
Implicit Ownership Types for Memory Management

Tian Zhao1, Jason Baker2, James Hunt3, James Noble4, and Jan Vitek2

(1) University of Wisconsin – Milwaukee, USA
(2) Purdue University, West Lafayette, USA

(3) aicas GmbH, Karlsruhe, DE
(4) Victoria University, Wellington, NZ

Abstract. The Real-time Specification for Java (RTSJ) introduced a range of lan-
guage features for explicit memory management. While the RTSJ gives program-
mers fine control over memory use and allows linear allocation and constant-time
deallocation, the RTSJ relies upon dynamic runtime checks for safety making
it unsuitable for safety critical applications. We introduce ScopeJ, a statically-
typed, multi-threaded, object calculus in which scopes are first class constructs.
Scopes reify allocation contexts and provide a safe alternative to automatic mem-
ory management. Safety follows from the use of an ownership type system that
enforces a topology on run-time patterns of references. ScopeJ’s type system is
novel in that ownership annotations are implicit. This substantially reduces the
burden for developers and increases the likelihood of adoption. The notion of
implicit ownership is particularly appealing when combined with pluggable type
systems, as one can apply different type constraints to different components of
an application depending on the requirements without changing the source lan-
guage. In related work we have demonstrated the usefulness of our approach in
the context of highly-responsive systems and stream processing.

1 Introduction

The Real-Time Specification for Java (RTSJ) [8] was designed to adapt Java for use in
real-time applications. Safety critical applications require an exceedingly rigorous val-
idation and certification process. For instance, the aviation industry DO-178B standard
levels A and B require stringent guarantees of correctness of both the application soft-
ware and, in the case of Java, the virtual machine. A tighter and smaller Java standard
is needed to support these applications through the validation and certification process.
A new specification request (JSR-302) based on the RTSJ, has been initiated within the
Java community process to create a specification containing only the minimal features
necessary for safety critical systems capable of certification [26].

Our work focuses on the most contentious part of the design of real-time Java in
terms of program correctness and certification, namely the memory management sub-
system. The dynamically checked region-based memory model of the RTSJ — based
on dynamically scoped allocation contexts and runtime tests on assignments and region
entry — has been singled out as one of the most egregious source of programmer er-
rors in real-time Java programs1. Current real-time garbage collectors do not match the
performance or latency of region-based memory management [31] and verified garbage
collector implementations are unlikely in the medium term. Thus, the best route for

1 As reported by users and vendors in personal communications.

2 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

safety-critical certification may well be a statically-typed region-based memory man-
agement programming model. This has the advantage that the runtime infrastructure
for region-based allocation is relatively simple, and that the type system is amenable to
formal verification.

Our goal is to design a type system for region-based memory managment that meets
the following pragmatic constraints: (1) ensure that no dynamic memory access error
can occur at runtime; (2) require no changes to the Java language, standard libraries or
virtual machine, (3) do not modify the semantics of real-time programs. Additionally,
the type system needs to be simple and lightweight, the burden imposed by extra type
declarations should be minimal.

In previous work, we presented Scoped Types, a type system for RTSJ’s nested
memory regions [42]. That type system overloads Java’s static package nesting to model
dynamic memory region nesting: instances of scoped classes are allocated within re-
gions corresponding to their Java package. Unfortunately, we have found Scoped Types
to have a number of drawbacks. First, they hinder reuse. As a class’s package deter-
mines its allocation context, classes must be textually duplicated in different packages
if their instances are to be used in more than one region. Another implication of using
packages was that most standard library classes are dissallowed because casting to or
from Object is not well-typed. Such casts lose information about the source object’s
allocation context. Furthermore, Scoped Types cannot cope with Java features such as
primitive array types, which are crucial to practical real-time programming. And finally,
the static and dynamic protection models were tightly coupled, so that object references
could not be passed as method arguments across region boundaries – even when such
temporary references would be perfectly safe.

In this paper, we present ScopeJ, a successor system that is simple, expressive, and,
we believe, well suited to be the basis for the upcoming Safety Critical Java standard.
ScopeJ includes a range of novel constructs that address the above mentioned draw-
backs. First, ScopeJ supports reusable classes that can be used across different memory
regions, reducing the need for duplication of classes. By treating types such as Object
as reusable classes, ScopeJ allows many uses of existing library classes that themselves
rely on Object. Second, ScopeJ directly incorporates primitive types like arrays, by
treating them with a generalization of the reusable classes technique. Third, by support-
ing reference borrowing, ScopeJ separates permanent references from temporary ref-
erences. Finally, the formal model covers all the essential memory and thread-related
features used in our implementation, and guarantees that all memory access will be safe
in the resulting real-time system.

The key technical insight underlying ScopeJ is a clear treatment of implicit owner-
ship polymorphism. Most existing ownership type systems are based on explicit owner-
ship polymorphism, where generic parameters of one kind or another carry ownership
or region information around the program, and programs must be annotated to declare
and initialize those parameters [17, 7, 1, 14, 21, 11, 9, 33]. On the other hand, simpler
Confined Type systems (including our earlier Scoped Types) avoid the need for parame-
terization by confining all instances of a class to the same context — unfortunately these
systems generally sacrifice any ownership polymorphism [22, 15, 43]. Implicit owner-
ship polymorphism, as embodied in ScopeJ’s reusable classes, allows classes to be used

ScopeJ 3

polymorphically in different ownership contexts, but without any explicit ownership pa-
rameter declaration or instantiation. ScopeJ’s type system is the first to describe implicit
ownership polymorphism, and the first to be proved safe and sound.

Earlier work presented an empirical evaluation of Scoped Types on small but re-
alistic applications [42, 2, 3]. STARS [2], notably, implemented Scoped Types with a
combination of aspect-oriented programming and pluggable type checking [4] without
changing the Java language’s syntax or its tool chain (IDEs, compilers, etc.). We were
able to show that a 24 KLoc real-time Java application could be easily refactored to
abide by the Scoped Type programming discipline. The data presented in [2] showed
that refactoring the application led to an increase of approximately 1000 lines of user
code. Furthermore, as [2] did not support reusable classes, it was necessary to duplicate
8 KLoc of collection classes. The refactored application exhibited better performance
and predictability than the original program.

We have since developed two other systems that rely on variants of the ScopeJ
type system [35, 34, 5] to offer a programming model for highly-responsive real-time
systems and stream processing. In each case, the type constraints were defined as a
pluggable type system with no user annotations. We evaluated usability by implement-
ing several programs as well as a number of micro-benchmarks. Our conclusion was
that implicit ownership type systems are practical and have the potential to be adopted
widely in applications that require some form of control over the topology of object
graphs.

The remainder of the paper is structured as follows. Section 2 introduces ownership
types and their application to memory management. Section 3 illustrates the ScopeJ
programming model with a number of examples and design patterns. The main contri-
bution of this paper is in Section 4 where the ScopeJ calculus is given a formal dynamic
and static semantics and soundness is proven. Section 5 puts our work in the broader
context of other type-based approaches to memory managment and Section 6 concludes.

2 Ownership types and Region-based Memory Management

This section serves as a primer on ownership and an introduction of region-based mem-
ory management. We start with an explicit ownership type modeled on the work of Chin
et al. [11].

Region-based memory management has been in-r

r1 r2

Fig. 1. A region hierarchy with
safe object references.

vestigated in the context of functional [37], impera-
tive [21] and object-oriented [9] languages. A region
is a bounded pool of memory locations that can be
used to satisfy allocation requests. Unlike traditional
memory management interfaces, allocation does not
have to be matched with deallocation directives, in-
stead the entire region can be deallocated in a single,
constant-time, step. In order to achieve fine-grained
control over the lifetime of region-allocated data, re-
gions can be nested with the semantics that a nested

region’s lifetime is strictly shorter than that of its enclosing region. The combination of

4 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

regions and references allows for programming errors where a program attempts to fol-
low a reference to a previously deallocated object (a dangling pointer). This typically
results in memory corruption and eventually application crashes. Figure 1 illustrates a
hierarchy with three regions and ’safe’ references, i.e. ones that cannot lead to dangling
pointer errors.

Ownership type systems can be seen as enforcing a topology on the patterns of ref-
erences that can occur at run-time such that unsafe references can simply never arise.
The invariant they maintain is that an object can never refer to another object which has
a possibly shorter lifetime. This is a sufficient condition to ensure correctness. Owner-
ship type systems work by assigning different types to subsets of the heap and perform
a kind of static escape analysis that ensures that a reference to a value allocated in one
region cannot flow to a region with a shorter lifetime. Superficially most ownership
type systems bear a certain resemblance to generic types. Classes, methods and refer-
ences are parameterized by regions. We shall demonstrate the basics of ownership with
a simple example from [11].

Consider a class representing a
class Pair〈r〉 extends Object 〈r〉 {

Object〈r〉 a;
Object〈r〉 b;
Object〈r〉 setA(

Object〈r〉 o)〈r〉 {
Object〈r〉 t = a;
a = o; return t;

}
}

r

r1

pair

a b

Fig. 2. Instances of Pair and targets co-located.

pair of object references. Assume
that, at first, the developer wants to
ensure that instances of Pair can
be used when the pair and the val-
ues it refers to are both allocated
in the same region. Figure 2 illus-
trates this example with a class pa-
rameterized by a single region r.
As the types suggest all objects are
allocated in the same region. Notice
also the signature of the method, setA()〈r〉, the parameter after the argument list indi-
cates the region from which this method can be invoked. Ignoring the region subtyping
of [11], this class definition allows the reuse of the Pair class in any region as long as
the fields a and b refer to co-located objects (i.e. allocated in the same scope as this).

Imagine that the programmerclass Pair〈r,s〉 extends Object〈r〉
where s � r {
Object〈s〉 a;
Object〈r〉 b;
Object〈s〉 setA(

Object〈s〉 o)〈r〉 {
Object〈s〉 t = a;
a = o; return t;

}
}

r

r1

pair

a b

Fig. 3. Field a can refer to a parent region.

now wants to generalize the class
to allow its use in contexts where
the first field of the pair may re-
fer to an object allocated in a
parent region of the region that
holds the Pair instance. This
can be achieved by an additional
type parameter on the definition
of the class as shown by Fig-
ure 3. This new region argument,

s, is declared to be either the same region or a parent region of r (by the means of a
where clause and a region nesting constraint). The method setA() must now take an
object allocated in s and return the same. Of course, it is still possible to use the class
within the same region by simply setting r and s to the same actual region identifier.

ScopeJ 5

The improved definition is not fully general as it still constrains one of the fields
to be co-located. We now show the fully general definition (Figure 4) of the class as
inferred by [11]. The class must take three region parameters, one for each field and one
for this. Both field regions must be either the equal or parents of the region holding
the Pair object. We also give the example of a method that performs allocation as it
highlights the expressive power of the inferred typing. Method clone() will return a
copy of the Pair allocated in the current region, r’, which need not be nested in the
region holding the receiver. But it must be the case that the region given for the fields of
the Pair are either equal or nested within the region where the targets were allocated.
By the definition of Pair, it follows that r’ must be equal or nested within both s and
t. One could go further and define a generic version of Pair where the type of the
fields would be parameterized both by their object type and region, but the code would
become even more awkward.

In practice there are several limitations class Pair〈r,s,t〉 extends Object〈r〉
where s � r, t � r {
Object〈s〉 a;
Object〈t〉 b;
Pair〈r’,s,t〉 clone()〈r’〉
where s � r’, t � r’{
Pair〈r’,s,t〉 p =
new Pair〈r’,s,t〉 ();

p.a = a; p.b = b; return p;
}

}

Fig. 4. Fully general Pair.

that may hinder acceptance of an explicit
ownership type system such as the one shown
here. We will outline the main ones. Read-
ers may have noticed that in our examples
all classes did inherit from Object〈r〉 –
that is to say that every class definition must
now take a region parameter. This is rather
unfortunate as it entails loss of backwards
compatibility. One can envision an imple-
mentation of ownership that would use type
erasure and allow interoperability with non-generic libraries. In such a system, Object〈r〉
would be a subtype of Object. The first problem is that any up-cast from a subtype
of Object〈r〉 to Object irremediably loses all ownership information, unless one
is willing to add run-time generics. With type erasure, downcasts between types with
different region type parameters are unsafe. Another issue with explicit annotation is
the sheer syntactic weight required to make the code usable in different contexts. The
added complexity and programmer effort is likely to be a deterrent to adoption. While
usability is difficult to evaluate scientifically, we will simply observe that eventhough
many ownership type systems have been proposed in the last decade, none is in wide
use.

3 Programming with Implicit Ownership Types

We introduce our memory-safe region-based programming model with a series of ex-
amples. The code is given in Java syntax rather than the calculus of Section 4, but the
essence of the examples can be translated in a straightforward fashion.

ScopeJ supports regions, or scopes, that are first-class values that can be entered,
shared, and reclaimed. A class called ScopeGate identifies classes that delimit scopes
— any class that inherits from ScopeGate is a gate class. Any instance of a gate class
defines a new scope, owns that memory region, and is a run-time handle to that scope.
Objects created by the gate’s methods (or methods invoked transitively) are owned by

6 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

GG

GG'

GG
scope
gate
reusable
scoped

Fig. 5. ScopeJ programming model. A scope is associated with every instance of ScopeGate.
Scoped/reusable classes are allocated within a scope. Scoped/reusable objects can refer to objects
allocated in the same or parent scope. Reusable objects are only visible in their allocating scope.

that gate and are allocated within its scope. When no threads are executing within the
gate, its region can be reclaimed.

To enforce memory-safety, ScopeJ programs are structured so as to make the map-
ping between allocation contexts and objects explicit. This is achieved by introducing
the following entities into the language: scoped classes and reusable classes. Any (non-
gate) class nested within the definition of a gate class is a scoped class. All instances of
a scoped class are guaranteed to be allocated in the region associated with their directly
enclosing gate instance. A class is deemed reusable if it can be used within any region,
as opposed to scoped classes which are bound to one particular gate class. Each instance
of a reusable class is owned by one particular gate instance, but different instances of
a reusable class can belong to different gate instances. That is, reusable classes are
ownership polymorphic — but this polymorphism is implicit as scope parameters are
neither declared or instantiated. Figure 5 illustrates the programming model. It shows
two gates G and G’ and their corresponding (nested) scopes. Scoped objects are allo-
cated within these scopes and can refer to scoped object allocated in the same or parent
scope. Reusable objects are also allocated in scope but they can only be referred to from
their allocating scope.

