
Coordinating Processes with Secure Spaces

Jan Viteka, 1, Ciarán Bryceb, Manuel Oriolb

a CERIAS, Dept. of Computer Sciences, Purdue University, West Lafayette, IN.
b Object Systems Group, University of Geneva, Geneva, Switzerland. 2

Abstract

The Linda shared space model and its derivatives provide great flexibility for build-
ing parallel and distributed applications composed of independent processes. How-
ever, the shared space model does not provide protection against untrustworthy
processes. Linda processes communicate by reading and writing messages in a glob-
ally visible data space, so a malicious process can launch any number of security
attacks. This paper presents the design of a new coordination model which extends
Linda with fine-grained access control. The semantics of the model is presented in
the context of a process calculus. A prototype of our model, called SecOS, has been
implemented in Java.

Key words: Coordination Languages, Linda, Security, Access Control.

1 Introduction

Coordination is the theory and practice of assembling software systems out of
independently developed components. Coordination in open networks such as
the Internet is particularly difficult since the processes to coordinate might not
be trustworthy. Thus coordination infrastructures must provides mechanisms
to protect applications, as well as the overall system, against attacks. This
paper presents the design of a coordination infrastructure named SecOS,
built on top of the Java programming language, as an extension of Gelernter’s
Linda [12] coordination language.

1 Corresponding author.
E-mail: jv@cs.purdue.edu (J. Vitek), bryce@cui.unige.ch (C. Bryce) and
oriol@cui.unige.ch (M. Oriol).
2 This work was supported by the Swiss National Science Foundation, under grant
FNRS 20-53399.98.

Preprint submitted to Elsevier Preprint 23 July 2007

Linda [12,13] is an elegant coordination model for parallel and weakly dis-
tributed systems in which processes communicate by generating new message
objects and placing these objects in a shared data space for other processes to
retrieve. The space is commonly known as a tuple space, and the objects stored
in the space are called tuples since they are ordered sequences of basic data
types. This programming model, often referred to as generative communica-
tion, allows for interaction between processes separated in time: since the data
space is persistent, a message can be retrieved anytime after it has been placed.
Processes are also separated in space: communicating processes need not know
each other’s identity, nor have a dedicated connection established between
them. Linda is therefore suitable for anonymous communication and resource
discovery protocols [26], and to coordinate mobile components [21,7,20]. Sev-
eral coordination infrastructures have implemented this model by embedding
the basic tuple space operations in a host language [23,18,17,11].

The Linda model provides three operations 3 , out, rd and in; informally their
semantics is:

• out 〈x, y, . . . 〉: writes tuple 〈x, y, . . . 〉 to the data space without blocking.
• in 〈x, y, . . . 〉 z: blocks until a tuple matches the template 〈x, y, . . . 〉; if

several candidates are found, then one is nondeterministically removed from
the space and bound to variable z.

• rd 〈x, y, . . . 〉 z: behaves like in except that the matching tuple is not re-
moved from the space.

The main distinguishing characteristic of Linda is the pattern matching of
tuples in input requests. The simplest form of pattern matching is by equal-
ity comparison. Thus for example, a process may retrieve a tuple such as
〈 1, 2, “xyz” 〉 by executing in 〈 1, 2, “xyz” 〉 x. The input operation will block
if the tuple is not in the shared space. The space is thus the basic mechanism
for process synchronization. Processes may also use partially defined tem-
plates, the special value “?” denotes fields that can take any value, to describe
the data that they wish to retrieve. The tuple 〈 1, 2, “xyz” 〉 can be matched
by input requests such as in 〈 ?, 2, “xyz” 〉 x, in 〈 1, ?, “xyz” 〉 x, in 〈 1, 2, ? 〉 x,
and in 〈 ?, ?, ? 〉 x. Partially defined templates allow processes to exchange in-
formation, and thus are the basic mechanism for process communication in
Linda.

The main obstacle to the use of Linda for coordinating untrusted components
is the lack of any protection mechanism in the basic model. Without a means
to constrain the behavior of processes running in the shared data space, there

3 For simplicity, we do not consider predicate forms (inp and rdp) which are non-
blocking variants of some operations, although they are provided in SecOS. Fur-
thermore Linda introduced another basic operation, eval, for starting new threads
of computation, which is unnecessary when the host language is concurrent.

2

is simply no way to prevent a malicious or faulty process from wrecking havoc
on an entire system. For instance, consider the simplest of processes, one which
repeatedly removes an arbitrary tuple from the space, 4

! in 〈 〉 x .0

Here 〈 〉 denotes a template that can match any tuple; in 〈 〉 x .0 denotes a
process that reads a tuple and then evolve to the inert process, and the excla-
mation mark denotes infinite repetition. The above process indiscriminately
removes messages that are part of ongoing protocols, thus starving or at least
disrupting the processes running them.

Another example of dangerous behavior is demonstrated by a process that
eavesdrops on messages exchanged in the space,

! in 〈 〉 x .

(

out x | . . .
)

The process repeatedly inputs a random tuple and outputs it again retaining
a copy bound to x. This does not interfere with other users of the data space,
but lets the process peek at the data exchanged between unrelated processes.

These were examples of integrity and privacy attacks. Another kind of attack
is denial of service. The following process repeatedly deposits tuples in the
shared space,

! out 〈 1 〉

Without any limitation on tuple lifetimes or bound on the number of itera-
tions, any implementation of a shared data space will eventually run out of
memory.

The extreme simplicity of these three malicious processes underscores the lack
of protection in coordination infrastructures. The goal of this research is to
investigate how to extend a coordination model with support for fine-grained
access control. The challenge we are faced with is to provide access control
mechanisms without loosing the flexibility that makes generative communi-
cation attractive. With the exception of Klaim [20] and JavaSpaces [11], we
are not aware of any work in this direction. Our approach is to investigate
language design issues and to provide a practical solution to the problem of
coordinating untrusted processes. This paper presents the semantics of a new
coordination model and discusses the implementation of a prototype system
called SecOS embedded in the Java programming language.

4 For the sake of brevity, examples are given using the syntax of the secure spaces
calculus introduced in Section 3, rather than in the concrete syntax of the SecOS

implementation.

3

2 Coordination with Secure Spaces

In this paper we present a coordination model, referred to as Secure Spaces,
which extends Linda with fine-grained access control to the shared data space.
The motivation for the design of secure spaces comes from the difficulty in en-
gineering a comprehensive security architecture that enforces the security re-
quirements of a variety of applications without being overly restrictive. Rather
than enforcing a specific security policy in the model, we chose to define a set
of simple mechanisms that can be used by application logic to efficiently im-
plement a range of security policies.

The core idea of secure spaces is simple: we protect every field of a tuple with
a lock. A lock prevents unauthorized processes from gaining access to the data
held in the field. Instead of storing tuples made up of an ordered sequence of
fields, a secure space stores objects consisting of locked fields, each of these
fields being composed of a label and a value. The label can be thought of as
specifying the key needed to unlock the value. The semantics of secure spaces
have been designed to ensure that processes that do not have the key required
to access a field may not gain any information about the field’s contents. This
also requires hiding such fields during pattern matching.

The remainder of this section informally introduces the concepts of the secure
space coordination model. To specify the semantics of secure spaces without
having to deal with the syntax of an actual programming language, for example
Java the host language of SecOS, we introduce secure spaces in terms of a
process calculus that gives a precise semantics to the secure space primitives.
This calculus is presented in Section 3.

2.1 Objects and Locks

In secure spaces, an object is an unordered set of locked fields, or locks. A
secure space is a multiset of objects. Locks are labeled values, the field’s value
can be an object and is the data part of the field. The label regulates access
to the contents as it specifies which key is needed to unlock the value. We use
labels, which have to be distinct, to select fields instead of indices.

A locked field can only be unlocked with a key matching the field’s label. But
unlocking a field does not grant access to other fields in an object, only to
that field’s value. To implement this privacy feature, the rules for extracting
values from an object as well as the pattern matching rules used to retrieve
objects from the shared space have been modified.

There are two kinds of primitive locks, symmetric locks (s-locks) and asym-

4

metric locks (a-locks), as well as a derived form called object locks (o-locks).
The simplest locks are symmetric where the same key is used to lock and
unlock fields. For example, the Linda tuple 〈 3, “xyz” 〉 can be represented by
the following secure spaces object,

〈 aa : 3 bb : “xyz” 〉

Labels aa and bb denote symmetric keys protecting values 3 and “xyz” respec-
tively. These keys must be presented in order to access the value of the locks
or to construct a template that will match this object. The pattern matching
rules of s-locks are a kind of structural subtyping, where shorter objects match
longer ones with the same labels.

