasible, it requires two su-
pervisors that must match up; one supervisor will monitor

library calls and the other system calls. A single program
model can be used for both. A detailed discussion of this
issue is beyond the scope of this paper.

Data flow Analysis. Data flow support is another require-
ment for more robust IDSs. It is well documented [17, 4]
that even a naive approach that incorporates data flow by
looking at arguments with constant values can dramatically
improve the accuracy of models. To protect against mimicry
attacks, it may be necessary to have more powerful predi-
cates about the values of arguments. As an example, con-
sider the case of a call that opens a file; if the leading part
of the file name can be determined statically (even though
the full name is constructed dynamically) then an IDS could
prevent attempts to open files outside of the intended direc-
tory. Such predicates can be obtained by program analysis,
but are likely to increase the runtime costs of monitoring,
which is further reason to keep the costs of the basic pro-
gram model low.

9. Conclusions

We have proposed an efficient and scalable solution to the
problem of constructing conservative approximations of le-
gal program behaviors for the purpose of host-based intru-
sion detection. Our approach based on an inlined automa-
ton model (IAM) is context-sensitive and does not suffer
from false positives. Constructing a basic IAM is simple
and the resulting model is easy to understand. The over-
head of monitoring programs based on an IAM is low and
thus suggests that this technique could be deployed in pro-
duction environments. The IAM construction algorithm has
been shown to scale to a 32K line programwith a substantial
space overhead. We then show how to reduce this overhead
with automaton compaction techniques.

Acknowledgments

We thank Barbara Ryder and Atanas Rountev for providing
the PROLANGS Analysis Framework (PAF) used to imple-
ment our prototype and answering our questions. We also
thank the authors of [1] for providing us with the htzipd
source code and answering questions about their work. Fi-
nally, we thank the anonymous referees for their sugges-
tions. This work was supported by sponsors of CERIAS,
which is gratefully acknowledged, and in part by grant NSF
TC #0209083.

References

[1] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller.
Formalizing sensitivity in static analysis for intrusion detec-
tion. In IEEE Symposium on Security and Privacy, May
2004.

[2] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong.
Anomaly detection using call stack information. In IEEE
Symposium on Security and Privacy, May 2003.

[3] J. Giffin, S. Jha, and B. Miller. Detecting manipulated re-
mote call streams. In 11th USENIX Security Symposium,
August 2002.

[4] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive
intrusion detection. In 11th Annual Network and Distributed
Systems Security Symposium, February 2004.

[5] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[6] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduc-
tion to automata theory, languages, and computation, 2nd
edition. ACM Press, 2001.

[7] A. Jones and Y. Lin. Application intrusion detection us-
ing language library calls. In Proceedings of the 17th An-
nual Computer Security Applications Conference (ACSAC),
2001.

[8] C. Ko, G. Fink, and K. Levitt. Automated detection of vul-
nerabilities in privileged programs by execution monitoring.
In Proceedings of the 10th Annual Computer Security Appli-
cations Conference (ACSAC), 1994.

[9] B. Kuperman and E. H. Spafford. Generation of application
level audit data via library interposition. CERIAS TR 99-11,
COAST Laboratory, Purdue University, Oct. 1998.

[10] T. Lane and C. E. Brodley. Temporal sequence learning and
data reduction for anomaly detection. ACM Transactions on
Information and System Security, 2(3):295–331, 1999.

[11] W. Lee, S. J. Stolfo, and K. W. Mok. A data mining frame-
work for building intrusion detection models. In IEEE Sym-
posium on Security and Privacy, 1999.

[12] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program
behaviors. In IEEE Symposium on Security and Privacy,
2001.

[13] K. Tan, K. Killourhy, and R. Maxion. Undermining an
anomaly-based intrusion detection system using common
exploits. In Recent Advances in Intrusion Detection (RAID),
2002.

[14] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions:
From the abnormal to the normal and beyond. In Fifth Inter-
national Workshop on Information Hiding, 2002.

[15] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In Proceedings of the Conference
on Object-Oriented Programming Languages, Systems and
Applications (OOPSLA), 2000.

[16] D. Wagner. Static Analysis and Computer Security: New
Techniques for Software Assurance. PhD thesis, University
of California, Berkeley, 2000.

[17] D. Wagner and D. Dean. Intrusion detection via static anal-
ysis. In IEEE Symposium on Security and Privacy, 2001.

[18] D. Wagner and P. Soto. Mimicry attacks on host based intru-
sion detection systems. In Ninth ACM Conference on Com-
puter and Communications Security, 2002.

[19] A. Wespi, M. Dacier, and H. Debar. Intrusion detection
using variable-length audit trail patterns. In Third Interna-
tional Workshop on Recent Advances in Intrusion Detection
(RAID), 2000.

