
A Transactional Object Calculus

Suresh Jagannathan Jan Vitek Adam Welc Antony Hosking

Department of Computer Science
Purdue University

West Lafayette, IN 47906
{suresh,jv,welc,hosking}@cs.purdue.edu

Abstract. A transaction defines a locus of computation that satisfies impor-
tant concurrency and failure properties. These so-called ACID properties provide
strong serialization guarantees that allow us to reason about concurrent and dis-
tributed programs in terms of higher-level units of computation (e.g., transac-
tions) rather than lower-level data structures (e.g., mutual-exclusion locks). This
paper presents a framework for specifying the semantics of a transactional facil-
ity integrated within a host programming language. The TFJ calculus, an object
calculus derived from Featherweight Java, supports nested and multi-threaded
transactions. We give a semantics to TFJ that is parameterized by the definition
of the transactional mechanism that permits the study of different transaction
models. We give two instantiations: one that defines transactions in terms of
a versioning-based optimistic concurrency model, and the other which specifies
transactions in terms of a pessimistic two-phase locking protocol, and present
soundness and serializability properties for our semantics.

1 Introduction

The integration of transactional facilities into programming languages has been driven
by applications ranging from middleware infrastructure for enterprise applications [1] to
runtime support for optimistic concurrency. The concept of transactions is well-known
in database systems; the main challenge in associating transactions with programming
control structures comes from the mismatch between the concurrency model of the pro-
gramming language and the concurrency model of the transactional facility. Issues related
to the interaction commit mechanisms found in transactional models with locking, visibil-
ity, and update semantics in programming languages can be subtle and complex. Existing
technologies enforce little or no relationship between these models, so that programmers
can neither rely on transactions for complete isolation among concurrent threads, nor
use concurrent threading to more conveniently program transaction logic. To make mat-
ters worse, different systems exhibit subtly (or vastly) different observable behavior with
respect to failure and isolation properties. While the differences are often mandated by
pragmatic concerns, they make it hard to reason about and compare different systems.
Furthermore correctness of an implementation often remains an article of faith.

As a first step towards addressing some of these concerns, we propose a semantic frame-
work in which different transactional mechanisms can be studied and compared formally.
Requirements for such a framework are that it be sufficiently expressive to allow the spec-
ification of core transactional features, that it provide a way to validate the correctness
of the semantics, and that it support features found in realistic programs. We are in-
terested in the impact of design choices on observable behavior (e.g., aborts, deadlocks,
livelocks) and on implementation performance (e.g., space and time overhead). Our long-
term goal is to leverage this framework to aid in the definition of program analyzes and
optimization techniques for transactional languages.

This paper introduces TFJ, or Transactional Featherweight Java, an object calculus with
syntactic support for transactions. The operational semantics of TFJ is given in terms
of a stratified set of rewrite rules parameterized over the meaning of the transactional
constructs. This allows us to define a variety of transactional semantics within the same
core language. In this paper, we study nested and multi-threaded transactions with two
different concurrency control models (two-phase locking and versioning). We have tried
to retain the flavor and economy of Featherweight Java [17], while adding features such
as concurrency and state needed to model transactions. The primary contribution of
this paper is a formal characterization and proof of correctness of different transactional
models when incorporated into the core language. While there has been significant pre-
vious work on devising formal notation and specifications [7, 20] describing transactional
properties, we are unaware of other efforts that use operational semantics to study the in-
terplay of concurrency and serializability among different transactional models. Instead,
we explore the structure of program traces induced by the semantics, and prove a sim-
pler permutation lemma on these traces that enforce a localized notion of serializability
derived from control and dependencies among transaction operations. The proof of se-
rializability over arbitrary traces follows naturally from the composition of permutable
sub-traces.

Correctness of the transactional semantics is given in terms of the traditional ACID
properties [15] described below. To prove correctness, we show that all local operations
performed by concurrent transactions can be serialized (i.e., from the perspective of
some transaction T all data accesses performed by T are performed serially with respect
to other transactions). The use of a stratified semantics allows us to avoid proving this
serialization theorem for different concurrency control models. Instead, we explore the
structure of program traces induced by the semantics, and prove a simpler permutation
lemma on these traces that enforce a localized notion of serializability derived from
control and dependencies among transaction operations.

Overview. Section 2 gives an informal introduction to atomic transaction and the ACID
properties. A taxonomy of the different concurrency control protocols with different
observable behavior and performance characteristics appears in Section 3. The Transac-
tional Featherweight Java calculus is introduced in Section 4. Section 5 and Section 6
give, respectively, versioning and strict two phase locking semantics to the calculus. The
soundness results are given in Section 7. Related work is discussed in Section 9 and
Section 10 concludes.

This paper is an extended version of the ESOP’03 paper title “ A Semantic Framework
for Designer Transactions”.

2 Atomic Transactions

Atomic transactions [15] are a control abstraction that arose in the database community
to delimit logical units of data processing. They permit concurrent data access among
transactions, with operations on shared data interleaved to the extent that they do not
violate the so-called “ACID” transaction semantics, ensuring:

1. Atomicity: A transaction is a sequence of operations that is performed atomically,
either in its entirety or else not at all. If it completes successfully, it commits. Oth-
erwise, it aborts and has no effects.

(a)

(d)

(b)

(c)

Fig. 1. Threads and transactions may be interleaved in various ways: (a) plain, (b) nested,
(c) multi-threaded, (d) multi-threaded and nested.

2. Isolation: A transaction should not make its effects visible to other transactions until
it commits. The effect is that concurrent transactions are serializable in that they
appear to occur one-at-a-time.

3. Consistency: A correct execution of a transaction takes shared data from one consis-
tent state (as defined by the application semantics) to another provided that trans-
actions execute atomically and in isolation.

