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Abstract— A memory model based on scoped areas is one ofinstead the entire scope is reclaimed when its contents become
the distinctive features of the Real-Time Specification for Java ynreachable. The main difference with stack allocation is that
(RTSJ). Scoped Types ensure timely reclamation of memory and g.qneg gre first-class entities which can be entered by multiple

predictable performance. The price to pay for these benefits is . . .
an unfamiliar programming model that, at the same time, is threads. The order in which threads enter scopes induces

complex, requires checking all memory accesses, and rewards@ runtime structure on scopes that determines permissible
design-time errors with run-time crashes. We investigate an reference patterns. When a real-time thread executing in scope
alternative approach, referred to asScoped Typeghat simplifies M; first enters scop#ly, SCopeM; becomes the parent of,.
the task of managing memory in real-time codes. The key feature RTSJ semantics guarantees thawill be reclaimed before;,

of our proposal is that the run-time partition of memory imposed . -
by scoped areas is straightforwardly mirrored in the program the lifetime of a nested scope is thus always shorter than that

text. Thus cursory inspection of a program reveals which objects Of its parent. Threads executing in an scope allocate objects
will inhabit the different scopes, significantly simplifying the from the same pool of memory and communicate though
task of understanding real-time Java programs. Moreover, we shared variables. When the last thread exits a scope, the objects
introduce a type system which ensures that no run-time errors ) 1ncated within it are reclaimed. The last-in first-out natures of

due to memory access checks will occur. Thus a RTSJ-compliant . .
virtual machine does not require memory access checks. The scoped memory allows for objects allocated in nested scopes,

contributions of this paper are the concept of Scoped Types, and €-0. M2, to refer objects in their pareng.g. M;, but not the
a proof soundness of the type system. Experimental results will converse as holding on to a reference into a shorter-lived scope

be described in future work. may lead to dangling references, and jeopardize type safety.
To ensure type safety of real-time Java programs, the

following invariants must be maintained at runtime:
The Real-Time Specification for Java (RTSJ) [1] is designed

to allow the construction of large scale real-time systems
in a type-safe programming language. The benefits of using
Java for mission critical systems are currently being evaluated
by, e.g., Boeing [2] and JPL [3]. As of this writing a high- )
quality commercial implementation of the specification has
been released by TimeSys (JTime [4]) and an open sourc%)
virtual machine is being developed at Purdue (Ovm [5]). While
the RTSJ includes many necessary features, the one that is
most likely to affect how real-time Java programs are written is
the new memory management model basedanped memory Maintaining these invariants impose burdens on programmers
areas and increases the potential for bugs as they require reasoning
An obvious concern for meeting hard real-time constraingboutlocalities With the RTSJ, programmers must be aware
in Java is the interaction of automatic memory managememfere an object has been allocated, a piece of information
with real-time tasks. While garbage collection (GC) frees ttbat cannot be obtained straightforwardly by inspection of the
programmer from the burden of tracking memory usage, program text. The result is that scopes are, in our experience,
introduces unpredictability because the timing and duration e main source of program errors in RTSJ programs.
GC pauses is unknown. To address this problem, the RTSWe propose a new programming mechanism caiedped
provides: &) regions of memory which are not subject taTypes designed to support safe scoped memory programming
garbage collection, called scoped memory areasscopes in concurrent real-time systems. Our goal is to devise a
(b) threads that can not access the heap and thus can neetution which does not require changes to the language or
interfere with, or be preempted by, the garbage collectdhe tools that are used to write and run programs (e.g. compil-
Scoped memory areas provide predictable allocation, aers, development environment, and preprocessors) and ensure
ensure that hard real-time threads will not block while memothat programs will not experience run-time access violations.
is being reclaimed. Yet Scoped Types should not impose undue restrictions on
In principle, scoped memory is similar to a cactus-stack [6BRTSJ programs. The underlying motivation for the proposed
[7]. Each scope provides a pool of memory that can be usetchanisms is to keep the cost of adopting low. In fact, we
to allocate objects. Individual objects cannot be deallocatddhve tried to retain the option of translating programs using

I. INTRODUCTION

1) Because a scope can be reclaimed at any time, an outer
scope may not hold a reference to an object within an
inner scope.

To avoid cycles in the scope parent relation, the nesting
structure of scopes is restricted to trees. In other words,
a scope may have at most one parent.

Because scopes can be shared by multiple threads,
objects allocated within a scope cannot be discarded
until all threads have finished using that scope.



