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Abstract
We present a new concurrency control abstraction

for real-time systems called preemptible atomic regions
(PARs). PARs a transactional mechanism that improves
upon lock-based mutual exclusion in several ways. First,
and foremost, PARs provide strong correctness guaran-
tees. Any sequence of operations declared atomic will not
suffer interference from other threads, even in the pres-
ence of programmer errors. In spite of this, PARs can be
preempted by high priority tasks; this is essential to the
minimization of blocking times. We have implemented
PARs in a uniprocessor real-time Java virtual machine and
evaluated their utility on a number of programs. The re-
sults suggest that programs that use PARs, depending on
their semantics, can run faster and experience less jitter
than those that use locks.

1 Introduction
The Real-Time Specification for Java (RTSJ) [5] is de-

signed to allow programmers to engineer large scale real-
time systems in a modern, type-safe programming envi-
ronment. Features such as memory safety, checked ex-
ceptions, and a rigorously specified memory model, make
Java a good programming language for developing mis-
sion critical applications. In spite of these benefits, con-
currency control remains one area where Java has not sub-
stantially advanced the state of the art. To build concur-
rent programs, it is still necessary to use lock-based criti-
cal sections, which are widely recognized as too complex.
Data races, deadlocks and violations of atomicity provide
a wealth of opportunities for programmers to make mis-
takes; furthermore, coarse-grained use of locks increases
blocking time unnecessarily.

The difficulties in using concurrency in real-time set-
tings have been studied extensively. Programmers are

trained to keep critical sections short. They must rely on
strict programming and runtime protocols to avoid diffi-
culties; for example, priority inheritance is used to avoid
priority inversion [17]. Unfortunately, these approaches
do not scale well when working with modern, mission
critical, distributed real-time embedded (DRE) systems.
DRE applications in domains such as avionics and on-
board computing are configured from millions of lines of
source code; this makes it difficult for them to provide the
kind of assurances that small-scale systems can typically
make.

In this paper, we propose a concurrency control abstrac-
tion which we call a preemptible atomic region (PAR).
PARs are a restricted form of software transactional mem-
ory [10, 18, 9] that provide a convincing alternative to
mutual exclusion monitors. It consists of a sequence of
instructions which is guaranteed to execute atomically. If
a higher-priority task is released, the effects of the PAR
are undone and the high-priority task gets to execute as if
the lower-priority task never ran at all. Once the lower-
priority task is scheduled again, the PAR is transparently
re-executed. The advantage of this approach is that high-
priority tasks get to execute quickly. In fact, the blocking
time of a thread is, at worst, equal to the longest critical
section in a lower-priority thread. Other significant ad-
vantages of PARs include the absence of data-races and
the fact that no other priority inversion avoidance tech-
nique is needed.

The PAR design leverages the uniprocessor nature of
the majority of real-time embedded systems to achieve
a number of benefits. Code within a PAR can manipu-
late memory in place. The original contents of heap loca-
tions written within a PAR are logged in an undo buffer;
this is the only additional overhead during their execution.
When an abort occurs, the aborting thread must block
while the undo buffer is written back to memory. The PAR
design provides two important guarantees. First, a thread
may, at most, trigger a single abort; the overall number of
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aborts is restricted to, at most, one per context switch. An-
other important property of PARs is that deadlocks cannot
occur. A worst case execution time analysis of atomic re-
gions can verify that all threads make progress and that no
deadline will be missed.

The remainder of this paper is structured as follows.
Section 3 gives a short introduction to the Real-time Spec-
ification for Java and discusses some synchronization is-
sues specific to RTSJ (mostly dealing with interaction be-
tween the non-RT parts of the language and RT code).
These issues motivate our proposal. Section 4 presents
preemptible atomic regions in detail and discusses the is-
sues involved in the integration of PARs into a JVM. Sec-
tion 6 presents a response time analysis for PARs under a
preemptive scheduler. Section 7 describes our validation
experiments, which consisted of micro-benchmarks and
application level performance evaluation. Section 8 sur-
veys related work and Section 9 presents our conclusions.

2 An Introduction to PARs
This section introduces preemptible atomic regions and
contrasts them with lock-based concurrency control
mechanisms.

Figure 1 is a simplified extract from a queue-based
thread pool implementation. The method leader-
Exec() in the class ThreadPoolLane places an in-
coming Request onto the queue requestBuffer
(a.4). If a processor is free, it will dequeue (and exe-
cute) the Request when it is next scheduled. The code
is taken from the Zen real-time ORB [13].

This example make extensive use of synchronization.
The method leaderExec() is synchronized (a.1) to
ensure that multiple threads cannot concurrently access
the method of the ThreadPoolLane on which it will
be invoked. The second use of locks is around lines a.4
and a.5; it ensures that the length of the queue is consis-
tent with numBuffered. This cannot be accomplished
with the lock on the ThreadPoolLane because there
may be other methods (not pictured) that are not synchro-
nized on the ThreadPoolLane object, but that access
the requestBuffer queue and numBuffered. The
final use of locking in this example occurs inside of the
implementation of the Queue class: the enqueue()
method relies on a private object (a.7) to protect the up-
dates to the queue (a.12)1.

1This is a fairly common idiom in Java: an internal object is used for
synchronization internal to the object because external code needs to use

We contrast this with an implementation that uses pre-
emptible atomic regions. As mentioned above, a PAR ex-
ecutes atomically. While it is executing, it logs the orig-
inal contents of locations to which it writes; these val-
ues are then restored if the thread is preempted before
the PAR ends. To the preempting thread, it appears as
if the code had not executed at all. Aborted atomic re-
gions are silently reexecuted until they successfully com-
mit. The programming model is intentionally simple; in
most cases, monitors can be exchanged for atomic regions
with minimal changes to the program. Atomic regions are
declared by annotating a method as @PAR; they are active
for the dynamic scope of the method, so all methods in-
voked by a method declared @PAR are transitively atomic.