4. Durability: Once it has committed, the effects of a transaction survive subsequent
system failures.

Transactions may be nested [22], with each top-level transaction divided into a number of
child transactions. Because transactions commit from the bottom up, child transactions
must always commit before their parent. A transaction abort at one level does not
necessarily affect a transaction in progress at a higher level. The updates of committed
transactions at intermediate levels are visible only within the scope of their immediate
predecessors. Effects performed by a parent transaction are always visible to the child.

Concurrency control ensures the consistency property, usually via protocols that guaran-
tee transaction serializability. Executions are consistent if they execute in a way that is
serializable. Concurrency protocols are classified as either pessimistic or optimistic. The
former detect violations of serializability property early but usually incur significant run-
time and space overheads, the latter are less expensive but detect serializability violations
as late as the commit time. Two-phase locking (2PL) [13] is a protocol that requires all
lock operations on behalf of a transaction to precede the first unlock operation in the
transaction, resulting in two computation phases: a growing phase as locks are acquired
and a shrinking phase as they are released. In strict 2PL a transaction does not release
any of its locks until after it commits or aborts. 2PL can be extended to handle nested
transactions as follows [22]: a transaction may acquire a lock if all owner are ancestors
of the transaction and when a transaction commits, all its locks are handed back to the
parent or released if the transaction is top-level. Optimistic protocols are based on a
simple idea. Every read or write is remembered in a private journal (or log) instead of
being directly applied to the global data. The transaction proceeds uninterrupted until
commit time, but before it is allowed to commit, the controller performs conflict detec-
tion. If the serializability property has been violated then the transaction aborts and all
the data in its private log is abandoned. There are various ways of performing conflict
detection, e.g. comparing initial (remembered at the first access) values of data used by a
transaction with values of the same data at commit time. Extending optimistic schemes
to incorporate nested transactions is reasonably straightforward and involves modifying

the commit procedure. Every transaction keeps a separate journal and at commit time
the updates performed by a nested transaction are propagated from its private journal
to the journal of its immediate parent. The updates are propagated to the global data
set only after a successful commit of the top-level transaction.

3 A Taxonomy of Protocols

For a given transactional model, such as the nested and multi-threaded one studied here,
there exist a range of concurrency control protocols with different observable behavior
and performance characteristics. While we do not purport to present an exhaustive list,
we list some known interesting points in the spectrum.

– Precise (pessimistic): Block a transaction T iff it will definitely have a conflict
with a transaction T’. This is in general undecidable without an oracle.

– Strict 2PL: Block a transaction T if a potential conflict is detected with a transaction
T’. Under strict 2PL locks on objects maybe acquired before objects are referenced
or modified with new values.

– 2PL: Similar to strict 2PL except that lock acquisition is less aggressive. Locks are
acquired only when necessary to ensure atomicity properties. Note that an apparent
conflict such as two writes to the same variable may not be a real conflict, e.g. both
writes affect the same value to the variable and no intervening read observes the
change.

– Byzantine: An optimistic scheme in which any transaction can be aborted at any
time, this even if the transaction will not have a conflict. All optimistic transactions
can lead to livelock.

– Fail-fast: Abort a transaction T as soon as a potential conflict has been detected
with some transaction T’. Thus, every read and write checks whether serialization
invariants on the target object have been violated, and aborts if so.

– Precise (optimistic): Abort a transaction T if, and only if, a conflict has been
detected with some transaction T’ when T is about to commit. This protocol delays
aborts, thus allowing the possibility that a transaction performing a write action
which would have led to an abort in a fail-fast scheme is allowed to commit because
subsequent actions mask the effect of the write.

The tradeoffs between these protocols range from programming model issues (which kinds
of failures should the programmer be exposed to, how quickly should failures be detected,
and how should deadlocks and livelocks be resolved) to implementation performance. For
example, using memory pages as the unit of granularity for detecting conflicts may be
efficient, but may lead to unpredictable or frequent aborts. From a programmer’s point of
view this is akin to byzantine failures in distributed systems. While a more detailed and
formal investigation of these alternatives remains as an open problem, we pick two points
in the design space –precise optimism (which we refer to as a versioning instantiation)
and strict 2PL (which we refer to as a locking instantiation) – and give their semantics
in the following sections.

4 The Transactional Featherweight Java Calculus

Transactional Featherweight Java (TFJ) is a new object calculus inspired by the work of
Igarashi et al. [17]. TFJ includes threads and the imperative constructs needed to model

transactions. We focus on a simplified variant of TFJ, that is dynamically typed and in
which all classes directly inherit the distinguished Object class1. To introduce the syntax
and semantics of TFJ, we start with a simple example.

Consider the classes given in Fig. 2. Class Updater encapsulates an update to an object.
Class Runner is designed to perform an action within a new thread. Class Transactor
performs two operations within a transaction. In more detail, class Updater has two
fields, n and v and an update method which assigns v to n’s val field. Runner has a
run method which starts a new thread and invokes a method on its r field within that
thread. Transactor has a pick method which is used to evaluate two expressions in a
non-deterministic order; non-determinism is achieved since the order in which arguments
are evaluated in a method call is unspecified. It also has a run method which starts a new
transaction and invokes update on field u and run() on field r. The keyword onacid
marks the beginning of a transaction and commit ends the current transaction. All
objects have an init method which assigns values to their fields and returns this.

Fig. 3 gives a TFJ code fragment making use of the above class definitions. Variable n
is bound to a new object of some class Number (whose only feature of interest is that it
must have a val field; we further assume the existence of classes One, Two, and Three
that define specific numbers). Noop is an initialized Runner object with an uninteresting
run method. Objects l1 and l2 are transactors which will be used to initiate nested
transaction (l2 within l1). Two runner objects will be used to create threads t1 and t2.
1 Even though types and inheritance are central features of object-oriented languages they are

orthogonal to issues studied in this paper. The interaction of concurrency and inheritance
is well-studied [2, 21], and no additional novel problems are posed by considering object
inheritance in the context of transactions.

class Updater {
n, v;
init(n, v) { this.n := n; this.v := v; this; }
update() { this.n.val:= this.v; }

}

class Runner {
r;
init(r) { this.r := r; this; }
run() { spawn this.r.run(); }

}

class Transactor {
u, r;
init(r, u) { this.u := u; this.r := r; this; }
run() {

onacid;
this.u.update(); this.r.run(); this.u.n.val;
commit;

}
}

Fig. 2. Example Class definitions.

n := new Number();
s1 := new Transactor.init(Noop, new Updater().init(n, new One()));
r1 := new Runner().init(s1);
s2 := new Transactor.init(r1, new Updater().init(n, new Two()));
new Runner().init(s2).run();
n.val := new Three()

Fig. 3. A TFJ code fragment using definition of Fig. 2.