Scoped Types into RTSJ programs and running them on la@ allocated there, as objects in immortal memory are never
unmodified real-time Java virtual machine. deleted. Thus, the first action of t@p.run() method is to
To appeal to programmers, our proposal requires minimaeate and enter a new scopgsm That scope will be used to
syntactic overhead and only modest changes to RTSJ pcontain the program’s stable storage. A second scajpeem
grams. With Scoped Types, the run-time hierarchy of scopiesused for temporary storage, so that all the temporary objects
and subscopes is captured in the program text by the statie deleted at the end of each iteration.
hierarchy of Java packages. Thus, to comply with scopedFig. 2 illustrates the main points of the algorithm. The
types, RTSJ programs must be refactored so that objects thgb.main() method is responsible for starting a new real-
are meant to live in the same scope are declared in the saing thread App extendsNoHeapRealtimeThread ). As real-
Java package. While this requires changes to grouping t@he threads may not execute within the heap, the first action
classes and may entail increasing the visibility of some classgtat is performed by that method is to enter immortal memory.
these costs are mitigated by gains in clarity. The definitianote the use of reflectioméwinstance ) to create objects in
and behavior of scoped classes is constrained by six simglferent scopes. Then th&pp.run() method creates a new
rules which taken together ensure that scope access ergyspe to hold the application’s stable store (all state that must
will never occur, and object deallocation will never introducee preserved between iterations is stored in the instance of
dangling pointers. Furthermore, cycles in the scope hierarchigssStateTable ) and starts an instance &unner in the
are impossible. newly created scope.
The contributions of this paper are the following: The Runner.run() method is an example of thecoped
1) A new programming model which providesstatic run loop pattern [8]. The method starts by creating a scope,
correctness guarantees while remaining simaiel es- cdmem to hold temporary objects. Then it repeatedly executes
chewing the need to modify Java in a significant way.the Detector.run() method withincdmem Since there is no
2) Proof of soundnesdiy extracting the essence of scopedther thread contending for that scope, after each iteration the
types in a core object calculus and proving soundnessope is cleared. We remark that theopedMemory object
of the type system. itself remains intact between invocation, as doesitector
One of the difficulties in extending a language such as Java-i®oth are allocated in thmemarea which is not reclaimed
that features interact. This can lead to undesirable side effedes, the lifetime of the application.
even for seemingly simple changes, significantly complicating As can be seen from Fig. 2, although perhaps simple in
the lives of implementers and users. This motivates our choiteeory, RTSJ Scoped Memory is complex in practice. For
of starting with a formalization of scoped types as a proof @xample, in each iteration of the run loop a new frame
soundness is an essential first step to any language extensibject is created along with an aircraft and a position. These
of the kind we are considering here. We are currently implebjects are all allocated in thedmem scope, whereas the
menting support for scoped types in the Ovm RTSJ virtuatate table is in the parembemscope. In order to store a
machine [5] and refactoring several large programs to abidewly detected plane in the state table, the program has to
with the scoped type discipline. reflectively create instances @ircraft and Position  in

. AN EXAMPLE: A REAL-TIME COLLISION DETECTOR the correct fhem scope. For another example, consider that

To illustrate the usage of scopes, we present the example of
an aircraft collision detection algorithm [8]. Collision detection Immortalliemory HeapMemory
is performed by a single real-time thread which receives Rep
a series offramescontaining aircraft call signs along with 2
positions and direction vectors. The output of the algorithm ’ LIS
is a warning each time any pair of aircraft are on a collision &ﬁ

course. We have implemented two versions of the algorithm —

one in plain Java and one in RTSJ. The Java implementation -

is 2500 lines of code of which fewer than 200 lines had to be

adapted to make the program RTSJ compliant. St“e“"&e)}
Collision detection is performed iteratively. ame object

cdmem

containing a number oAircraft  objects is received from ﬁ J @ Scopecemory instance
the sensors once per iteration of the main run loop. The = Scope parenting relation
contents of the frame are used to update a state table and then —> Legal memory reference
compute collision vectors. The RTSJ implementation of the al- iy 1! E] 's;‘;:;’jls::f;"c'at"’"
gorithm uses four scopes, the distinguisihadhortalMemory —% Realtime Thread

and HeapMemory, along with two user-defined instances of
SCOpedMemory . F|g 1 illustrates the memory structure of th¢|g 1. Scopes in the examp|e app"cation_ The mApp Object is
program. While the main objechpp, of the application is allocated in immortal memorimm. Application stable state is held
created in immortal memory, none of the other objects shodftthe scoped aremem per-iteration objects are allocatedddmem



class App extends NoHeapRealtimeThread — { class Detector  implements Runnable {

static void main() { StateTable state;
imm = ImmortalMemory.instance(); void run() {
app = (App) imm.newlnstance( App.class); Frame frame = receiveFrame();
app.start(); } Position pos _in _table =
. state.get( frame.getAircraft());
void run()  { if (pos _n _table == null)  {
LTMemory mem =new LTMemory( ...); mem = MemoryArea.getMemoryArea( this);
mem.enter(  new Runner() ); } Aircraft new  _plane =
] mem.newlInstance( Aircraft.class);
class Runner implements Runnable { frame.getAircraft().update( new _plane);

pos_in _table =

void run .
0 { mem.newlnstance( Position.class);

LTMemory cdmem = new LTMemory( ...); state.put( new  _plane, pos _in _table);
Detector cd =