In the source code, a gate is defined by a class G extends ScopeGate {
class G’ extends ScopeGate {
class MyScoped { ... }

}
}

Fig. 6. Two gates and a scoped class.

class extending the distinguished ScopeGate
class; nested regions are obtained by nesting of
ScopeGate class definitions. Scoped classes
are defined by nesting a Java class within a gate
definition,2 while reusable classes are defined
outside any gate nesting hierarchy. Figure 6 gives
an example of two nested gates and a scoped class.

3.1 Pairs revisited

Before presenting an example more relevant to real-time processing, we should revisit
class Pair and present an implicit ownership solution. With the type system introduced
in this paper the programmer has two options for writing class Pair, the class can be

ScopeJ 7

class G extends ScopeGate {
class Pair {

Object a, b;
Object setA(Object o) {
Object t = a;
a = o; return t;

}
}

}

class Pair {
Object a, b;
Object setA(Object o) {
Object t = a;
a = o; return t;

}
}
class G extends ScopeGate { }

Fig. 7. A scoped Pair. Fig. 8. A reusable Pair.

either scoped or reusable.
Figure 7 gives an example where the class is scoped within a gate G. Note that no

annotation is needed for the scoped class. The visibility of Pair references is limited
to any scoped class or gate nested within G. The use of Object is allowed and, as
explained later, it implies that the target must be co-located. Thus this version corre-
sponds to definition of Figure 2. In order to refer to a scoped type S allocated in an
enclosing scope one would have to change the type of the field to S, this corresponds
to Figure 3. One drawback of using a scoped class is that one may have to duplicate
code. Every different use of Pair will require its own definition. Reusable classes give
a way to circumvent this problem in many practical cases. Figure 8 illustrates a reusable
Pair class. Observe the absence of type annotations. A reusable class is slightly more
restrictive as the targets have to be co-located and objects of reusable class can only
be accessed by other objects allocated in the same scope and not by objects in nested
scopes.

The expressive power of the fully general version of Pair remains beyond reach of
our type system. But, as we will show in the remaining examples, some ScopeJ idioms
cannot be captured by previous region ownership type systems.

3.2 The Scoped Run Loop Pattern

Figure 9 illustrates a very common real-time programming pattern, the Scoped Run
Loop [30]. In this particular example, the code periodically acquires data and processes
it in a scope to ensure that any temporary data structures are reclaimed.

Observe that the memory hierarchy is apparent in the program structure. We assume
an enclosing top-level scope, Top, and define two classes within it. Data is a scoped
class holding inputs to the algorithm. Processor is a gate class used for processing
each input. The runLoop() method periodically acquires data and processes it in an
instance of Processor.

The body of runLoop() starts by allocating an instance of Processor. The
semantics of this operation is to allocate a new object of the class and associate it with a
fresh scope. Each time the getMessage()method is invoked from the loop, the scope
associated with the processor is entered and at each return the scope is cleared. The

2 While we find nesting an elegant syntactic device to assign ownership, practical system can use other
means, such as annotations (see for example [35]), if the requirement to have all classes in the same file is
too constraining.

8 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

class Top extends ScopeGate {

class Data {...}

class Processor extends ScopeGate {

class Parser {
void send(Data b) {...}

}
void getMessage(Data data) {
Parser q = new Parser(data);
q.send(data);

}
}

void runLoop() {
Processor p = new Processor();

while (true) {
... get data periodically ...
p.getMessage(data);

} }
}

GG

GG'

 TOP

P

q

data

Fig. 9. Scoped Run Loop Pattern. The runLoop method periodically acquires data and uses a
region to process it.

body of the getMessage() method can safely allocate knowing that all temporary
data will be reclaimed. In this example, we show a scoped class Parser being created
within the processor.

The type system allows references to the instance of Data from within the nested
scope, but would flag any attempt to establish a reference from, e.g., Data to Parser
as a compile-time error.

In order for the program to be correct, it is necessary to ensure that instances of
Parser are allocated within the Processor’s region and not accessible outside it.
This is achieved by nesting the Parser class within Processor. It is a type-error to
return an instance of Parser from one of Processor’s methods, as this could leak
a reference out of the Processor: when the Processor’s region is emptied, that
would become a dangling reference which could cause memory errors.

3.3 Multi-threading

Scopes can be accessed by multiple threads. As all threads have to enter a scope through
its gate, they will naturally be able to communicate by shared variables (the fields of
the gate). By default, when the last thread exits a scope, all the objects within the scope
are reclaimed and all the reference fields in the gate are nulled out. This is not always
convenient, in some cases it would be desirable to keep the scope alive even when no
thread is executing within it. An implementation may chose to add a pin() operation
to keep a scope alive between invocations.

ScopeJ 9

3.4 Limited Nesting

In the RTSJ, scopes can be nested dynamically to create arbitrary tree-like structures.
While the same holds in our system, there is one difference: the depth of the tree is fixed
statically to the depth of nesting of gate classes. The width of the tree, on the other hand,
is not statically bounded as there can be many instances of the same gate class, each
with an associated scope. The advantage of our design is that an error that requires run-
time checks in the RTSJ simply cannot occur. In the RTSJ, the virtual machine must
check explicitly that the programmer does not create a cycle in the scope hierarchy (a
so-called ScopeCycleException).

Figure 10 illustrates an example of a tree of width two. This is obtained by simply
instantiating the Inner gate twice. The cycle exceptions are prevented by the visibility
rule of the type system that states that a gate type is only visible in enclosing classes.
This means that, in Figure 10 Inner cannot be used within the body of its only method
callAlloc(), and similarly Top cannot be used anywhere. Since the gate objects
are hidden, it is not possible to establish a cyclic reference.

Figure 10 also illustrates an example of the Multi-Scoped Object design pattern [30]
where an object is used in multiple scopes. In the RTSJ, this pattern is particularly
fragile. Consider the method alloc()which allocates an instance of Data. The RTSJ
semantics would be that the object is to be allocated in whichever scope happens to be
current at the time the allocation request is issued. In this example, for instance, as the
method is called from within the Inner scope, the object would be reclaimed when
the inner scope is reclaimed. This makes reasoning about correctness of a multi-scoped
object particularly difficult as one has to make sure that the object behaves correctly
irrespective of the current allocation context.

In our proposed semantics, Data is always allocated in the scope associated to its
defining gate, in this example Top. This is regardless of the current allocation context.
We argue that this is safer – as one need not reason about all possible calling contexts

class Top extends ScopeGate {
class Data {}
class Multi {
void alloc() { new Data(); }

}
class Inner extends ScopeGate {
void callAlloc(Multi m) {
m.alloc();

}
}
void main() {

Inner i1 = new Inner();

Inner i2 = new Inner();

i1.callAlloc(new Multi());
}

}

GG

G

 TOP

i2

Data

Gi1 m

Fig. 10. The Multi Scoped Object Design Pattern.

10 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

to show alloc() is correct.
To preserve type-safety, the visibility of gate objects is restricted to the scope in

which they are allocated. This means, for instance, that it is not possible to use refer-
ences to Inner within its scope. If this was allowed, it would be possible to create
references across different instances of the same gate class.

3.5 Reusable Classes

We have already mentioned the need to
class IList { IList t; int value; }
class Outer extends ScopeGate {

IList l = new IList();
class Inner extends ScopeGate {
void add(int i){ new IList(); }

}
void down() {
new Inner().add(l.value);

}
}

Fig. 11. Implicit Polymorphism.

avoid code duplication. It is clear that
if all classes have to appear lexically nested
within a gate, classes cannot be reused
across memory regions: indeed, in our
earlier STARS system (without owner poly-
morphic classes), we found it necessary
to duplicate a significant number of li-
brary classes across several scopes [3].

One solution would be to adopt explicit ownership types to provide parametric re-
gion polymorphism. ScopeJ’s implicit owner polymorphism means that reusable classes
can be used in different regions just as if they were parameterized with a single re-
gion type parameter — but this parameter remains implicit. So that the system remains
sound, we must ensure that no reference to an instance of a reusable class be visible
from any other scope (even a child) than the one in which it has been allocated. We
have the following tradeoff: a scoped class can be allocated in only one context but is
visible from all child scopes, whereas a reusable class can be allocated in any context
but is visible only within its allocation context. Since a reusable class may be instanti-
ated in any scope, the types in a reusable class must also be reusable to prevent reusable
objects from referencing objects allocated in other scopes. Figure 11 illustrates the con-
cept of reusable class with the example of the IList class. The class is defined outside
of any scope declaration in a straightforward fashion. Instances of IList can be cre-
ated in scope Outer and Inner. The type system will keep them distinct and ensure
that a reference to a list in one scope cannot be leaked to another scope.

If a reference of reusable type crosses scope, then dangling pointers may arise.
Consider the following example, where an IList object outerL is passed from outer
scope to inner scope, and an instance of IList of inner scope l is assigned to the field
outerL.t. This assignment is not safe since after the call to method loop returns,
the object l is deallocated and outerL.t becomes a dangling pointer.

class IList { IList t; int value }
class Outer extends ScopeGate {

class Inner extends ScopeGate {
void loop(IList outerL) {

IList l = new IList();
l.t = outerL; // Ok
outerL.t = l; // not OK;

// outerL.t becomes a dangling pointer after this call returns
}

}

ScopeJ 11

void main() {
IList l = new IList();
(new Inner()).loop(l);

}
}

3.6 Type-safe Casts

Subtyping and type-casts are issues for ownership type systems. As types are used to
track the flow of values, the type system must retain enough information to catch a
breach of confinement. Operationally it is always safe to widen the type of a refer-
ence to Object, indeed most Java programs do it frequently, and then down-cast the
object to a more precise type. Unfortunately the up-cast erases the static ownership in-
formation. There are several solutions: one can disallow widening when it entails losing
ownership information (see for example [43]) or add ownership parameters to Object
(as in [32]). Down-casts into owned types face a different problem, since most systems
work by erasure, there is no runtime ownership information to check that the cast is
correct.

One of the goals of ScopeJ is to allow writing
class A extends ScopeGate {

class B { }

Object[] obj = { new B() };
B b = (B) obj[0];

}

Fig. 12. Type-safe casts.

code in a style that is as natural as possible. So, for
example, it is desirable to allow programs such as
the one in Figure 12 where an array of objects
is used to store and then retrieve scoped objects.
This example is particularly important as it is the
key to being able to reuse collection classes.

In ScopeJ, Figure 12 is well-typed. The intuition is that Object[] is treated as
a reusable type. As such it cannot be observed from any other scope than A. The type
system ensures any object stored in it, must have been allocated in A. Thus the down-
cast is safe as we know that anything retrieved from a reusable class has to be locally
allocated.

3.7 Borrowed References

Strict enforcement of scope-safe reference patterns is sometimes too restrictive. In
RTSJ, for example, it is possible to establish read-only references that span regions
with unrelated lifetimes3. This is referred to as the Hand-off design pattern in [30]. This
design pattern is useful when data must be transferred between regions while avoiding
copies. In our system, the same result can be obtained by relaxing the type constraints to
allow temporary references between sibling scopes. Observe that references to scoped
objects can be handed safely outside of their defining scope if these references are not
retained and the referred scope is not deallocated. We refer to these as borrowed refer-
ences. The annotation local is used to mark borrowed parameters.4

3 This is obtained by a combination of executeInArea() and enter() calls to navigate the scope
hierarchy. The fact that it is possible to set up such references came as a surprise to the designers of the
RTSJ, and complicated its implementation [29].

4 In our implementation this is expressed by a meta-data tag @local and does not require syntactic exten-
sions.

12 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

class Top extends ScopeGate {
class Bridge {
Q q;
void main(P p, Q q) {
this.q = q;

p.enter(this);

}
void callback(local Data d){

q.handoff(d);

}
}
class Q extends ScopeGate {
void handoff(local Data d) { ... }

}
...

GG

G

 TOP

Q

Bridge

GP

data

class P extends ScopeGate {
class Data {}
void enter(Bridge b) {

b.callback(new Data());

}
}

}

Fig. 13. Cross scope references with borrowing. Method handoff has access to object allocated
in a sibling scope.

Figure 13 illustrates borrowing. In this scenario two scopes, referred to by instances
of gates P and Q want to communicate via a shared read-only reference to an instance of
Data. The control flow starts with the Bridge.main() method which takes refer-
ences to the two gates. Control then enters into the scope associated with p, which calls
back into Bridge passing a reference to a new Data. At this point, from the instance
of Bridge we can call into the second scope with the reference to the data.

The key observation is that while method Q.handoff() executes there is a ref-
erence from a stack frame executing in the scope of q to an object allocated in the
sibling scope p. This would be unsafe, if it was not for the fact that we are still in the
same thread, so the target scope cannot be reclaimed. As long as we promise to release
the reference when we return from handoff(), a dangling pointer error cannot oc-
cur. The type system ensures that borrowed references cannot be assigned into objects’
fields, and does not allow the local annotation to be cast away.

3.8 Comparison with Related Ownership Type Systems

This paper builds on our previous work. In [42], we introduced SJ, a core object cal-
culus for Scoped Types. ScopeJ departs from, and improves on SJ in several important
ways. SJ used Java packages to express memory regions and extended Java visibility
rules. ScopeJ does not rely on Java visibility and does not impose structural restrictions.
Implicitly parameterized ownership types are novel. Unlike most previous work on con-
fined types [43], ScopeJ enforces object-level confinement (i.e. for scoped objects).

ScopeJ is also closely related to ownership type systems that use explicit param-
eterization [16, 13]: a gate object owns instances of classes allocated inside it. The
disadvantage of ownership systems — as we’ve described above — is that they gen-
erally require new language constructs, and all class declarations and instantiations to
be parameterized, imposing a relatively high syntactic overhead. This is a significant
drawback and the reason we adopted the implicit approach. Classes are not parameter-
ized explicitly; rather their position in the nested class definition hierarchy models their

ScopeJ 13

instances’ position in the dynamic nested regions. The key limitation of of our previous
attempt at implicit ownership types [42] was that classes could not be reused in dif-
ferent regions. Each class could only be declared in one place, so programmers had to
resort to copying code. We mitigate that problem here with reusable classes: effectively
they correspond to classes with a single, implicit existential owner parameter [27, 40].
The present approach is still limited. Instances of a reusable class are visible in a single
scope, and they have only one implicit scope parameter — that is, they are associated
with only one region — so that for example the contents of a Vector and the Vector
itself must be allocated in the same memory space. Similarly, an array of reusable type
is also reusable, which means that an array object and its contents must be in the same
scope. For general purpose programming, this would be a onerous restriction. In RTSJ
programs, however, this is not as difficult as it seems: the general lifetime rules against
potential dangling pointers mean that such a collection can only be shorter-lived than
its elements, so typically collections are placed within the same context.