Evaluating the program of Fig. 3 will result in the creation of two threads (t1 and t2)
and two new transactions (l1 and l2). Thread t1 executes solely within transaction l1,
while t2 starts executing in l1, before starting transaction l2. We assume that there is
a default top-level transaction, l0 and primordial thread t0. Fig. 4 shows the structure
of this computation. The threads in a parent transaction can execute concurrently with
threads in nested transactions. A design choice in TFJ is that all threads must join
(via a commit) for the entire transaction to commit. Alternatives, such as interrupting
threads that are not at a commit point when another thread in the same transaction is
ready to commit, or silently committing changes while the thread is running are either
programmer unfriendly or counter to the spirit of transactions.

t0

t1

t2

l2
l1

l0

Fig. 4. Threads and transactions in Fig. 3. Threads t0, t1, t2, execute, respectively, in trans-
actions l0, l1, l2. The transactions are nested, such that l0 is the outermost transaction.
Transaction commits are implicit thread joins.

The state in this program is defined by the instance of class Number that is threaded
through the transactions and handed down to Updaters for modification. Each invoca-
tion of update() performs a read and a write of the val. One valid interleaving of the
operations is, for example:

[n := One()]l1 → [n]l1 → [n := Two()]l2 → [n]l2 → [n := Three()]l0

This is correct because all of the changes performed by l1 occur before changes of
transactions l2 and l1. An example of an invalid interleaving of these operations is:

[n := One()]l1 → [n := Two()]l2 → [n]l1 → [n]l2 → [n := Three()]l0

In this schedule, serializability is broken because l1 reads the value of n.val that was
changed by l2. Thus from l1’s viewpoint the global state is n.val = Two(). Most con-
currency control protocols will flag this as a conflict and abort l1. We note that in this
particular case the conflict is benign as l1 discards the value it read and thus the state
of the system is not affected by it reading a stale value.

4.1 Syntax

The syntax of TFJ is given in Fig. 5. We take metavariables L to range over class
declarations, C, D to range over classes, M to range over methods, and f and x to range
over fields and parameters, respectively. We also use P for process terms, and e for
expressions. We assume that the keyword this is included in the set of variables, but
that this is never used as the name of an argument to a method. We use v to range
over values. The only values in TFJ are references created by newC() operations. Field
selection, method call, and assignment are subject to evaluation if their constituent
elements are references.

We use over-bar to represent a finite ordered sequence, for instance, f represents f1 f2 . . . fn.
The term ll denotes the extension of the sequence l with a single element l, and l . l′

for sequence concatenation. We write l ! l
′ if l is a prefix of l′.

A process term P can be either the empty process 0, the parallel composition of processes
P | P or a thread t running expression e, denoted t[e]. The thread label t is distinct
for every thread.

The calculus has a call-by-value semantics. The expression C(v) ↓v′i yields an object
identical to C(v) except in the ith field which is set to v′. The null metavariable is
used to represent an unbound reference. By default all objects are null initialized (i.e.
C(null)).

Since TFJ has by-value semantics for invocation, sequencing can be encoded as a sequence
of method invocations. For readability, we sometimes write “(e1;e2)” in examples to
indicate sequencing of expressions e1 and e2. The value of a sequence is always the value
of the last expression.

An expression e can be either a variable x, the this pseudo variable, a reference v, a
field access e.f, a method invocation e.m(e), an object construction newC(), a thread
creation spawn e, an onacid command or a commit. The latter three operations are
unique to TFJ. The expression spawn e creates a new thread of control to evaluate e.
The evaluation of e takes place in the same environment as the thread executing spawn
e. A new transaction is started by executing onacid. The dynamic context of onacid
is delimited by commit. Effects performed within the context of onacid are not visible
outside the transaction until a commit occurs. Transactions may be nested. When the
commit of an inner transaction occurs, its effects are propagated to its parent. Threads
may be spawned within the context of a transaction. The local state of the transaction is
visible to all threads which execute within it. Transactions may also execute concurrently.
For example, in spawn e, e may be an expression that includes onacid and commit; the
transaction created by onacid executes concurrently with the thread executing the spawn
operation.

Note that the language does not provide an explicit abort operation. Transactions may
abort implicitly because serialization invariants are violated. Our semantics expresses
implicit aborts both in the definition of commit and in the treatment of read and write
operations that would otherwise expose violations of necessary serializability invariants.
Implicit aborts are tantamount to stuck states.