To select a value from an object, a process must present the corresponding
key. In the case of an s-locked field such as aa : bb for example, the matching
key is aa itself. Thus the following expression evaluates to 3,

〈 aa : 3 bb : “xyz” 〉 . aa

Labels are first-class values in our model, and can be transmitted in objects.
Furthermore, processes can generate fresh labels, written as (new ab). So, the
following program creates a new key and uses it in the s-lock guarding x.

(new aa) out 〈 aa :x 〉

Since labels are lexically scoped, we have effectively locked x and thrown away
the key.

Asymmetric locks (a-locks) are pairs consisting of a label ab and its inverse
ba such that if ab locks a field, then only ba can unlock it. An example of an
a-locked object is:

〈 ab : 1 〉

One obvious use of asymmetric locks is to publish one of the labels, ab, as
a public key and keep the other, ba, as a private key. The pattern matching
rules for a-locks require the use of the inverse key, in the above example ba,
to retrieve an object lock with an a-lock. Thus an object locked with a public
key is pattern matched using the private key.

2.2 Pattern Matching

Secure spaces have different pattern matching rules than Linda. In secure
spaces, pattern matching does not rely on the order of occurrence of fields in
an object, but rather on field labels. As fields can contain objects, pattern
matching is defined recursively on the complete object structure. To preserve

5

privacy, fields that are not present in a template are considered hidden and are
therefore not used in pattern matching. Thus as we mentioned earlier there is
a certain similarity between pattern matching and structural subsumption as
a “longer” object is matched by a “shorter” template. For instance, an output
offer such as,

out 〈 ab : b dd : e 〉

can be matched by the input request,

in 〈 dd : e 〉 x

Other matching templates for the same output are:

〈 ab : b 〉 〈 ab : ? 〉, 〈 dd : ? 〉, 〈 ab : b d : ? 〉, 〈 ab : b dd : e 〉, 〈 〉

The empty object 〈 〉 can be used as a template to match any other object.
Pattern matching an a-locks requires presentation of the inverse key, e.g., the
object 〈 ab : 〈 〉 〉 is matched by 〈 ba : 〈 〉 〉.

It is important to recall that retrieving an object does not grant access to its
fields. Without the appropriate keys, fields remain hidden, so even if an object
is leaked to a malicious process, the information it contains remains protected.

A simple key exchange protocol demonstrates the use of pattern matching
rules. Consider the following term in which two processes use a key pair (ab, ba)
to exchange the shared key cc,

(new cc)
(

out 〈 ab : cc 〉 | P
)

|
(

in 〈 ba : ? 〉 x .Q
)

The output term out 〈 ab : cc 〉 can be matched by in 〈 ba : ? 〉 x because ba is the
inverse of ab and the wild card ? matches any value. The term thus reduces in
one step,

(new cc)
(

P | Q{〈 ab : cc 〉/x}
)

In the resulting term, the key’s scope encloses P and Q, since both processes
now share cc. Furthermore, all occurrences of x in Q have been substituted
with 〈 ab : cc 〉, e.g., an expression x.ba in Q becomes 〈 ab : bc 〉.ba and yields cc.

2.3 Extending objects

Another feature of secure space is that objects can be extended without re-
vealing their contents. An extension operation, denoted by ⊕, will add a new
locked field to an object if the field label is not already present, or, in the
case a field with that label exists, will overwrite the value. The following is
an example of an extension in which the a-lock bc : “xyz” is added to object

6

〈 aa : 22 〉,

〈 aa : 22 〉 ⊕ bc : “xyz” yields 〈 a : 22 bc : “xyz” 〉

The process performing the extension need not know anything about the con-
tents of the object it is extending and will not gain any information as a result
of extension. Thus for instance, consider:

〈 ab : 22 〉 ⊕ ab : “xyz” yields 〈 ab : “xyz” 〉

Without the key ba, there is no way for the extending process to even know
that the object already had an ab field, not to mention its value.

Object extension is essential to transparently tag objects, e.g., with lifetime
annotations. The conjunction of hidden fields and object extension allows us
to implement a user-level garbage collector that tags objects without knowl-
edge of their internal structure. This tagging does not affect the behavior of
applications that operate on the tagged objects.

2.4 Locking objects

Up to this point, we have controlled access to fields, but not access to objects
in the shared space. For example it is often desirable to prevent processes from
using the empty template 〈 〉 to indiscriminately match and remove objects.
We therefore introduce object locks (o-locks) to restrict the visibility of objects
from the pattern matching process. A locked object is created with

out 〈 aa : 12 bb : 3 〉@cd

where key cd is used to lock the object; a matching input could be

in 〈 bb : ? 〉@dc x .P

Notice the use of the inverse key dc to retrieve the object. Asymmetric keys
are particularly interesting as they allow the expression of write-only and
read-only access rights to a secure space.

Object locks can be viewed as partitioning the shared memory. For some o-lock
term, out 〈 ~f 〉@ℓ, the key ℓ creates a partition of the space, such that the only
processes that may write to it are ones that know ℓ, and processes that want
to read from the partition must have the inverse key ℓ. In this sense, o-locks
may be viewed as giving the same expressive power as variants of Linda with
multiple tuple spaces [6,13,16,25], but they are more flexible. With multiple
tuple spaces, a process is granted wholesale access to the space whenever it
gets the space’s identifier. Object locks can be used to give very limited and

7

controlled access to a partition. For instance, it is possible to restrict a process
to input only one kind of object. Consider a configuration in which processes
P and Q are running in parallel and Q wants to grant P read-access to some
partition cd of the space. One solution would be to give the inverse key dc to
P . But this would permit P to retrieve any object in the partition and also
to extract the value of fields locked under cd. Assuming that P should only
retrieve objects that contain the key aa and should not select fields labeled
with cd, a better solution is to hand P a template, for example 〈 ac : ? 〉@dc,
rather than a key, that it can use for matching. Let P and Q be as follows,

P = in 〈 bb : ? 〉 x . in (x.bb) y

and

Q = (new cd)
(

out 〈 bb : 〈 aa : ? 〉@dc 〉 | Q′
)

The term P | Q reduces in one step to

(new cd)
(

in 〈 aa : ? 〉@cd y | Q′
)

P can use the template to retrieve objects but has no means to get at the
label dc. In particular, it does not have access to either of the partition keys
(cd and dc) so it can neither add new objects nor select fields protected by
these keys.

In the secure spaces calculus o-locks are a derived concept, Section 3.3 gives
a translation from terms containing o-locks to terms in the core calculus.

3 The Secure Spaces Calculus

The secure spaces calculus is based on the asynchronous π-calculus [15,3,2],
because π provides a small and elegant concurrent programming language
with simple semantics and thus allows for a compact formulation of secure
spaces in computationally complete setting. The main departure from the π-
calculus is the use of generative communication operations instead of channel-
based primitives. The idea of embedding Linda in a process calculus has been
explored in depth in previous work [5,10]. The emphasis of this paper is on
language design issues rather than on expressiveness. Since type checking is
not the focus of this paper, the secure spaces calculus is untyped and allows
ill-formed processes to be written. Type errors cause processes to get stuck
and prevent further reduction.

8

3.1 Syntax

The syntax of the core calculus is summarized in Table 1. We take an infinite
set of names ranged over by meta-variables a, b, c, d. Labels are pairs of name,
written ab, and ranged over by meta-variable ℓ. If a = b, we call label ab a
symmetric key, otherwise it is an asymmetric key. The inverse of a key ab is
the key ba, an auxiliary inverse function, written · , is defined as ab = ba and
ab = ab. Basic values are ranged over by v, and consist of labels, objects, and
?. The symbol ? denotes the distinguished void element. Locked fields, ranged
over by f , are written ab : v. Objects are, possibly empty, vectors of locks,
written 〈 ~f 〉. The function keys(~f) returns the set of labels of the vector ~f .

e ::= x | v | 〈~e :~e 〉 | e.e | e ⊕ e : e

v ::= ? | ℓ | 〈 ~f 〉

f ::= ℓ : v

P ::= 0 | P | Q | !P | in e x .P | out e | (new ab)P

Table 1: Core Language Syntax.