In Figure 1.b, we use two atomic sections: one for
the leaderExec() method (b.1) and another for the
enqueue() method (b.5). The first PAR is sufficient
to prevent all data races within leaderExec(); it is
therefore unnecessary to obtain a lock on the queue. If
enqueue() were only called from leaderExec(), it
would not need to be declared atomic; however, as men-
tioned above, it is declared atomic to allow use in a non-
atomic calling context.

The solution that uses atomic regions is simpler and
easier to prove correct, as it does not rely on multiple
locking granularities. A single PAR will protect all ob-
jects accessed within the dynamic extent of the annotated
method. Contrast this with the lock-based solution, where
all potentially exposed objects must be locked. Further-
more, the order of lock acquisition is critical to prevent
deadlocks. On the other hand, PARs cannot deadlock:
they do not block waiting for each other to finish.

Moreover, PAR-based mechanisms avoid three major
costs found in typical locking protocols:

• Lock Acquisition Overhead. The first time a lock
is acquired, one or more allocations may need to
be performed. Additionally, whenever a lock is ac-
quired or released, several locking queues need to be
maintained; these determine who is “next in line” for
the lock. In contrast, a PAR entrance only needs to
store a book-keeping pointer to the current thread.
When a PAR exits, the only overhead is the reset of
the log; this consists of a single change to a pointer.

• Nesting Overhead. Every nested lock that needs
to be acquired incurs an additional overhead. For
example, in Figure 1.a, the program will perform
three lock acquisitions and three lock releases for

the Queue object for (unrelated) synchronization.
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class ThreadPoolLane {
1. synchronized leaderExec(Request task){
2. if (borrowThreadAndExec(task))
3. synchronized(requestBuffer) {
4. requestBuffer.enqueue(task);
5. numBuffered++;

}
...

} }

class Queue {
7. final Object sObject = new Object();
8. void enqueue(Object data) {
9. QueueNode node=getNode();
10. node.value=data;
11. synchronized(sObject) {
12. // enqueue the object

} } }

class ThreadPoolLane {
1. @PAR leaderExec(Request task){
2. if (borrowThreadAndExec(task))
3. requestBuffer.enqueue(task);
4. numBuffered++;

...
} } }

class Queue {
5. @PAR void enqueue(Object data) {
6. QueueNode node=getNode();
7. node.value=data;
8. // enqueue the object

} }

(a) With Monitors. (b) With Preemptible Atomic Regions

Figure 1: Example: A ThreadPoolLane from the Zen ORB. (Simplified)

each invocation of leaderExec(). On the other
hand, because PARs can only conflict with other
PARs, nested PAR entrances and exits may be ig-
nored. In Figure 1.b, only two PAR operations (an
enter and a commit) will be performed on a call to
leaderExec().

• Context Switching Overhead. Lock-based im-
plementations also tend to have greater context-
switching overhead. Consider the code in Fig-
ure 1.a with three threads: t1, t2 and a higher-
priority thread t3. Thread t1 can acquire the
lock on sObject and be preempted by Thread
t2, which then synchronizes on requestBuffer.
Now, assume that Thread t3 attempts to execute
leaderExec(). This scenario can result in five
context switches. The first one occurs when t3 pre-
empts t2. The second and third occur when the sys-
tem switches back to t2 so that it can release the
lock on requestBuffer. Finally, the fourth and
fifth switches occur when the system schedules t1
so that it can release the lock on sObject.
Under the same conditions, the use of PARs only re-
quires one context switch. If t2 preempts t1 while
it is in an atomic section, then t1 will be aborted,
and any changes it might have made will be un-
done. When t3 is scheduled, it needs only undo the
changes performed by t2 to make progress. This

does not require a context switch, as t3 has access
to the log.

By comparison, PAR-based mechanisms incur two ma-
jor costs that lock-based implementations do not. First,
all writes to memory involve a log operation that records
the current contents of the location being written. Sec-
ond, if another thread preempts a thread that is executing
a PAR, all changes performed by that thread will have to
be undone; the heap will be restored based on the values
stored in the log. Therefore, whenever writes are sparse,
the overheads for a lock-based solution will be higher than
those of the PAR-based solution. In our experience, aborts
are cheap, because critical sections typically perform few
writes.

PARs are not a solution to every concurrency control
problem. Critical sections that contain long sequences of
updates will perform better with conventional locks. Fur-
thermore, input/output operations cannot readily be reex-
ecuted. In spite of these shortcomings, we have found that
in the majority of cases we have studied, applications that
are written to use PARs outperform the same application
using locking protocols.

Perhaps more importantly, we have found that PARs
provide greater assurances against programmer error than
locks do. Programmers are faced with the need to include
more and more functionality in real-time systems. This
necessitates the use of “black box”-style component use,
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which makes it difficult to reason about the semantics of
a given program. As can be seen from our example, PARs
are easier to compose than locks are: it is much easier
to reason about the interaction of PARs across multiple
program components than it is for locks. By making it
easier to analyze the interaction of components, PARs can
mitigate some of these difficulties.

3 Real-time Java
The RTSJ was designed by Sun Microsystems and a con-
sortium of over 40 companies [5]. While the first re-
lease of the RTSJ specification appeared in 2000, it is
only recently that production implementations have be-
come available. The implementation discussed in this pa-
per is based on the Purdue Ovm virtual machine frame-
work [1].