4.2 Reduction

The dynamic semantics of our language shown in Figs. 5 and 6 is given by a two-level
set of rewrite rules. The computational core of the language is defined by a reduction

Syntax:

P ::= 0 | P|P | t[e]

L ::= class C { f; M }

M ::= m(x) { e; }

e ::= x | e.f | e.m(e) | e.f := e |
new C() | spawn e | onacid | commit | null

v ::= v | v.f | v.m(v) | v.f := v

Field look-up:

CT (C) = class C { f; M }
fields(C) = (f)

Method body look-up:

CT (C) = class C { f; M }
m(x) { e; } ∈ M

mbody(m, C) = (x, e)
Local Computation:

E ′, C(u) = read(v, E) fields(C) = (f)

E v.fi
rd v−→ E ′ ui

(R-Field)

E ′, C(v) = read(v, E) E ′′ = write(v $→ C(v)↓v
′
i , E ′)

E v.fi := v′
wr vv′−→ E ′′ v′

(R-Assign)

E ′, C(u) = read(v, E) mbody(m, C0) = (x, e)

E v.m(v)
rd v−→ E ′ [v/x, v/this]e

(R-Invk)

v fresh E ′ = extend (v $→ C(null), E)

E new C()
xt v−→ E ′ v

(R-New)

Global Computation:

P = P ′′ | t[e] E e
α−→ E ′ e′ P ′ = P ′′ | t[e′]

Γ ′ = reflect(t, E ′, Γ)

Γ P
α

=⇒t Γ ′ P ′
(G-Plain)

P = P ′′ | t[e] e ⇓spawn e′, e′′ P ′ = P ′′ | t[e′] | t′[e′′]
t′ fresh Γ ′ = spawn(t, t′, Γ)

Γ P
sp t′
=⇒t Γ ′ P ′

(G-Spawn)

P = P ′′ | t[e] e ⇓onacid e′ P ′ = P ′′ | t[e′]
l fresh Γ ′ = start(l, t, Γ)

Γ P
ac

=⇒t Γ ′ P ′
(G-Trans)

P = P ′′ | t[e] e ⇓commit e′ P ′ = P ′′ | t[e′] t = intranse(l, Γ)

Γ = t1, E1, . . . , tn, En . Γ ′′ t = t1 . . . tn E = E1 . . . En

Γ ′ = commit(t, E , Γ)

Γ P
co

=⇒t′ Γ ′ P ′
(G-Comm)

P = P ′ | t[v] Γ = t, E . Γ ′

Γ P
ki

=⇒t Γ ′ P ′
(G-ThKill)

Fig. 5. TFJ Syntax and Semantics.

relation of the form E e
α−→ E ′ e′. Here E is a sequence of transaction environments, e is

an expression and the action label α determines which reduction was picked. Each trans-
action environment consists of a transaction label, and a binding environment that maps
references to objects (v $→ C(v)), Action labels for the computational core are selected
from the set {rd,wr, x t}, respectively denoting read, write and extend. In addition to
specifying the action on whose behalf a particular reduction is taken, we also specify the
action’s effects; for example, we write wr vv′to denote an action with label wr which has
effect on locations v and v′. A read action effects the location being read, a write action
has an effect on both the location being written and the location whose value it reads,
and an extend operation has an effect on the newly created location.

A second reduction relation α=⇒t defines operations over the entire program and has the
form Γ P

α=⇒t Γ ′ P ′ where Γ is a program state composed of a sequence of thread envi-
ronments t, E where each t, E pair represent the association of a thread to its transaction
environment. The action label α can be one of the computational core labels or one of
{sp, ac, co, k i} for, respectively, spawn, onacid, commit, and kill. As with core actions,
the actions corresponding to these labels have an effect on the global state; these effects
are given in brackets. Thus, a spawn action has the effect of creating a new thread with
label t; an onacid action creates a new transaction with label l; a commit operation
has an effect on the current transaction; and, a kill action has an effect on the current
thread.

The metavariable l ranges over transaction names, sequences of transaction names are
used to represent the nesting structure. The transaction label l identifies the transaction
on whose behalf the reduction step was performed. As usual, α=⇒t ∗ denotes the reflexive
and transitive closure of the global reduction relation. The congruence rules given in
Figure 6 are straightforward.

We work up to congruence of processes (P|P′ ≡ P′|P, (P1|P2)|P3 ≡ P1|(P2|P3), and P|0 ≡
P). Congruence over expressions is defined in terms of evaluation contexts, The expression
“picked” for evaluation is determined by the structure of evaluation contexts; observe

Evaluation Contexts:

E[•] | E [•].f := e | e.f := E [•] |

E [•].m(e) | e.m(. . .E [•] . . .)

Congruence:

E e −→ E ′ e′

E E [e] −→ E ′ E [e′]

e = E [spawn e′′] e′ = E [null]

e ⇓spawn e′, e′′

e = E [onacid] e′ = E [null]

e ⇓onacid e′

e = E [commit] e′ = E [null]
e ⇓commit e′

Transaction membership:

nested (l, 〈 〉) = 〈 〉

Γ = t, E . Γ ′ nested(l, Γ ′) = t

l . l . l′ . l
′
= "(t, (t, E))

nested(l, Γ) = t . t

Γ = t, E . Γ ′ nested(l, Γ ′) = t
l *∈ "(t, (t, E)) ∨ ll = "(t, (t, E))

nested (l, Γ) = t

intranse(l, 〈 〉) = 〈 〉

Γ = t, E . Γ ′ intranse(l, Γ ′) = t
l ∈ "(t, (t, E)) nested (l, Γ) = 〈 〉

intranse(l, Γ) = tt

Γ = t, E Γ ′ intranse(l, Γ ′) = t
l *∈ "(t, (t, E))

intranse(l, Γ) = t

Fig. 6. Auxiliary definitions

that the main role of contexts is to ensure that subexpressions of e in spawn (e) are not
chosen for evaluation prior to the evaluation of the spawn action to create a new thread.
The relations ⇓spawn, ⇓onacid and ⇓commit are used to extract nested expressions out of a
context. The other definitions are similar to those used in the specification of FJ. fields
returns the list of all fields of a class including inherited ones. mbody returns the body
of the method in a given class.

Let E be a transaction environment of the form l0:ρ0 . . . ln:ρn, then $(E) extracts the
order transaction label sequence, $(E) = l0 . . .ln if Γ = t, E . Γ ′. We override the
definition of $ such that $(t, (t, E . Γ ′)) = $(E). The auxiliary function last(v, ρ) is
defined to return a one element sequence containing the last value referenced by v in
the environment ρ or the empty sequence if there is no binding for v. It is defined
inductively to return 〈 〉 if ρ = 〈 〉, C(v) if ρ = ρ′ . v $→ C(v) and last(v, ρ′) otherwise. The
function first(v, ρ) is similar but returns the first binding for v in the sequence. Finally,
findlast(v, E) finds the last binding for v in transaction environment E .

