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Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is a key experimental technique
used to study protein structure, dynamics, and interactions. NMR methods face the
bottleneck of spectral analysis, in particular determining the resonance assignment,
which helps define the mapping between atoms in the protein and peaks in the spectra.
A substantial amount of noise in spectral data, along with ambiguities in interpretation,
make this analysis a daunting task, and there exists no generally accepted measure of
uncertainty associated with the resulting solutions. This paper develops a model-
based inference approach that addresses the problem of characterizing uncertainty in
backbone resonance assignment. We argue that NMR spectra are subject to random
variation, and ignoring this stochasticity can lead to false optimism and erroneous
conclusions. We propose a Bayesian statistical model that accounts for various sources
of uncertainty and provides an automatable framework for inference. While assignment
has previously been viewed as a deterministic optimization problem, we demonstrate
the importance of considering all solutions consistent with the data, and develop an
algorithm to search this space within our statistical framework. Our approach is able to
characterize the uncertainty associated with backbone resonance assignment in several
ways: 1) it quantifies of uncertainty in the individually assigned resonances in terms of
their posterior standard deviations; 2) it assesses the information content in the data
with a posterior distribution of plausible assignments; and 3) it provides a measure
of the overall plausibility of assignments. We demonstrate the value of our approach
in a study of experimental data from two proteins, Human Ubiquitin and Cold-shock
protein A from E. coli. In addition, we provide simulations showing the impact of
experimental conditions on uncertainty in the assignments.
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1 Introduction

Knowledge of the three-dimensional structure of proteins is essential for understanding and
controlling their function. The emerging field of structural genomics [6] requires new methods
that provide structural information at a genomic scale. Nuclear magnetic resonance (NMR)
spectroscopy is an experimental technique that is particularly suitable for this task. It is
capable of determining atomic detail about protein structures in physiological conditions,
and allows rapid and cost-efficient screening of foldedness, internal dynamics and ligand
binding. Some 15%-20% of new protein structures are currently determined by NMR, and
the rate is likely to grow [25].

A key step in NMR-based analysis is sequential backbone resonance assignment, which
determines the resonance values associated with specific atoms of the protein backbone. As-
signment is essential for determination of protein structure, since, for example, the distance
restraints between atoms in the structure are derived from the corresponding peaks in par-
ticular (NOESY) spectra. It is also a necessary step in studies of protein dynamics and
intermolecular interactions. As a major bottleneck in these approaches, efficient, confident
assignment protocols are a necessary prerequisite to genomic-scale NMR studies. However,
because of the significant noise present in the spectra, it often takes weeks and sometimes
months to complete the assignment of a protein by hand.

Development of automated methods for backbone resonance assignment has recently
become a very active area of research [26]. Numerous search algorithms and scoring functions,
as well as methods that include different spectral information, have been proposed (see
Sec. 6 for further discussion, as well as a comparison with our method). None of these
existing methods, however, provides a statistically sound method to measure uncertainty
in the assigned resonance values. Although it is generally agreed that NMR spectra are
stochastic in nature, there exists no formal inferential procedure regarding assigned backbone
resonances. As a result, many researchers still choose to complete assignments by hand in
order to feel confident in the quality of their results.

This paper presents the first approach that provides formal statistical inference for back-
bone NMR assignment. By carefully modeling the sources of variability associated with NMR
spectra and employing an appropriate algorithm to search for feasible assignment solutions,
our method enables rigorous quantification of the uncertainty in the resonance assignment.
The Bayesian framework [21] is particularly attractive here as it allows incorporation of all
available a priori knowledge. In the Bayesian context, we quantify the uncertainty in an
entire assignment by the posterior distribution over all feasible solutions, and we quantify
the uncertainty in the individual assigned resonance values by their posterior standard devi-
ations. Since this involves investigating more than the single “best” assignment, we develop
a new assignment algorithm that exhaustively explores a large portion of the assignment
space and finds all assignments that are consistent with the data within the explored space.
Therefore, uncertainty in the results is a property of the information content in the data,
and not of the algorithm for finding the assignments.

Our model-based approach is fully automated and provides useful information that other
approaches do not. First, it measures the overall plausibility of an assignment and shows
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Figure 1: (a) A chain of three residues at positions j−1, j, and j+1 in the primary sequence.
A star schematically denotes the side-chain atoms that vary between residue types. An HSQC
spectrum is shown in the bottom of the figure; the mapping between atomic interactions and
peaks is unknown and is necessary in order to determine the chemical shifts of the backbone
atoms. (b) Schematic illustration of spin systems. Chemical shift values for H, N , Cα, Cβ,
C ′ and Hα are obtained by combining peaks across spectra. i and k are indexes of the spin
systems, w indicates within-residue chemical shifts, and s indicates sequential chemical shifts
(i.e. for the preceding residue). Values grouped into the same spin system are connected by
lines. Circles indicate the (initially unknown) residues originating the spin systems and are
numbered according to their position in the primary sequence.

that, generally, additional assignments beyond just the optimal one are also supported by
the data. Second, it assesses the information content in the collected spectra by means of the
posterior distribution of plausible assignments. Third, it quantifies the uncertainty in the
individual assigned resonances in terms of posterior standard deviations, and identifies well-
determined positions that can confidently be used in further NMR studies (e.g., structure
determination). We believe that our approach will help avoid errors in the assignment
procedure and enable researchers to determine reliable assignments at a high-throughput
rate.

2 NMR data

Proteins are biological macromolecules essential for living organisms. They are polymers of
amino acids, also called residues, that form complex three-dimensional structures in physi-
ological conditions. The top part of Fig. 1(a) shows the organization of three neighboring
residues. Each residue has a central carbon atom, denoted Cα, to which are bonded a hy-
drogen atom (Hα), an H–N group and a C′=O group. This chain comprises the protein’s



backbone. In addition to the backbone, there are 20 different amino acid types distinguished
by the side-chain atoms attached to the Cα atoms. The side chain typically contains a carbon
atom (Cβ) and other atoms schematically denoted by a star in Fig. 1(a). Two exceptions are
proline, which replaces H and Hα with a cycle of atoms from the N to the Cα, and glycine,
which has another Hα instead of a Cβ. The number and order of amino acid types in a
protein — its primary sequence — is determined by other experimental techniques prior to
study by NMR.

NMR spectroscopy [8] takes advantage of the magnetic properties of atomic nuclei. When
a protein sample is placed into a static magnetic field and exposed to another oscillating mag-
netic field, the individual nuclei respond at specific resonance frequencies. These resonance
frequencies, or chemical shifts, are very sensitive to the chemical environment surrounding a
nucleus and are thus in principle unique for each atom in a typical moderate-sized globular
protein. Chemical shifts are central to NMR-based studies, as they provide the “IDs” of the
atoms, by which the atoms can be referenced in subsequent studies of structure, dynamics,
and interactions. The goal of backbone resonance assignment is to determine the chemical
shift values for the nuclei in the protein backbone.