One of the notable advantages of the RTSJ is that it is
possible to implement mixed-mode systems in which real-
time and non-real-time tasks can co-exist. The integration
of the two programming models, while not seamless, rep-
resents a pragmatic engineering compromise. The real-
time extensions are backward-compatible with the rest of
the Java programming language and require no changes to
the tool chain (e.g., the IDE or the compiler). Thus, adopt-
ing real-time Java does not require forsaking libraries or
legacy code. Instead, it is possible to implement the (typ-
ically small) real-time portion of an application using the
real-time extensions, and to use standard Java for the rest.

For programmers, the main difference between Java
and the RTSJ is that within real-time code, memory
management is performed using a region-based memory
model in which regions can be deallocated in constant
time without requiring a garbage collector. Standard Java
objects are still garbage collected, but they live in a seg-
regated portion of memory. This has a number of impli-
cations for concurrency control, some of which are dis-
cussed below.

In our experience, RTSJ applications can contain up to
several hundred threads, all of which have to be scheduled
carefully to ensure that all deadlines are met. As usual,
in order to ensure schedulability, it is necessary to bound
both the time required to execute the thread up to the end
of the current period, as well as the thread’s blocking time
(i.e., the time a thread can spend while waiting for locks
held by other threads). Computing blocking time requires
considering a number of factors:

• Critical section execution time. It is necessary

to estimate the longest time a thread may block by
bounding the length of any given critical section.
Object-oriented language features such as dynamic
binding, together with the use of components, com-
plicate the task of accurately estimating worst case
execution time.

• Priority inversion. Priority inversion [14, 6] can be
prevented by a number of well known techniques. In
the RTSJ, every Java object is equipped with a lock
that implements priority inheritance and can option-
ally support priority ceiling emulation. Supporting
priority inheritance is not trivial. Let us assume that
a high priority thread τh wants to acquire a mutual
exclusion lock `1, and a low priority thread τl that
currently holds it. Assume also that τl is waiting on
a lock `2. Priority inheritance requires that the thread
that holds `2 have its priority raised. In addition to
this, priority inheritance must be applied transitively
to any thread that holds a lock waited for by any
priority boosted thread. This creates a ripple effect:
boosting the priority of any blocked thread implies
finding the lock on which it is waiting and boosting
the priority of the thread holding that lock. These
problems are compounded in Java, where applica-
tions and library code use locking frequently; as a
result of this, the code needed to support priority in-
heritance imposes a non-negligible runtime penalty.

• Blocking on Plain Java Threads In real-time Java,
a real-time thread may (accidentally or deliberately)
have to wait for a lock held by a non-real-time
thread. Because very few Java libraries have been
implemented with predictability in mind, a real-time
program that uses them may block for an arbitrary
length of time.

• Blocking on Garbage Collection. Real-time Java
distinguishes hard real-time threads from (softer)
real-time threads: the former are not allowed to read
references to heap objects. This restriction is meant
to ensure that a hard real-time thread will never have
to wait for the garbage collector. Unfortunately, it
is possible to set up a scenario in which a hard real-
time thread blocks on a lock held by a soft real-time
thread, which then blocks on a lock held by plain
Java thread. If memory is exhausted while the plain
Java thread is executing, the hard real-time thread
will be blocked for the duration of garbage collec-
tion.
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The motivation for our work is to simplify the task of
reasoning about critical sections by providing a concur-
rency control abstraction that minimizes these problems
and attempts to avoid undue blocking delays and catas-
trophic interference between the real-time and the non-
real-time parts of a RTSJ environment.

4 Preemptible Atomic Regions
In Section 2, we introduced PARs and described their
high-level semantics. Here, we elaborate on some of the
ideas introduced in that section, and provide more detail
on their semantics and operation. We also describe some
of their shortcomings.

As seen in Figure 1, PARs can be declared by annotat-
ing a method @PAR. A PAR is active during the dynamic
scope of such a method. Nested PARs are permitted, but
no additional action is taken when program control en-
ters or exits them. If a thread within one or more nested
atomic regions is aborted, all of the changes performed
by the outermost PAR are rolled back, and program exe-
cution will restart from the outermost PAR.

Since no other threads can see the effects of a PAR in
progress, it is safe to abort a thread at any time. In our
implementation, atomic methods are aborted every time a
higher priority thread is released. Note that this reflects
an extremely conservative view of what it means for two
critical sections to conflict. This approach has two major
implications. First, it reduces blocking time. Specifically,
when a high-priority thread is released, it will only ever
block for as long as it takes to abort one atomic region.
Second, it implies that only one PAR will ever be active at
any given point. Thus, an implementation only needs to
maintain a single undo log. If an implementation needed
to increase opportunities for concurrency, it could abort a
PAR only when two threads actually interfere, i.e., read
from or write to the same locations. This would make it
harder to bound blocking time.

As observed in Section 2, PARs have several other sig-
nificant benefits. For example, unlike lock-based concur-
rency control mechanisms, they cannot suffer from dead-
lock. In addition, there can be, at most, one abort per
context switch.

In our implementation, the use of atomic regions intro-
duces several costs. There is only one significant memory
overhead: a single system wide log is preallocated with a
user defined size (with a default of 10KB). There are sev-
eral computational overheads. First, when control enters
a PAR, it is necessary to store a reference to the current

thread. Within the PAR, each time the application writes
to memory, two additional writes are issued to the log:
the original value of the location, and the location itself.
The commit cost is limited to resetting the pointer into
the log. The cost of undoing consists of traversing the
log in reverse, which has the effect of undoing all writes
performed within the critical section, and then throwing
an exception. This process is described in more detail in
Section 5.

As a result of these design decisions, computing the
worst-case execution time (WCET) of a program that uses
PARs is no harder than computing it for a program that re-
lies on locks. The greatest difference is the need to obtain
a bound on the number of writes performed within a crit-
ical section. Doing so will give a bound on both the undo
costs and the logging overhead.