The syntactic category of expressions, ranged over by e, includes basic val-
ues, objects, selection expressions and extension expressions. The syntactic
category of processes, ranged over by P and Q, includes the empty process 0

which has no behavior, parallel composition of processes P | Q, replication of
processes !P , as well as two communication primitives. The first of these is
the input operation in e x . P which tries to match the template e against an
output offer and bind the result to variable x. The operation is blocking; P
cannot execute until the match succeeds. The second operation is the asyn-
chronous output out e which deposits the object denoted by e in the data
space. Finally, The restriction operator (new ab) generates a fresh key pair ab

and ba. The calculus is lexically scoped, so (new ab)P means that ab and ba

are visible only in process P .

3.2 Operation Semantics

The operational semantics of the secure spaces calculus is given in Table 2.
The reduction relation P → P ′ defines when process P reduces in one step
of internal computation to P ′. We define two auxiliary notions: structural
congruence and evaluation.

9

Reduction

P → Q

(new ab)P → (new ab)Q

P → Q

P | R → Q | R

P ≡ P ′ P ′ → Q
P → Q

e ↓ 〈 ~f 〉 e′ ↓ 〈 ~f ′ 〉 〈 ~f ′ 〉 ≤ 〈 ~f 〉

out e | in e′ x .P → P{〈
~f 〉/x}

Evaluation

v ↓ v 〈 〉 ↓ 〈 〉
e ↓ 〈 ~f 〉 〈 ~f 〉 ≡ 〈 ~f ′ 〉

e ↓ 〈 ~f ′ 〉

e ↓ 〈 ℓ : v ~f 〉 e′ ↓ ℓ

e.e′ ↓ v

e ↓ ℓ e′ ↓ v 〈~e :~e ′ 〉 ↓ 〈 ~f 〉 ℓ 6∈ keys(~f)

〈 e : e′ ~e :~e ′ 〉 ↓ 〈 ℓ : v ~f 〉

e ↓ 〈 ~f 〉 e′ ↓ ℓ e′′ ↓ v

e ⊕ e′ : e′′ ↓ 〈 ℓ : v (~f \ ℓ) 〉

Structural Congruence Rules

〈 ~f ℓ : v ~f ′ 〉 ≡ 〈 ℓ : v ~f ~f ′ 〉 P | Q ≡ Q | P P | 0 ≡ P !P ≡ P | !P

(P | Q) | R ≡ P | (Q | R) (new ab)(new cd)P ≡ (new cd)(new ab)P

(new ab)(P | Q) ≡ P | (new ab)Q if ab, ba 6∈ fn(P)

Pattern Matching Rules

ℓ ≤ ℓ ? ≤ v 〈 〉 ≤ 〈 ~f 〉

v ≤ v′ 〈 ~f 〉 ≤ 〈 ~f ′ 〉

〈 ℓ : v ~f 〉 ≤ 〈 ℓ : v′ ~f 〉

Table 2: Operational Semantics.

10

Structural congruence ≡ is the least congruence on processes satisfying the
axioms and rules given in Table 2; it indicates when a process may replace
another in a computation in such a way that the computation yields an equiv-
alent result. The evaluation relation ↓ denotes the result of field selection and
object extension expressions. The reduction relation → is the least relation on
processes that satisfies the axioms and rules defined in Table 2.

The notation ~e denotes zero or more occurrences of e. The term P{e/x} repre-
sents process P in which all free occurrences of x are replaced by e. Trailing
inert processes are removed; thus in e x . 0 becomes in e x. The free labels of a
term are denoted by fn(), and defined in Table 3.

fn(0) = fn(x) = fn(?) = {}, fn(aa) = {aa},

fn(〈~e :~e ′ 〉) =
⋃

fn(~e) ∪
⋃

fn(~e ′)

fn(〈~e :~e ′ 〉@ℓ) =
⋃

fn(~e) ∪
⋃

fn(~e ′) ∪ {ℓ, ℓ} ∪ fn(e),

fn(P | Q) = fn(P) ∪ fn(Q), fn(!P) = fn(P),

fn(out e) = fn(e), fn(in e x .P) = fn(e) ∪ fn(P),

fn((new ab)P) = fn(P) − {ab, ba}

Table 3: Free keys.

The main reduction rule determines when an an input request can consume
an output offer. If the output term evaluates to an object 〈 ~f 〉, the input to

an object 〈 ~f ′ 〉, and the objects match, then the output offer is consumed and
the continuation P can execute.

e ↓ 〈 ~f 〉 e′ ↓ 〈 ~f ′ 〉 〈 ~f ′ 〉 ≤ 〈 ~f 〉

out e | in e′ x .P → P{〈
~f 〉/x}

The pattern matching relation ≤ is a relation on values with ? as minimum el-
ement. Objects are matched by pair-wise field and key comparison, intuitively
a shorter object matches a longer if each field ℓ : v of the shorter object has a
corresponding field ℓ : v′ and v ≤ v′.

v′ ≤ v 〈 ~f 〉 ≤ 〈 ~f 〉

〈 ℓ : v ~f 〉 ≤ 〈 ℓ : v′ ~f 〉

Pattern matching is recursive in the value of labeled fields, so to determine
that

〈 aa : 〈 bb : 〈 〉 〉 〉 ≤ 〈 aa : 〈 bb : 〈 〉 cc : 〈 〉 〉 〉

11

it is necessary to check that

〈 bb : 〈 〉 〉 ≤ 〈 bb : 〈 〉 cc : 〈 〉 〉

On the surface the pattern matching relation appears to be a form of structural
subtyping. But the presence of asymmetric keys ensures that the relation
is neither reflexive nor transitive, consider for example that both 〈 ab : ? 〉 ≤
〈 ba : ? 〉 and 〈 ba : ? 〉 ≤ 〈 ab : 〈 〉 〉 hold while 〈 ab : ? 〉 ≤ 〈 ab : 〈 〉 〉 does not.

The interesting cases of the evaluation relation are field selection and object
extension. Selection, e.e′, extracts a value from an object if e evaluates to an
object and e′ to a label ℓ such that the inverse key ℓ is present in the object.

e ↓ 〈 ℓ : v ~f 〉 e′ ↓ ℓ

e.e′ ↓ v

An error occurs in case the key is not present and the execution gets stuck.

The object extension operation, e ⊕ e′ : e′′, adds a field to an object, if a field
with the same label is already present the old value is overridden. We write
~f \ ℓ to denote the sequence of fields in which ℓ does not occur as a field label.

e ↓ 〈 ~f 〉 e′ ↓ ℓ e′′ ↓ v

e ⊕ e′ : e′′ ↓ 〈 ℓ : v (~f \ ℓ) 〉

While a more detailed study of equivalences is beyond the scope of this work,
we expect that some simple secrecy properties hold in our calculus. For in-
stance, the values of locked fields are protected, thus for any context C[] if

x does not occur free in ~f , the following two expressions can not be distin-
guished,

C[(new ab)out 〈 ab : y ~f 〉] and C[(new ab)out 〈 ab : z ~f 〉]

The value of locked fields may not be observed without the matching key. On
the other hand the following terms are not equivalent,

C[(new ab)out 〈 ab : y ~f 〉] and C[out 〈 ~f 〉]

In the case all field labels in ~f are symmetric, the terms can be distinguished
because an equality test can be encoded in the calculus. Term e =s e′ .P
reduces to P if e and e′ evaluate to objects with the same (symmetric) field
labels and =s values. The encoding of the test is as follows assuming x does
not occur free in P :

e =s e′ . P
def
= out e | in e′ x . (out x | in e x . P)

The term reduces to P if and only if e ↓ v, e′ ↓ v′, v ≤ v′ and v′ ≤ v.

12

3.3 Encoding Object Locks

Object locks control access to objects in secure spaces. The syntax for emitting
an object 〈 ~f 〉 locked by ℓ is out 〈 ~f 〉@ℓ, and the syntax for retrieving some

object matching template 〈 ~f 〉 locked under ℓ is in 〈 ~f 〉@ℓ x .P . The semantics
can be expressed by the reduction rule,

e ↓ 〈 ~f 〉 e′ ↓ 〈 ~f ′ 〉 〈 ~f ′ 〉 ≤ 〈 ~f 〉

out e@ℓ | in e′@ℓ x .P → P{〈
~f 〉@ℓ/x}

But the calculus need not be extended since o-locks can be expressed in the
core language. Table 4 gives an inductive definition of an encoding from terms
with o-locks to basic calculus terms. [[P]] denotes the translation of term P .
The intuition is to extend all objects with one or two additional fields. Locked
objects will be extended with a pair of fields ll and rr with, respectively,
the o-lock key and its inverse as values. For plain objects, an additional field
labeled ll and with value ll will be inserted. We choose labels ll and rr so
that they do not occur free in P .

[[x]] = x

[[?]] = ?