4 The ScopeJ Calculus

The ScopeJ calculus is a core calculus for modeling region-based programs inspired
by Featherweight Java (FJ) [25]. It extends FJ with mutable state, multi-threading, and
memory deallocation. We follow our previous work on confined types, and adopt a
call-by-value semantics with explicit evaluation contexts [43].

ScopeJ does not have explicit thread creation primitives, rather multi-threading is
modeled by configurations in the dynamic semantics. Other features that have been
left out include access modifiers, exceptions, and reflection. Modeling these features is
interesting but mostly orthogonal to our concerns. ScopeJ does not need nested objects
to obtain a reference to their enclosing scope. In Java parlance, ScopeJ classes are static
inner classes. Since a gate class is not visible to its enclosed class there would be little
point in providing upwards references.

L ::= class C extends D { C f; M }

M ::= C m (C x) { return e; }

e ::= x | v | new C() | e.f | e.f := e | e.m(e) | (C) e

v ::= ` | null

S ::= top | S.s

K ::= S.c | c

C, D ::= S | K

Fig. 14. ScopeJ Calculus Syntax.

The ScopeJ syntax appears in Figure 14. Metavariable L ranges over class decla-
rations. M ranges over method declarations, and f, x, and m range over field, variable

14 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

and method names. Metavariables c and s range over disjoint sets of class identifiers
and gate identifiers; v is either an object reference ` or null. Classes contain field and
method declarations. The distinguished Object class is the root of the class hierarchy.
An expression e can be either a variable x (including this), a value v, a class or scope
instantiation expression new C(), a field access e.f, a field update e.f := e, a method
invocation e.m(e), or a cast (C) e. We adopt FJ notation and use an over-bar to repre-
sent a finite (possibly empty) sequence. We write f to denote the sequence f1, . . . , fn
and similarly for e and v. We write C f to denote C1 f1, . . . Cn fn and C <: D to denote
C1 <: D1, . . . , Cn <: Dn.

The nesting classes are modeled with with a naming convention. A class identifier
is prefixed by an ordered sequence of enclosing gate identifiers. Thus the following
definition

class A extends ScopeGate { class B extends C {...} }
desugars to

class top.A extends ScopeGate { }
class top.A.B extends C {...}

Here top stands for the name of the top-most gate class. Class names, ranged over by
C and D, are either a (possibly empty) sequence of gate identifiers terminated by a class
identifier or a gate class name, S, consisting of a sequence of gate identifiers (thus using
ScopeGate as a marker is not necessary). Reusable classes have an empty sequence
of gate identifiers because they are defined outside the nested gate structure.

A number of FJ auxiliary definitions [25] are in Figure 15. Informally, fields(C)
returns the field declarations of C, mtype(m, C) returns the type signature of method m
in C, mbody(m, C) returns the parameter list/body of m, and override(m, C, D) is true if
either m is not defined in D or the signatures of m in C and D are the same.

class C extends D { C f; M } fields(D) = (D g)

fields(C) = (CD fg)

class C extends D { . . . ; M }
m not defined in M

mtype(m, C) = mtype(m, D)

class C extends D { . . . ; M }
C0 m (C x) { return e; } ∈ M

mtype(m, C) = C→ C0

class C extends D { . . . ; M }
m not defined in M

mbody(m, C) = mbody(m, D)

class C extends D { . . . ; M }
C0 m (C x) { return e; } ∈ M

mbody(m, C) = (x, e)

class D extends D′ { . . . ; M }
m not defined in M

override(m, C, D)

mtype(m, C) = mtype(m, D)
override(m, C, D)

Fig. 15. Auxiliary definitions

ScopeJ 15

(R-NEW)
fields(C) = (C f) v = null |v| = |f|

`0 fresh σ′ = σ[`0 7→ C`(v)]

σ, `, new C() → σ′, `, `0

(R-FIELD)

σ(`0) = C`′(v) fields(C) = (C f)

σ, `, `0.fi → σ, `, vi

(R-UPD)

σ(`0) = C`′(v) fields(C) = (C f)

σ′ = σ[`0 7→ C`′(v↓iv)]
σ, `, `0.fi := v → σ′, `, v

(R-CAST)

v = null ∨ (σ(v) = C0
`′(v) ∧ C0 <: C)

σ, `, (C) v → σ, `, v

(R-INVK)

σ(`0) = C`′0(v′) mbody(m, C) = (x, e′)

e = [v/x,
`0/this]e

′ inscopeσ(`0) = `′

σ, `, `0.m(v) → σ, `′, e

(G-STEP)
P = P ′′ | κ • `, E[e]

e 6= v.m(v) σ, `, e → σ′, `, e′

P ′ = P ′′ | κ • `, E[e′]

σ, P ; σ′, P ′

(G-ENTER)
P = P ′′ | κ • `, E[e]

e = v.m(v) σ, `, e → σ, `′, e′

P ′ = P ′′ | κ • `, E[e] • `′, e′

σ, P ; σ, P ′

(G-RET)
P = P ′′ | κ • `, E[e] • `′, v

P ′ = P ′′ | κ • `, E[v]

σ′ = deallocate(σ, `′, P ′)

σ, P ; σ′, P ′

Evaluation contexts:

E ::= [] | E.f | E.f := e | v.f := E | E.m(e) | v.m(v, E, e) | (C) E

Active scope:
inscopeσ(`) = ` if σ(`) = S`′(v)

inscopeσ(`) = `′ if σ(`) = K`′(v)

Release scope memory:

refcount(`, P) 6= 0

deallocate(σ, `, P) = σ

refcount(`, P) = 0 σ(`) = C`0(v) {`1..`n} = {`′ | σ(`′) = C′`(v′)}
σ′ = σ[`1 7→ dummy, .., `n 7→ dummy, ` 7→ C`0(null)]

deallocate(σ, `, P) = σ′

Reference counts:

refcount(`, ε) = 0
refcount(`, (P | P ′)) = refcount(`, P) + refcount(`, P ′)
refcount(`, (κ • `′, e)) = refcount(`, κ) if ` 6= `′

refcount(`, (κ • `, e)) = 1 + refcount(`, κ)

Fig. 16. Dynamic Semantics.

16 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

4.1 Dynamic Semantics

The dynamic semantics of the calculus is given in Figure 16 in terms of a two-level
small-step operational semantics. A ScopeJ configuration is a pair σ, P where σ is par-
tial map from locations to objects and a program P is a set of threads: P ≡ κ or
P ≡ P ′|P ′′. The global reduction relation has thus the form, σ, P ; σ′, P ′, and de-
termines the behavior of a program as a whole. Each thread is modeled by a call stack κ
which can be either empty, ε, or a sequence of frames. A frame is a pair, `, e, of a scope
and an expression. We use ` e to represent a call stack of the form ε•`0, e0 • . . .•`n, en.
We assume the presence of an implicit class table with definitions for all classes.

In the global reduction rules, we assume commutative and associative thread com-
position so that P |P ′ may also be written as P ′|P . Rule (G-STEP) evaluates the top
frame of the call stack. Rules (G-ENTER) and (G-RET) manage the call stack. When
a thread executes `.m(v), the thread enters the active scope of ` by pushing a frame
onto the stack. The active scope of ` is itself if ` is a gate object, and otherwise, the
active scope of ` is the allocation scope of `. A thread removes the top of its call stack
if the top frame only contains a value. When a method returns and `′ represents the
scope instance in which the method body is evaluated, Rule (G-RET) uses the predicate
refcount(`′, P ′) to check whether `′ is used by any of the threads in P ′. If no thread is
using `′, then Rule (G-RET) clears the scope represented by `′ by setting all fields of `′

to null and replacing all objects allocated in the scope with a dummy value. Dummy
values are used to differentiate access to null pointers from access to ’dangling’ point-
ers. It is allowable for a computation to get stuck on access to a null reference, but the
type system should ensure that dummy is never used in a receiver position.

The dynamic semantics abstracts some of the low-level details of region-based
memory management. In particular, we do not model the way memory is reused after a
region is freed. This is not necessary for our purposes as the property we are interested
in is the absence of dangling pointers.

The global evaluation rules rely on the notion of evaluation contexts, which are as
usual expressions E with a hole. The syntax of method and assignment contexts en-
force left-to-right evaluation order and call-by-value semantics. Furthermore evaluation
contexts are deterministic. For any expression e, there is exactly one evaluation con-
text usable in reduction rules. This can be shown by easy induction on the structure of
e [43].

Expression evaluation is defined by a relation of the form σ, `, e → σ′, `′, e′ where
σ is a store mapping locations ` to instances and ` is the gate object representing the
region of the allocation context. Each object, C`(v), is annotated with the instance `
representing the region in which it was allocated. The expression rules are mostly stan-
dard. We explain some interesting cases. In (R-NEW), the current allocation context is
tagged onto the newly allocated instance. Note that we assume that the location ` used
in the assignment is globally unique and that location is never reused. In (R-INVK),
method invocation incurs locating the current allocation context `′ by looking up the
active scope of the receiver `. In (R-UPD), we write v′ ↓iv to denote the sequence v
with the ith entry replaced by v′.

ScopeJ 17

4.2 The ScopeJ Type System

The ScopeJ type system enforces constraints on programs so that a gate is the owner of
the objects allocated in the corresponding region. Rather than using explicit ownership
parameters to annotate source programs, we define visibility constraints of types (sim-
ilar to confined type systems) and place constraints on the use of gates to achieve the
same effect of object ownership.

Visibility is critical to ScopeJ’s type system. We say that type C′ is visible from
type C, if values of type C′ can be referenced within the declaration of C. This is written
C′ viz C. We say that S is the static scope of C if either C = S or C = S.c. This is
written as scopeof (C). Reusable classes c are visible in every context. A gate type S.s
is visible to classes with static scope S while scoped types S.c are visible to any class
with static scope S or a static scope enclosed by S. The relation is defined as follows:
(S′ is a sequence of gate identifiers excluding top).

S.c viz S S.c viz S.c′ S.c viz S.S′ S.c viz S.S′.c′

c viz C S.s viz S.c S.s viz S

We also define contextual visibility C0 ` C viz D which is used to prevent reusable
types from crossing scope boundaries.

S viz D
C0 ` S viz D

S.c viz D
C0 ` S.c viz D c0 ` c viz D

scopeof (C) = scopeof (D)
C ` c viz D

The visibility rules make sure that if a thread currently in scope a enters scope
b, then the type of the gate representing a must directly encloses the type of the gate
representing b. This ensures that each scope has only one parent (single-parent rule)
and prevents scope cycles. Consider the example below where the classes G and G.G1
are both gate types.

class G extends ScopeGate {
void enter() {

(new G.G1()).enter2(); // OK to enter inner scope
};

}

class G.G1 extends ScopeGate {
void enter2() {

(new G()).enter(); // not OK to enter outer scope
}

}

We illustrate the purpose of contextual visibility rules with the following exam-
ple where G and G.G1 are gate classes. The method G.access() calls the method
G.G1.get() to obtain an object of reusable type. The return value is allocated in a
scope s represented by g. Assigning the result of call g.get() to the field G.f will
result in dangling pointer if the scope g is deallocated. The call g.get() is not ty-
pable because the typing rule for method call includes a contextual visibility constraint
G.G1 ` Object viz G, which does not hold.

18 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

class G extends ScopeGate {
Object f;
void access() {

G.G1 g = new G.G1();
this.f = g.get();
// not OK to reference reusable object allocated in inner scope

};
}

class G.G1 extends ScopeGate {
Object get() {

return new Object();
}

}

By type visibility rules, type G.G1 is visible from G, while type G is not visible
from G.G1. The typing rules (explained in the next section) require that method bodies
must be well-typed and consequently, new expressions in method bodies must have
types visible from the enclosing classes. Thus, the expression new G.G1() in class G
is typable while new G() in class G.G1 is not.

A type C is a subtype of D iff C is a subclass of D except that gate types may not be
widened.

C <: C
C <: C′ C′ <: C′′

C <: C′′
class K extends K′ { . . . }

K <: K′

We define a scope-safe subtyping relation between types � to restrict the use of
widening. A scoped type S.c may be widened to a reusable type c′ in the declaration of
C0, if the static scope of C0 is also S.

C0 ` S � S

S.c <: S.c′

C0 ` S.c � S.c′
c <: c′

C0 ` c � c′
S.c <: c′ S = scopeof (C0)

C0 ` S.c � c′

We need the scope-safe subtyping relation to prevent improper widening of scoped
types to reusable types. Consider the following example where G and G.G1 are gate
types while G.C and G.G1.C are scoped types.

class G extends ScopeGate { ... }
class G.C extends Object { ... }
class G.G1 extends ScopeGate {

Object f;
void m(G.C v, G.G1.C v1) {

this.f = v; // not OK to reference scoped objects in outer scope
this.f = v1; // OK to reference scoped object in current scope

}
}
class G.G1.C extends Object { ... }

The assignment this.f = v is not allowed since we want to maintain the invari-
ant that the allocation scope for values of reusable type (in this case Object) must be
the scope of the current context. In the example, the field this.f has reusable type and

ScopeJ 19

it should reference a value allocated in a scope represented by a gate of the type G.G1,
while G.C is a scoped type with static scope G and its object must be allocated in a scope
represented by a gate of the type G. The assignment this.f = v is not typable since
the typing rule for updates (explained next) has the constraint G.G1 ` G.C � Object,
which does not hold since the static scope of G.C (i.e. G) is different from the static
scope of G.G1 (i.e. G.G1).

Typing Classes and Methods The type rule for a class C requires that the types of all
fields be visible in the context of the class definition. A scoped class can inherit from
either a reusable class (including Object), or another scoped class with the same static
scope. A gate class may not inherit from gate or scoped classes, and a reusable class
may only inherit from another reusable class (again including Object).