PARs are not necessarily appropriate for all cases in
which concurrency control is necessary. They tend to be
widely applicable for real-time code because the major-
ity of critical sections found in real-time code are short.
PARs are not suited to long-running critical sections, as
an abundance of writes will cause the log to overflow. As
we cannot detect which critical sections will be short, our
implementation supports a degraded mode of execution in
this case – the thread runs with interrupts turned off.

There are other limitations on the use of PARs. In our
implementation, native code and I/O should not be exe-
cuted within a transaction, as we do not have a way to
undo their effects automatically. In many common cases,
it is unclear what the semantics of an undo would be: what
does it mean, for example, to undo a write to the termi-
nal? Blocking operations (such as calls to wait() and
notify()) should also be avoided within PARs.

In cases where PARs are inappropriate, programmers
may still use traditional locks. The interaction between
the two is straightforward.

5 Implementation
Preemptible atomic regions are a special case of a transac-
tional memory system [10]. The four essential operations
for any kind of transactional memory system are reads
and writes of memory, aborts and commits.

In our implementation, a read can access memory di-
rectly. This is safe because there can be only one atomic
region executing at a given time, though it may be nested.
A memory write operation incorporates additional in-
structions that append the memory location and its origi-
nal value to an undo buffer.
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When a PAR is aborted, the corresponding abort op-
eration goes through the undo buffer (atomically) in back-
ward chronological order. As it does so, it writes the con-
tents of the buffer out to memory, thus restoring mem-
ory to its original state. After this is done, the abort sets
a pending AbortedFault for the current thread. The
commit operation commits the actions performed in an
atomic region. In our implementation this operation is
free, as writes are performed directly on memory.

For example, consider a program with two zero-
initialized variables. If the instructions x=1;
y=1; x=2 were executed, the log would con-
tain (addressOf(x):0,addressOf(y):0,
addressOf(x):1). If an abort then took place, there
would be a write of 1 to x, then a write of 0 to y, and
finally a write of 0 to x; both variables would then contain
their initial values. The runtime cost of an abort is thus
O(n), where n is the number of writes performed by the
transaction.

In traditional transactional systems, a conflict manager
is required to deal with issues such as deadlock and starva-
tion prevention. PARs are not subject to these limitations.
Thus, conflict detection is only required when a thread is
ready to be released by the scheduler. The scheduler is
invoked to switch from the currently executing thread t1
to a new thread t2. First, the scheduler checks the status
of t1. If it is in an atomic region, the scheduler releases
t2, which then executes the abort operation. If t1 is in
an atomic region that is already in the process of aborting,
the abort must complete before thread t2 is released. In
either case, the pending AbortedFault will be thrown
when thread t1 is scheduled again.

5.1 Integration with the Virtual Machine
The system described above has been integrated into the
Ovm real-time Java virtual machine [1]. Ovm can exe-
cute code with an optimizing ahead-of-time compiler, a
just-in-time (JIT) compiler, or an interpreter. Since we
are mostly concerned with embedded systems, the discus-
sion focuses on Ovm’s optimizing ahead-of-time config-
uration. While PARs have a simple semantics, their inte-
gration into a feature complete RTSJ VM is not trivial.

The first phase of our implementation is VM indepen-
dent: the Java bytecode of the application (the interme-
diate representation read by a Java virtual machine) is
rewritten. Ovm translates implicit PAR operations em-
bedded in the bytecode into a low-level API, inserting ex-
plicit calls to operations such as commit and abort. Af-

void f() {
while (true) {

try {
try {

PAR.start();
f$();

} finally { PAR.commit();
PAR.exit(); }

} catch (AbortedFault ) {
continue; }

break;
}

}

Figure 2: Code transformation for a method @PAR void f.
The body of the original method is moved into a new synthetic
method named f$.

ter this, the optimizing ahead-of-time compiler is used to
translate the bytecode into native code. Some changes
had to be made to the virtual machine’s kernel to support
the transactional semantics required by PARs. This sec-
tion describes these changes, as well as the support imple-
mented in the underlying VM.

5.2 Bytecode rewriting
The first step in compiling an application that uses PARs
is to rewrite its bytecode. In our implementation, adding
the annotation @PAR to a method ensures that it will be
executed in a PAR; the implementation employs meta-
data annotations as introduced in Java 1.5. We transform
any method f() with this annotation into a new method
named f$(). 2. A new f() method, as seen in Figure 2,
is added to the class; all of the original calls to f() will
invoke this method instead of the original method.

A transaction starts with an invocation of start();
this method enters a PAR and begins the logging process.
The logged version of the original method is then exe-
cuted. Upon successful completion, commit() is exe-
cuted. This method is enclosed in a finally clause to
ensure that the transaction commits even if the method
throws a Java exception.

To deal with the consequences of an abort, we pro-
vide the class AbortedFault. When an abort oc-

2This name was chosen because method names cannot end with the
’$’ character in Java source code.
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curs, the AbortedFault is thrown by the virtual ma-
chine. This exception class is treated specially by the vir-
tual machine and does not follow normal Java semantics.
This avoids two problems. First, the finally clauses
in the dynamic scope of a PAR must not execute if the
code throws an AbortedFault. In Ovm, finally
clauses are implemented as exception handlers that catch
a pointer to any object that is a subtype of Throwable.
In order to ensure that the finally clause is not exe-
cuted when a PAR aborts, at the VM level, the type of
AbortedFault is modified, by the runtime system, so
it is not a subtype of Throwable. Second, methods
that may be called within the dynamic scope of a PAR
may have originally contained their own PARs. Those
PARs will have their own AbortedFault handlers. Be-
cause an abort terminates every active PAR, these han-
dlers must not be allowed to catch an AbortedFault.
To avoid this, our whole-program analysis (described in
the next section) removes any exception handlers that
catch AbortedFault within the dynamic scope of a
PAR.