[[〈~e :~e ′ 〉]] = 〈 [[~e]] : [[~e ′]] 〉 ⊕ ll : ll

[[〈~e :~e ′ 〉@ℓ]] = (〈 [[~e]] : [[~e ′]] 〉 ⊕ ll : ℓ) ⊕ rr : ℓ

[[e ⊕ e′ : e′′]] = [[e]] ⊕ e′ : [[e′′]]

[[e.e′]] = [[e]].e′

[[P | Q]] = [[P]] | [[Q]]

[[!P]] = ! [[P]]

[[0]] = 0

[[out e]] = out [[e]]

[[in e x . P]] = in [[e]] x . [[P]]

[[(new ab)P]] = (new ab)[[P]]

Table 4: Translation from a calculus with object locks to the core calculus.

13

To illustrate the translation, consider the following process,

[[out 〈 cc : dd 〉@ab | in 〈 〉@ba y .0 | out 〈 cc : dd 〉 | in 〈 〉 y .0]]

which yields,

out 〈 rr : ba ll : ab cc : dd 〉 | in 〈 rr : ab ll : ba 〉 . 0 |

out 〈 ll : ll cc : dd 〉 | in 〈 ll : ll 〉 . 0

In the translated term it is clear that objects locked with an o-lock can not
be matched by unlocked objects, consider the translation,

[[〈 〉@ba]] = 〈 rr : ab ll : ba 〉 ≤ 〈 rr : ba ll : ab cc : dd 〉 = [[〈 cc : dd 〉@ab]]

According to the patter matching rules these o-locked objects match. Now
consider the translation of the plain objects, they match as well.

[[〈 〉]] = 〈 ll : ll 〉 ≤ 〈 ll : ll cc : dd 〉 = [[〈 cc : dd 〉]]

But trying to match an o-locked object with an empty template will fail,

[[〈 〉]] = 〈 ll : ll 〉 6≤ 〈 rr : ba ll : ab cc : dd 〉 = [[〈 cc : dd 〉@ab]]

We conjecture that the terms [[P | (new ab)out e@ab]] and [[P]] are equiv-
alent for all P . That is, an o-locked object is protected from processes that
do not have its key. This is a fundamental security property of the SecOS

coordination infrastructure.

4 Examples

In this section we give some examples of the use of secure spaces.

4.1 Encoding Linda with Secure Spaces

It is legitimate to wonder whether any expressiveness has been lost going
from Linda’s positional notation to the secure space model with labeled fields.
Furthermore, we lost the rd operator in the process. We show how to recover
both through encodings into the core calculus.

The rd operator is encoded as an input followed by an output in parallel with

14

a continuation process:

rd e x .P
def
= in e x .

(

outx | P
)

To recover positional notation, assume a set of labels ℓ1, ℓ2, ℓ3, . . . chosen so
that they do not occur free in some term P written using positional notation,
and assume also that for any sequence, ~e = e e′ e′′, . . . , the labeling function
lab(~e) takes a sequence of expressions and creates a sequence of locked fields,

lab(~e)
def
= ℓ1 : e ℓ2 : e′ ℓ3 : e′′, The idea behind the translation is to

label all fields of objects in P with these keys; for instance out 〈 e e′ 〉 becomes
out 〈 ℓ1 : e ℓ2 : e′ 〉. Inputs are labeled in a similar way. Pattern matching lines
up fields in the right order. We nevertheless have to take care to prevent a
template matching a longer object. This is done by encoding the length of the
tuple in an additional field. The correct translation for a tuple output opera-
tion becomes out 〈 ℓ1 : e ℓ2 : e′ ℓlen : ℓ2 〉. With this translation, it is obvious
that positional notation may be mixed with locked fields, giving a rich choice
of programming styles.

4.2 Secure Communication Protocols

The process of securing a system begins with the task of identifying the re-
sources or information to be protected, and the most likely sources of attacks.
Only then can suitable protection mechanisms be designed. We apply this
principle to a simple example to identify some of the weaknesses of Linda
with respect to security.

The following streaming protocol (in pseudo-code) is typical of generative
communication. Its goal is to transfer the contents of an array (v) from a
sender process to some other receiver process. The sender process starts by
output a header message that contains an identifier for this particular protocol
run (here some value j), and the length of the array (i). Then each array
element is output together with the run identifier. Furthermore, in order to
enforce ordering each tuple also contains the sequence number of the element
(the complete tuple is 〈j,i,v[i]〉).

ProcA ProcB

out〈j,i〉 in〈?, ?〉,x
i = x.2

while(i--) while(i--)

out〈j,i,v[i]〉 in〈x.1,i,?〉, y[i]

Fig. 1. Streaming protocol

15

The receiver uses the run identifier and the sequence number to query the
data space for each array element.

There are four security properties relevant to this protocol. The first property
is authenticity, the sender (resp. receiver) may require that its partner be
a particular process. Thus both parties may have to be authenticated to one
another. Privacy protects the data exchanged against disclosure, this means
that each value v[i] must be hidden from processes other than the designated
receiver. Integrity implies that no process should interfere with the protocol,
e.g., by outputting tuples that the designated receiver believes to have been
placed by the designated sender. And finally, availability to ensure that no
process other than the receiver may remove a tuple containing a v[i] from
the space, as this would prevent the receiver process from continuing.

Linda-based coordination models can not provide such security guarantees.
The very nature of generative communication allows a malicious process to
mount attacks against every one of these properties. We proceed to show
examples of secure protocols in our calculus.

4.2.1 Message Privacy

The simplest example is one where two processes exchange data that no other
process should read. For this, secure spaces operations can be viewed as pro-
viding protection analogous to cryptography. In order for two process to be
able to exchange private messages, they need to share a symmetric key. The
following configuration is an example,

(new aa)
(

out 〈 aa : e 〉 | P | in 〈 〉 x .Q
)

If process Q holds the key aa then it may retrieve the payload of the object
〈 aa : e 〉. Of course, nothing prevents another process from matching the object
with the empty template, thus disrupting the protocol. A malicious process
may also copy the object and try to replay it later, but this can be prevented
by traditional means such as adding a nonce to the data.

4.2.2 Message Authenticity

Guaranteeing authenticity of messages in open networks is often by digitally
signing messages with the private key of the sender. The sender’s public key
may then be used to check that the message is authentic and that its con-
tents are intact. We adapt this idea to secure spaces, using pattern match-
ing. To sign an object 〈 ~f 〉 with the key ab, the sender process executes

sign(out 〈 ~f 〉, ab, ba). The intuition is that a signed object contains an extra
signature field which matches the signed object’s payload. So, that in order

16

to authenticate the message, the receiver needs only extract the signature and
match it with the message. The sign function is defined as,

sign(out 〈 ~f 〉, ab, ba)
def
=

(new c′c′)(new cc) outmark(〈 ~f ab : cc cc : 〈 inverse(~f) ba : cc cc : cc 〉 〉, c
′
c′)

cc, c
′
c′ 6∈ fn(~f)

The auxiliary function mark is defined inductively on values,

mark(〈 ~f 〉, c′c′) = 〈mark(~f, c′c′) c′c′ : c
′
c′ 〉

mark(ℓ : v ~f, c′c′) = ℓ : mark(v, c′c′) mark(~f, c′c′)

mark(ℓ, c′c′) = ℓ

mark(?, c′c′) = ?

The function’s role is to add an extra field to all objects in ~f . The auxiliary
function inverse is defined inductively on values as follows,

inverse(〈 ~f 〉) = 〈 inverse(~f) 〉

inverse(ℓ : v ~f) = ℓ : inverse(v) inverse(~f)

inverse(ℓ) = ℓ

inverse(?) = ?

The inverse function creates a matching replica of the payload of the message
by recursively inverting all field labels. In an implementation of secure spaces
the inverse function would have to be built-in, and would not be made directly
available to untrusted process as it could be used to construct templates with
keys to which the process does not have access. The mark function is used
to to tie the value to its signature so that the signature may only be used to
match the value and vice versa. This prevents misuse of the signature.

To illustrate the signing of a message, consider the output term

sign(out 〈 dd : d′
d′′ d′

d′′ : 〈 dd : ? 〉 〉, ab, ba)

Here the signed message will be the object

17

(new c′c′)(new cc) out 〈 dd : d′
d′′

d′
d′′ : 〈 dd : ? c′c′ : c

′
c′ 〉

ab : cc

cc : 〈 dd : d′
d′′ d′′

d′ : 〈 dd : ? c′c′ : 〈 〉 〉 ba : cc cc : cc c′c′ : c
′
c′ 〉

c′c′ : c
′
c′〉

Notice that the payload is intact, but there are two extra fields, the first is
locked under the private key ab and contains a fresh symmetric key cc, the
second locked under cc contains an almost exact replica of the object except
that all asymmetric keys have been replaced by their inverse and that the
field locked under cc holds an empty object. The c′c′ field has been added for
technical reasons, without it a process could use the signature as a template.