There are four computational core reduction rules shown in in Fig. 5. (R-Field) evaluates
a field access expression. (R-Assign) evaluates an assignment expression, (R-Invk)
evaluates a method invocation expression and (R-New) evaluates an object instantiation
expression. Notice that TFJ has a call-by-value semantics which requires that arguments
be fully evaluated before performing method invocations or field access; the order in
which arguments are evaluated in a call is unspecified. These rules are complemented
by five global reduction rules. (G-Plain) corresponds to a step of computation, (G-
Spawn) corresponds to a thread creation, (G-Trans) corresponds to the start of a new
transaction, (G-Comm) corresponds to the commit of a transaction, and (G-ThKill)
is a reclamation rule for threads in normal form. Most of the rules are straightforward.
G-Plain makes use of a reflect operation that must propagate the action performed to
other threads executing within this transaction. Notice that (G-Comm) requires that, if
some thread t running in transaction l is ready to commit, all other threads executing
in that transaction be ready to commit. The auxiliary predicate intranse(l, Γ) given
in Fig. 6 returns the set of threads that currently have the transaction label l. Note
that if there is any thread running in a nested transaction (e.g., has label ll′, for some
l’), intranse(l, Γ) will return the empty sequence as nested transactions must commit
before their parent transaction. The (G-ThKill) rule takes care of removing threads
that have terminated, to prevent blocking a transaction (terminated threads are not
ready to commit).

The dynamic semantics leaves open the specification of a number of operations. In partic-
ular, the definitions of read, write, spawn, extend, reflect, start, and join are left unspec-
ified. A particular incarnation of a transactional semantics must provide a specification
for these operations.

5 Versioning Semantics

In Fig. 7 we define an instantiation of TFJ in which transactions implement sequences of
object versions. The versioning semantics extends the notion of transaction environments
to be an ordered sequence of pairs, each pair consisting of a transaction label and an
environment. The intuition is that every transaction operates using a private log; these
logs are treated as sequences of pairs, bindings a reference to its value. A log thus records
effects that occur while executing within the transaction. A given reference may have
different binding values in different logs. If E = l1:ρ1 . l2:ρ2 then a thread t executing
with respect to this transaction environment is evaluating expressions whose effects are

recorded in log ρ2 and which are part of the dynamic context of an onacid command
with label l2. If l2 successfully commits, bindings in ρ2 are merged with those in ρ1. Once
l2 commits, subsequent expressions evaluated by t occur within the dynamic context of
an onacid command with label l1; effects performed by these expressions are recorded
in environment ρ1.

Thus, a transaction environment in a versioning semantics defines a chain of nested
transactions: every l:ρ element in E is related to its predecessor in the sequence defined by
E under an obvious static nesting relationship. A locus of computation can be therefore

E = E ′ . l:ρ findlast(v, E) = C(v)

E ′′ = E ′ . l:(ρ . v $→ C(v))

read(v, E) = E ′′, C(v)

E = E ′ . l:ρ findlast(v, E) = D(u)

E ′′ = E ′ . l:(ρ . v $→ D(u) . v $→ C(v))

write(v $→ C(v), E) = E ′′

E = E ′ . l:ρ

E ′′ = E ′ . l:(ρ . v $→ C(v))

extend(v $→ C(v), E) = E ′′

Γ = t, E . Γ ′ Γ ′′ = t′, E . Γ
spawn(t, t′, Γ) = Γ ′′

Γ = t, E . Γ ′ Γ ′′ = t, (E . l:〈 〉) . Γ

start(l, t, Γ) = Γ ′′

reflect(t, E , 〈 〉) = 〈 〉

Γ = t, E ′ . Γ ′

reflect(t, E , Γ ′) = Γ ′′

reflect(t, E , Γ) = t, E . Γ ′′

Γ = t′, E ′ . Γ ′ reflect(t, E , Γ ′) = Γ ′′

copy(E ,E ′) = E ′′ Γ ′′′ = t′, E ′′ . Γ ′′

reflect(t, E , Γ) = Γ ′′′

E = E ′ . l:ρ readset(ρ, 〈 〉) = ρ′ writeset(ρ, 〈 〉) = ρ′′ check (ρ′, E ′)

E ′ = E ′′ . l′:ρ′′′ reflect(t, (E ′′ . l′:ρ′′′.ρ′′), Γ) = Γ ′

commit(t, E , Γ) = Γ ′

E = l:ρ . E ′′ E ′ = l:ρ′′ . E ′′′

copy(E ,E ′) = l:ρ . copy(E , ′)′E ′′′
E = l′:ρ′ . E ′′ E ′ = l:ρ . E ′′′

copy(E ,E ′) = l:ρ . copy(E , ′)′E ′′′

check(〈 〉, E)
findlast(v, E) = C(v) check (ρ,E)

check(ρ . v $→ C(v), E)

Mod sets:

readset (〈 〉,) = 〈 〉
ρ = u $→ C(u) . ρ′′ u *∈ v readset(ρ′′, vu) = ρ′

readset (ρ,v) = u $→ C(u′) . ρ′

ρ = u $→ C(u) . ρ′′ u ∈ v readset(ρ′′, v) = ρ′

readset(ρ, v) = ρ′

writeset(〈 〉,) = 〈 〉

ρ = v $→ C(v) . ρ′′ writeset(ρ′′, ρ′) = ρ′′′

v $→ C(v) *= first(v, ρ′)

writeset(ρ, ρ′) = u $→ D(u) . ρ′′′

Fig. 7. Versioning semantics

uniquely denoted by a thread t and the transaction label sequence l in which t is
executing.

When a new thread is created (cf. spawn), the global state is augmented to include the
new thread; evaluation of this thread occurs in a transaction environment inherited from
its parent. In other words, a spawned thread begins evaluation in the environment of its
parent extant at the point where the thread was created.