Backbone resonance assignment employs data from a set of NMR experiments. A central
experiment is the HSQC, which magnetically correlates bonded H–N nuclei and yields a two-
dimensional spectrum. An example fragment of an HSQC spectrum is shown in the bottom
of Fig. 1(a). Peaks in the spectrum indicate H–N bonded pairs at specific chemical shifts
(their coordinates). The HSQC is a core experiment since each residue except proline has an
H–N pair and thus (in ideal conditions) generates such a peak. However, the correspondence
between the peak and the H–N pair that generated it is unknown.

Determination of the chemical shifts of the atoms in the backbone also requires at least
one, and usually several, three-dimensional NMR experiments. An example of such an
experiment is the HNcoCA, which magnetically correlates bonded H–N backbone nuclei with
the Cα nucleus of the preceding residue. The experiment yields a three-dimensional spectrum,
in which the projection on the H–N dimensions corresponds to the HSQC, and the third
dimension to the magnetically correlated Cα. Since each HNcoCA peak correlates atoms
in two neighboring residues, the experiment is useful in identifying sequential interactions.
Another three-dimensional experiment, the HNCA, correlates the bonded H–N pairs with
the Cα of either the preceding residue (as in the HNcoCA) or of the same residue. It
yields approximately twice as many three-dimensional peaks as the HNcoCA, gathering
both sequential and within-residue interactions. Similar NMR experiments can be designed
to involve interactions of the H–N pairs with Cβ, Hα, and C′. The type of atoms involved
in a spectrum is called its resonance type. Again, it is important to note that the residue(s)
whose atoms generated each peak is initially unknown for all spectra.

The chemical shifts can be determined by finding a mapping between the peaks and the
atoms. In summary, a typical procedure to find such a mapping consists of the following
steps [26, 33]: (1) identify and determine the centers of peaks within the spectra; (2) group
the peaks into collections called spin systems according to their shared H–N resonances;
(3) match spin systems according to corresponding sequential and within-residue chemical



shifts; (4) align connected chains of spin systems to the primary sequence according to the
expected chemical shifts for corresponding residue types. We now detail each step in this
procedure.

Peak analysis. Peaks in NMR spectra do not have precise positions. As illustrated in
the HSQC in Fig. 1(a), they span some volume, shown in the figure by intensity contours.
The volume of a peak depends on the physical properties of the nucleus, as well as the type
and sensitivity of the NMR experiment. The coordinates of the center of a peak can be
determined by automated peak picking software such as NMRDraw [10]. The center can
be determined fairly accurately for a well-resolved peak, but the accuracy is compromised
when the peak is broad or has a low intensity, or when several peaks overlap. Peak positions
are also subject to random variation between spectra, due to sample variation, differences
in sample temperature and other experimental artifacts. In summary, the coordinates of the
centers of the peaks can be viewed as noisy readings from the underlying chemical shifts,
having a compound variation from within and between the spectra.

Peak picking software produces a list of peaks, which typically is missing some peaks
and has some extra (spurious) peaks. Peaks can be missing due to physical reasons (e.g. an
overly broad peak resulting from extensive dynamics), spectral degeneracy (e.g. peaks too
close together to be differentiated), or noise. Spurious peaks can originate from impurities
in the sample, minor conformations of the protein, or errors in the peak picking procedure.

Compilation of spin systems. The spectra we employ here all involve the “anchor”
H–N pairs. Thus one can combine peaks across spectra by referencing the H–N coordinates.
The third coordinate is classified according to resonance type as shown in Fig. 1(b). These
collections of peaks, called spin systems, typically consist of within-residue and sequential
chemical shifts of several resonance types, anchored at one (unknown) residue and connecting
to its predecessor. Due to the noise in peaks discussed above, some spin systems can have
missing chemical shift values, some spin systems can be entirely missing, and some extra,
spurious spin systems can be compiled from extra, spurious peaks. Due to variability in peak
positions, approximate equality of peak coordinates must be allowed when compiling spin
systems. While the compilation is unambiguous for isolated peaks, ambiguities can arise in
the case of close or overlapping peaks.

Matching spin systems. Spin systems can be arranged into ordered chains by matching
the sequential resonances of one with the within-residue resonances of another. If two spin
systems originate from the neighboring residues as shown in Fig. 1(b), the within-residue
chemical shifts of the first spin system must be approximately the same as the sequential
chemical shifts of the following spin system. Approximate matches must be allowed due to
noise, and ambiguities arise when several spin systems have similar sequential or within-
residue values. The number of plausible matches increases dramatically when the data
contains a large number of missing resonance types or entirely missing spin systems —
the missing chemical shifts become “wild cards” that allow matches to any spin system.
Extra spin systems result in additional complications as they are often incomplete, and can
sometimes form an incorrectly unambiguous match.

Aligning spin systems. Spin systems can be aligned to positions in the primary



sequence by comparing chemical shifts to the values expected for the corresponding residue
types. Since an atom’s chemical shift is sensitive to its local chemical environment, there is
a well-characterized effect of amino acid type on chemical shift. The expected ranges can
be determined from databases such as BioMagResBank [29] or RefDB [34], which contain
assignments for many proteins. Unfortunately, the ranges are typically quite broad, and
allow a spin system to align to any of many possible positions in the primary sequence.
Chains of connected spin systems are required in order to overcome this ambiguity, where
each spin system agrees that the corresponding position is consistent. However, even short
chains of spin systems can typically be aligned at several places in the sequence. We note
two special cases in alignment: given the H–N based spin system definition here, alignments
are not possible at the first residue or proline residues; further, alignments are restricted at
glycine residues due to the substitution of an extra Hα for the Cβ.

This paper assumes that the data have been correctly processed and the spin systems
compiled by either manual or automated methods. We focus on the problem of matching
sequentially-connected spin systems and aligning them to the primary sequence. For clarity,
we make a distinction between the result of matching and aligning spin systems to the
sequence, which we call a “mapping,” and the determination of the unknown resonance
values on the basis of a mapping. We use “assignment” to denote the entire procedure.

A mapping is established by systematically matching and aligning the spin systems, much
like a jigsaw puzzle. Each spin system can have at most one predecessor and can be mapped
to at most one spin system, and each position can be mapped to at most one spin system.
Positions with no mapped spin systems are associated with entirely missing spin systems,
and spin systems not mapped to positions are considered extras. Satisfactory mappings
cover the maximum number of positions. In principle, there exists one “correct” mapping
that generated the data. In practice, however, the large number of ambiguities at each step
of the procedure often results in several plausible mappings that need to be considered. As
discussed in the introduction, our method enumerates all plausible mappings and uses their
posterior distribution in a model-based approach to quantify the uncertainty.

The goal of backbone resonance assignment is to determine the chemical shifts of the
protein backbone. A mapping between the spin systems and positions in the sequence is a
means to this end. Given a mapping, the chemical shifts of a nucleus can be deduced from
the associated peaks. However, uncertainty in the peak positions and uncertainty in the
mappings result in uncertainty in chemical shifts.