The receiver process has in its possession the public key ba. To authenticate
a message, the receiver will use authenticate(e, ba) .P which blocks if e does
not evaluate to a message signed by ab. The definition of authenticate is

authenticate(e, ba) .P
def
=

out e ⊕ (e.ba) : (e.ba) |

in e.(e.ba) x . (out x.(x.ba) | in (x ⊕ (x.ba) : (x.ba))y .P)
)

The variables x and y are chosen so that the do not occur free in P .

A message is considered authentic if an only if, it has exactly the same num-
ber of fields as when it was signed and all of the field values are authentic.
Luckily, pattern matching performs this check. We have constructed two ob-
jects that should be identical, modulo asymmetric keys, and we will use each
of them in turn as a template to match the other. If both matches succeed
then the message is authentic and P can proceed. If we consider the example
term given above, let e = 〈dd : d′

d′′ d′
d′′ : 〈 dd : ? c′c′ : c

′
c′ 〉 ab : cc cc : 〈dd : d′

d′′

d′′
d′ : 〈 dd : ? c′c′ : c

′
c′ 〉 ba : cc cc : cc c′c′ : c

′
c′〉 c′c′ : c

′
c′〉 the selection expression

e.(e.ba) yields the signature 〈 dd : d′
d′′ d′′

d′ : 〈 dd : ? c′c′ : c
′
c′ 〉 ba : cc cc : cc c′c′ : c

′
c′ 〉.

As such these objects do not match because of their cc fields. The object ex-
tension expression e⊕(e.ba) : (e.ba) overwrites the value of that field and makes
the object match one another. Thus it is easy to check that

e ⊕ (e.ba) : (e.ba) ≤ e.(e.ba)

and

e.(e.ba) ≤ e ⊕ (e.ba) : (e.ba)

both hold.

18

The encoding is not entirely correct as a third party might disrupt the protocol
by inputing one of these objects using an empty template. The solution to
prevent accidental matches is to protect the objects with an o-lock. The correct
encoding of authenticate is thus,

authenticate(e, ba) .P
def
=

(new cc)
(

out (〈 cc : e 〉@cc) ⊕ (e.ba) : (e.ba) |

in 〈 cc : e.(e.ba) 〉@cc x . (out 〈 cc : x.(x.ba) 〉@cc |

in (〈 cc :x 〉@cc) ⊕ (x.ba) : (x.ba) y . P)
)

This encoding ensures that only the object yielded by e is considered for
authentication, and P will proceed if the object has been signed with key ab.

4.2.3 Secure Channels

To ensure integrity and availability, an abstraction of secure channels should
be provided. A secure channel is a communication abstraction between two
processes that ensures no other process may read or write to that channel.
We will demonstrate how to set up a secure channel between two arbitrary
processes P and Q using the secure space primitives. Our only assumption
is that one of the processes, for instance P which we call the initiator of the
protocol, knows the other process’ public key, e.g., ab. This process will set up
a secure channel by first executing the establish(x, ab, cd, dc) protocol, where x
is the channel identifier, ab is the interlocutor’s public key, cd is the initiator’s
public key and dc the corresponding private key. Once a connection has been
established, the processes can use send(x, e) to send an object e over secure
channel x an recv(x, e) to receive an object from the secure channel.

The implementation relies on o-locks to protect the data being exchanged, so
that for every send(x, e) there is an out e@ℓ for some shared key ℓ. The crux
of the protocol is to guarantee that ℓ is not divulged. The encoding of the send
and receive operations are quite simple. If we assume that ℓchn is a symmetric
key and that x will evaluate to an object with a ℓchn field containing the shared
key used to for that particular channel, then the encoding of the operation is:

send(x, e)
def
= out e@(x.ℓchn)

recv(x, e, y) .P
def
= in e@(x.ℓchn) y .P

To establish a session the initiator will create a symmetric key that will be
used in the o-lock and output an object 〈 ab : 〈 ℓpub : cd ℓchn : d′

d′ 〉 〉 containing
its own public key (locked under ℓpub) and the channel key (locked under ℓchn).

19

This information is itself locked with the public key of the other process (ab).
The whole object is signed with the initiator’s private key (dc). The initiator
then waits for an acknowledgment message which it authenticates with the
other party’s public key. The acknowledgment is expected to contain a ℓchn
field.

establish(x, ab, cd, dc) .P
def
=

(new d′
d′)

(

sign(out 〈 ab : 〈 ℓpub : cd ℓchn : d′
d′ 〉 〉, dc, cd) |

in 〈 〉@d′
d′ x . authenticate(x, ab) .P

)

A process willing to accept a secure connection will run the accept(x, ba) pro-
tocol, where x will be used as the channel identifier and ba is a private key.
The protocol starts by reading an object that matches 〈 ba : ? 〉, that is to say,
an object with at least a field locked under the public key ab. The process ex-
tracts the ℓpub field from that object and uses it to authenticate the message.
The next step of the protocol is to extract the value of the ab field and bind
it to variable x. Finally, the protocol sends x as an acknowledgment signing
it with it own private key.

accept(x, ba) .P
def
=

in 〈 ba : ? 〉 y . authenticate(y, (y.ba).ℓpub) .

(new cc)
(

out (y.ba)@cc | in 〈 〉@cc x . (sign(send(x, x), ba, ab) | P)
)

4.3 Memory Management for Shared Spaces

Memory management is an important issue for shared data space implemen-
tations. This, partly because spaces are long lived data structures, so any
accidental memory leak will persist, but also because of the danger of denial
of service attacks. Generative communication precludes traditional garbage
collection techniques since unlike pointer based data structures there is no
clearcut concept of reachability in a shared space. One partial solution to this
problem has been adopted by JavaSpaces [11], namely to associate a time-to-
live (TTL) with each object deposited in a JavaSpace, once the TTL reaches
0, the object is removed from the space and its memory is reclaimed. While
this policy may work well in some cases, it still does not prevent one or more
processes to mount a denial of service attack. Furthermore the TTLs presup-
pose that it is possible to estimate beforehand how long a particular object
will be useful. Such estimates are of course very difficult. In some cases, it
may be more appropriate to be able to reclaim all the objects generated by a
particular process. For example, if a process violates a security policy, all of

20

the objects it placed in the space might need to be reclaimed. For other appli-
cations, it may be desirable to clean up any object left over after a particular
protocol run.

Clearly some flexibility is required. Secure spaces allow to implement all of
these policies as user-level programs. In other words, there is no need to
hardwire any particular policy. Instead different applications can run different
memory reclamation algorithms concurrently. The key to a user-level imple-
mentation is twofold. Firstly, the extra information needed for reclamation,
e.g., TTLs or ownership, must be encoded in each object so that it is accessible
to the collector but transparent from the application. Secondly, uncooperative
applications should not be able to trick the collector, nor should the reclama-
tion algorithm be able to gain information about the contents of the objects
is collecting.

4.3.1 Tagged Object Collection

The simplest of memory reclamation schemes is for each application to volun-
tarily tag every object it outputs, with a time-to-live for instance, and every
so often to run a collector process that locates all objects with a particular tag
and removes them from the space. The idea is simple, every output term will
be marked by executing tag(out e, aa), where aa should be a fresh symmetric
key that will play the role of a tag (e.g., a TTL). Then to reclaim all objects
tagged with aa, the process need only execute collect(aa).

The encoding of these operations is straightforward. Tagging implies the cre-
ation of a fresh symmetric key ℓGC and extension of the output object with
the s-lock ℓGC : aa. Using a new label guarantees that the field is hidden from
other processes and also prevent an attacker from trying to overwrite the field
with a fake tag. In parallel with the output, a second process is started. This
process performs the garbage collection. It first tries to input a trigger object
o-locked with aa. It then proceeds to reclaim one tagged object, and releases
outputs the trigger to allow further collection. The encoding of the collect(aa)
is then simply to output a trigger object to start the collection. It is inter-

tag(out e, aa) = (new ℓGC)
(

out e ⊕ ℓGC : aa |

in 〈 〉@aa x . (out x | in 〈 ℓGC : aa 〉)
)

collect(aa) = out 〈 〉@aa

Table 5: Marking and collection.

esting to note that tagging can be performed without gaining any knowledge
about the contents of the object being tagged. This approach is quite flexible,

21

multiple tags can be applied to the same object without risk of interference,
and the applications that operate on the object need not be aware that tags
are present. This means that different collection policies may be composed.