When a thread enters a new transaction (cf. start), a new transaction environment is
added to its state. This environment is represented as a pair consisting of a label denoting
the transaction, and a log used to hold bindings for objects manipulated within the
transaction. Initially, the newly created transaction is bound to an empty log.

The essence of the versioning semantics is captured by the read, write, and commit oper-
ations. If a read operation on reference v occurs within transaction l, the last value for v
in the log is returned via the auxiliary procedure findlast, and the log associated with l
is augmented to include this binding. Thus, the first read operation for reference v within
transaction l will bind a value for v computed by examining the logs of l’s enclosing
transactions, choosing the binding value found in the one closest to l. Subsequent reads
of v made within l will find a binding value within l’s log. Thus, this semantics ensures
an isolation property on reads: once an object is read within transaction l, effects on that
object performed within other transactions are not visible until l attempts to commit
its changes.

The write operation is defined similarly. Note that write augments the log of the current
transaction with two bindings, one binding the reference to its value prior to the assign-
ment, and the other reflecting the effect of the assignment. The former binding is needed
to guarantee transactional consistency. Consider a write to a reference v in transaction l
which has not yet been read or written in l. The effects of this write can be made visible
when l attempts to commit only if no other transaction has committed modifications to
v in the interim between the time where the write occurred, and l attempts to commit.
If this invariant were violated, the desired serialization semantics on transaction would
fail to hold. The extend operation inserts a new binding in the current transaction’s
log; since the reference being bound is fresh, there is no existing binding in the parent
transaction against which a consistency check must be made upon commit.

The commit operation is responsible for committing a transaction. In our versioning
semantics, a commit results in bindings for objects written within a transaction’s log to
be propagated to its parent. In order for a commit of transaction l to succeed, it must be
the case that the binding value of every reference read or written in l must be the same
as its current value in l’s parent transaction. Satisfaction of this condition implies the
absence of a data race between l and its parent or siblings. The reflect operation defined
in commit makes visible the effects of l in all threads executing in l’s parent transaction;
when used in a transaction-local action, it propagates the effects of the action to other
threads executing within this same transaction.

The versioning semantics defined here is akin to an optimistic concurrency protocol in
which the validity of reads and writes of references performed within a transaction l
is determined by the absence of modifications to those references in transactions which
commit between the time the first read or write of the reference takes place in l and the
time l commits. For example, consider transaction l1 that commits v1, transaction l2

that commits v2 and transaction l that accesses both v1 and v2; a valid serialization of
these transactions would commit l1 prior to the first access of v1 in l2, and would commit
l2 prior to the first access of v2 in l. Provided l2 does not modify v1, no atomicity or
consistency invariants on these transactions would be violated.

6 Strict Two-phase locking

With slight alteration, the versioning semantics can be modified to support a two-phase
locking protocol. Our semantics is faithful to a locking protocol in which locks are first
acquired on objects on behalf of a transaction before the objects can be accessed, and
released only when commit actions on transactions occur. In our semantics, a reader
executing within transaction l can read an object provided that the lock on that object
is held by transaction l or a prefix of l; every object is initially locked by the transaction
in which it was created. A writer executing within transaction l can acquire exclusive
access to an object provided the object is currently locked by l or prefix of l. To support
locking, we define a unique transaction label lL bound to a lock environment ρL; ρL(v)
maps v to the transaction label sequence which identifies the transaction that currently
has exclusive access to v. If l = l1.l2 . . .ln is such a sequence, then any thread t exe-
cuting within lp where n ≤ p can acquire a lock for v. Lock ownership is changed either
because (a) the transaction in which a read or write action occurs is a prefix of the
transaction which currently owns the lock, or (b) the lock is currently owned by a child
transaction which is about to commit, and lock ownership must be transferred to the
parent transaction. Unlike the versioning semantics presented earlier, commit actions al-
ways succeed since the manner in which locks are acquired ensure that no serializability
violations ensue. As a consequence, there is no explicit notion of abort in this defini-
tion. Once a lock is acquired, the transaction has exclusive ownership until it commits,
or a child attempts to access the object. Transactions implicitly abort if it reaches a
stuck state; in this case, a deadlock would be modeled by a global state in which every
thread is stuck, executing within a transaction that requires a lock held by another. The
modifications necessary to support two-phase locking are shown in Fig. 8.

E = lL : ρL . E ′

last(v, ρL) = l
′

l
′
! "(E)

checklock (v, E) = true

E = lL : ρL . E ′ last(v, ρL) = l
′

l
′
! "(E) E ′′ = lL : (ρL.v $→ "(E)) . E ′

acquirelock (v, E) = E ′′

E = E ′ . l:ρ findlast(v, E) = C(v)

E ′′ = E ′ . l:(ρ . v $→ C(v))

checklock (v, E) = true

read(v, E) = E ′′, C(v)

findlast(v, E) = D(u) E ′ = acquirelock (v, E)

E ′′ = E ′ . l:ρ E ′′′ = E ′′ . l:(ρ . v $→ D(u) . v $→ C(v))

write(v $→ C(v), E) = E ′′′

E ′ . l : ρ = acquirelock(v, E)

E ′′ = E ′ . l:(ρ . v $→ C(v))

extend (v $→ C(v), E) = E ′′′′

E = lL:ρL . E ′ ρ′
L = release("(E), ρL)

E ′′ = lL:ρ′
L . E ′ reflect(t, E , Γ) = Γ ′

commit(t, E , Γ) = Γ ′

ρL = ρ′
L:v $→ ll

ρ′′
L = release(ll, ρ′

L) . v $→ l

release(ll, ρL) = ρ′′
L

ρL = ρ′
L:v $→ l′ ll *= l′

ρ′′
L = release(ll, ρ′

L) . v $→ l′

release(ll, ρL) = ρ′′
L

Fig. 8. Lock-based commitment semantics

7 Soundness

Proving the soundness of a particular transactional facility requires relating it to de-
sired serialization characteristics that dictate a transaction’s ACID properties. For any
abort-free program trace there must be a corresponding trace in which the transactions
executed serially, i.e. all concurrent transactions execute atomically wrt one another.
The key idea is that we should be able to reorder any abort-free sequence of reduction
steps into a sequence that yields the same final state and in which reduction steps taken
on behalf of different parallel transactions are not interleaved. We proceed to formalize
this intuitive definition.