3 Methods

We view backbone resonance assignment as a process of estimating the chemical shifts of
the protein backbone from noisy data. A candidate mapping, combined with distributional
assumptions regarding the peaks, can then be viewed as a statistical model of the data.
From this perspective, the search for the “best” candidate mapping becomes a model se-
lection problem. When several models are plausible, inference about the unknowns should
incorporate both the uncertainty in the data and the uncertainty in the model selection.



Figure 2: Quantities of interest. xs
a(j) and xw

a(j) are observable multivariate resonances, w
indicates within-residue resonances and s indicates sequential resonances of the atom type.
Red lines connect the sequential and within-residue resonances that are grouped into the
same spin system. µj are the unknown underlying resonances to be estimated.

3.1 Probability model

Unknowns of interest. The quantities of interest are schematically illustrated in Fig. 2.
Consider a primary sequence of R residues. Let µ = (µ1, . . . ,µR) denote the underlying
chemical shifts of the backbone nuclei of the protein. Here each µj is a vector composed
of individual chemical shifts µdj for each resonance type d at position j. The µj are the
unknowns of interest, and the goal of the backbone resonance assignment is to estimate
these values.

Input data. The input data are I observed spin systems X = {(xs
1,x

w
1 ), . . . , (xs

I ,x
w
I )},

where xs
i is the vector of sequential chemical shifts xs

di, and xw
i is the vector of within-residue

chemical shifts xw
di, over resonance type d. We assume that the spin systems are correctly

and unambiguously compiled prior to the analysis. The total number of spin systems, I, can
be greater than, equal to, or less than the length of the protein R, depending on presence of
extra and missing spin systems. Individual chemical shifts can also be missing in some spin
systems.

Candidate mappings. Let a = (a1, . . . , aR) be a candidate mapping of the observed
spin systems to positions in the primary sequence. In this notation, aj = i if xw

i is mapped to
position j (or equivalently xs

i is mapped to position j−1). A mapping is one-to-one and gives
the putative origin of the observed data. Some of the spin systems can be considered as extras
by a, and will be associated with sources of noise. Since we have a fixed number of positions
and spin systems, considering more spin systems as extras implies that more positions have
missing spin systems. Each spin system can potentially be mapped to one of several feasible
positions, and therefore the space of the candidate mappings is combinatorially large.

Distributional assumptions for the observed data. We assume that, given the
unknown vectors µ and the correct assignment a, the error in readings of the chemical shifts
is non-systematic and Normally distributed:

xs
a(j) | µ, a ∼ N (µj−1, W ) and xw

a(j) | µ, a ∼ N (µj, W ).

The distribution of the readings is centered around µ, and the variance matrix W encom-
passes the variation from within and between the spectra. Intensity contours in the spectra
are usually aligned with the coordinate axes, and the spectra are independently collected. It
is therefore reasonable to assume that, conditional on the underlying resonance values and



assignment, the readings are independent between the resonance types. This implies that
W is a diagonal matrix.

We further assume that, conditional on µ and a, the readings from the chemical shifts are
independent across positions in the sequence. Note that the independence is conditional and
will not hold marginally across all the candidate mappings. The assumption may oversimplify
the correlation structure in the data since peaks collected within a single spectrum may co-
vary. On the other hand, as discussed in Sec. 6, independence across positions is implicitly
assumed by all existing automated methods for backbone resonance assignment.

Finally, we assume that the variance matrix W is known and constant for all xs
a(j) and

xw
a(j). Weaknesses of this assumption include the possibility that peaks within a spectrum

may have different resolutions, and the fact that the chemical shifts in a spin system summa-
rize various numbers of peaks. However, estimation of the spin system-specific variances is a
difficult task, requiring grouping of all peaks according to their common (unknown) source,
and given that only one peak per source is available in many cases. As discussed in Sec. 6,
constant and known variance is implicitly assumed by most current automated methods, and
some generally accepted variance values are typically used. We follow this approach here,
but plan to investigate the problem of spin system-specific variances in our future work.

Given the distributional assumptions above, the conditional likelihood of the composite
of the positions in the primary sequence can be written as

Pr(x | µ, a) =
R∏

j=1
φ

(
W− 1

2 (xs
a(j) − µj−1)

)
φ

(
W− 1

2 (xw
a(j) − µj)

)
.

Here and in the rest of the paper φ denotes the density of the multivariate standard Normal
distribution.

Prior distributions of the unknown µ. The distributions of chemical shifts of previ-
ously assigned proteins, as deposited in various databases, can be used to characterize the µj

a priori. We assume that the µj are independent across all positions in the primary sequence
and Normally distributed, i.e. µj ∼ N (θj, Σj). The vector θj contains mean chemical shifts
of all resonance types, and Σj is the corresponding variance-covariance matrix estimated
from the database. The parameters θj and Σj are specific to the residue type at the position
j.

Both θj and Σj can be estimated from at least two databases, the BioMagResBank [29]
and the RefDB [34], and in a number of ways. For example, one can assume that the
resonance types are a priori independent, in which case Σj is a diagonal matrix, and take
the database means and variances as the parameter estimates. Alternatively, one can assume
a non-diagonal Σj and compute the correlation between the resonance types [24]. A more
sophisticated approach would account for the redundancy in the sequences deposited into the
BioMagResBank, and estimate the parameters from the subset of non-homologous sequences
only [24, 31]. Or, when the information on the secondary structure of the protein is available,
one can account for systematic effects of secondary structure type on chemical shift [32]. All
of these methods are equally well supported by our approach, and Normal distributions with
any parameters can be used provided that they are appropriately justified. In Sec. 5.2 we



conduct a sensitivity analysis and investigate the extent to which the choice of the parameters
of the prior distributions affects the inference of the unknowns µ.

One may question the choice of the Normal prior distribution. Although the Normality
assumption can in principle be substituted by any other distribution of choice, the Normal
distribution is particularly attractive as it allows the analytical computation of posterior
probabilities, and is therefore computationally efficient. The Normal distribution provides
an adequate approximation of the chemical shifts in most cases and, as discussed in Sec. 6,
is implicitly used by many existing methods of backbone resonance assignment. Some dis-
tributions in the databases may appear to have heavier than Normal tails. In this case,
a spin system with outlying chemical shifts will not be correctly mapped to the primary
sequence, and the corresponding position in the sequence will be associated with a missing
spin system. An alternative solution is to increase the variance of the prior distribution in
order to accommodate the tails.

Sources of noise. For completeness, we assume that the extra spin systems are readings
from the underlying chemical shifts (µR+1, µR+2, . . .) of the sources of noise. We specify a
non-informative Normal prior for the parameters by choosing θj, j > R, to be the mid-range
of the measurements of each resonance type, and Σj, j > R, to cover the entire measurement
range.

3.2 Scoring the candidate mappings

The probability model allows us to compare and evaluate the candidate mappings in terms
of their posterior probabilities given the data. These can be obtained by applying Bayes
theorem, and by averaging across the unknown parameters µ [27]

Pr(a|x) ∝ Pr(x|a)Pr(a), where Pr(x|a) =
∫

Pr(x|µ, a)Pr(µ)dµ. (1)

As can be seen, the posterior probability Pr(a|x) in (1) consists of two terms: the likelihood
Pr(x|a), and the prior distribution Pr(a) of a mapping a.