S extends c ` M C viz C
class S extends c { C f; M } OK (T-CLASS1)

c extends c′ ` M C viz c
class c extends c′ { C f; M } OK (T-CLASS2)

S.c extends D ` M C viz S.c (D = S.c′ ∨ D = c′)
class S.c extends D { C f; M } OK (T-CLASS3)

A method of class C is well-typed if its body is well-typed. In an overriding method,
the signatures must match (definition elided). The argument and result types must be
visible from C. Finally, the method body is of a type that is a scope-safe subtype of the
declared result type.

x : C, this : C ` e : C′r C ` C′r � Cr Cr viz C C viz C override(m, C, D)
C extends D ` Cr m (C x) { return e; } (T-METH)

Typing Expressions A ScopeJ expression e is type-checked in the type environment
Γ , written Γ ` e : C. The type of a variable x is given by the environment and its type
must be visible from the type of this.

Γ (x) viz Γ (this)
Γ ` x : Γ (x) (T-VAR)

In FJ, the type rule of a cast expression (C0) e places no constraint on e leaving it
up to the runtime to check for errors. ScopeJ has to be more restrictive. Since we need
to avoid casting gates to reusable or scoped types, a gate type may not be used in a cast.
For up-casts, if e has a scoped type with static scope S and the type C0 is reusable, then
the static scope of the context C is S. Similarly, for down-casts, if C0 is a scoped type in
scope S and e has a reusable type, then the static scope of the context C is S.

C = Γ (this) C0 viz C Γ ` e : K C ` C0 � K ∨ C ` K � C0

Γ ` (C0) e : C0

20 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

(T-CAST)

The type rules for object creation ensure that a scoped class can only be allocated
from classes in its scope, while a gate class can only be allocated from classes in its
parent scope (this is enforced by the visibility constraint).

C = Γ (this) C0 viz C (∀S.c, C0 = S.c ⇒ S = scopeof (C))
Γ ` new C0() : C0

(T-NEW)

A field selection expression e.fi must abide by the normal FJ typing constraints.
The type of the field Ci must be visible from C, where C is the type of this, so that the
field always references objects allocated in the current scope or its outer scope. Also,
we want to maintain the invariant that a variable of reusable type always references
objects allocated in the current scope. Thus, if Ci is reusable, then from the condition
C0 ` Ci viz C, either e’s type C0 is reusable, or the static scopes of C0 and C are the
same. In both cases, e and fi refer to objects allocated in the current scope. Note that
fields(C) returns the field declarations C f of the class C. Lastly, the expression e is
either well-typed or e = this. The latter case is used when the expression is defined
in a gate class to access the field of the gate itself. Since a gate type is not visible from
itself, the variable this is not well-typed. So we make this exception.

C = Γ (this) Γ ` e : C0 ∨ (e = this ∧ C0 = C)
fields(C0) = (C f) C0 ` Ci viz C

Γ ` e.fi : Ci
(T-FIELD)

An update expression, e.fi := e′, is well-typed if the type of e′ is a scope-safe
subtype of the type of fi. The conditions make sure that if the field fi has a reusable
type, then e and the object referenced in fi may only be allocated in the current scope .

Γ ` e.fi : Ci Γ ` e′ : C′ Γ (this) ` C′ � Ci
Γ ` e.fi := e′ : C′

(T-UPD)

An invocation expression, e.m(e), is well-typed under the condition that the return
type of the method call must be visible from the current context C = Γ (this). This
ensures that the call always returns objects with a lifetime at least as long as the current
context. Also, the type of each argument must be a scope-safe subtype of the corre-
sponding parameter type, which must be visible from the current context. These con-
ditions make sure that if the parameter has a reusable type, then the argument and the
receiver object must be allocated in the current scope. Finally, a method called on a gate
object may not be inherited from its super class. This prevents widening this when it
refers to a gate object. This restriction can be relaxed if we can make sure that inherited
methods only use this for field selection and for method calls that do not themselves
breach this restriction. Note that the function mtype(m, C) returns the parameters types
C and the result type Cr of the method m called on an object of type C.

ScopeJ 21

C = Γ (this) Γ ` e : C0 ∨ (e = this ∧ C0 = C)
mtype(m, C0) = C→ Cr (∀S, C0 = S ⇒ m defined in C0)

Γ `C e : C′ C ` C′ � C C0 ` C viz C C0 ` Cr viz C
Γ ` e.m(e) : Cr

(T-INVK)

Taken together, the ScopeJ type rules enforce visibility constraints on types and,
restrictions on how fields and methods can be used. Gate objects can only be accessed
in their defining context. Scoped objects can be accessed in their defining context and
from all nested classes. Reusable objects can only be accessed in the context where they
are instantiated. These visibility constraints are sufficient to prevent object references
from leaking to regions with potentially longer lifetimes. One of the surprising features
of the type system is that a gate object is visible in its defining context but not to classes
nested within it. Since a gate is only visible from its parent scope, a thread is forced to
enter scopes one at a time, working its way down the scope nesting hierarchy, and so
avoiding RTSJ’s ScopeCycleExceptions.

Borrowed Parameters We include borrowed (scope-local) parameters in method dec-
larations. A parameter declared local C x states that the variable x is a borrowed refer-
ence that may only be used for field selection, method call, and as a method argument to
other formal borrowed parameters. A borrowed reference may not be assigned to a field
[24]. Borrowed parameters can reference objects with shorter or unrelated lifetimes
since they are only temporarily accessed in the current context. A gate type cannot be
borrowed since calling a method of a gate object means entering the scope represented
by the object and temporary access to a gate object by objects of unrelated lifetime is
not safe. To see the reason, consider the following example of two gate classes G and
G.G1.

class G extends ScopeGate {
void main() {

G.G1 g1 = new G.G1();
G.G1 g2 = new G.G1();
g1.enter(g2);

}
}
class G.G1 extends ScopeGate {

void enter(local G.G1 g) {
local Object obj = g.get();
// obj becomes dangling pointer at this point

}
Object get() {

return new Object();
}

}

The G.G1.enter() method takes a borrowed parameter g of the type G.G1 and
uses the call g.get() to obtain a value obj. The method G.main() creates two
scopes represented by g1 and g2, and passes scope g2 to the scope g1. The scope g2

22 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

is deallocated immediately after the call g.get() returns. Since the object referenced
by obj is allocated in the scope g2, it becomes a dangling pointer in g1.

We modify the syntax for method declaration and add a meta variable T to represent
types that may be scope local.

M ::= C m (T x) { return e; }
T ::= C | local K

Borrowed types are visible everywhere: local C viz D. We need to supplement the
scope-safe subtyping relation with the following rules:

C <: D
C0 ` C � local D

C <: D
C0 ` local C � local D

and also need to ensure that a borrowed expression may not be cast to other types, a
field of a borrowed object may not be updated, and that fields read from a borrowed
object are themselves borrowed.

Γ ` e : local C0 fields(C0) = (C f) Ci is not a gate type
Γ ` e.fi : local Ci

(T-FIELD2)

Finally, the return type of a method called on a borrowed object is itself borrowed, and
the parameter types must be borrowed.

Γ ` e : local K mtype(m, K) = T→ K0 Γ ` e : T′

Γ (this) ` T′ � T T are scope local
Γ ` e.m(e) : local K0

(T-INVK2)

The above rules make sure that the references transitively reachable through a borrowed
reference must be borrowed. This is similar to the read-only references of Javari [39].
The difference is that while a method called on a read-only object should not mutate the
object’s state, a method called on a borrowed object should only accept arguments that
are treated as borrowed within the method (since borrowed arguments may have shorter
lifetimes than that of the receiver, and may not be stored).

4.3 Properties

The correctness property that we are after is that a well-typed ScopeJ program should
never try to access a field of an object that has been deallocated. The type system en-
forces a stronger property as it prevents the creation of dangling pointers altogether. In
order to prove this property, we introduce a notion of well-typed programs, and show
that the evaluation of a program preserves the typing and the safety invariants. We as-
sume that all classes in the class table are well-typed.

ScopeJ 23

Stack invariant Intuitively, we want to maintain the safety invariant that for each call
stack κ of a thread in P , the objects referenced in the expression of each frame of κ must
be allocated in a scope in the scope stack γ of κ, where the scope stack γ is defined as
below.

ScopeStack(ε) = ε
ScopeStack(κ) = γ

ScopeStack(κ • `, e) = γ • `

Given a store σ and a scope stack γ, a judgment of the form σ, γ ` e as defined by
the rules below says that the objects accessed in the expression e are allocated in scope
in γ.

σ, γ ` null σ, γ ` new C()
σ(`) = C`′

(v) `′ ∈ γ

σ, γ ` `

σ, γ ` e

σ, γ ` (C) e

σ, γ ` e

σ, γ ` e.fi

σ, γ ` e σ, γ ` e′

σ, γ ` e.fi := e′
σ, γ ` e ∀i, σ, γ ` ei

σ, γ ` e.m(e)

Moreover, the scope stack γ of each call stack must be well-formed so that a thread
can only enter a scope that it has entered before or enter a new scope which is a child
of the current scope. This invariant is defined as below.

` is the immortal scope
σ ` ε • `

σ ` γ ` ∈ γ ∨ (γ = γ′ • `′ ∧ σ(`) = C`′
(v))

σ ` γ • `

Note that we assume the existence of an unique object that represents the immortal
scope. This particular scope must be at the bottom, the oldest, of each scope stack. The
immortal scope only serves the purpose of allocating objects of types in the immortal
scope top.

Also note that if we do not allow borrowed parameters, then we can have a stronger
safety invariant for call stacks. That is, for each stack frame `, e of a call stack κ, we
can show in addition that for any object `0 referenced in e, `0 is allocated in the scope
represented by ` or its outer scope. With borrowed parameters, this may not be true
since an object in e could be reduced from a borrowed parameter and be allocated in a
scope of a frame below the frame `, e in κ.

Store invariant Also, we want to maintain the safety invariant of the store that the
fields of each non-gate object ` can only refer to objects allocated in the allocation
scope of ` or its outer scopes; the fields of each gate object ` can only refer to objects
allocated in the scope represented by ` or its outer scopes.

We first define some helper functions to retrieve the type and the allocation scope
of an object.

σ(`) = C`′
(v)

typeσ(`) = C

σ(`) = C`′
(v)

scopeσ(`) = `′

We also define a binary operator �σ as below to order the scopes represented by
gate objects so that if ` �σ `′, then either ` = `′ or ` represents a scope enclosed by the
scope represented by `′.

` �σ `
scopeσ(`) = `′

` �σ `′
` �σ `′ `′ �σ `′′

` �σ `′′

24 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

We also define a function locateσ,`(C) to retrieve the scope where an object of type
C should be allocated, provided that the store is σ and the scope of the current allocation
context is represented by `.

locateσ,`(c) = `
typeσ(`) = S

locateσ,`(S.s) = `

` �σ `′ typeσ(`′) = S

locateσ,`(S.c) = `′

locateσ,`(local C) = locateσ,`(C)

In other words, an object of reusable type or gate type is always allocated in the current
scope. Also, an object of scoped type C is allocated in a scope that equals to or encloses
the current scope ` so that the static scope of C must be the same as the static scope of
the type of `. Note that the function is not defined if its conditions are not met.

Well-typed store: The definition of well-typed store also enforces the store invariant
discussed earlier. We assume that a store always contains a location ` corresponding to
the unique instance of immortal scope and it has the type top. The sole purpose of the
immortal scope is to allocate objects with types in the scope top.

A store is well-typed if each of its object is well-typed (written as σ ` `).

∀` ∈ dom(σ). σ ` `

` σ

The immortal scope is always well-typed and we suppose that it has the type top
and it is allocated in itself.

σ(`) = top`() ` is the immortal scope
σ ` `

An object ` is well-typed in σ if each of its field vi is either null or points to an
object defined in σ so that its type is a subtype of the field type Ci.

Also, if vi is allocated in `i and inscopeσ(`) = `′0, then locateσ,`′
0
(Ci) = `i. This

constraint enforces the store invariant mentioned earlier. Note that if ` is a gate object
then `′0 = `, else ` is allocated in `′0. This constraint is stronger than the store invariant
since we need it along with the other constraints discussed below to prove that subject
reduction preserves store and stack invariants of a program.

If ` has type C and is allocated in `0, then locateσ,`0(C) = `0. This requirement
ensures that if C is a gate type then its instance is always allocated in an instance of its
parent scope; if C is a scoped type in the scope S, then its instance is always allocated
in an instance of the scope S.

σ(`) = C`0(v) fields(C) = (C f) locateσ,`0(C) = `0 inscopeσ(`) = `′0

∀i, vi = null ∨ σ(vi) = C′i
`i(vi), C′i <: Ci, locateσ,`′

0
(Ci) = `i

σ ` `

ScopeJ 25

Well-typed program A program σ, P is well-typed if σ is well-typed, the call stack κ
of each thread in P is well-typed (written as σ ` κ), and if the reference count of ` in P
is zero, then no object in σ is allocated in the scope represented by `. The last constraint
makes sure that if a scope is not used by any thread of P , then the objects allocated in
it are removed from the store.

` σ P = κ1 | . . . | κn

σ ` κ1 . . . σ ` κn

∀`. refcount(`, P) = 0 ⇒ 6 ∃`′ such that scopeσ(`′) = `

σ ` P

If a call stack κ is well-typed, then the expression in each frame of κ must be
well-typed, the scope stack γ of κ is well-formed (as specified by σ ` γ), and objects
referenced in the expression are allocated in scope in γ (as specified by σ, γ ` e). This
enforces the stack invariants mentioned earlier.

σ, ` ` e : C γ = ε • ` σ ` γ σ, γ ` e

σ ` ε • `, e

σ ` κ κ = κ′ • `, E[e]
(σ, ` ` e : C) ∨ (σ, ` ` e : local C) σ, `′ ` e′ : C′ C′ <: C

γ = ScopeStack(κ • `′, e′) σ ` γ σ, γ ` e

σ, ` `scope e : `0 σ, `′ `scope e′ : `0

σ ` κ • `′, e′

The typing of an expression on stack is given by the judgment σ, ` ` e : T, which
holds if the expression e has type T given a store σ and a gate object ` representing
the current scope. The typing rules for expressions during evaluation steps are shown
in Figure 18 (in the Appendix) and they are similar to those for expressions in class
declarations.