The height of an environment E = l0:ρ0 . . .ln:ρn, written |E|, is n. For a state Γ , max (Γ)
returns a thread environment t, E such that E is the environment with the largest height
|E| in Γ . Given a transition P Γ

α=⇒t P ′ Γ ′, we say that the corresponding action, written
A is (α, t, $(t, E)).

Definition 1 (Well-defined). Let Γ = (t, E) . Γ ′. We say that environment Γ is
well-defined if Γ ′ is also well-defined and for E = l1:ρ1 . . . ln:ρn, we have first(ρj,v) =
last(ρj−1, v) if 2 ≤ j ≤ n, and v ∈ Dom(ρj−1) ∩ Dom(ρj).

To define soundness properties, we introduce the notion of control and data dependencies.
A dependency defines a relation on actions which can be used to impose structure of
transition sequences. In other words, a well-defined transition sequence will be one in
which action dependencies are not violated, and thus define safe serial orderings.

Definition 2 (Control Dependency). Define a preorder c
" on actions such that

A1
c
" A2 (read A1 is control-dependent on A2) if the following holds:

1. A1 = (α, t, l) and A2 = (sp t, t′, l).
2. A1 = (co, t, l) and A2 = (α, t′, l

′) where α ∈ {rd,wr, x t} and l
′
! l.

3. A1 = (α, t, l) and A2 = (ac, t′, l
′) where l

′
! l.

Definition 3 (Data Dependency). Define a preorder d
" on actions such that A1

d
"

A2 (read A1 is data-dependent on A2) the if A1 is either (rd v, t, l), (wr vv′, t, l) or
(wr v′v, t, l), and A2 is either (wr vv′′, t′, l

′) or (x t v, t′, l
′), with l′ ! l.

The key property for our soundness result is the permutation lemma which describes the
conditions under which two reduction steps can be permuted. Let A and A′ be a pair of

actions which are not related under a control or data dependency. We write A d
" A′ and

A c
" A′ to mean action A has, respectively, no c-dependence or d-dependence on A′.

Definition 4 (Independence). Actions A and A′ are independent if A c
" A′ and

A d
" A′.

Lemma 1 (Permute). Assume that Γ and Γ ′′ are well-defined, and let R be the two-
step sequence of reductions P Γ

α=⇒t P0 Γ0
α′

=⇒t′ P ′ Γ ′. If A and A′ are independent
then there exists a two-step sequence R′ such that R′ is P Γ

α′
=⇒t′ P1 Γ1

α=⇒t P ′ Γ ′.

Definition 5 (Program Trace). Let R be the sequence of reductions P0 Γ0
α0=⇒t0 . . .

Pn Γn
αn=⇒tn Pn+1 Γn+1. The trace of the reduction sequence R, written tr(R), is (α0, t0, l0) . . .

(αn, tn, l0) assuming that li = $(ti, Γi) for 0 ≤ i ≤ n.

A program trace is serial if for all pairs of reduction steps with the same transaction
label (l), all reductions occurring between the two steps are taken on behalf of that very
transaction or nested transactions (l ! l

′).

Definition 6 (Serial Trace). A program trace, tr(R) = (α0, t0, l0) . . . (αn, tn, ln) is
serial iff ∀ i, j, k such that 0 ≤ i ≤ j ≤ k ≤ n and li = lk we have li ! lj.

We can now formulate the soundness theorem which states that any sequence of reduc-
tions which ends in a good state can be reordered so that its program trace is serial.

Theorem 1 (Soundness). Let R be a sequence of reductions P0 Γ0
α0=⇒t0 . . . Pn Γn

αn=⇒tn

Pn+1 Γn+1. If Γn+1 is well-defined, then there exists a sequence R′ such that R′ is

P0 Γ0
α′

0=⇒t′0
. . . P ′

n Γ ′
n

α′
n=⇒t′n Pn+1 Γn+1 and tr(R′) is serial.

8 Observations

We now informally relate the TFJ semantics and soundness results to the four ACID
properties of database theory.

Atomicity requires that updates made by a thread be installed in the shared environment
in a single atomic operation. Equivalently, from the point of view of other threads,
all effects of a committing transaction become visible at the instant the transaction
commits. In the versioning semantics of Section 5, atomicity is guaranteed by the reflect
operation used when committing. Upon commit, reflect propagates all updates performed
by the committed transaction instantly to the environments of all threads. In the locking
semantics, changes performed by a transaction become visible when it releases its locks
to its parent.

Consistency implies that transactions executed in isolation preserve the consistency of
the database as defined by the application semantics.

The serialization theorem ensures that transactions preserve the isolation property since
effects made within one transaction are not visible to another until a commit point.

Finally, durability requires that changes made by a transaction be persistent. Since our
model does not include volatile data, we can assume that this property holds.

9 Related Work

The association of transactions with programming control structures has provenance in
systems such as Argus [19, 22], Camelot [12] Avalon/C++ [11] and Venari/ML [16], and
has also been studied for variants of Java, notably by Garthwaite [14] and Daynes [8–10].

Our permutation lemma is related to Lipton’s notion of reductions [18] where left and
right movers are actions that can be permuted. More recently Qadeer et. al. [23] have
applied the same idea to generate method summaries for multi-threaded Java.