4.3.2 Object Revocation

Tagging is a basic mechanisms that can be used to implement collection poli-
cies. One example policy is revocation on exit, that is, when an application
terminates all of the objects it generated that are still in the shared space
must be removed. To reclaim objects in the shared space, it is necessary to be
able to differentiate between objects that belong to distinct applications. We
define a translation scheme that marks each application with a different key.
Thus in the case we have two processes P and Q, the term [[P]] pp

| [[Q]] qq

denotes the composition of the two processes where all outputs are properly
tagged as defined in the table below. Revocation of a process simply entail
invoking collect(pp).

[[out e]] aa
= tag(out e, x)

[[in e y . P]] aa
= in e y.[[P]] aa

[[(new bc)P]] aa
= (new bc)[[P]] aa

[[P | Q]] aa
= [[P]] aa

| [[Q]] aa

[[!P]] aa
= ! [[P]] aa

[[0]] aa
= 0

Table 6: Process marking.

4.3.3 Hygienic Protocols

Another reclamation policy is to enforce protocol hygiene, that is to say each
protocol run must ensure that no outstanding message is left in the shared
space after the protocol’s end. A technique for ensuring hygiene is to rely on
a post protocol clean up scheme. The idea requires that each participant in a
protocol tags all of outputs that belong to a given run. And when the protocol
completes successfully or aborts, a clean up procedure is invoked. A hygienic
protocol is declared with newprot aa, where aa is a fresh protocol name. For
each message of the protocol, the sender simply writes out eaa

. The protocol
can then be closed by endprot aa. The encoding of these operations is simple.
All outputs in the protocol are tagged and when the protocol terminates a
collection is triggered.

22

out eaa

def
= tag(out e, aa)

(newprot aa)P
def
= (new aa)P

(endprot aa)
def
= collect(aa)

Table 7: Hygienic protocols.

One interesting point about these marking schemes and the associated col-
lectors is that they are compositional. Several collection algorithms may run
concurrently in the same secure space without application interference. The
collectors are trusted to the point of being able to reclaim objects but no more;
in particular, they cannot observe information contained in the objects that
they collect.

4.4 Summary

We have presented Secure Spaces – a coordination model that extends gen-
erative communication with fine grained access control primitives. We have
shown that these primitives are adequate for implementing more powerful se-
curity mechanisms, and that we have lost none of the expressiveness of Linda.
We now turn to the question of practicality and argue that our extensions can
be efficiently implemented and used in a mainstream programming language
such as Java.

5 The SECOS Coordination Infrastructure

Secure spaces have been implemented in Java. The implementation, termed
SecOS, was originally conceived for and used in the JavaSeal mobile agent
platform [4] as an agent communication mechanism for untrusted agents run-
ning on the same platform. The implementation is a single machine imple-
mentation. We have experimented with extensions for a distributed setting,
but several issues dealing with the secrecy of keys remain open. This sec-
tion overviews the SecOS interface and then discusses implementation and
efficiency considerations.

23

5.1 Secure spaces in Java

The public interface of SecOS has been kept simple and small. The three
classes shown in Figure 2 are the only classes visible to users of the system.
SSpace implements the shared data space, space objects are represented by
the class SObject and finally labels are represented by the SKey class.

Data spaces are created with the factory method makeSSpace which returns a
reference to a data space. In the current implementation, only one data space
can be created in each virtual machine. To ensure this, the SSpace constructor
is not public. Spaces have three public methods, out to output an object, in
to perform a destructive read, and read to perform a non-destructive read.
inp and readp are non-blocking variants of the above operations, they return
null if the template could not be matched.

The SObject class is an immutable container. Once an object has been created
it is guaranteed not to change. Immutability is an essential property for the
implementation, as the shared space builds indices that rely on the fact that
the keys and values in an object are not modified after it is inserted in the

public final class SSpace {
public synchronized void out(SObject);

public synchronized SObject in(SObject);

public synchronized SObject read(SObject);

public synchronized SObject inp(SObject);

public synchronized SObject readp(SObject);

public SSpace makeSSpace();

SSpace();

}

public final class SObject {
public SObject();

public Serializable select(SKey);

public SObject add(SKey, Serializable);

public void olock(SKey);

}

public final class SKey implements Serializable {
static public SKey makeSymKey();

static public SKey[] makeAsymKeys();

SKey();

}

Fig. 2. SecOS public classes.

24

space. An SObject contains an array of fields that are key-value pairs. The keys
must be a SKey instance while the value are subtypes of Serializable. An
SObject can be extended with additional fields by invoking the add method;
this returns a copy of the original object. Values can be selected from an object
by invoking select with a key as argument. If the object contains a field locked
with that key, then the corresponding value will be extracted, otherwise null

is returned. Finally, an object can be locked with the olock method. This
method takes a key as argument and returns a new object o-locked under that
key.

The SKey class stands for symmetric and asymmetric keys. There are no public
operations on keys. Keys are created by two factory methods makeSymKey and
makeAsymKeys, the latter returns a two key array containing both asymmetric
keys.

Since a Java virtual machine allows untrusted code to inhabit the same address
space as the implementation of SecOS, some security measures are necessary.
All three classes in the interface are final to prevent attacks that use subtyping
to inject malicious code into the kernel. Furthermore, the design of SecOS

ensures that it is not possible for user code to modify the state of the SecOS

system by other means than invoking the public methods in the interface. It
also ensures that no user code will execute within the SecOS kernel. The
first property is obtained by enforcing that values exchanged between the user
code and the kernel is either immutable or copied. Thus, objects and keys
are immutable, and field values are serialized. Serialization ensures that there
is no sharing of mutable values between application and kernel. The use of
serialization also means that object equality checks are performed without
running the methods of these objects, instead the default bitwise comparison
of serialized values is used.

Recursive pattern matching is not implemented in the current system, and the
SObject class does not implement the Serializable interface.

5.1.1 A Streaming Protocol

A streaming protocol transfers an ordered sequence of messages between ap-
plications. This protocol is a representative example of generative communi-
cation. We give a straightforward implementation in SecOS consisting of two
methods streamOut to output a vector of objects to the space, and streamIn

to read the ordered vector from the space. An example of these methods is,

SKey sid = SKey.makeSymKey();

streamOut(space, sid, new SObject(), values);

Vectors results = streamIn(space, sid, new SObject());

// we have results.equals(values)

25

The streamOut method is shown in Figure 3. The method takes four argu-
ments, a space, a key, a template object and the vector of values to transfer.
The key streamID is the identifier for this particular run of the protocol. It
should be distinct from any other instance of the same protocol. The method
begins with the creation of new key, valKey, to be used as the label for value
fields. The first object output is a header,

〈START STREAM : streamID, streamID : valKey〉

The static variable START STREAM is globally visible key. Every element of the
val vector will then be output together with a sequence number in the format

〈streamID : i, valKey : val.elementAt(i)〉

The stream is terminated with the object

〈streamID : i+1, END STREAM : END STREAM〉

void streamOut(SSpace space, SKey streamID, SObject obj, Vector val) {
SKey valKey = SKey.makeSymKey();

space.out(obj.add(START STREAM, streamID)

.add(streamID, valKey));

for(int i=0; i<val.size(); i++)

space.out(obj.add(valKey, val.elementAt(i))

.add(streamID, new Integer(i)));

space.out(obj.add(streamID, new Integer(i+1))

.add(END STREAM, END STREAM));

}

Fig. 3. Procedure for sending an ordered sequence of objects.

On the receiving end, the streamIn method shown in Figure 4 takes three
arguments, a space, a stream identifier and a template object. It starts by
reading the header object and extracting valKey. The method matches objects
using the streamID and sequence number. The end of stream is detected when
an object has a non-null END STREAM field.

While this protocol is effective in transferring an ordered sequence of objects
between cooperating processes, it is still susceptible to interferences. An un-
related process may input an element of the stream using an empty template;
then the protocol gets stuck on a missing value.