Likelihood. The conjugate Normal structure of our model makes it possible to carry
out the integration in (1) analytically. Upon integration, the likelihood can be written as

Pr(x|a) =
R∏

j=1
φ

(
U

− 1
2

1 (xs
a(j+1) − xw

a(j))
)

φ
(

U
− 1

2
2 (x̄a(j) − θj)

)
, (2)

where x̄a(j) is the average of xs
a(j+1) and xw

a(j), U1
∆
= 2W and U2

∆
= Σj + W/2. The ob-

servations mapped to a position j in the primary sequence contribute to the likelihood via
two terms. The first involves the quantity xs

a(j+1) − xw
a(j) and reflects the likelihood of the

sequential connectivity at this position. The second involves the quantity x̄a(j) and reflects
the consistency of the chemical shifts with the expectations of the mapped amino acid type.
Because of the non-informative prior distribution of the sources of noise, their contribution
to the likelihood is approximately 1, and can be ignored.



When comparing candidate mappings, it is helpful to consider S(x|a) = −2 log Pr(x|a),
which can be viewed as a score measuring the success of a at predicting the data. In our
case,

S(x|a) =
R∑

j=1

Smatch, j +
R∑

j=1

Salign, j (3)

where
Smatch, j = (xs

a(j+1) − xw
a(j))

′(2W )−1(xs
a(j+1) − xw

a(j))

Salign, j = (x̄a(j) − θj)
′(Σj + W/2)−1(x̄a(j) − θj).

Maximizing the likelihood is equivalent to minimizing the score. Under the assumptions in
Sec. 3.1 and given the correct assignment a, S(x|a) follows the χ2

df distribution. Moreover,
a partial score computed over any subset of positions in the sequence also follows the χ2

df .
The integer df in this notation is the number of chemical shifts, xs

di and xw
di, used to compute

the specific score. Although not part of the formal Bayesian framework, this interpretation
is very useful as only those mappings that are consistent with the distribution need to be
considered [28]. In practice, we can compare the scores with an α-quantile of the χ2

df for
a (small) pre-specified probability α, and reject the mappings with scores exceeding the
quantile.

Prior distribution of the candidate mappings. A complete mapping is preferable
to one with many missing observations. For example, a mapping considering most of the
observed spin systems as noise is likely to be false. On the other hand, a spin system where
most chemical shifts are missing is likely to be an extra. We therefore penalize the candidate
mappings according to the number of missing chemical shifts associated with the positions
in the sequence. Specifically, we define the prior probability of a mapping with d missing
resonances as

Pr(a) ∝ exp {−1
2
qχ2(α, df)} (4)

where qχ2(α, df) denotes the α-quantile of the χ2 distribution with df degrees of freedom. On
the −2 log scale, the prior amounts to substituting a worst-case estimate for the contribution
to the posterior probability of a missing observation.

The mappings with the highest posterior probabilities are used for inference about the
unknown µ. Therefore, a candidate mapping can be discarded if its fit to the data is clearly
worse than that of the best mapping found [16, 17]. In the following definition, we combine
the interpretations on the scale of the posterior probability and on the scale of the score
function.

Definition 1 (Mapping Consistency) A mapping a is consistent with the data if, for a
given (small) probability α,

1. Smatch, j < qχ2(α, dfmatch, j) for all j.

2. Salign, j < qχ2(α, dfalign, j) for all j.



3. Smatch, j + Salign, j < qχ2(α, dfmatch, j + dfalign, j) for all j.

4. S(x|a) < qχ2(α, df).

5. P (x|a∗)/P (x|a) ≤ 25 where a∗ is the mapping with the highest posterior probability.

df in the definition denotes the number of data points used to compute the corresponding
score. Note that Smatch, j and Salign, j represent the joint score of all resonance types of
interest at position j. Therefore, a relatively loose match or alignment of one resonance type
is considered as plausible if it is compensated for by a relatively strong match or alignment
of the other resonance types. Although one can also define consistency separately for each
resonance type, we found that in practice this definition provides more flexibility and results
in more accurate assignments. The parameter α flexibly determines the search space of
candidate mappings. Smaller α values result in more mappings being considered plausible,
and the larger values result in rejection of more mappings.

3.3 Inference

Inference regarding µ can be made by means of its posterior distribution given the data. If
only one mapping a is consistent with the data as in Definition 1, it can be used as the basis
for inference [27]

µdj | x, a ∼ N (x̄d a(j), wd/2). (5)

where µdj is the unknown chemical shift of resonance type d at position j, x̄d a(j) is the dth
element of the average of xs

a(j+1) and xw
a(j), and wd is the dth diagonal element of W . Since

the experimental variance is orders of magnitude smaller than the variance of the prior of µ,
the contribution of the prior of µj to (5) can be ignored. When K mappings are consistent
with the data, inference based on the mapping with the highest posterior probability will
underestimate the uncertainty in the correct mapping, as well as the differences in µj under
the other reasonably good alternatives. This uncertainty can be taken into account by
averaging the posterior distribution of µj across all candidate mappings [16, 17]

Pr(µj|x) =
K∑

k=1
Pr(µj|x, ak)Pr(ak|x) (6)

where Pr(ak|x) are standardized to form a probability distribution on the set of the selected
mappings. The µdj can be estimated by their posterior means, and the quality of estimation
can be characterized by their posterior standard deviations:

E(µdj|x) =
K∑

k=1
x̄d ak(j)Pr(ak|x) and

Var(µdj|x) =
K∑

k=1
(wd/2 + x̄2

d ak(j))Pr(ak|x)− x̄2
d ak(j) ,

The posterior mean of µj is nothing but a weighted average of estimations according to
the individual mappings. Therefore, if a spin system is mapped to the same position in all



mappings, the posterior standard deviation equals the standard deviation of the readings
of the peak positions. If different spin systems are mapped to a position, the posterior
deviation of µ at this position incorporates both the uncertainty in the spin system and
the experimental variance. The possibility of mapping different spin systems to a position
does not necessarily imply uncertainty in the chemical shifts. Some alternative spin systems
may have similar values in all or at least some resonance types, in which case the posterior
standard deviation will remain close to the experimental precision. Alternatively, if the
relative weight of a candidate mapping is small, the contribution of the mapping will not
significantly inflate the posterior standard deviation.

In addition to the inference of µ, it is instructive to examine the posterior distribution
Pr(ak|x) for the set of candidate mappings. The shape of the distribution can be used to
characterize the information content in the data: the sharper the distribution, the more
evidence there is in favor of the mapping with the highest posterior probability. One should
not, however, confuse the inference regarding a with the inference regarding µ. As discussed
in the previous paragraph, uncertainty in the candidate mappings may or may not result in
uncertainty in the estimated chemical shifts.