5.3 Code generation
Our implementation performs a whole program analysis
to determine which methods may be called within the dy-
namic scope of a PAR.3 It then duplicates these methods
and appends the $ character to their name. Method invo-
cations within the scope of the PAR block are then rewrit-
ten to call these duplicate methods. Finally, all code that
may be executed within the dynamic scope of a PAR is
rewritten so that every write to memory is also logged into
an undo buffer.

At runtime, at each write in a PAR, the original value of
the location being written is stored in an array; the writes
to the array are performed in ascending order. When a
PAR is aborted, the contents of the log are restored to
memory in descending order. This has the effect of “un-
doing” the writes performed by the thread (as described
in Section. 4).

A logging operation is redundant if it logs a location
whose value has already been stored. In practice, Ovm
need not emit logging instructions for redundant stores.

3As discussed earlier, every method invocation can dispatch to mul-
tiple implementations. We use a reaching type analysis and dead code
elimination to obtain a conservative approximation of the actual set of
called methods that can be called within a PAR. For our benchmark suite
we have observed approximately 10% code blow up due to method du-
plication. We believe that this could be reduced with more sophisticated
static analysis.

However, because experimental results do not show much
potential performance improvement from this optimiza-
tion (because there are typically few writes in PARs), we
did not implement it.

Our PAR implementation does not log local variables.
Doing so would introduce a great deal of overhead, espe-
cially as locals are frequently stored in registers. Methods
marked @PAR will be reexecuted in their entirety, resulting
in the automatic reinitialization of local variables.

5.4 Scheduling
Ovm performs its own priority preemptive scheduling
without assistance from the operating system. We adapted
the scheduler to support PARs. When the scheduler initi-
ates a context switch, the contention manager is invoked.
As described above, when the manager aborts an ongo-
ing transaction, it flags the low-priority thread as requir-
ing an abort. The scheduler is responsible for throwing an
AbortedFault when a flagged thread is scheduled.

Implicit in our design is the notion that only one PAR
may be active at a time. This implies that our implemen-
tation of PARs would not work on a multi-processor ma-
chine. However, this is not tremendously limiting in a
real-time context.

5.5 Non-retractable Operations
One of the challenges for the implementation of PARs on
top of a virtual machine is that some of the operations
performed by the kernel of the VM must not be undone.
We call such operations non-retractable.

First, user level data structures that are not specific to
the thread currently running (such as timers or event coun-
ters) must not be reset, as they are logically unrelated to
the transaction.

Second, much of the modification of kernel state that is
internal to the VM must be treated as non-retractable. For
example, in several places, Ovm employs self-modifying
code. Fortunately, Ovm’s design maintains a clear separa-
tion between kernel and user code; it is therefore possible
to identify kernel code and compile it without logging.

Finally, there are subtle cases of interactions between
kernel and application data structures which require spe-
cial handling. As an example, consider string interning:
the creation of a single canonical version of a string for
use by the entire VM. String construction takes place in
user code, so interning cannot simply be compiled with-
out logging. If an abort takes place after a String is in-
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terned, it leaves a pointer from the kernel to an ill-formed
(rolled-back) user object.

There are only a small number of similar situations in
Ovm (another is class initialization). We deal with these
on a case-by-case basis by introducing partial commits.
When a partial commit starts, it checks if the thread is
currently in a transaction; if it is, the position in the undo
log is recorded. When it exits, it again checks if a trans-
action is in progress; if it is, the undo log position will
be restored to its earlier value. The net effect is that any
user-level changes performed within the dynamic scope of
a partial commit will not be undone when an abort occurs.

5.6 Reflective method invocation
In real-time Java, reflection is relatively pervasive. As a
result, it is necessary to log reflective methods that may
be invoked within a PAR. Ovm relies on an explicit list
of methods that may be called reflectively. Using this in-
formation, the system creates logged versions of all re-
flectively invoked methods. The call sites of reflective
methods within PARs are altered to invoke these logged
methods. If we were to support JIT compilation the log-
ging versions of reflective methods would be generated
on-demand. However, JIT compilation is not an option
for our target applications.

5.7 Memory management
Our implementation of PARs employs a single, system-
wide undo log. The log is preallocated in immortal mem-
ory and is not resized; objects allocated in immortal mem-
ory live until the end of the application and are never sub-
ject to garbage collection. This requirement implies that
it is necessary for the size of the log to be known a priori;
however, since PARs are designed for a real-time envi-
ronment, we do not consider awareness of the memory
constraints to be a drawback. Our implementation leaves
room for the log size to be determined by the programmer.

Real-time threads execute within memory regions that
are not garbage collected. The size of allocation regions is
fixed. If an object is allocated within a PAR, and the PAR
is aborted, the memory will be leaked. If a transaction is
repeatedly aborted, it is conceivable that the region may
run out of memory entirely. A solution to this problem is
to undo the effect of allocation. All memory allocated
within a transaction can be returned when the transac-
tion exits. What is needed here is for the implementation
of start to record the value of the allocation pointers

in all regions that are accessible to the currently execut-
ing thread. When a thread enters a new region while a
transaction is active, the allocation pointer of that region
is also recorded. The abort operation resets the allo-
cation pointers to their previous value. This procedure
does not interact with the partially committed transactions
mentioned above, because classes and interned string ob-
jects are allocated in immortal memory.