The solution to prevent interferences is to use o-locks. In fact, the template
argument of the two methods allows us to reuse the code to implement a

26

Vector streamIn(SSpace space, SKey streamID, SObject template) {

SObject first = space.in(template.add(START STREAM, streamID));

SKey valKey = first.select(streamID);

Vector values = new Vector();

int i = 0;

while(true) {
SObject msg = space.in(template.add(streamID, new Integer(i++)));

if (msg.select(END STREAM)== null)

values.add(msg.select(valKey));

else break;

}

return values;

}

Fig. 4. Procedure for reading an ordered sequence of objects.

secure stream. All that is needed is to call the method with matching o-locked
templates. Consider the following invocation,

SKey[] ks = SKey.makeAsymKeys();

streamOut(space, streamID, new SObject().olock(ks[1]), val);

streamIn(space, streamID, new SObject().olock(ks[2]));

Every value output by streamOut will be a copy of the o-locked object new

SObject().olock(ks[1]), where ks[1] is an asymmetric key. Every value in-
put by streamIn will use a template that extends new SObject().olock(ks[2]),
where ks[2] is the inverse of the key used for output.

5.2 SecOS Implementation

The two basic space operations, out and particularly in, are bottlenecks for
the performance of secure spaces. We describe our approach to an efficient
implementation and then give some performance results.

The main efficiency problem for any of the shared data space infrastructures
is the matching of tuples that occurs during the in operation. In SecOS,
matching is even more difficult than in Linda due to the extended pattern
matching rules: order irrelevant and shorter templates may match a longer
object. Linda implementations can at least disregard tuples of different lengths
during matching.

27

The first step to making the secure space operations efficient is to have a fast
inequality test. Since for any given query we expect most objects not to match
the template, it is essential to be able to prune the search space efficiently. To
achieve this, each SObject has two associated fingerprints. Fingerprints are
bit strings with the property that if two objects match, o ≤ o′, then fp(o) is a
subset of fp(o′). We use one 64 bit fingerprint to summarize an object’s keys
and another for its values. The fingerprints are computed by compacting every
key and value down to a single bit. The implementation uses the hashCode()

function. Both fingerprints are thus computed as follows,

for (int j = 0; j < keys.length; j++) {
keysFP = keysFP | (1 << (keys[j].hashCode() %64));

if (val[j] != null)

valsFP = valsFP | (1 << (val[j].hashCode() %64));

}

An SObject contains two arrays, one with keys and the other with values.
Values can be null if the field was set to the wild card (? in the calculus).

The fast inequality test for an object sobj and a template templ is thus simply,

(templ.keysFP == (templ.keysFP & sobj.keysFP)) &&

(templ.valsFP == (templ.valsFP & sobj.valsFP))

If the test is negative then we know for sure that template templ cannot
match with object sobj. A positive answer only indicates that there might be
a match.

The second objective for efficiency is to avoid having to compare a template
against all objects in the space. The SecOS implementation uses a binary
search tree to prune the search space. Each object is associated with a 16 bit
summary, computed as the union of the keys and values fingerprints,

short summary(long vfp, long kfp) {
short sum = 0;

for (int i = 0, j = 0; i < 64; i += 4, j++)

sum = sum | (((7<<i)& vfp) << j) |

(((7<<i)& kfp) << j);

return sum;

}

This 16 bit value is used to choose a leaf in the search tree where to store the
object (it prescribes a path in the binary tree). The search tree is built lazily
and empty branches are removed when detected in queries.

For any given query, with a template object templ, the search algorithm first
computes the summary of templ. This summary will be used to prune the

28

search space. If bit n of the summary is 1, then we need only visit one branch
at level n of the tree, if it is 0 both branches must be taken.

For any given query, we compute a 16 bit summary for the template object
and use that summary to drive the search procedure. We need to visit only
leaves that may match the template. The search space is further pruned by
keeping, at each non-leaf node of the tree, the union of all fingerprints that
have traversed that node. An inequality test is performed comparing this union
with template’s fingerprints. If they fail to match then the search need not
proceed further down this path. When a leaf node is reached the list of objects
at that node is searched reverse order of insertion.

The current implementation is tuned for moderately large spaces, on the order
of 20K objects. We have constructed synthetic benchmarks to evaluate per-
formance and scalability of the basic operations. The benchmark results are
summarized in Figures 5-7. The tests were run on a dual 800Mhz Intel PIII
machine with 512MB main memory using the IBM 1.3.0 virtual machine.

The first benchmark measures performance of the in operation for data spaces
of different sizes. The secure spaces are populated with randomly generated
objects and the measure shows the average time for the in of the last in-
serted object. For each space size we measured average times of 1000 different
queries with different object and template sizes and characteristics. Perfor-
mance is shown in operations per second. The results are relatively constant
with respect to space size with rates above 90Kops/sec in all cases.

The second benchmark assess performance of the read operation. It measures
the average cost of locating an arbitrary object in the data space. The perfor-
mance drops significantly as the space size grows which is surprising as one
would expect read to be faster than in (it does not have to update the inter-
nal data structures). Analysis of the data reveals that the median cost read

is indeed slightly less than in, but the average is pulled down by the extreme
values. The main difference between the two benchmarks is that we are not
retrieving the last inserted object, instead we query for random objects in the
data space. So, in the worst case we have to traverse and check the complete
list of SObjects stored at a leaf node. For spaces of smaller than 10K objects
we can nevertheless expect more than 30Kops/sec.

The last benchmark measures the performance of the streaming protocol pre-
sented in Section 5.1.1. The measure indicates the average time for construct-
ing an object, writing it to the space, then constructing a template and re-
trieving a matching object. The data shows that for spaces up to 30K objects,
it is possible to exchange more than 3K objects per second.

29

Data space size

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

0 20000 40000 60000 80000 100000

0
20

00
0

60
00

0
10

00
00

Fig. 5. Performance of the SecOS in operation.

Data space size

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

0 20000 40000 60000 80000 100000

0
20

00
0

60
00

0
10

00
00

Fig. 6. Performance of the SecOS read operation.

Data space size

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

0 20000 40000 60000 80000 100000

0
20

00
0

60
00

0
10

00
00

Fig. 7. Streaming protocol.

30

6 Related Work

Pinakis proposed a solution for secure directed communication in a Linda
distributed environment [22]. His approach is based on a new data type called
a ticket. Tickets are similar to capabilities of the Amoeba operating system,
a message containing a public ticket can only be matched by the appropriate
private ticket. Our work can be viewed as a generalization of this approach.

Minsky et al. present a law-governed approach to controlling interactions in
tuplespaces in which Prolog rules specify constraints on the behavior of dis-
tributed agents interacting through a shared tuplespace [19]. Security of the
overall system is enforced by controller running on secure co-processors at each
client site. The main difference with our work is that the rules governing a
system must be agreed upon by mutual concensus and are static, whereas in
our approach different parts of a shared space can implement different access
control policies and modify these policies dynamically.

Klaim is an effort to extend the shared space model with protection [20]. The
approach taken prioritizes static verification of security. Processes manipulate
tuples at abstract locations in a network. Access control policies specify what
a process can do at each site, e.g., whether it can read or write tuples. At
each site a type checker analyses the code of process to deduce its intentions
– the set of access rights that it actually needs at the location – and only
accepts a process on a site if it does not require more rights than permitted by
the security policy for that site. Static security analysis is useful in many cir-
cumstances since it avoids the need for mechanisms at runtime. Nevertheless,
static verification is hardly sufficient in the Internet context. Firstly, there are
no guarantees that a process loaded is not subsequently modified by an at-
tacker to exceed the privileges accorded to it. Secondly, there is no centralized
allocator process that all clients can trust. Klaim is better suited to a local
area networked system with a single trusted administrator and where ma-
chines can be protected from tampering from users. In addition, access rights
in Klaim are used to control a process reading or writing tuples at a site; they
do not control access to individual tuples. This restricts the flexibility of the
mechanism since protocols such as secure channels or memory management
cannot easily be programmed.

Our model has many similarities to the sealed object proposal by Gifford where
objects are protected by sealing them with keys [14]. Gifford’s proposal aims
to guarantee secrecy and authentication for objects in a distributed system.
Secrecy is enforced by the property that an object can only be unsealed, to be
read or modified, by furnishing the correct key; authentication means that keys
cannot be fabricated so once an object is sealed, only the correct matching key
can unseal it. Our model also implements these properties. Gifford’s proposal

31

is aimed at distributed systems made up of mistrusting nodes, where data
must be encrypted as soon as it leaves a site. Gifford’s basic key model is
richer than that of Secure Spaces. As well as symmetric and asymmetric keys,
objects can be sealed with a key quorum or indirect key. A key quorum is a set
of keys used to seal an object, where a specified number of keys from this set is
sufficient to unseal the object. An indirect key is generated from another key
and can unseal an object sealed with the base key. The base key associated
with an indirect key can be changed, which simplifies key management in the
system. A key quorum and indirect keys can be used to model capabilities
and access control lists. The main difference in approaches is that Gifford’s
proposal is implemented with cryptography, while in SecOS the checks are
performed by the kernel.