The posterior distribution Pr(ak|x) provides a relative measure of quality for one mapping
with respect to another. But it does not provide the information on how well the mapping fits
the data. The scores of the candidate mappings, on the other hand, measure the goodness of
fit. One can compare the scores with the α-quantiles of the corresponding χ2

df distributions
in order to judge the overall plausibility of the selected mappings.

4 Finding plausible candidate mappings

The proposed inferential procedure can be carried out using any algorithm which appro-
priately explores the probability space of candidate mappings and finds the mappings with
the highest posterior probabilities. A limited number of mappings is expected to satisfy the
conditions in Definition 1. Therefore, an exhaustive search is the most desirable procedure
as it ensures complete examination of the search space and does not omit any mapping of
interest. It has a particular advantage over greedy and best-first algorithms favoring locally
optimal choices, which may not necessarily lead to overall plausible solutions and may ignore
choices that do. Several exhaustive search algorithms for backbone resonance assignment
have recently appeared in the literature and demonstrated the feasibility of this approach
for problems of moderate size [1, 9, 20, 31]. However, the algorithms are based on scoring
functions with no probability interpretation. We require an algorithm capable of exploring
the probability space of candidate mappings and providing all solutions consistent with the
data.

We illustrate our inferential procedure using a new algorithm of this kind. Our proba-
bility model provides information not available to the previous algorithms mentioned above.
Specifically, we can evaluate the partial scores of matching and aligning any groups of spin
systems with any portions of the primary sequence. In addition, the χ2 interpretation of
the scores provides an upper bound for the score of the correct mapping. Finally, the search



space can be characterized in terms of the probability of missing the mapping that generated
the data. Thus we can prune the search space in a statistically sound manner, discarding
from further consideration partial solutions not worth completing.

The probability model allows our algorithm to handle larger spaces of candidate mappings
than what has been previously found tractable. In particular, it provides a general, consistent
treatment of entirely missing spin systems. Previous algorithms only consider a missing spin
system when no other matching can be found. This results in an arbitrary unequal treatment
of the spin systems, as a plausible match can sometimes be successfully substituted by a
match with a missing spin system. We propose an algorithm which handles all positions and
all spin systems in a symmetric way. It examines the possibility of a missing spin system
at any position in the sequence, and limits the search space only by a maximum allowable
number of missing spin systems. A penalty (Eq. 4) discourages mappings with many missing
chemical shifts, and therefore entirely missing spin systems will not appear at every position
in the sequence. For most positions for which there are possible spin systems, the scores of
matching and aligning are better than the corresponding penalty, and therefore a missing
spin system will not appear plausible. Our current approach looks for candidate mappings
with the smallest number of entirely missing spin systems; a careful choice of the maximum
number of missing spin systems will be the subject of future work.

The algorithm is summarized in Fig. 3 and Fig. 4, and illustrated in Fig. 5. Rather
than performing a combinatorial enumeration of individual spin systems and positions in
the primary sequence as is typically done, our algorithm works at a coarser grain: it uses
connected spin systems (which we call strands), and subsequences of the primary sequence
(windows). It starts with an initialization step (Fig. 3(I) and Fig. 5(a)) that maps each
observed spin system to each position in the sequence, subject to restrictions described in
Sec. 2. A placeholder representing an entirely missing spin system is also mapped to each
position. The next step (Fig. 3(II) and Fig. 5(b)) of the algorithm sets up the coarser-
grained data structures for the search. It grows windows with strands sequentially starting
from the first position. Specifically, the step starts by examining all possible strands that can
be mapped to the first two positions, then proceeds by examining the strands that can be
mapped to the first three positions, and so forth moving sequentially towards the end of the
protein. Since the number of strands grows combinatorially with the number of positions
examined, an execution parameter controls the maximum number of strands that can be
mapped to a same set of positions. Every time the number of strands reaches the limit, the
growth of the current window is stopped, and a new set of strands and a new window are
started from the following position. Therefore, by design, the windows do not overlap and
the number of strands in the windows is approximately equal and never exceeds the specified
limit.

Not all the strands constructed during step II are kept at the end of this step. For
example, a strand that is guaranteed to produce a poor score in combination with any
other strand from the remaining windows (called “outer strands” in the pseudocode) can
be discarded. Similarly, one can discard a strand which, in combination with other strands,
will exceed the pre-specified limit on number of missing spin systems. Furthermore, the step



introduces a parameter β which provides an additional constraint on evaluation of partial
mappings. Specifically, if the score of a strand exceeds the β-quantile of the corresponding
χ2 distribution, the strand is rejected. These criteria for a valid merge are summarized in
Fig. 4.

The step II reduces the search space of candidate mappings. The last stage of the
algorithm (Fig. 3(III)) performs an exhaustive depth-first search of the reduced space by
merging the strands in the windows. This can be done sequentially starting from the first
window, but a careful choice of the order of merging can greatly improve the execution time.

The parameter α in Definition 1 and β in Step II jointly limit the search space of candidate
mappings. By using the conservative Bonferroni correction to multiple comparisons [15], the
probability of rejecting the correct mapping for at least one position is at most (3R + 1)α +
2Rβ. Therefore, α and β can be chosen to control the familywise error rate at the desired
level. Alternatively, one can undertake a more aggressive approach and choose α and β
to control the False Discovery Rate (i.e. the expected proportion of positions at which the
correct mapping is rejected) [5]. We believe that in this problem, the Bonferroni correction
is superior to the FDR-controlling approach for two reasons. First, it is desirable to make
as few incorrect rejections as possible at all positions in the sequence, and the familywise
Bonferroni correction is an appropriate metric for that. Second, the Bonferroni correction is
computationally inexpensive and results in a larger space of candidate mappings. Therefore,
computational effort is used to explore alternative mappings rather than to calculate the
FDR-based rejection thresholds.

5 Results

5.1 Data example

We illustrate our inferential procedure for resonance assignment in application to two pro-
teins, Human Ubiquitin and the single-stranded DNA-binding cold-shock protein A (CspA)
from Escherichia coli. Human Ubiquitin is a 76 amino acid residue protein used as a bench-
mark in many NMR studies. The data set containing peaks from 7 through-bond experi-
ments and providing connectivity information for Cα, Cβ and C′ resonance types is publicly
available from the Ubiquitin NMR Resource Web Page [30]. We manually compiled the
spin systems from the observed peaks. Two expected spin systems were missing, and no
extra spin systems were detected. The correct mapping of the spin systems to positions in
the sequence is the one deposited in the database, and we will refer to it as the reference
mapping.

The single-stranded DNA-binding cold-shock protein A (CspA) from Escherichia coli is
a small β-sheet protein composed of 70 residues. NMR data are provided as a test for the
AutoAssign program [35], and include peak lists from eight through-bond NMR experiments
yielding connectivity information for Cα, Cβ, and Hα. One of the experiments involves the
C′ resonance type. AutoAssign compiles the resonance peaks into spin systems and finds
assignments for all non-proline residues except for the first two. In addition, AutoAssign



Input:

Spin systems (xw
i , xs

i ).

Positions j in the primary sequence.

Means θj and variances Σj of prior distributions of resonances at each position j.

Consistency parameter α.