Ordinary Java threads run in the garbage collected
heap. If a similar leak occurs in such a thread, we can rely
on the garbage collector to reclaim the lost memory. For
these threads, the GC may be triggered within the scope of
a PAR. If this is the case, the transaction is aborted before
the GC is run.

5.8 Early Commits

An early commit occurs if the changes performed by a
PAR are committed before the end of the PAR. This op-
eration can be useful if it is determined that it would be
more costly to undo the PAR than to let it complete. This
might occur, for example, near the end of a long-running
PAR.

Of course, once such a commit has been issued, the
thread executing the PAR cannot be preempted. In such
scenarios, it is possible for the compiler to emit code that
runs the PAR in non-preemptible mode. The benchmarks
given in the paper do not use early commits.

Finalizers The RTSJ allows objects to have finalizers
and ensures that finalizers are run when the contents of a
region are reclaimed. While it is feasible to undo finaliz-
ers, they add a degree of unpredictability to the execution
of PAR methods. The use of finalizers is therefore dis-
couraged in transactional code that employs scoped mem-
ory. In general, finalizers are quite rare in Java code, and
extremely difficult to use. The reasons for this are quite
well-documented [4].

In the RTSJ, finalizers are run on exit from a scope.
Because we do not roll back allocation, a constructor may
occur inside a PAR, have its actions rolled back by an
abort, and then have the finalizer run on that object. In
effect, finalizers for objects that have been rolled back will
be executed as though the object’s constructor crashed.

However, it should be noted that finalizers must gener-
ally be written defensively. For example, if an exception
can be thrown from a constructor, then a finalizer must
take this into account.
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6 Response Time Analysis
We outline a response time analysis for PARs for a prior-
ity preemptive scheduler. Assume a set of n periodic tasks
scheduled according to the rate monotonic scheme [11].
Each task τi performs a job Ji. A job has period pi such
that ∀i < n, pi < pi+1 and a worst case execution time
Ci. There is one critical section per job, and the criti-
cal section always ends before the job finishes. For each
job, Wi is the maximal execution time spent in a critical
section and Ui is the maximal time needed to perform an
undo. Ri is the worst case response time of a job Ji. Tasks
with higher priority π than τi are hp(i) = {j | πj > πi},
and ones with lower priority are lp(i) = {j | πj < πi}.

Given that a task τi suffers interference from higher pri-
ority tasks and blocking from lower priority tasks, the re-
sponse time is computed as Ri = Ci +Bi + Ii, where Ii
is the maximum interference time and Bi the maximum
blocking factor that Ji can experience [12]. The schedu-
lability theorem is the following.

Theorem 1 A set of n periodic tasks τi, 0 ≤ i < n is
schedulable in RM, iff

∀i ≤ n, ∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui +Wi)

The worst case interference of Ji with higher prior-
ity tasks, plus extra execution time needed to reexecute
some critical sections are computed as follows. Given that⌈

Ri

pj

⌉
is the maximal number of releases of a higher prior-

ity task τj that can interfere with a task τi, we can compute

the number of releases of τj in Ji as
∑

j∈hp(i)

⌈
Ri

pj

⌉
. The

most pessimistic approximation of how many rollbacks
can occur is to assume that every interference implies a
rollback of a critical section in Ji. Hence, every time a
higher priority task τj preempts Ji, Cj is the worst case
execution time of τj during which Ji is preempted and
thus not progressing, and Ui +Wi is the worst case time
necessary to undo and reexecute the critical section of Ji

preempted.
This section provides a response time analysis for PARs

for a priority preemptive scheduler (the default in RTSJ
and our applications). Let us assume we have a set of pe-
riodic tasks that are scheduled according to the rate mono-
tonic scheme [11]. Tasks share a set of locks `1 . . . `k;

when a task is released, it can contain several critical sec-
tions covered by a lock `i, 0 ≤ i < k. A task always
releases all of its locks before the end of the current pe-
riod. Critical sections are not nested. We assume that at
most one task can be executing at any instant.

We use the following notation, assuming a set of n
tasks. Each periodic task τi performs a job Ji. The period
pi of task τi is such that ∀i < n, pi < pi+1. Furthermore,
in the rate monotonic priority scheme (RM), the shorter
a thread’s period, the higher its priority; thus, the priority
of task i, πi is such that ∀i < n, πi > πi+1. Ci is the
worst case execution time of a job Ji. Wi is the maximal
execution time Ji spends in a critical section protected by
one of the locks `1 . . . `k (this can be alternatively formu-
lated as the worst case execution time for the correspond-
ing preemptible atomic region). Ui is the maximal time
needed to perform an undo for any preemptible region of
the job. Ri is the worst case response time of a Ji. The
set of indices of tasks that have higher priority than τi are
hp(i) = {j | πj > πi}. The set of indices of tasks that
have lower priority than τi are lp(i) = {j | πj < πi}.

Given that a task τi suffers interference from higher pri-
ority tasks and blocking from lower priority tasks, the re-
sponse time is computed as Ri = Ci +Bi + Ii, where Ii
is the maximum interference time and Bi the maximum
blocking factor that a job Ji can experience [12].

Theorem 2 (PAR Schedulability) A set of n periodic
tasks τi, 0 ≤ i < n is schedulable in RM, iff

∀i ≤ n,∃Ri : Ri ≤ pi

Ri = Ci + max
j∈lp(i)

Uj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
(Cj + Ui +Wi)

The intuition behind Theorem 2 is as follows. The ex-
pression maxj∈lp(i) Uj represents the worst case delay
caused by rolling back a critical section executed by any
task with priority lower than τi. The delay can have one
of the two following forms:

Execution delay. A job of a lower priority task τj is ex-
ecuting in a critical section when a job of τi is re-
leased. Hence, τi rollbacks the critical section and
Uj is the worst case execution time required to undo
its effects. maxj∈lp(i) Uj is the worst case execution
time required to undo any critical section of a task
with a lower priority than τi.