Note that for a call stack with at least two frames, it must have the form of κ • `′, e′,
where κ = κ′ • `, E[e]. The expression e is a method call evaluated to e′. The type of
expression e′ is not scope local and it is the subtype of the type of e. This is used to
prove that when the call returns, substituting e with the call result preserves the typing
of E[e]. Also, the last condition contains judgment of the form σ, ` `scope e : `0 as
defined in Figure 17. The judgment is used to derive the allocation scope for the value
that can be evaluated from the expression e, where σ is the store and ` represents the
scope of the current context. Intuitively, since e′ is reduced from e, if e should be
reduced to an object allocated in `0, then so is e′. Again this constraint helps us to
prove that subject reduction preserves the store and stack invariants and the typing of
expressions.

Well-typed program does not get stuck We now show that a well-typed program can
make progress until it either raises an exception due to an illegal cast or null pointer
dereference, or all threads in the program have evaluated to irreducible values.

26 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

σ, ` `scope null : `′ (S-Null)

σ, ` `scope new C() : ` (S-New)

scopeσ(`′) = `0

σ, ` `scope `′ : `0
(S-Var)

σ, ` `scope e : `′ locateσ,`(C) = `′

σ, ` `scope (C) e : `′ (S-Cast)

σ, ` ` e.fi : T e 6= ` σ, ` `scope e : `0 locateσ,`0(T) = `′

σ, ` `scope e.fi : `′ (S-Field)

σ, ` ` `.fi : C locateσ,`(C) = `′

σ, ` `scope `.fi : `′ (S-Field2)

σ, ` `scope e.fi : `′ σ, ` `scope e′ : `′

σ, ` `scope e.fi := e′ : `′ (S-Upd)

σ, ` ` e.m(e) : T e 6= ` σ, ` `scope e : `0 locateσ,`0(T) = `′

σ, ` `scope e.m(e) : `′ (S-Invk)

σ, ` ` `.m(e) : C locateσ,`(C) = `′

σ, ` `scope `.m(e) : `′ (S-Invk2)

Fig. 17. Allocation scope for expressions

The only possible scenario for a program to get stuck is after deallocating objects
allocated in a scope (Rule (G-Ret)), there are dangling pointers in the stack or in the
store. In this case, dangling pointers are locations used in the stack or in the fields of
an object but the store maps these locations to dummy values. To show that there are
no dangling pointers after deallocation, we only need to prove that the store and the
call stacks of the program are well-typed. Therefore, a well-typed program can make
progress if it has no exceptions and its threads are not all irreducible values

Lemma 1 says that the evaluation of an expression e on top of a stack κ • `, e in one
step preserves typing.

Lemma 1. If ` σ, σ, ` ` e : T, σ, `, e → σ′, `′, e′, then σ′, `′ ` e′ : T′, typeσ(`) `
T′ � T, and if e = v.m(v), then T′ = C′.

Lemma 2 shows that if an expression e is well-typed, then we can find a scope to
allocate the object reduced from e. Moreover, if the type of e is not scope local, then the
allocation scope of e can be found by searching the scope hierarchy outwards starting
from the scope instance represented by `, which is the scope of the current context.

Lemma 2. If ` σ, σ, ` ` e : T, then ∃`′ such that σ, ` `scope e : `′, and if T = C, then
locateσ,`(C) = `′.

Lemma 3 proves that the evaluation step of a well-typed expression preserves the
typing of the store. Intuitively, we need to show that a new expression creates an object

ScopeJ 27

allocated in a scope suitable for the type of the object; and an update expression only
puts an object ` in the field of another object `′ if the allocation scope of ` matches the
allocation scope that `′ expects for a value in the field.

Lemma 3. If ` σ, σ, ` ` e : T, σ, ` `scope e : `′, and σ, `, e → σ′, `, e′, then ` σ′.

Lemma 4 shows that if a scope stack γ is well-formed and the objects referenced in
an expression e are all allocated in scopes of γ, then the allocation scope of e is in γ as
well. This lemma is used to prove that evaluation steps preserve the stack invariant.

Lemma 4. If σ ` γ, σ, γ ` e, γ = γ′ • `, and σ, ` `scope e : `′, then `′ ∈ γ.

Lemma 5 shows that evaluation steps preserve the allocation scope of well-typed
expressions. This lemma is also used to prove that evaluation steps preserve the stack
invariant. That is, since well-typed expressions should be allocated in scopes in the
scope stack and evaluation of these expressions does not change the allocation scopes,
when these expressions are reduced to object values, their allocation scopes are also in
the scope stack. Consequently, the stack invariant holds during evaluation steps.

Lemma 5. If ` σ, σ, ` ` e : T, σ, ` `scope e : `a, and σ, `, e → σ′, `′, e′, then
σ′, `′ `scope e′ : `a.

The subject reduction lemma shows program execution preserves typing, the invari-
ants of store and stacks in the program, which means that releasing memory of a scope
will not create dangling pointers in the program.

Lemma 6 (Subject Reduction). If σ ` P and σ, P ; σ′, P ′, then σ′ ` P ′.

An expression has cast exception if it contains an expression of the form (C′) `
where ` has type C but C is not a subtype of C′. An expression has null pointer exception
if it contains an expression of the forms null.m(v), null.f, or null.f := v. The lemma
below proves that a well-typed expression without cast or null-pointer exceptions can
be evaluated.

Lemma 7. If ` σ, σ, ` ` e : T, and e is not a value and it does not have null pointer or
cast exception, then ∃`′ and e′, such that σ, `, e → σ′, `′, e′.

A thread is alive if it is not in the form of ε • `, v and it does not contain a null
pointer or cast exception. The lemma below proves that a well-typed program can make
progress.

Lemma 8 (Progress). If σ ` P and P has at least one live thread, then ∃σ′, P ′ such
that σ, P ; σ′, P ′.

Let σ, P ⇑ represents that the execution of the program σ, P diverges and let ;∗

be the transitive closure of the one-step reduction ; .

Theorem 1. If σ ` P , then σ, P ⇑ or σ, P ;∗ σ′, P ′, where either each thread in P ′

is in the form of ε • `, v or P ′ contains null pointer or cast exceptions.

This theorem states that if a program is well-typed, then its execution either di-
verges, reduces to a value, or throws exceptions. The proof of the theorem is by induc-
tion using the lemmas of subject reduction and progress.

28 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

5 Related Work

Region-based memory management was introduced by Tofte and Talpin [38] and origi-
nally implemented for the ML programming language. Region systems organize mem-
ory in a stack of regions and use a combination of polymorphism and effects to in-
dicate the allocation context of expressions and the regions they may affect. In the
ML family of region-based systems, regions are single threaded and lexically scoped.
Furthermore regions are not values, they cannot be stored or shared. Straightforward
extensions to Java have been investigated in [12, 41], however language features such
as multi-threading do not easily fit in the lexically scoped region model. Our scope cal-
culus could be viewed as making regions first class entities and allowing them to be
entered multiple times (by different threads). Each scope can be considered as a wrap-
per around a letregion ρ expression such that ρ is only in scope for definition nested
within the scope. Each class can then be parameterized by a set of region parameters,
one per enclosing scope. Method effects can be approximated by the set of scopes visi-
ble to the defining class.

Hallenberg et al. investigated the integration of garbage collection and regions [23],
but their goal was different from ours as they wanted to garbage collect regions. Region-
based memory can also be managed by reference counting regions to prevent unsafe
region deletion [19]. Cyclone is a type-safe C-like language with support for lexically
scoped regions [21]. The compiler does not support multi-threading, but plans for a
concurrent extension have appeared [20]. In the extension, regions are still lexically
scoped, and region sharing is a side-effect of spawning a thread while in a region. In
ScopeJ, a thread can join a scope at anytime by invoking one of its methods. Hicks et
al. report on an extension with unique pointers and a form of borrowing [36]: the unique
pointers can be used to relax regions’ LIFO lifetimes.

Research on ownership types dates back to a paper by Noble, Vitek and Potter [28]
and was motivated by the desire to impose a structure on the “sea of objects” found
in large systems. The term ownership types and the formalization of the underlying
ideas is due to Clarke [13]. Since then many papers have extended the basic idea [6,
1]. Generic Universe Types [18] also use type parameters to express ownership to re-
quire the modification of an object to be initiated by its owner. Borrowed references go
back at least as far as Hogg’s Islands [24] and have been studied by Boyland [10]. They
can also be viewed as a generalization of the concept of anonymity found in Confined
Types [43]. Boyapati et al. have proposed an ownership type system for the RTSJ [9],
and Chin et al. later proposed region inference for a similar language [11]. This pro-
posal is comprehensive as it expresses all the varieties of RTSJ regions and real-time
threads, however it relies on explicit ownership type parameterization where every type
is parameterized by one or more region parameters. This has the drawback that existing
Java code cannot be incorporated (Object would require an ownership parameter), that
primitive types such as object arrays cannot be used, and that region handles must be
passed around explicitly in order to determine where objects are to be allocated. ScopeJ
requires no ownership parameters, region handles are implicit, and our implicit own-
ership polymorphism supports reusable classes and arrays and other primitive types.
ScopeJ also supports borrowed references which we have found omnipresent in the
RTSJ programs we have experience with. Relationships to some of our earlier work

ScopeJ 29

were discussed in Section 3.8.

6 Conclusions

In this paper, we have presented ScopeJ, a simple multi-threaded object calculus with
region-based memory management, supported by a novel type system that ensures
safety of object deallocation. The goal of ScopeJ is to offer an alternative to the mem-
ory model of the Real-time Specification for Java, and in particular, to be a candidate
for the upcoming Safety Critical Java standard. ScopeJ includes novel constructs such
as classes that can be reused across memory regions, safe down-casts, and borrowed
references.

The key technical insight underlying ScopeJ is a clear treatment of implicit owner-
ship polymorphism which allows classes to be used polymorphically in different owner-
ship contexts, but without any explicit ownership parameter declaration or instantiation.
ScopeJ’s type system is the first to describe implicit ownership polymorphism, and the
first to be proved safe and sound.

We have implemented several variants of the ScopeJ type system with a combination
of an extensible, or pluggable, type checker and aspect-oriented techniques. This has let
us write, and refactor, over 20K lines of code and gain confidence in the applicability of
the approach. We see the combination of pluggable types and implicit ownership as an
elegant and non-intrusive way to introduce new aliasing control policies. In future work,
we expect to look into making it easier for end-users to define their own ownership type
disciplines.

References

1. Jonathan Aldrich and Craig Chambers. Ownership domains: Separating aliasing policy from
mechanism. In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Oslo, Norway, 2004. Springer-Verlag.

2. Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian Zhao.
Scoped Types and Aspects for Real-Time Java. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages 124–147, Nantes, France, July 2006.

3. Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian Zhao.
Scoped types and aspects for real-time Java memory management. Realtime Systems Jour-
nal, 37(1):1–44, October 2007.

4. Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for imple-
menting pluggable type systems. In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), pages 57–74, 2006.

5. Joshua Auerbach, Jesper Spring, David Bacon, Rachid Guerraoui, and Jan Vitek. A unified
restricted thread programming model for java. In Proceedings of the ACM Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES), June 2008.

6. Anindya Banerjee and David A. Naumann. Representation independence, confinement and
access control. In Conference Record of the ACM Symposium on Principles of Programming
Languages (POPL), pages 166–177, 2002.

7. Boris Bokowski and Jan Vitek. Confined Types. In Proceedings 14th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), Denver, Colorado, USA, November 1999.

8. Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve Furr, and Mark Turn-
bull. The Real-Time Specification for Java. Addison-Wesley, June 2000.

30 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

9. Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and Martin Rinard. Owner-
ship types for safe region-based memory management in real-time Java. In Proceedings of
the ACM Conference on Programming Language Design and Implementation (PLDI), San
Diego, CA, June 2003.

10. John Boyland, James Noble, and William Retert. Capabilities for Sharing: A Generaliza-
tion of Uniqueness and Read-Only. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), June 2001.

11. Wei-Ngan Chin, Florin Craciun, Shengchao Qin, and Martin Rinard. Region inference for
an object-oriented language. In Proceedings of the ACM Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 243–254, May 2004.

12. Morten V. Christiansen, Fritz Henglein, Henning Niss, and Per Velschow. Safe region-based
memory management for objects. Technical report, DIKU, University of Copenhagen, Oc-
tober 1998.

13. Dave Clarke. Object ownership and containment. PhD thesis, School of Computer Science
and Engineering, University of New South Wales, Australia, 2002.

14. Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA), 2002.

15. Dave Clarke, Michael Richmond, and James Noble. Saving the world from bad beans:
Deployment-time confinement checking. In Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA), October 2003.

16. David Clarke, James Noble, and John Potter. Simple ownership types for object confinement.
In Proceedings of European Conference for Object-Oriented Programming. Springer-Verlag,
2001.

17. David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias pro-
tection. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 48–64, October 1998.

18. W. Dietl, S. Drossopoulou, and P. Müller. Generic Universe Types. In Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), June 2007.

19. David Gay and Alex Aiken. Language support for regions. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation (PLDI), Snowbird, Utah,
June 2001.

20. Dan Grossman. Type-safe multithreading in Cyclone. In ACM Workshop on Types in Lan-
guage Design and Implementation, January 2003.

21. Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Ch-
eney. Region-based memory management in cyclone. In Proceedings of the ACM Con-
ference on Programming Language Design and Implementation (PLDI), pages 282–293,
Berlin, Germany, June 2002.

22. Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulating objects with confined types.
Transactions on Programming Languages and Systems, 29(6):32–73, 2007.

23. Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and garbage
collection. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (PLDI). ACM Press, June 2002. Berlin, Germany.

24. John Hogg. Islands: Aliasing protection in object-oriented languages. In Proceedings of the
ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA), pages 271–285, November 1991.

25. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, May 2001.

26. JSR 302. Safety critical Java technology, 2007.
27. Yi Lu and John Potter. Flexible ownership types with owner variance. In Proceedings of the

European Conference on Object-Oriented Programming (ECOOP), 2006.
28. James Noble, John Potter, and Jan Vitek. Flexible alias protection. In Proceedings of the

12th European Conference on Object-Oriented Programming (ECOOP), Brussels, Belgium,
July 1998.

ScopeJ 31

29. Krzysztof Palacz and Jan Vitek. Java subtype tests in real-time. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), pages 378–404, Darmstadt,
Germany, July 2003.

30. Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java scoped memory: design
patterns and semantics. In Proceedings of the IEEE International Symposium on Object-
oriented Real-Time Distributed Computing (ISORC), Vienna, Austria, May 2004.

31. Filip Pizlo and Jan Vitek. An empirical evalutation of memory management alternatives for
Real-time Java. In Proceedings of the 27th IEEE Real-Time Systems Symposium (RTSS),
December 2006.

32. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Defaulting Generic Java
to Ownership. In Proceedings of the Workshop on Formal Techniques for Java-like Pro-
grams in European Conference on Object-Oriented Programming, Oslo, Norway, June 2004.
Springer-Verlag.

33. Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic ownership for generic
Java. In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), pages 311–324, 2006.

34. Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. StreamFlex: High-
throughput stream programming in Java. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA), Octo-
ber 2007.

35. Jesper Honig Spring, Filip Pizlo, Rachid Guerraoui, and Jan Vitek. Reflexes: Abstractions
for highly responsive systems. In Proceedings of the 2nd International Conference on Virtual
Execution Environments (VEE), 2007.

36. Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe manual
memory management in Cyclone. Science of Computer Programming, 62:122–144, October
2006. Special issue on memory management.

37. Mads Tofte and Jean-Pierre Talpin. Data region inference for polymorphic functional lan-
guages. In Conference Record of the ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 188 – 201, 1994.

38. Mads Tofte and Jean-Pierre Talpin. Region-Based Memory Management. Information and
Computation, 132(2):109–176, 1997.

39. Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java. In
Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), pages 211–230, October 2005.

40. Tobias Wrigstad and Dave Clarke. Existential owners for ownership types. Journal of Object
Technology, May 2007.

41. Bennett Norton Yates. A type-and-effect system for encapsulating memory in Java. Technical
report, MSc.Thesis, University of Oregon, August 1999.

42. Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-time Java. In Proceedings
of the 25th IEEE International Real-Time Systems Symposium (RTSS), Lisbon, Portugal,
December 2004.

43. Tian Zhao, Jens Palsberg, and Jan Vitek. Type-based confinement. Journal of Functional
Programming, 16(1), January 2006.

32 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

Appendix

σ, ` ` null : T (RT-NULL)

σ(`0) = C`′(v) locateσ,`(C) = `′

σ, ` ` `0 : C
(RT-VAR)

σ(`0) = K`′(v) locateσ,`(K) 6= `′

σ, ` ` `0 : local K
(RT-VAR2)

C viz typeσ(`) σ, ` ` e : K (C = S.c ∧ K = S′.c′) ⇒ S = S′

((C = c ∧ K = S.c′) ∨ (K = c ∧ C = S.c′)) ⇒ typeσ(`) = S

σ, ` ` (C) e : C
(RT-CAST)

C viz typeσ(`) (C = S.c ⇒ typeσ(`) = S)

σ, ` ` new C() : C
(RT-NEW)

σ, ` ` e : C ∨ (e = ` ∧ C = typeσ(`)) fields(C) = (C f) C ` Ci viz typeσ(`)

σ, ` ` e.fi : Ci
(RT-FIELD)

(σ, ` ` e : K) ∨ (σ, ` ` e : local K) fields(K) = (C f) Ci is not a gate type
σ, ` ` e.fi : local Ci

(RT-FIELD2)

σ, ` ` e.fi : Ci σ, ` ` e′ : C′ typeσ(`) ` C′ � Ci

σ, ` ` e.fi := e′ : C′ (RT-UPD)

σ, ` ` e : C0 ∨ (e = ` ∧ C0 = typeσ(`)) mtype(m, C0) = T→ C

σ, ` ` e : T′ typeσ(`) ` T′ � T C0 ` T viz typeσ(`)

C0 ` C viz typeσ(`) if C0 is a gate type, then m is defined in C0

σ, ` ` e.m(e) : C
(RT-INVK)

(σ, ` ` e : K) ∨ (σ, ` ` e : local K) mtype(m, K) = T→ K0

σ, ` ` e : T′ typeσ(`) ` T′ � T T are scope local
σ, ` ` e.m(e) : local K0

(RT-INVK2)

Fig. 18. Runtime type rules. (Unbounded meta-variables are assumed to be universally qualified.)

Recall that in each frame `, e of a call stack, ` is always a gate instance and repre-
sents a scope. In the proof, we sometimes refer to ` as the scope that it represents.

PROOF OF LEMMA 1

Proof. We prove by case analysis based on the applicable reduction rules.

R-FIELD Let e = `0.fi, σ(`0) = C`′
0(v), fields(C) = (C f), and Σ `σ,` `0 : T0. Then,

e′ = vi.

ScopeJ 33

We need to show σ, ` ` vi : T′ such that T′ � T, where T = Ci or T = local Ci.
If vi = null, the proof is trivial since it can have any type.
Suppose vi = `i and σ(`i) = C′i

`′
i(v′). By assumption, we have ` σ, which im-

plies σ ` `0 and locateσ,`0(Ci) = `i. Suppose inscopeσ(`0) = `′′0 and σ(`i) =
Ci`′

i(v). Then locateσ,`′′
0
(Ci) = `′i.

Suppose σ, ` ` `i : T′. If locateσ,`(C′i) = `′i then by Rule (RT-Var) T′ = C′i, else
by Rule (RT-Var2) T′ = local C′i.
If T0 = local C0, then by Rule (RT-Field), Ci is not a gate type and T = local Ci.
From σ ` `0, we have C′i <: Ci. Therefore, typeσ(`) ` T′ � T.
If T0 = C0, then by Rule (RT-Field), T = Ci. We need to prove that locateσ,`(C′i) =
`′i so that T′ = C′i. We also need to show that typeσ(`) ` C′i � Ci.
From Rule (RT-Var), locateσ,`(C0) = `′0. Also from ` σ, we have σ ` `0, which
implies locateσ,`′′

0
(Ci) = `′i.

Suppose C0 is not a gate type. Then inscopeσ(`0) = `′0 = `′′0 . From locateσ,`′′
0
(Ci) =

`′i, we have locateσ,`′
0
(Ci) = `′i and typeσ(`′0) ` C′i � Ci. Also from Rule

(RT-Field), C0 ` Ci viz typeσ(`). Since `′0 is the allocation scope of `0, C0 =
c or typeσ(`′0) = scopeof (C0). From C0 ` Ci viz typeσ(`), if Ci = c and
scopeof (C0) = S, then S = typeσ(`). From typeσ(`′0) ` C′i � Ci, if Ci = c
and scopeof (C′i) = S, then S = typeσ(`′0). If C0 = c, then `′0 = `. Thus, in
all cases, if Ci = c and scopeof (C′i) = S, then S = typeσ(`). Consequently, we
have typeσ(`) ` C′i � Ci. From locateσ,`(C0) = `′0, locateσ,`′

0
(Ci) = `′i, and

C0 ` Ci viz typeσ(`), we can conclude that locateσ,`(Ci) = `′i. Therefore, in this
case, we have σ, ` ` `i : C′i, where typeσ(`) ` C′i � Ci.
Suppose C0 is a gate type and `0 6= `. Then inscopeσ(`0) = `0 = `′′0 . From
locateσ,`′′

0
(Ci) = `′i, we have locateσ,`0(Ci) = `′i and C0 ` C′i � Ci. Also

from Rule (RT-Field), C0 ` Ci viz typeσ(`). Thus, if Ci = c and C′i = S.c′, then
S = C0 = typeσ(`). Consequently, we have typeσ(`) ` C′i � Ci. Let S =
typeσ(`). Since C0 is a gate type, we have locateσ,`(C0) = ` = `′0 and C0 = S.s.
By class typing rules, visible(Ci, C0). Together with C0 ` Ci viz S, Ci can only have
the form of S′.c, where S′ = S or S′ contains S. Thus, from locateσ,`0(Ci) = `′i,
we have locateσ,`′

0
(Ci) = `′i. Since ` = `′0, locateσ,`(Ci) = `′i.

R-UPD Let e = `0.fi := v. By Rule (R-Upd), e′ = v and by Rule (RT-Upd), σ, ` `
v : T, Thus, T′ = T in this case.

R-NEW Let e = new C(). By Rule (R-New), e′ = `′ where σ′ = σ[`′ 7→ C`(null)].
Suppose typeσ(`) = S. Then by Rule (RT-New), C viz S and if C = S′.c, then
S′ = S. Thus, C has the forms of c, S.s, or S.c. Consequently, locateσ,`(C) = `.
By Rule (RT-Var), we have σ, ` ` `′ : C.

R-CAST Let e = (C) `0. By Rule (R-Cast), e′ = `0 and if σ(`0) = C0
`′
0(v), then

C0 <: C. By Rule (RT-Cast), Σ `σ,` `0 : K and if C′ = S.c′ and C = c, then
typeσ(`) = S. Thus, we have typeσ(`) ` C′ � C.

R-INVK Let e = `0.m(v). By (R-Invk), if σ(`0) = C0
`′
0(v), mbody(C0, m) = (x, e0),

then e′ = [v/x, `0/this]e0.
Suppose σ, ` ` e : T, T = local C or C, inscopeσ(`0) = `′. By Lemma 9, ∃C′ such
that σ, `′ ` e′ : C′ and typeσ(`′) ` C′ � C.
If T = local C, then we have typeσ(`) ` C′ � T.
If T = C, then by Rule (RT-Invk), T0 = C0 and C0 ` C viz typeσ(`). Thus, if

34 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

C = c and scopeof (C0) = S, then typeσ(`) = S. Also from typeσ(`′) ` C′ �
C, if C = c and scopeof (C′) = S′, then typeσ(`′) = S′. From σ, ` ` `0 :
C0, locateσ,`(C0) = `′0. Therefore, if C0 = c0, then ` = `′0 = `′; otherwise
typeσ(`′) = scopeof (C0) and if C = c, scopeof (C′) = S′, scopeof (C0) = S, then
typeσ(`) = scopeof (C0) = typeσ(`′) = scopeof (C′). Therefore, typeσ(`) `
C′ � C.

Lemma 9. If ` σ, e = `0.m(v), σ, ` ` e : T, T = local C or C, and σ, `, e →
σ, `′, e′, then ∃C′ such that σ, `′ ` e′ : C′ where typeσ(`′) ` C′ � C.

Proof. Suppose T = C. By Rule (RT-Invk), ∃C0, T, T′ such that mtype(C0, m) = T→ C,
σ, ` ` `0 : C0, ∀i, σ, ` ` vi : T′i, typeσ(`) ` T′i � Ti, C0 ` Ti viz typeσ(`).

Suppose mbody(C0, m) = (x, e). It can be shown from Rule (T-Meth) and class
typing rules that ∃C′0 such that C0 <: C′0 and x : T, this : C′0 ` e0 : C′.

Let inscopeσ(`0) = `′. ∀i, if Ti = local Ci and T′i = local C′i or C′i, then
σ, `′ ` vi : T′′i , where T′′i = C′i or C′i. Thus, typeσ(`′) ` T′′i � Ti.

If Ti = Ci, then T′i = C′i. From σ, ` ` `0 : C0, locateσ,`(C0) = `′0, where
scopeσ(`0) = `′0. From Rule (T-Meth), Ci viz C′0 and from class typing rules, we have
Ci viz C0. Together with typeσ(`) ` C′i � Ci and C0 ` Ci viz typeσ(`), we can
conclude that locateσ,`′(C′i) = locateσ,`(C′i). Thus, σ, `′ ` vi : C′i and typeσ(`′) `
C′i � Ci..

Suppose T = local C. Then σ, `, e → σ, `, e′ and σ, ` ` `0 : local C0. By Rule
(RT-Invk2), mtype(C0, m) = T→ C, ∀i, Ti = local Ci, σ, ` ` vi : T′i, T′i = local C′i
or C′i, and typeσ(`) ` T′i � Ti. It is clear that σ, `′ ` vi : T′′i , where T′′i = local C′i
or C′i. Thus, typeσ(`) ` T′′i � Ti.

Therefore, by Lemma 10, σ, `′ ` e′ : C′ and typeσ(`′) ` C′ � C.

Lemma 10. If ` σ, inscopeσ(`0) = `, typeσ(`0) = C0, C0 <: C′0, σ, ` ` v : T′, where
typeσ(`) ` T′ � T, and Γ ` e0 : T, where, Γ = x : T, this : C′0, then σ, ` ` e : T′,
where e = [v/x, `0/this]e0 and typeσ(`) ` T′ � T.

Proof. We prove by induction on the structure of e0.

– If e0 = xi ∈ x, then, e = vi. By assumption, σ, ` ` vi : T′i, where typeσ(`) `
T′i � Ti.
If e0 = this, then e = `0 and by Rule (T-Var), we have C′0 viz C′0, which means
that C′0 is not a gate type. From C′0 <: C0, C0 is not a gate type either. From
inscopeσ(`0) = `, we have locateσ,`0(C0) = `. By Rule (RT-Var), we have σ, ` `
e : C0. Since ` is the allocation scope of `0, it is clear that typeσ(`) ` C0 � C′0.

– If e0 = new C(), then e = e0. By assumption inscopeσ(`0) = `. Thus, C viz C0

implies C viz typeσ(`). Also, scopeof (C0) = scopeof (typeS(`)). Therefore, by
Rule (RT-New) σ, ` ` e : C.

– Suppose e0 = (C) e′0. Then e = (C) e′, where e′ = [v/x, `0/this]e′0. By hypothesis,
∃K such that Γ ` e0 : K where C′0 ` C � K or C0 ` K � C. By induction
hypothesis, ∃K′ such that σ, ` ` e′0 : K′ where typeσ(`) ` K′ � K.
Thus, if C′0 ` K � C, then typeσ(`) ` K′ � C. If C′0 ` C � K, then either K = S.c′

and C = S.c, or K = c′, C = S.c, and scopeof (C′0) = S, or C = c and K = c′.

ScopeJ 35

From typeσ(`) ` K′ � K, either K = S.c′ and K′ = S.c′′, or K = c′, K′ = S.c′′,
and typeσ(`) = S. Therefore, we have either C = S.c and K′ = S.c′′, or C = c,
K′ = S.c′′, and typeσ(`) = S. Hence by Rule (RT-Cast), we have σ, ` ` e′ : C.