Maximum number of entirely missing spin systems.

Probability β limiting the search space.

Execution parameter:

Maximum number of strands mapped to a window.

Output:

Consistent mappings of spin systems to windows, as defined in Sec. 3.2.

Algorithm:

I Initialize.

(a) Build a table of mappings from spin systems to positions in the primary
sequence.

(b) Set maxS = qχ2(α, df), where df is the maximum number of data points
available.

II Construct windows.
Let position j iterate through the primary sequence:

(a) If j = 1, or residue j − 1 is a proline, or the number of strands mapped to
the current window exceeds the limit, start a new window at j. The strands
mapped to the new window are simply the spin systems mapped to j in the
table.

(b) Else extend the window ending at j − 1 by merging its strands with the
spin systems mapped to j in the table and keeping only consistent extensions
(Fig. 4).

III Complete the assignment.

(a) Depth-first merge adjacent windows, keeping consistently merged strands
(Fig. 4).

(b) Whenever a complete mapping is found, set maxS to
min(maxS , −2 log(posterior probability of the mapping)).

Figure 3: Algorithm for exhaustive search for candidate mappings.



Input:

Position j in the primary sequence.

Strand ending with xw
i and mapped to window ending at j − 1.

Strand starting with xs
i and mapped to window beginning at j.

Parameters α, β, max missing, and maxS from Fig. 3.

Output:

Is the merge of the input strands valid?

Algorithm:

The merge is not valid if at least one of the following conditions holds:

1. Score of matching xw
i to xs

i exceeds qχ2(α, dfmatch).

2. Score of mapping xw
i and xs

i to position j exceeds qχ2(α, dfmap).

3. Joint score of matching and mapping exceeds qχ2(α, dfmatch + dfmap).

4. Total score of the merged strand mapped to the combined window exceeds
qχ2(β, dftotal).

5. Number of missing spin systems in the strand plus the minimum number of missing
spin systems in outer strands exceeds the limit.

6. Total score plus the minimum score in outer strands exceeds maxS + 2 log(25).

Figure 4: Algorithm for testing a merge between two strands in adjacent windows. A single
spin system mapped to a position in the sequence is considered as a strand of size one mapped
to a window of size one.



(a) (b)

Figure 5: (a) Initial table mapping spin systems (lines) to positions in the primary sequence
(circles). Circled lines are placeholders for entirely missing spin systems. (b) Strands of
consecutive spin systems (lines). Circles on the lines represent placeholders for the entirely
missing spin systems within the strands. Each strand covers a window in the primary
sequence.

detects four extra spin systems due to noise. AutoAssign determines an assignment by
matching and aligning the spin systems to positions in the sequence, and yields one complete
mapping. In the following, that mapping is considered as the reference mapping. It is not
possible to compare the solutions obtained by our approach for CspA to the corresponding
entry in the database as our method does not handle errors in compilation of the spin systems.
In this section, we analyze the uncertainty associated with the positions 3–70 assigned by
AutoAssign. We investigate the impact of the two missing spin systems in the following
section.

Throughout this section, we assume that the match tolerances used by AutoAssign are
approximately 3 times the standard deviations of the underlying resonances for both proteins.
This corresponds approximately to the standard deviation of peaks mapped to a common
source by the reference mapping. We select the prior distribution for µ by assuming their
a priori independence across resonance types, and by using the means and variances of the
protein chemical shifts in the BioMagResBank [29] as parameter estimates. The statistics
provided by the database are computed on the basis of entries with no outlying observations.
We ignore the H and N resonance types as they do not provide connectivity information
and have little discriminatory power for alignment. Parameters α and β in the assignment
algorithm were chosen to set the overall probability of rejecting the correct assignment to
be at most 0.05. The assignment program was executed using a 2 GHz PowerPC G5 with 2
GB of memory.

Assignment results for Ubiquitin yield the reference mapping as the only candidate map-
ping consistent with the data. This demonstrates that the data set for this protein has an
extremely high information content, and no uncertainty is associated with the assignment.

Assignment results for CspA yield three candidate mappings, including the reference
mapping. The posterior distribution of the three selected mappings is shown in Fig. 6(a).
The distribution is sharp and favors the mapping with the highest posterior probability. This
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Figure 6: Assignment of CspA. (a) Posterior distribution of the selected mappings. x-axis:
rank of mapping, y-axis: posterior probability. Labels under the bars show the number
of positions in the sequence which distinguish the mappings from the one with the highest
posterior probability. The reference solution has the second highest posterior probability. (b)
Mappings of the observed spin systems. x-axis: residue position, y-axis: original mapping of
the spin system with AutoAssign. Spin systems above the horizontal line are considered as
extras by the original assignment. Unambiguous mappings are shown with black dots. If a
spin system is unambiguously mapped to the same position as in the reference solution, the
dot appears on the diagonal, at the coordinate for its position in the sequence. Unambiguous
mappings are shown with red crosses. In this figure, three spin systems that were considered
extras by the reference assignment can be mapped to positions 20–22. The crosses show the
alternative assignments at these positions. (c) Posterior standard deviations of estimated
Cα resonances. x-axis: residue position, y-axis: posterior standard deviation (in units of
chemical shifts). Execution time 20 sec.



indicates high information content in the data. The candidates are overall plausible with
p-values of the corresponding score functions greater than 0.9. The reference mapping has
the second largest posterior probability, but the largest number of non-missing resonances.
Since the original mapping was obtained using a different scoring function, we do not expect
it to be the most likely a posteriori. Most spin systems are uniquely mapped to positions
in the primary sequence, and the selected mappings differ in at most 3 positions. Fig. 6(b)
details the alternative mappings. The alternatives are due to plausible mappings of extra spin
systems to positions 20–22. The posterior standard deviations of the estimated resonance
values for the Cα resonance type are shown in Fig. 6(c). The posterior standard deviations
at the unambiguous positions are equal to the assumed experimental precision. However,
the posterior standard deviations at positions 20–22 are high, indicating uncertainty in this
region. This ability to uncover uncertainty is a key advantage of our approach over traditional
optimization-based approaches which provide only a single best mapping.

5.2 Simulation study

In order to demonstrate the importance of inference for resonance assignment, we investi-
gated the impact of the choices of experimental design and non-systematic sources of noise.
In the following, we systematically perturb the observed spin systems of CspA and study
the effect of these modifications on the assignment.

Experimental design. An experimentalist has some control over spectral resolution
and experiment types. To study an effect similar to that of lower resolution, we added
Gaussian noise to the observed resonances; the standard deviation of the noise is twice
the assumed standard deviation of the data. As can be seen in Fig. 7, deterioration in
the experimental precision results in a larger number of plausible mappings. The posterior
distribution is less sharp and indicates a decrease in the information content. In addition,
the overall plausibility of the selected mappings decreased. The score of the least likely of the
selected mappings has a p-value of 0.53. More positions have ambiguous mappings of spin
systems. However, the ambiguity in mappings does not necessarily result in ambiguity in the
estimated resonances. For example, ambiguous mappings at positions 26–27 and 40 do not
increase the uncertainty at these positions. Because of the reduced experimental precision,
the standard deviations of unambiguous mappings are larger than in the original case.