Another system with similarities to ours is the spi calculus by Abadi and Gor-
don [1]. This is an extension of the π-calculus with primitives that encrypt and
decrypt messages sent over channels. Though scope in π is powerful enough to
express access control over channel names, encryption is awkward to express.
Adding encryption primitives allows one to reason about the secrecy and au-
thentication of security protocols. In secure spaces the inclusion of locking
primitives is a matter of necessity rather than choice, because of the visibility
of spaces to processes. Further, since the shared data space model is still a
non-standard communication means, we chose to address more attention to
language design issues, rather than to studying proof systems for verification
of security properties.

The role of subsumption and types in the matching process has received much
attention recently. The Laura system, for instance, is a WAN service archi-
tecture based on the shared space model [26]. One reason why the shared
space paradigm is exploited is that it allows services to join and leave the
system dynamically. Services place offers in the space which are matched with
requests. An offer or request is an interface form that matches if the type of
the service is a subtype of the requestor’s. Alice is the type system employed
for matching these interfaces [24]. Dami also investigates type inference for
generative communication [9].

As regards implementing the shared object paradigm in Java, we can men-
tion JavaSpaces [11] and Jada [8]. Jada is one example of the shared space
paradigm being used to coordinate mobile agents: it is employed in the PageS-
pace agent architecture [7]. Neither Jada nor JavaSpaces were designed with
security issues in mind. Though keys can be employed to protect items in the
tuple from agents, this can only be done using encryption algorithms, even for
agents executing within the same JVM, which is too inefficient for generalized
use.

Sun’s JavaSpaces [11] has support for memory management. In this system,

32

a process associates a lease with a tuple that it deposits in the tuple space;
the lease specifies the life span of that tuple. This policy is hardwired into
the implementation; the question of how reasonable limits for objects are de-
termined is not addressed. It is quite likely that different applications will
require different leases; leases can vary for some several seconds to several
weeks, months or even longer. In JavaSpaces, the garbage collector is exe-
cuted within the trusted computing base of the tuple space, so it cannot be
refined to implement application specific policies.

There are many Linda variants in the literature. Multiple tuple spaces are the
most relevant to our work [6,13,16,25]. Multiple tuple spaces models permit
dynamic creation of new tuple spaces and exchange of tuple spaces as values
between processes. While multiple tuple spaces can be used to provide secure
communication channels, there is no clear solution to issues such as partial
protection, key distribution or memory management.

7 Conclusions

The goal of the work presented in this paper is to exploit the advantages of the
Linda programming model in a setting where the components being coordi-
nated can not be fully trusted. Our model allows for security – by controlling
access to the objects stored in shared space – and for space management –
by allowing objects to be safely removed by a garbage collector. Our solution
in the SecOS coordination infrastructure is to use fine grained access control
based on locking. An object field that is locked with a key can only be read
with the matching key. Keys are also essential in the pattern matching process
as they can be used to hide certain objects.

We developed a core language for secure spaces and presented its semantics.
Spaces are the sole process communication mechanism in this language, and
object locking is enforced by the semantics. We have also implemented the
model in Java, and argued that the implementation is efficient. The SecOS

implementation is being used in the context of the JavaSeal mobile agent
system [4]. Each agent platform on the network possesses a space which is
used by agents that arrive at the site to communicate with services and static
agents. Our current work is aimed at improving efficiency and at a distributed
implementation with cryptographic protection for objects exchanged over the
Internet.

33

References

[1] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The
Spi Calculus. In Proceedings of the Fourth ACM Conference on Computer and
Communications Security, Zürich, April 1997, 1997.

[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulations for the
Asynchronous π-Calculus. In U. Montanari and V. Sassone, editors, CONCUR
’96, volume 1119 of LNCS, pages 147–162. Springer-Verlag, Berlin, 1996.

[3] G. Boudol. Asynchrony and the π-calculus (Note). Rapport de Recherche 1702,
INRIA Sofia-Antipolis, May 1992.

[4] C. Bryce and J. Vitek. The JavaSeal Mobile Agent Kernel. In D. Milojevic,
editor, Proceedings of the 1st International Symposium on Agent Systems and
Applications, Third International Symposium on Mobile Agents (ASAMA’99),
pages 176–189, Palm Springs, May 9–13, 1999. ACM Press.

[5] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of Linda
coordination primitives. Theoretical Computer Science, 192(2):167–199, Feb.
1998.

[6] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus Linda. In P. Ciancarini,
O. Nierstrasz, and A. Yonezawa, editors, Object-Based Models and Languages
for Concurrent Systems, volume 924 of LNCS, pages 66–76. Springer-Verlag,
Berlin, 1995.

[7] P. Ciancarini. Agent Coordination in PageSpace. In G. C. Roman and
C. Ghezzi, editors, Proc. ESEC Workshop on Mobility and Network Aware
Computing, Zurich, CH, 1997.

[8] P. Ciancarini and D. Rossi. Jada: Coordination and Communication for Java
Agents. In J. Vitek and C. Tschudin, editors, Mobile Agent Systems: Towards
the Programmable Internet, volume 1222 of LNCS, 1997.

[9] L. Dami. Type Inference and Subtyping in Higher-Order Generative
Communication. In D. Tsichritzis, editor, Object Applications. University of
Geneva, 1996.

[10] R. DeNicola and R. Pugliese. A Process Algebra based on Linda. In
P. Ciancarini and C. Hankin, editors, Proc. 1st Int. Conf. on Coordination
Models and Languages, volume 1061 of Lecture Notes in Computer Science,
pages 160–178. Springer-Verlag, Berlin, 1996.

[11] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and
practice. Addison-Wesley, Reading, MA, USA, 1999.

[12] D. Gelernter. Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, Jan. 1985.

34

[13] D. Gelernter. Multiple Tuple Spaces in Linda. In E. Odijk, M. Rem, and J. Syre,
editors, Proc. Conf. on Parallel Architectures and Languages Europe (PARLE
89), volume 365 of LNCS. Springer-Verlag, Berlin, 1989.

[14] D. K. Gifford. Cryptographic Sealing for Information Secrecy and
Authentication. Communications of the ACM, 25(4):274–286, Apr. 1982.

[15] K. Honda and M. Tokoro. On Asynchronous Communication Semantics. In
M. Tokoro, O. Nierstrasz, and P. Wegner, editors, Object-Based Concurrent
Computing. LNCS 612, pages 21–51, 1992.

[16] S. Hupfer. Melinda: Linda with Multiple Tuple Spaces. Technical Report RR
YALEU/DCS/R-766, Dept. of Computer Science, Yale University, New Haven,
CT, 1990.

[17] R. Jellinghaus. Eiffel Linda: an Object Oriented Linda Dialect. ACM Sigplan
Notices, 25(12), December 1990.

[18] S. Matsouka and S. Kawai. Using Tuple Space Communication in Distributed
Object Oriented Languages. In Proc. ACM Object Oriented Programming,
Systems, Languages and Applications (OOPSLA 88), 1988.

[19] N. Minsky, Y. Minsky, and V. Ungureanu. Safe tuplespace-based coordination
in multi agent systems. Journal of Applied Artificial Intelligence, 15(1), 2001.

[20] R. D. Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A Kernel Language for
Agents Interaction and Mobility. IEEE Transactions on Software Engineering,
24(5):315–330, May 1998. Special Issue: Mobility and Network Aware
Computing.

[21] G. P. Picco, A. L. Murphy, and G.-C. Roman. Lime: Linda Meets Mobility. In
D. Garlan, editor, Proceedings of the 21st International Conference on Software
Engineering (ICSE’99), pages 368–377, Los Angeles, CA, USA, May 1999. ACM
Press. Also available as Technical Report WUCS-98-21, July 1998, Washington
University in St. Louis, MO, USA.

[22] J. Pinakis. Providing directed communication in Linda. In Proceedings of the
15th Australian Computer Science Conference, pages 731–743, 1992.

[23] A. Polze. The Object Space Approach: Decoupled Communication in C++.
In Proc. Technology of Object-Oriented Languages and Systems (TOOLS 93),
1993.

[24] R. Tolksdorf. Alice - Basic Model and Subtyping Agents. Technical Report
1993/7, The Technical University of Berlin, 1993.

[25] R. Tolksdorf. Coordinating Java Agents with Multiple Coordination Languages
on the Berlinda Platform. In IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 1997.

[26] R. Tolksdorf. Laura: A Service-Based Coordination Language. Science of
Computer Programming, 31, 1998.

35