9



Blocking delay. If a job of a lower priority task τj exe-
cuted in a critical section when a job Jk of a medium
priority task τk was released, then maxj∈lp(i) Uj is
the worst case execution time necessary to undo τj .
Since the abort operation is atomic, τi is blocked
maxj∈lp(i) Uj and preempts τk as soon as it finishes
undoing τj . Once Ji is scheduled, there is no trans-
action active and no effects to be undone, as τk un-
done all effects of τj and has not entered any critical
section.

The worst case interference of Ji with higher prior-
ity tasks, plus extra execution time needed to reexecute
some critical sections are computed as follows. Given that⌈

Ri

pj

⌉
is the maximal number of releases of a higher prior-

ity task τj that can interfere with a task τi, we can compute

the number of releases of τj in Ji as
∑

j∈hp(i)

⌈
Ri

pj

⌉
. The

most pessimistic approximation of how many rollbacks
can occur is to assume that every interference implies a
rollback of a critical section in Ji. Hence, every time a
higher priority task τj preempts Ji, Cj is the worst case
execution time of τj during which Ji is preempted and
thus not progressing, and Ui +Wi is the worst case time
necessary to undo and reexecute the critical section of Ji

preempted. As a critical section is undone by the higher
priority task,

∑
j∈hp(i)

⌈
Ri

pj

⌉
Ui is a part of Ji’s interfer-

ence with higher priority tasks, while
∑

j∈hp(i)

⌈
Ri

pj

⌉
Wi

is an extra execution time. The worst case for undo times
is Ui = Wi; this occurs if all operations within a PAR are
memory writes.

Let us compare PAR with the original priority inheri-
tance protocol (PIP) by Sha et al. [17].

Theorem 3 (PIP Schedulability) A set of n periodic
tasks τi, 0 ≤ i < n is schedulable in RM, iff

∀i ≤ n, ∃Ri : Ri ≤ pi

Ri = Ci +mi max
j∈lp(i)

Wj +
∑

j∈hp(i)

⌈
Ri

pj

⌉
Cj

where mi is the number of critical sections in Ji.

In PIP, the worst case delay of a job Ji caused by lower
priority tasks sharing locks with Ji is proportional to the
number of critical sections in Ji. Moreover, the worst case
delay to enter to a single critical section is bounded by the

worst case execution time of the conflicting critical sec-
tion. In PAR, the worst case delay to enter a single critical
section is bounded by the number of updates to be un-
done. In addition, the overall delay of Ji caused by lower
priority tasks is not dependent on the number of critical
sections in Ji. The cost of PAR is that the overall through-
put is reduced due to the cost of undoing and reexecuting
lower priority threads. While in all the priority inheritance
schemes the cost of sharing locks degrades response times
of higher priority threads through their blocking factor, in
PAR the cost is paid by the lower priority threads in their
higher execution time and interference.

In practice in Java programs the number of threads (n)
tends to be small: usually less than 100. On the other
hand, the number of critical sections (m) is typically large
and the worst case of a critical section can be many mil-
liseconds (W ). Assuming Ui < Wi, the trade-off be-
tween the PIP and PAR formulas is a question of compar-
ing miWj with 2

∑
j∈hp(i)

⌈
Ri

pj

⌉
Wi .

6.1 Response Time Evaluation
In order to compare respective worst case response times,
we created a microbenchmark that runs three tasks: a
high-priority task τhp, a medium-priority task τmp, and
a low-priority task τlp. Each task performs a fixed num-
ber of updates and reads of a shared Hashtable; the setup
is similar to the one in Section 7.1, but has three tasks in-
stead of two, and is not designed to execute an abort in
each period.

We measured C, W and U for these tasks, and used
them to compare the response time analysis for PARs with
that of the priority inheritance (PIP) and priority ceiling
protocols (PCE) [17].

Each task has a single critical section that occupies its
entire runtime. As a result of this, C = W ; therefore,
only C is listed. Figure 3 shows the results. As can easily
be seen, the response time of the high-priority thread in
the PAR configuration is improved at the expense of that
of the low-priority thread.

7 Experimental Validation
We used a number of benchmark applications to evaluate
the usefulness and performance of our implementation of
PARs. These include a microbenchmark (Section. 7.1),
a 110,000 line real-time avionics application developed
by the Boeing company (Section. 7.2), and a real-time
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CORBA server (Section. 7.3). All measurements were
obtained with Ovm running on a 300Mhz Embedded
Planet PowerPC 8260 board with 256MB SDRAM, 32
MB Flash, and Embedded Linux.

7.1 Microbenchmark
We evaluated the response times of high-priority threads
with a program that executes a low and a high priority
thread which access the same data structure, a HashMap
from the java.util package. The low priority thread
continually executes critical sections that perform a fixed
number of read, insert and delete operations on the
HashMap. Periodically, the high-priority thread executes
a similar number of operations. In one configuration, the
accesses are protected by the default RTSJ priority inher-
itance lock implementation. In the other, the accesses
are protected by a PAR. For a PAR-based HashMap, this
produced a high likelihood of aborts. In fact, an abort
occurred every time a high-priority thread is scheduled
(once per frame).

Figure 4 shows the results of the test. The reader will
note two points. First, the latency for the PAR-based
HashMap was lower; this indicates that undoing the low
priority thread’s writes was faster than context switching
to the other thread, finishing its critical section, and con-
text switching back. Second, the response time of the
PAR-based HashMap was more predictable; this is be-
cause it was not necessary to execute a indeterminately
long critical section before executing the high-priority
thread’s PAR.