Fig. 8 demonstrates the effect of discarding the chemical shifts of the C′ and Cβ resonance
types. As shown in the figure, more mappings are plausible than in the original assignment.
All of the selected mappings are overall plausible with p-values of their scores exceeding 0.9.
Alternative spin systems are mapped to three areas in the primary sequence, namely 4–7, 19
and 70. The estimated resonances at positions 4–7 and 70 should be considered as uncertain
according to the posterior standard deviations.

Non-systematic noise. The presence of extra and missing observations cannot be
predicted in advance. Fig. 9 investigates the effect of extra observations by adding spin
systems from a sequential segment of 20 positions of a different protein. A large number of
extras can arise when, for example, a contaminated sample is used, or when the protein has
a second minor conformation. As can be seen from Fig. 9, the assignment procedure selects



0 2 1 3 4 2 5 4 3

0.
0

0.
1

0.
2

0.
3

0.
4

Selected assignments

P
os

te
rio

r 
pr

ob
ab

ili
ty

(a)

0 10 20 30 40 50 60 70

0
20

40
60

Position

S
pi

ns
ys

te
m

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68

0.
0

1.
0

2.
0

3.
0

(c) 

pp
m

Position

Figure 7: Assignment of peaks with reduced experimental precision. The reference solution
has the second highest posterior probability. Execution time 28 sec.
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Figure 8: Assignment obtained without taking into account the Cβ and C′ resonance types.
The reference solution has the highest posterior probability. Execution time 4 min 18 sec.
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Figure 9: Assignment after introducing spin systems from a segment of a different protein.
The reference solution has the second highest posterior probability. Execution time 1 min
23 sec.
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Figure 10: Assignment after removing each resonance with probability 0.1. The reference
solution has the third highest posterior probability. Execution time 8 sec.
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Figure 11: Assignment after adding two first positions in the sequence and introducing two
missing spin systems. Red crosses at positions 5, 6, 11, 12, 33, 44, 51 and 57 indicate that
a missing spin system can be successfully mapped to these positions. The reference solution
is not selected. Execution time 3 min 29 sec.

Ubiquitin CspA, positions 3–70 CspA, positions 1–70
Condition Matches Sols Time Matches Sols Time Matches Sols Time

Original 7847 1 0:20 10689 3 0:20 10912 15 3:29
Prior 7147 1 0:10 9602 2 0:02 9815 20 3:41
Use N 8054 1 0:24 10509 3 0:20 10723 8 6:11
No C′ 10874 2 1:14 10319 4 0:01 10539 30 3:50
Double Sd 8068 1 0:46 10594 9 0:20 10961 18 4:03
Miss 10% 15757 2 113:03 14310 6 0:08 12998 25 14:25
Extra 20 13968 4 0:56 15912 4 1:23 16180 10 106:42

Table 1: Assignments for simulated data with various complexity. The simulations were
conducted under the following conditions: Original – the original data; Prior – after
modifying the prior distribution of µ; Use N – including the N resonance type; No C′ –
excluding C′ resonance type; Double Sd – after adding noise to the observed data; Miss

10% – after randomly removing the observed chemical shifts with probability 0.1; Extra 20

– after introducing 20 spin systems from a different protein. Matches denotes the number
of consistent pairwise matches across all positions in the sequence. Sols is the number of
consistent mappings found. Time is the execution time in min:sec.



one additional mapping containing an extra spin system. All mappings are plausible with
p-values of their scores exceeding 0.9.

Next we study the effect of missing chemical shifts. Fig. 10 shows that removing observed
resonances with a probability of 0.1 deteriorates the information content in the data and
produces more plausible mappings. The alternative mappings at positions 25–26 have little
impact on the estimated resonances.

Finally, we investigate the impact of entirely missing spin systems on the uncertainty in
resonance assignment. To this end, we now consider the entire CspA sequence (positions
1–70), and introduce the possibility of 2 entirely missing spin systems. Our assignment
algorithm treats all positions in the sequence the same, and considers a missing spin system
at any position. As can be seen in Fig. 11, the presence of entirely missing spin systems can
have a dramatic negative effect on the uncertainty in the assignment. We find 15 mappings
consistent with the data, all with p-values greater than 0.9. This large number of candidate
mappings is clearly due to the presence of the missing spin systems: an entirely missing spin
system can be successfully mapped to 10 different positions in the sequence and still yield a
complete mapping. The reference mapping is not selected since there exist highly plausible
solutions with a non-missing spin system mapped to the second position. The alternative
mappings result in uncertainty in two additional areas in the protein sequence.

Dependence of inference on the available information. Tab. 1 summarizes the
simulations discussed in this section, as well as other simulations conducted using Human
Ubiquitin and CspA. The first two lines in the table summarize the assignment of the same
data under two prior distributions. The original assignment was completed by assuming
independence of resonance types and by using the statistics from the BioMagResBank [29]
as described in Sec. 3.1. The second line, denoted Prior, uses the prior distributions in [24]
obtained by taking into account the redundancy in the database and the correlation structure
across resonance types. Use N and No C′ show the impact of respectively introducing N or
removing C′. Double Sd, Miss 10% and Extra 20 show the impact of alterations to the
dataset by respectively reducing the experimental precision, randomly deleting the observed
chemical shifts with probability 10%, and introducing 20 extra spin systems. As can be seen,
Human Ubiquitin has a very high information content despite the presence of two entirely
missing spin systems. Modifications of the assignment conditions have very little effect on the
uncertainty. The original data set has only one mapping consistent with the data, and the
same result would be obtained by a procedure maximizing an appropriate scoring function.
Assignment of CspA, positions 3–70, represents a case of moderate information content.
The uncertainty in the assignment can be affected by the assignment conditions and by
artifacts in the data. CspA, positions 1–70, is a case of relatively low information content. It
can be characterized by sensitivity to the assumptions and to the experimental conditions.
Therefore, great care must be applied when selecting the assumptions and designing the
experiments. Due to the stochastic variation in the data, an incorrect assignment may appear
optimal. It is dangerous in this case to use a procedure optimizing a scoring function, and
not to consider the plausible alternatives.

The information content in the data can also be characterized by the size of the search



space of candidate mappings. One such measure of the space is the number of consistent
pairwise matches mapped to positions in the sequence, as shown in the column Matches in
Tab. 1. As can be seen, the size of the space increases with the noise, and the increasing
search space has a direct effect on the execution time. The assignment algorithm is fast for
up to moderate-sized search spaces, but slows down precipitously for larger ones.

6 Comparison to prior work

The development of automated methods for backbone resonance assignment has recently
become an active area of research [1, 2, 3, 4, 7, 9, 11, 12, 13, 14, 18, 19, 20, 22, 23, 26, 31, 35].
In this section, we briefly describe some of the existing methods and contrast them with
our model-based approach. We note that, like many existing methods, we take spin systems
as the input data; properly constructing the spin systems is itself an important topic with
implications for assignment.