There is a large body of work that explores the formal specification of various flavors of
transactions [20, 7, 15]. However, these efforts do not explore the semantics of transactions
when integrated into a high-level programming language. Most closely related to our goals
is the work of Black et. al. [3] and Chothia and Duggan [6]. The former presents a theory

of transactions that specify atomicity, isolation and durability properties in the form
of an equivalence relation on processes. Like our work, they present a soundness result
that captures the intuitive notion of serializable actions. Beyond significant technical
differences in the specification of the semantics, our results differ most significantly from
theirs insofar as we present a stratified semantics for a realistic kernel language intended
to express different concurrency control models within the same framework. We believe
our formulation will be thus thus more useful to implementations and analyzes.

Choithia and Duggan present the pik-calculus and pike-calculus, extension of the pi-
calculus that supports various abstractions for distributed transactions and optimistic
concurrency. Their work is related to other efforts [5, 4] that encode transaction-style
semantics into the pi-calculus and its variants. Our work is distinguished from these
efforts in that it provides a simple operational characterization and proof of correctness of
transactions that can be used to explore different trade-offs when designing a transaction
facility for incorporation into a language.

Haines et.al. [16] describe a composable transaction facility in ML that supports persis-
tence, undoability, locking and threads. Their abstractions are very modular and first-
class, although their implementation does not rely on optimistic concurrency mechanisms
to handle commits.

10 Conclusions

This paper develops a semantic framework for specifying nested and multithreaded trans-
actions. This semantic framework is a basis for exploring the design space of transactional
programming language semantics. We believe that transactions can improve the perfor-
mance of programs running on parallel architectures and that improve reliability by elim-
inating data races. We have introduced the TFJ calculus, an imperative and concurrent
object calculus with call-by-value semantics and support for nested and multi-threaded
transactions. The TFJ semantics is parameterized by the definition of the transactional
facility, and in particular of the concurrency control protocol. This is important as dif-
ferent protocols have different observable behaviors and different performance character-
istics. So being able to discuss these protocols in the same semantic framework allows
one to compare them and argue about tradeoffs. In this paper we show two instantia-
tions of TFJ with, respectively, a versioning-based optimistic model, and a pessimistic
two-phase locking protocol. We have proven a general soundness theorem that relates
the semantics of TFJ to a serializability property. The soundness result is parametric as
well as it relies on a permutation lemma that must be proven for each instantiation of
TFJ. While much works remains to be done to integrate transactions into mainstream
languages, we believe that this paper is a step in that direction.

References

1. Malcolm Atkinson and Mick Jordan. A review of the rationale and architectures of PJama:
a durable, flexible, evolvable and scalable orthogonally persistent programming platform.
Technical Report TR-2000-90, Sun Microsystems Laboratories, June 2000.

2. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern Concurrency Abstractions for
C#. In Proceedings of the 16th European Conference on Object-Oriented Programming,
pages 415–440. Springer-Verlag, 2002.

3. Andrew Black, Vincent Cremet, Rachid Guerraoui, and Martin Odersky. An Equational
Theory for Transactions. Technical Report CSE 03-007, Department of Computer Science,
OGI School of Science and Engineering, 2003.

4. R. Bruni, C. Laneve, and U. Montanari. Orchestrating Transactions in the Join Calculus.
In 13th International Conference on Concurrency Theory, 2002.

5. N. Busi, R. Gorrieri, and G. Zavattaro. On the Serializability of Transactions in JavaSpaces.
In ConCoord 2001, International Workshop on Concurrency and Coordination, 2001.

6. Tom Chothia and Dominic Duggan. Abstractions for Fault-Tolerant Computing. Technical
Report 2003-3, Department of Computer Science, Stevens Institute of Technology, 2003.

7. Panos Chrysanthis and Krithi Ramamritham. Synthesis of Extended Transaction Models
Using ACTA. ACM Transactions on Database Systems, 19(3):450–491, 1994.

8. Laurent Daynès. Implementation of automated fine-granularity locking in a persistent pro-
gramming language. Software—Practice and Experience, 30(4):325–361, April 2000.

9. Laurent Daynès and Grzegorz Czajkowski. High-performance, space-efficient, automated
object locking. In Proceedings of the International Conference on Data Engineering, pages
163–172. IEEE Computer Society, 2001.

10. Laurent Daynès and Grzegorz Czajkowski. Lightweight flexible isolation for language-based
extensible systems. In Proceedings of the International Conference on Very Large Data
Bases, 2002.

11. D. D. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery
in Avalon/C++. IEEE Computer, 21(12):57–69, December 1988.

12. Jeffrey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. Camelot and Avalon:
A Distributed Transaction Facility. Morgan Kaufmann, 1991.

13. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notion of consistency
and predicate locks in a database system. Communications of the ACM, 19(11):624–633,
November 1976.

14. Alex Garthwaite and Scott Nettles. Transactions for Java. In Malcolm P. Atkinson and
Mick J. Jordan, editors, Proceedings of the First International Workshop on Persistence
and Java, pages 6–14. Sun Microsystems Laboratories Technical Report 96-58, November
1996.

15. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Data
Management Systems. Morgan Kaufmann, 1993.

16. Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles, and Jeannette M.
Wing. Composing first-class transactions. ACM Transactions on Programming Languages
and Systems, 16(6):1719–1736, November 1994.

17. Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–450, May 2001.

18. Richard J. Lipton. Reduction: a new method of proving properties of systems of processes. In
Proceedings of the 2nd ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 78–86. ACM Press, 1975.

19. B. Liskov and R. Scheifler. Guardians and actions: Linguistic support for robust distributed
programs. ACM Transactions on Programming Languages and Systems, 5(3):381–404, July
1983.

20. Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic Transactions.
Morgan-Kaufmann, 1994.

21. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concur-
rent programming languages. In P. Wegner G. Agha and A. Yonezawa, editors, Research
Directions in Concurrent Object-Oriented Programming, chapter 4, pages 107–150. The MIT
Press, 1993.

22. J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.
MIT Press, Cambridge, Massachusetts, 1985.

23. Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing procedures in concurrent
programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 245–255. ACM Press, 2004.