– Suppose e0 = er.fi. Then e = e′r.fi, where e′r = [v/x, `0/this]er′.
There are three cases:
1. er = this and Γ (this) is a gate type.
In this case, er′ = `0 = ` and C0 = C′0. Thus by Rule (T-Field), C0 ` Ci viz C0.
Since typeσ(`) = C0, by Rule (RT-Select), we have σ, ` ` e′ : Ci.
2. Γ ` er : Cr, or er = this and Γ (this) is not a gate type.
Since a non-gate type is visible from itself, by Rules (T-Field) and (T-Var), Γ `
er : Cr. By induction hypothesis, ∃C′r such that σ, ` ` er′ : C′r and typeσ(`) `
C′r � Cr. By the definition of fields, the type of fi is still Ci. By Rule (T-Field),
Cr ` Ci viz C′0. Thus, if Ci is a reusable type, then either Cr is reusable or Cr and
C′0 have the same static scope. From typeσ(`) ` C′r � Cr, if Cr is a reusable type,
then either C′r is reusable or C′r and typeσ(`) have the same static scope. Also, if Cr
is not a reusable type, then Cr and C′r have the same static scope. Moreover, if C′0 has
a static scope, then it is the same as that of typeσ(`). Thus, if Ci is reusable, then
either C′r is reusable or C′r and typeσ(`) have the same static scope. This implies
C′r ` Ci viz typeσ(`). By Rule (RT-Field), we have σ, ` ` e′ : Ci.
3. Γ ` er : local Cr = Tr. By Rule (T-Field2), Γ ` e0 : local Ci. By induction
hypothesis, ∃T′r such that σ, ` ` e′r : T′r and typeσ(`) ` T′r � Tr. By definition
of fields, the type of the field fi is still Ci. Thus, σ, ` ` e : local Ci by Rule
(RT-Field).

– Suppose e0 = er.fi := e′. Then e = e′r.fi := e′′, where e′r = [v/x, `0/this]er′

and e′′ = [v/x, `0/this]e′. Also suppose Γ ` er.fi : Ci and Γ ` e′ : C′. Then
by induction hypothesis, σ, ` ` e′r.fi : Ci and σ, ` ` e′′ : C′′, where typeσ(`) `
C′′ � C′. By Rule (T-Upd), C′0 ` C′ � Ci. Thus, typeσ(`) ` C′′ � Ci. By Rule
(RT-Upd), σ, ` ` e : C′′.

– Suppose e0 = er.m(e). Then e = e′r.m(e′), where e′r = [v/x, `0/this]er′ and ∀i,
ei′ = [v/x, `0/this]ei. Also suppose Γ ` e0 : T, Γ ` er : Cr or Γ ` er : local Cr,
mtype(m, Cr) = T→ C, and Γ ` e : T′. Then, T = C or T = local C. By Rule
(T-Invk), C′0 ` T′ � T. By induction hypothesis, ∃T′′ such that σ, ` ` e′ : T′′ and
typeσ(`) ` T′′ � T′. Thus, we have typeσ(`) ` T′′ � T.
There are three cases.
1. er = this and Γ (this) is a gate type. In this case, e = `.m(e′) and Cr = C0 =
C′0 = typeσ(`). By Rule (T-Invk), we have Cr ` T viz C′0. Cr ` C viz C′0. This is the
same as Cr ` T viz typeσ(`). Cr ` C viz typeσ(`). Thus by Rule (RT-Invk), we
have σ, ` ` e : C.
2. Γ ` er : Cr, or er = this and Γ (this) is not a gate type.
We have Γ ` er : Cr in either case. By induction hypothesis, ∃C′r such that σ, ` `
er′ : C′r and typeσ(`) ` C′r � Cr. By Rule (T-Meth), mtype(m, C′r) = T→ C.
By Rule (T-Invk), we have Cr ` T viz C′0. Cr ` C viz C′0. Together with typeσ(`) `
C′r � Cr, we have C′r ` T viz typeσ(`). C′r ` C viz typeσ(`). Thus, by Rule (RT-
Invk), we have σ, ` ` e : C.
3. Γ ` er : local Cr. By induction hypothesis, ∃Tr such that σ, ` ` er′ : Tr and
typeσ(`) ` Tr � local Cr. By Rule (T-Invk2), T are scope local. Thus, by Rule

36 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

(RT-Invk2), we have σ, ` ` e : local C.

Lemma 11. If C viz C0 and typeσ(`) = C0, then ∃`′ such that locateσ,`(C) = `′.

Lemma 12. If ` σ, σ, ` ` e : T, σ, ` `scope e : `′, T = local C or T = C, and
typeσ(`′) = S, then either C = c, C = S.s, or C = S.c.

PROOF OF LEMMA 2

Proof. We prove by induction on the structure of e.

– e = null. σ, ` ` null : C for any C and σ, ` `scope null : `′ for any `′.
– e = `0. If σ(`0) = C`′

0(v), then σ, ` `scope `0 : `′0. If T = C, then by Rule (RT-Var),
locateσ,`(C) = `′0.

– e = new C(). By Rule (RT-New), C viz typeσ(`). By Lemma 11, ∃`′ such that
σ, ` `scope e : `′. Let S = typeσ(`). Since C viz S, C = c or C = S.s or C = S′.c
and S′ is S or encloses S. If C = c or S.s, then `′ = ` and locateσ,`(C) = `. If C =
S′.c, then by Rule (RT-New), S′ = S. Thus, we have `′ = ` and locateσ,`(C) = `
as well.

– e = (C) e. By induction hypothesis, ∃`′′ such that σ, ` `scope e : `′′. By Rule (RT-
Cast), we have C viz typeσ(`). By Lemma 11, ∃`′ such that locateσ,`(C) = `′.
Let σ, ` ` e : K. By induction, locateσ,`(K) = `′′. Also by Rule (RT-Cast),
(C = S.c ∧ K = S′.c′) ⇒ S = S′ and ((C = c ∧ K = S.c′) ∨ (K = c ∧ C =
S.c′)) ⇒ typeσ(`) = S. Thus, `′′ = `′ and σ, ` `scope (C) e : `′.

– e = e0.fi and e0 6= `.
By induction hypothesis, σ, ` `scope e0 : `0. Suppose σ, ` ` e0.fi : T and σ, ` `
e0 : T0. If T0 = local C0, then C0 is not a gate type and ∃C such that T = local C.
By class typing rules, C viz C0. Let typeσ(`0) = S. By Lemma 12, C0 = c or
C0 = S.s or C0 = S.c. If C0 is not a gate type, then we have C viz S).
If T0 = C0, then ∃C such that T = C. By Rule (RT-Select), we have C0 ` C viz typeσ(`).
If C0 = S.s, then typeσ(`) = S and C is not of the form c or S.s.c or S.s.s′. Thus,
we have C viz S.
Hence, by Lemma 11, ∃`′ such that locateσ,`0(T) = `′.
Moreover, if T = C, then ∃C0 such that T0 = C0 and C0 ` C viz typeσ(`). Together
with C viz C0, if C = S′.c, then S′ equals to or encloses the static scopes of C0 and
typeσ(`); if C = c or S′, then the static scopes of C0 and typeσ(`) are the same.
By induction hypothesis, ∃`0 such that σ, ` `scope e0 : `0 and locateσ,`(C0) = `0.
Since locateσ,`0(C) = `′, we have locateσ,`(C) = `′.

– e = `.fi. If σ, ` ` e : C, then by class typing rule, C viz typeσ(`). Thus, by
Lemma 11, ∃`′ such that locateσ,`(C) = `′. By Rule (S-Field2), σ, ` `scope e : `′.

– e = e0.fi := e′. By induction hypothesis, ∃`′, `′′ such that σ, ` `scope e0.fi : `′

and σ, ` `scope e′ : `′′. Let σ, ` ` e0 : C, σ, ` ` e′ : C′ and fields(C) = (C f).
By induction hypothesis, locateσ,`(Ci) = `′ and locateσ,`(C′) = `′′. Thus,
locateσ,`(C′′) = `′′. Since typeσ(`) ` C′ <: Ci, if Ci = S, then C′ = S, else
if Ci = S.c, then C′ = S.c′, else if Ci = c, then either C′ = c′ or C′ = S.c′,
where S = typeσ(`). Thus, `′ = `′′ by the definition of locateσ,`(C′) and
locateσ,`(Ci).

ScopeJ 37

– e = e0.m(e) and e0 6= `. Let typeσ(`) = S. By induction hypothesis, ∃`0 such
that σ, ` `scope e0 : `0. Let typeσ(`0) = S0.
Let σ, ` ` e0 : T0 and mtype(m, C0) = T→ C, where T0 = local C0 or C0.
If T0 = local C0, then C0 is not a gate type. Then C0 either is c or S0.c. By
method typing rule, we have C viz C0. Thus, C viz S0. By Lemma 11, ∃`′ such that
locateσ,`0(C) = `′.
If T = C0, then by Rule (RT-Invk), we have C0 ` C viz S. By method typing rule,
we have C viz C0. From σ, ` `scope e0 : `0 and induction hypothesis, we have
locateσ,`(C0) = `0. Thus, by Lemma 12, either C0 = c0, or C0 = S0.c0 where
S0 equals to or encloses the static scope of S, or C0 = S0.s0, where S0 = S. From
C0 ` C viz S, either C = c, where the static scope of C0 must be S, or C = S′.c,
where S′ equals to or encloses the static scope of S, or C = S.s, where C0 = S.c0.
If C0 = S0.s0, then C cannot have the forms of c or S0s0.c or S0s0.s since it would
violate C0 ` C viz S. Thus, from visible(C, C0), we have C viz S0. By Lemma 11,
∃`′ such that locateσ,`0(C) = `′.
Recall that locateσ,`(C0) = `0. From C′0 ` C viz S, if C = c or S.s, then S = S0

and if C = S′.c, then S′ equals to or encloses the static scope of S0, which equals
to or encloses the static scope of S. Thus, we can conclude that locateσ,`(C) = `′.

– e = `.m(e). If typeσ(`) = C0 and σ, ` ` e : C, then from Rule (RT-Invk2), C viz C0.
By Lemma 11, ∃`′ such that locateσ,`(C) = `′. By Rule (S-Invk2), σ, ` ` e : `′.

PROOF OF LEMMA 3

Proof. The only cases that σ′ 6= σ are when e = new C() or e = `0.fi := v. Let T = C
since in both cases, T may not be scope local.

Suppose e = new C(). Then from σ, ` `scope e : `′ and by Rule (S-New), `′ = `.
By Lemma 2, locateσ,`(C) = `. By Rule (R-New), σ, `, new C() → σ′, `, `0, where
σ′(`0) = C`(null). Since σ′ = σ[`0 7→ C`(null)] and ` σ, we have σ′ ` `0 and
consequently ` σ′.

Suppose e = `0.fi := v and `0 6= `. By Rule (R-Upd), σ, `, e → σ′, `, v, where
σ(`0) = C`′

0(v) and σ′ = σ[`0 7→ C`′
0(v↓iv)]. Suppose v = `i and σ(`i) = C′`

′
(v′). By

Rule (RT-Upd), we have C′ <: C.
From σ, ` ` e : C and Lemma 2, σ, ` `scope `i : `′ and σ, ` `scope `0.fi : `′. By

Rule (S-Var), σ, ` `scope `0 : `′0. By Rule (S-Field), locateσ,`′
0
(C) = `′.

If C0 is not a gate type, then inscopeσ(`0) = `′0, σ′ ` `0 and ` σ′.
If C0 is a gate type, then inscopeσ(`0) = `0 and we need to show that locateσ,`0(C) =

`′. From σ, ` `scope `0 : `′0 and Lemma 2, locateσ,`(C0) = `′0. Let S = typeσ(`).
Since C0 is a gate type, `′0 = ` and C0 has the form of S.s. From Rule (RT-Field),
C0 ` C viz S. Thus, C may only have the form of S′.c, where S′ = S or S′ encloses S.
Therefore, locateσ,`0(C) = locateσ,`′

0
(C) = `′. Consequently, σ′ ` `0 and ` σ′.

Suppose e = `.fi := v and v = `i. By Rule (S-Upd), σ, ` ` `.fi : `′ and σ, ` ` v :
`′. By Lemma 2, locateσ,`(C) = `′. Thus, σ′ ` `0 and ` σ′.

Lemma 13. If σ ` γ, ` ∈ γ, and ` �σ `′, then `′ ∈ γ.

38 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

Proof. We prove by induction. Consider the case of γ = ε • `0. Then by σ ` γ, `0 is
the immortal scope. Since ` ∈ γ, ` = `0. Since ` �σ `′, `′ = `0 as well. Thus, `′ ∈ γ.

Suppose that γ′ 6= ε and the lemma holds for γ′. Let γ = γ′ • `0 By assumption,
` ∈ γ. Either ` = `0 or ` ∈ γ′. If ` ∈ γ′, then the lemma holds by induction hypothesis.

Consider the case of ` = `0. By assumption, ` �σ `′. In case of ` = `′, the lemma
holds. The other case is ` 6= `′. Suppose σ(`) = C′`

′
0(v). Then `′0 �σ `′. By definition

of σ ` γ, either `0 ∈ γ′ or γ′ = γ′′ • `′0. If `0 ∈ γ′, then from ` = `0, the lemma holds
by induction. Otherwise, `′0 ∈ γ′ and `′0 �σ `′, the lemma also holds by induction
hypothesis.

PROOF OF LEMMA 4

Proof. We prove by induction on the structure of e.

– e = `0. By assumption, σ, γ ` e, we have `0 ∈ γ.
– e = new C(). By Rule (S-New), `′ = ` and `′ ∈ γ.
– e = (C) e′. By Rule (S-Cast), locateσ,`(C) = `′. Thus, ` �σ `′. By Lemma 13

and σ ` γ, `′ ∈ γ.
– e = e0.fi := e′. By Rule (S-Upd), σ, ` `scope e′ : `′. By induction hypothesis,

`′ ∈ γ.
– e = e0.fi and e0 6= `. By Rule (S-Field), ∃T such that σ, ` ` e : T, and ∃`0 such

that σ, ` `scope e0 : `0 and locateσ,`0(T) = `′. Again, `0 �σ `′ and by induction
hypothesis, `0 ∈ γ. By Lemma 13 and σ ` γ, `′ ∈ γ.