Assessment of uncertainty. The main contribution of this paper is a formal approach
to assessment of uncertainty in backbone resonance assignment. Most existing methods
view assignment as a deterministic optimization problem. They yield a single mapping of the
observed spin systems to positions in the sequence, and provide no assessment of uncertainty
associated with the result. Such optimization procedures are appropriate when the data set
is extremely informative, and when no plausible alternative to the “best” candidate mapping
exists. However, as demonstrated here, as well as in other cases we have studied, several
candidate mappings are generally plausible. One must take this uncertainty into account in
order to obtain reliable assignments and avoid erroneous conclusions.

Some other approaches also yield sets of candidate mappings. If the same spin system
is always mapped to a particular position in the sequence, then they consider the chemical
shifts at the position to be certain; else they consider the chemical shifts uncertain. These
methods make no distinction between uncertainty in mapping spin systems, and uncertainty
in determination of chemical shifts. As discussed in Sec. 3.3, this approach does not correctly
represent the uncertainty because 1) alternative spin systems may have similar values, and 2)
the relative weights of the mappings other than the “best” one may be small. The existing
methods use score functions which do not have a probabilistic interpretation. Therefore
inference of the unknown chemical shifts cannot be carried out, and the relative importance
of the candidate mappings is difficult to judge.

A distinctive feature of our approach is that a probability model of sources of noise is
an integral part of the assignment procedure. A global scheme of scoring, and a penalty
for missing observations, allow us to directly compare assignments, and therefore perform
inference regarding the unknown chemical shifts. In addition, the probabilistic interpretation
of the score enables us to characterize the information content in the data and the overall
plausibility of a candidate mapping.

Finding the candidate mappings. Our probability model enables a unique approach
to finding candidate mappings. Specifically, one can assess not only the plausibility of a
spin system at a position in the sequence, but also of any partial mapping of groups of spin



systems. The plausibility of a partial mapping (and the implications for the plausibility of
a completed assignment) has not been previously used by any other assignment procedure.
This results in a significant reduction of the search space, and therefore allows an exhaustive
search of candidate mappings on problems which were not tractable by previous exhaustive
search methods. Furthermore, the χ2 interpretation provides an estimate for the upper
bound on the total score of the correct assignment, and the penalty allows a meaningful
comparison of mappings with different numbers of missing observations.

Matching spin systems. All existing methods define the total score as the sum of the
individual contributions, and thus implicitly assume independence of the observed chemical
shifts across positions in the sequence and across resonance types. Furthermore, by employ-
ing constant match tolerances or constant parameters for bell-shaped functions that score
matches, all methods implicitly use the assumption of constant variance of chemical shifts.
Some algorithms progressively increase match tolerances when no match is found under a
given tolerance, resulting in an arbitrary, unequal treatment of spin systems. We follow the
existing approaches by assuming constant experimental variance of the observed chemical
shifts, but use a flexible scoring function which considers the plausibility of a match jointly
for all resonance types. Therefore, a relatively loose match of one resonance type can be con-
sidered plausible if it is compensated for by very tight matches of the other resonance types.
The parameter α controls the overall quality of an acceptable match, and has a probabilistic
interpretation which is not available to the other methods.

Aligning spin systems. The vast majority of the existing methods use a Normal
characterization of the chemical shifts deposited to a database. In particular, the program
Mapper [12] uses an almost identical alignment score and its χ2 interpretation. The score
can be derived from our Bayesian standpoint under the assumption that the resonance types
are a priori independent. However, Mapper assumes pre-compiled chains of spin systems as
the input, and is not concerned with the quality of matching the spin systems. It provides no
formal method for statistical inference. Our approach provides a unifying scoring system for
aligning and matching, and is capable of incorporating any Normality-based characterization
of the prior distributions.

7 Discussion and future work

To the best of our knowledge, our approach is the first to provide formal statistical inference
for backbone resonance assignment. We quantify the uncertainty in the assigned chemical
shifts in terms of their posterior standard deviations. We also characterize the information
content in the data with a posterior distribution for the set of candidate mappings, and by
comparing the scores of the mappings to the corresponding χ2 distribution. The method
is fully automated and does not require human intervention. It is capable of incorporating
different prior characterizations of chemical shifts and different experimental variances. It
requires only two tuning parameters, α and β, which control the search space of candidate
mappings and are easily interpretable.

We believe that quantification of uncertainty is the key for producing reliable automated



assignments. The use of a single candidate mapping with no quantification of uncertainty
can result in false optimism in the quality of reported chemical shifts. This may lead to
erroneous conclusions which in turn may propagate and accumulate through subsequent
stages of NMR-based analyses. Reporting posterior standard deviations of the determined
chemical shifts will help prevent such errors. Specific applications of the results of our method
include the following. 1) Use only the assigned chemical shifts for which the posterior
standard deviations are close to the experimental precision. 2) Design additional NMR
experiments based on the posterior standard deviations of chemical shifts, e.g. using isotopic
labeling techniques to probe uncertain residues or residue types, or conducting experiments
that focus on the resonance types containing most of the uncertainty. 3) Report posterior
standard deviations of chemical shifts when depositing NMR assignments in public databases,
so that entries are annotated according to their uncertainty and the underlying information
content. For example, all things being equal, the distributions will help distinguish between
an assignment based on, say, ten resonance experiments versus one based on just three, or
between assignments obtained with different spectral resolution. 4) When a single candidate
mapping must be used, assess the posterior distribution of the mappings in order to determine
the relative support for the best mapping. At the same time, the score of that mapping will
help judge its quality of fit with the data.

We plan to improve our method in a number of ways.

1. The space of potential mappings is combinatorially large, and the complexity of the
problem grows exponentially with the protein size. Therefore, even the most effi-
cient algorithms for exhaustive search are limited in their use. Inferential algorithms
employing stochastic search are needed in order to explore large spaces of candidate
mappings.

2. The probability model is based on the assumption of constant variance of resonances
associated with the observed spin systems. However, the resonances are obtained using
a variable number of peaks in the spectra. The quality of the observed peaks varies,
and so does the uncertainty associated with their locations. The assumption may
be relaxed in future work by careful modeling of the noise associated with individual
peaks.

3. The current approach considers the candidate mappings with the minimum number of
entirely missing spin systems. However, the penalty (Eq. 4) brings to a common scale
mappings with any number of missing spin systems, and mappings with more missing
spin systems can in principle have higher posterior probabilities. More research is
needed in order to select an appropriate maximum allowable number of entirely missing
spin systems.

4. Additional information, e.g. regarding the secondary structure of the protein, can help
reduce the search space of candidate mappings, as well as the uncertainty associated
with the assigned chemical shifts. Researchers have attempted to incorporate this



information by means of prediction of secondary structure elements [31]. However, as-
sessment of uncertainty in the assigned chemical shifts in this case must incorporate the
uncertainty in the prediction. More work is needed to correctly assess the uncertainty
in this case.

The current version of our program, written in Java, can be freely obtained for academic
use by request from the authors.
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