7.2 A Real-time Avionics Application
PRISMj is a Real-time Java application developed in a
collaboration between the Boeing Company and Purdue

High Medium Low
C 2300 2350 2450
P 13000 14000 15000

R (PAR) 2316 7032 12048
R (PIP) 4750 7100 7100
R (PCE) 4750 7100 7100

Figure 3: Response Time Analysis (in microseconds) for each
priority task of Microbenchmark using PAR, PIP and PCE. Max-
imum measured abort time (U ) is 16 microseconds
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Figure 4: Response time of a high-priority thread in the
HashMap Microbenchmark. The x-axis indicates the number
of periods that have elapsed (frames), and the y-axis indicates
the response time of the high-priority thread (in microseconds).
Lower is better. The graph compares RTSJ locks with PARs,
and indicates that using PARs provides consistently better per-
formance.

University. PRISMj is designed to run on a ScanEa-
gle Unmanned Aerial Vehicle (UAV), a low-cost, high-
endurance UAV developed by Boeing and the Insitu
Group. PRISMj controls components of the UAV dedi-
cated to the Global Positioning System, the airframe, tac-
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Figure 5: PRISMj Results. Comparing the response times of 100 threads split in three groups (high, medium, low) on a modal
workload. The x-axis shows the number of data frames received by the UAV control, the y-axis indicates the time taken by by a
thread to process the frame. Lower is better.
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Figure 6: RT-Zen Results. Comparing the response time for a game server running on top of a Real-time Java CORBA imple-
mentation. There are two thread groups (low and high) handling 300 requests each. The y-axis indicates the time taken by the
application code to process the request. Lower is better.

tical steering, and navigation steering. It runs over 100
threads in three rate groups (20Hz, 5Hz, and 1Hz). These
threads perform different tasks. There is a single infras-
tructure thread which acts as a cyclic executive and pushes
events to components in the physical device layer. Based
on those events, 5Hz and 20Hz threads implement steer-
ing and route computation. The 1 Hz thread simulates
the pilot control component and periodically switches all

components in the system between tactical a navigation
steering. The source code for PRISMj represents approx-
imately 110 KLoc; this number does not include libraries.

The experiment we ran measured the response time
of the special configuration of the PRISMj components
that was instrumented to produce benchmarking data. In
our setup, we refactored the program to use preemptible
atomic regions. The refactoring involved turning 157 syn-
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chronized sections into atomic regions. We measured the
response time of jobs in the three rate groups for the Boe-
ing 1x workload, which is a simulation of the workload
on the UAV. Figure 5 shows the worst response time for
each kind of thread. Tasks are modal and the workload
varies every 20 frames; the change in workload is clearly
visible on the graph. Outliers in the high priority task
were consistent across versions of the VM and remain
within acceptable ranges.

Figure 5 shows that the response times of the high and
medium priority threads were consistently better with pre-
emptible atomic regions. There are few runtime aborts in
this run. One explanation for the improved performance is
that the cost of implementing priority inheritance is high
(and that overhead has to paid frequently as Java programs
acquire locks often). The low priority thread was mostly
unaffected; we assume this is because it does very little
work, making it less likely to be preempted.

7.3 Real-time CORBA
RT-Zen is a freely available, open-source, middleware
component developed at UC Irvine [13] and written us-
ing the Real-time Specification for Java. For this exper-
iment, we use an application which implements a server
for a distributed multi-player action game. The applica-
tion allows players to register with the server, update lo-
cation information, and find the position of all of the other
players in the game. RT-Zen has a pool of worker threads
that it uses to serve client requests. Each worker thread
is assigned either a high or low priority. The code of the
RT-Zen ORB, as well as the demonstration application,
were refactored to employ atomic regions in the place of
synchronization. In total, 30 synchronized blocks were
turned into preemptible methods.

Figure 6 shows the response time of the two categories
of threads for the default version of Zen and our PAR ver-
sion. We measure the time spent in the user code im-
plementing the game server. Five client machines per-
form 300 invocations served by low priority threads and
300 served by high priority threads. The results show that
high priority threads exhibit much better predictability in
response times. Overall, even low priority threads have
fewer outliers.

8 Related Work
Our approach is closely related to other work in transac-
tional facilities for programming languages. Lomet pre-

sented an early design for atomic actions [15]. A num-
ber of later papers investigated the concept of software
transactional memory [10, 18], and provided implemen-
tations with support for undoing operations. Harris and
Fraser [7] described a lightweight transactional model for
Java. Their model is more general than ours, but incurs
overheads that are much higher, and does not provide
real-time guarantees. Bershad investigated atomic sec-
tions [3]; however, the undos in that work were limited to
short sequences without any user defined state. Anderson
et al. [2] described a language independent notion of lock
free objects in real-time systems. In contrast, our work
leverages its integration with the language and compiler
to achieve greater simplicity and efficiency. Harris and
Fraser [8] investigated the concept of revocable locks for
multi-processor systems. Their work does not consider
rollback of state or real-time guarantees. Welc et al. in-
vestigated the interaction of preemption and transactions
on a multi-processor [19], but did not provide any real-
time guarantees. Finally, Rigneburg and Grossman have
developed an atomic extension to the language Caml us-
ing similar implementation techniques and also targeting
uniprocessors [16]. Their implementation does not ad-
dress real-time constraints; it guarantees neither constant-
time logging nor linear time rollbacks.

9 Conclusion
Preemptible atomic regions are an abstraction for control-
ling concurrency in real-time programs. They provide
a model with stronger correctness guarantees than lock-
based synchronization. Experimental results suggest that
PARs incur smaller overhead and experience less jitter
than comparable programs written with traditional lock-
based mechanisms.
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