– e = `.fi. By Rule (S-Field2), ∃T such that σ, ` ` e : T, and locateσ,`(T) = `′,
which implies ` �σ `′. We know ` ∈ γ. By Lemma 13 and σ ` γ, `′ ∈ γ.

– e = e0.m(e) and e0 6= `. The proof is the same as the case when e = e0.fi and
e0 6= `.

– e = `.m(e). The proof is the same as the case when e = `.fi.

PROOF OF LEMMA 5

Proof. We prove by induction on the structure of e.

– e = new C().
By Rule (S-New), σ, ` `scope e : `. By Rule (R-New), σ, `, e → σ′, `, e′ and
e′ = `0, where σ′(`0) = C`(null). Thus, σ′, ` `scope e′ : ` by Rule (S-Var).

– e = (C) v.
By Rule (S-Cast), σ, ` `scope e : `a and σ, ` `scope v : `a.

– e = `′.fi and `′ 6= `.
By Rule (S-Field), σ, ` `scope e : `a, where σ, ` `scope `′ : `0, locateσ,`0(T) =
`a, σ, ` ` e : T.
By Rule (R-Field), σ, `, e → σ, `, e′ and e′ = vi, where σ(`′) = C0

`0(v). The case
is trivial if vi = null. Let vi = `i.
Suppose σ, ` ` `′ : T0. If T = local C, then T0 = local C0. In this case, C0

cannot be a gate type and hence, inscopeσ(`′) = `0. From ` σ, we have σ ` `′,

ScopeJ 39

which implies locateσ,`0(C) = `′i, where scopeσ(`i) = `′i. In this case, `′i =
locateσ,`0(T) = `a. Since σ, ` `scope e′ : `′i by Rule (S-Var), we have σ, ` `scope

e′ : `a.
Consider the case T = C. By Lemma 2, locateσ,`(C) = `a. By Lemma 1, σ, ` `
e′ : C′ such that typeσ(`) ` C′ � C. Again, by Lemma 2, if σ, ` `scope e′ : `′a,
then locateσ,`(C′) = `′a. From typeσ(`) ` C′ � C, if C = S, then C′ = S;
if C = S.c, then C′ = S.c′; if C = c, then either C′ = c′ or C′ = S.c′, where
typeσ(`) = S. It is clear that `a = `′a for all cases.

– e = `.fi.
In this case, if σ(`) = S`′

(v), then by Rule (R-Field), e′ = vi. Suppose vi = `i.
Suppose σ, ` ` e : C. By Lemma 2, σ, ` `scope e : `a and locateσ,`(C) = `a. From
` σ, locateσ,`(C) = `′i, where scopeσ(`i) = `′i. Thus, `′i = `a and σ, ` `scope

e′ : `a.
– e = `0.m(v) and `0 6= `. By Rule (R-Invk), σ, `, e → σ, `′, e′, where inscopeσ(`0) =

`′. If σ, ` ` e : T, then by Lemma 1, σ, `′ ` e′ : T′ and typeσ(`) ` T′ � T.
Suppose σ(`0) = C0

`′
0(v′). Then by Rule (S-Var), σ, ` `scope `0 : `′0 and by Rule

(S-Invk) locateσ,`′
0
(T) = `a.

Suppose σ, ` ` `0 : T0. By Rules (RT-Invk) and (RT-Inv2), either T = local C and
T0 = local C0, or T = C and T0 = C0.
Suppose C0 is not a gate type. Then, `′ = `′0. By Lemma 9, ∃C′ such that σ, `′ ` e′ :
C′, where typeσ(`′) ` C′ � C. Thus, by Lemma 2, ∃`′a such that σ, `′ `scope e′ :
`′a and locateσ,`′(C′) = `′a. From typeσ(`′) ` C′ � C, we have locateσ,`′(C) =
`′a. Since `′ = `′0, locateσ,`′

0
(T) = locateσ,`′

0
(C) = `a. We have `′a = `a and

σ, `′ `scope e′ : `a.
Suppose C0 is a gate type. Then T = C and T0 = C0 since a gate type cannot be
scope local. Then inscopeσ(`0) = `′ = `0. By Rule (RT-Var), locateσ,`(C0) = `′0.
Let typeσ(`) = S. Then C0 must have the form of S.s0. By Lemma 1, σ, `′ ` e′ : C′

where S ` C′ � C and C0 ` C viz S. Therefore, C cannot have the form of c since
this would imply scopeof (C0) = S. C cannot be a gate type either. Suppose C is
a gate type. By Lemma 2, locateσ,`(C) = `a, which means that C must have the
form of S.s. Also by Lemma 2, locateσ,`′(C′) = `′a. In this case, C′ must have the
form of S.s0.s′. But this would violate C′ <: C. Thus, the only possible case left
is that C = S′.c and C = S′.c′, where S′ = S or S′ encloses S. Recall that `′ = `0
in this case. From locateσ,`′(C′) = `′a, either `′ = `′a or `′0 �σ `′a. However, `′

cannot be equal to `′a since it would mean that S′ = S.s0. Thus, `′0 �σ `′a and this
implies locateσ,`′

0
(C′) = `′a. Since locateσ,`′

0
(C) = `a, we have `a = `′a.

– e = `.m(v)
By Rule (R-Invk), σ, `, e → σ, `, e′ and since ` is a gate object, it cannot have
scope-local type. Thus, by Rule (RT-Invk), ∃C such that σ, ` ` e : C. By Lemma 1,
∃C′ such that σ, ` ` e′ : C′ and typeσ(`) ` C′ � C. By Lemma 2, σ, ` `scope

e : `a, locateσ,`(C) = `a, σ, ` `scope e′ : `′a, and locateσ,`(C′) = `′a. From
typeσ(`) ` C′ � C, if C = c, then either C′ = c′, or C′ = S.c′ and typeσ(`) = S;
if C = S.s, then C′ = S.s. In both cases, `a = `a = `. If C = S′.c, then C′ = S′.c′

and S′ = S or S′ encloses S. Since C and C′ have the same static scope, we have
`a = `′a as well.

– e = `.fi := v.

40 Tian Zhao, Jason Baker, James Hunt, James Noble, and Jan Vitek

By Rule (R-Upd), σ, `, e → σ, `, e′ and e′ = v. By Rule (S-Upd), if σ, ` `scope

e : `a, then σ, ` `scope v : `a, which means that σ, ` `scope e′ : `a.

Lemma 14. If ` σ, σ, ` ` E[e] : T0, σ, ` ` e : T, σ, ` ` e′ : T′, and typeσ(`) ` T′ �
T, then σ, ` ` E[e′] : T′0, typeσ(`) ` T′0 � T0.

PROOF OF LEMMA 6

Proof. The proof is by case analysis of the reduction rule used.

G-STEP Let P = P ′′ | κ • `, E[e], e is not a method call, and σ, `, e → σ′, `, e′.
By Rule (G-STEP), P ′ = P ′′ | κ′, where κ′ = κ • `, E[e′]. By assumption, ` σ,
σ ` κ • `, E[e], We need to show σ′ ` P ′, which is to show ` σ′, σ′ ` κ′,
From Lemma 3, we have ` σ′. To show σ ` κ′, we need to show ∃T′, such
that σ′, ` ` E[e′] : T′, σ′, γ ` E[e′], and σ′, ` `scope e′ : `a, where γ =
ScopeStack(()κ′) and σ, ` `scope e : `a. From Lemma 1, ∃T′ such that σ′, ` `
e′ : T′ where typeσ(`) ` T′ � T and σ, ` ` e : T. By Lemma 2, ∃`′a such that
σ′, ` `scope e′ : `′a. By Lemma 5, `′a = `a. By Lemma 4, `a ∈ γ. Thus, if e′ = `′,
then σ′`′

(=)`a ∈ γ. Therefore, σ′, γ ` e′ holds. It is clear that σ′, γ ` E[e′]
holds since E remains the same. Also, if σ, ` `scope E[e] : `0, it is clear that
σ′, ` `scope E[e′] : `0. By Lemma 14, ∃C′0 such that σ′, ` ` E[e′] : C′0 and
C′0 <: C0, where σ, ` ` E[e] : C0.

G-ENTER If P = P ′′ | κ • `, E[e] and σ, `, e → σ, `′, e′, then by (G-ENTER),
P ′ = P ′′ | κ′, where κ′ = κ • `, E[e] • `′, e′, e = `0.m(v), inscopeσ(`0) = `′,
σ(`0) = C0

`′
0(v′), mbody(C0, m) = (x, e0), e′ = [v/x, `0/this]e0.

By Lemma 1, ∃C′ such that σ, `′ ` e′ : C′ and C′ <: T, where σ, ` ` e : T.
By Lemma 5, σ, `′ ` e′ : `a, where σ, ` ` e : `a. Also, from σ, γ ` e, where
γ = ScopeStack(κ•, `, E[e]), we have ∀i, σ, γ ` vi. It is clear that σ, γ′ ` e′

where γ′ = ScopeStack(κ′) since γ′ = γ • `′. We also need to show σ ` γ′.
From σ, γ ` e, we have σ, γ ` `0. Then `′0 ∈ γ. If `0 is not a gate object, then
`′ = `0. If `0 is a gate object, then `′ = `0 but from σ, ` ` `0 : C0, we have
locateσ,`(C0), which means that `′0 = `. Therefore, σ ` γ holds. Also, for all `,
if refcount(`, P ′) = 0, then refcount(`, P) = 0 and σ remains the same. Thus by
definition, we have σ ` κ′ and σ ` P ′.

G-RET Let P = P ′′ | κ • `, E[e] • `′, v. By Rule (G-RET), P ′ = P ′′ | κ′ where
κ′ = κ • `, E[v]; also, σ′ = σ if refcount(`′, P) 6= 0 and otherwise, σ′ is σ with
all objects allocated in `′ removed and the fields of `′ reset to null.
Let γ = ScopeStack(κ • `, E[e] • `′, v) and γ′ = ScopeStack(κ′). Then γ =
γ′ • `′. It is clear that σ ` γ′. Suppose refcount(`′, P) = 0. Then `′ 6∈ γ′. We need
to show σ′ ` γ′ and ` σ′.
From σ ` γ′, if `0 is allocated in `′, then `′ ∈ γ′. Since `′ 6∈ γ′, no object in γ′ can
be allocated in `′. Thus, each `0 ∈ γ′ is in the domain of σ′. Therefore, we have
σ′ ` γ′. Also, from σ ` κ • `, E[e] • `, E[v], we have σ, γ′ ` E[e]. Each object in
E[e] is allocated in one of the scopes in γ′. Since `′ 6∈ γ′, we have σ′, γ′ ` E[e].
Also, σ′, ` ` E[e] : T0 if σ, ` ` E[e] : T0. By induction on each frame in κ, we can
show σ′ ` κ • E[e] Similarly, for each call stack κ′′ in P , we have σ′ ` κ′′.

ScopeJ 41

To show ` σ′, we need to prove that ∀`r ∈ dom(σ′), if the field of a `r points
to another object `′r, then `′r ∈ dom(σ′). From σ ` P , if refcount(`a, P) =
0, then no object in σ is allocated in `a. Since no object in σ′ is allocated in `′

and refcount(`′, P ′) = 0, we conclude that refcount(`a, P ′) = 0 implies no
object in σ′ is allocated in `a. Conversely, if an object in σ′ is allocated in `k, then
refcount(`a, P ′) 6= 0.
Suppose `r is allocated in `r and it contains a field vi = `i. We will show that if
σ(`i) is allocated in `′, then it will lead to contradiction to the conditions of Rule
(R-Ret). Then, `i would be undefined in σ′. From ` σ, if inscopeσ(`r) = `′′r , then
locateσ,`′′

r
(C′) = `′, which means that `′′r �σ `′. Also, if `r is defined in σ′, then

refcount(`′r, P ′) 6= 0. Thus, ∃κ′′ such that P ′ = P ′′ | κ′′, γ′′ = ScopeStack(κ′′)
and `′r ∈ γ′′.
Suppose `r is not a gate object. Then from, `′′r �σ `′, `′r = `′′r �σ `′. Thus, from
σ′ ` γ′′, `′r ∈ γ′′, and Lemma 13, we have `′ ∈ γ′′. But this is a contradiction to
refcount(`′, P ′) = 0.
Suppose that `r is a gate object. Then `′′r = `r. If `i is not allocated in `r, then
`′r �σ `′ and we can reach the same contradiction to refcount(`′, P ′) = 0.
If `i is allocated in `r, then `′ = `r. However, by Rule (G-Ret), the fields of σ′(`′)
are all set to null so that `i should not exist, which is also a contradiction.
Therefore, no object in σ′ contains field objects allocated in `′. From ` σ, we have
` σ′

From σ′ ` κ • `, E[e], which implies C′ <: C, where σ′, ` ` e : T, T = local C
or T = C, and σ, `′ ` v : C′. If σ′, ` `scope e : `a, then from σ′ ` κ • `, E[e] • `′, v,
σ, `′ `scope v : `a, which means that v is either null or allocated in `a. Suppose
v is not null. If T = local C, then we have typeσ(`) ` C′ � T. Otherwise
T = C. Then locateσ′,`(C) = `a. Thus, if C = c and C′ = S.c, then `a = ` and
S = typeσ′(`). Therefore, typeσ′(`) ` C′ � T. Thus, by Lemma 14, ∃C′0 such
that σ′, ` ` E[v] : C′0 and C′0 <: C0, where σ′, ` ` E[e] : C0.
By Lemma 4 and the fact that γ′ = ScopeStack(κ • `, E[e]), if σ′, ` `scope e : `a,
then `a ∈ γ′. Also, from σ ` κ • `, E[e] • `′, v, σ, `′ `scope v : `a, which implies
σ′, ` `scope v : `a by Rules (S-Null) and (S-Var). Together with σ′, γ′ ` E[e],
we conclude that σ′, γ′ ` E[v]. Also, if σ′, ` `scope E[e] : `0, it is clear that
σ′, ` `scope E[v] : `0.
By assumption, for all `0, if refcount(`0, P) = 0, then no object in σ is allo-
cated in `0. By Rule (G-Ret), if refcount(`′, P ′) = 0, then no object in σ′ is
allocated in `′. For all `0 6= `′, refcount(`0, P) = refcount(`0, P ′). Thus, for all
`0, refcount(`0, P ′) = 0 implies no object in σ′ is allocated in `0. Therefore, we
can conclude that σ′ ` P ′.