_new Detector(  new StateTable() ); pos _in _table.update( frame.getPosition());
while ( true ) }

cdmem.enter( cd); } }

}

Fig. 2. The main method of the application is used to bootstrap the real-time task. The run methgpul isfused to set up the application’s
stable store. Th&®unner class holds the application’s main loop. All methods are public unless stated otherwiseLTldssiory is a
particular kind of scoped memory area which guarantees linear time allocation.NZlekeapRealtimeThread is the parent class of all
hard real-time thread classes, it is guaranteed not to interfere with the garbage collector.

the Aircraft.update() method (not shown here), takes atanguage, no compiler changes, and minimal support from the
aircraft as argument and copies the information out of itsafhderlying virtual machine.
into its argument. We were forced to use this tortured design

SO that we can copy data allocated in the inedmem scope Language extensions.Our model distinguishes between two
into an object in the out stable stomemscope. kinds of classes in a real-time Java prograsvoped classes

_ . . _ which are allocated within a particular memory scope, and
Discussion. This complex explanation shows that a larggate classewhich reify memory scopes. Most of the objects in
amount of information about this exf';lrr_]ple IS |mpl|c_|t in theye program are instances of scoped classes, and are allocated
RTSJ code. The memory scopes within which variables ¢ memory scopes. Instances of gate classes turn scopes into
allocated (and therefore to which they can refer) are npfs cjass entities: threads enter memory scopes by invoking
recorded in the text of the program; there is no 'nformat'%ethods of gate objects, and exit scopes when these calls
about the scope that a particular instance of Aeraft oty The key observation is that an object allocated in a
class is stored in, for example. This means that & mingLoneq memory area can only be used in that scope and its
typographical error could go undetected by the compiler, agdgtey subscopes. Thus, we statically restrict the accessibility

then cause a runtime failure during rare circumstances as i}, scoped class to the classes whose instances are allocated
program is run — such as when the program actually detect§ gne same or nested scopes

collision. Similarly, the nesting relationship between tinen,

mem andcdmemscopes is implicit in the code: if thein()

method of theDetector  class attempted to reenter them Integration with Java. To minimize the changes to the
scope, the program would suffeiSaopedCycleException . language, or at least to its syntax and to the tool processing
Finally, the programmer intends all objects contained withih€ language, we take advantage of existing concepts, such as
the cdmemto be discarded after each iteration, but this is ndisibility rules and access modifiers, to integrate Scoped Types

in any way obvious from the code of the program. with Java. Scoped and gate classes are declared by appending
the respective modifiers to class declaratio@sdoped and

@gate), no other annotations are needed. These annotations
are consistent with the Metadata JSR, and will be recognized
by Java 1.5 compilers. We call packages that contain scoped
To make real-time Java programming more reliable and prypes scoped packagesScoped packages are the unit of
dictable, we have developed a type system that can staticalhptection and of allocation. Each scoped package is the static
guarantee the absence of reference assignment errors, enfaepeesentation of a family of memory scopes and defines the
the single parent rule for scopes, and ensure that there cartypes of objects that may be allocated in these scopes. We
no references into the contents of a scope when it is schedulsé nested packages to represent potentially nested memory
to be discarded. Our proposal is referred toSasped Types scopes: a memory scope created by some gate class in a scoped
Scoped Types require the addition of two modifiers to thgackage can only contain nested subscopes defined by gate

IIl. REAL-TIME PROGRAMMING WITH
SCOPEDTYPES



RO package a;
@scoped classA {

}

\ \ package a.b;

@gate classB {
©@ve c
b - }
@scoped classC {
. portal instance [:] Physical memory
—» Legal memory reference — Realtime Thread }
— Backing store association

Fig. 3. A program written with Scoped Types. The program’s static structure consists of two paekagds.b . At runtime two instance
of the gate clasB are created, thus giving rise to two distinct scopes. Notice that gate objectSclifgedMemory instances in the RTSJ,
are allocated in the parent scope. Overall, the code is shorter than the RTSJ version and makes explicit the allocation context of objects.

classes in immediate subpackages. Instances of classes definadencapsulation boundary. More importantly, they ensure
in top-level package are allocated in immortal memory.  that objects allocated in one scope may never have outgoing
inferences to objects allocated in inner scopes, and thus that

Dynamics. While scoped packages describe the static strif#€9alAssignmentError s can never happen. Threads can
ture of an application, restricting programs to a single instan@8!y enter the scopes defined in some package (by calling
of each scope (and thus exactly matching the static packdggthods on gate classes in that package) from the code in
hierarchy) prevents some useful programming idioms. Thus, B¢ immediate super-package. This ensures th_at the hierarchy
runtime, evenyinstanceof a gate class corresponds to a nef memory scopes always follows the same hierarchy as the
memory scope. So an application that creates two gates §gfresponding packages, enforcing the single parent rule and
the same package, gets two distinct scopes which can be ugEgYentingScopedCycleException s.

independently. The type system guarantees that references

across sibling scopes cannot arise, thus objects allocated withgpped Type Confinement Rules. Scoped Types’ static

two instances of the same gate class can safely be reclairggdrantees are enforced by the following syntactic rules that
at different times. A scope’s gate is ttanly object from must hold for all scoped and gate classes. ROE£2, andC3

the scoped package that is visible in the parent package.bind scoped classes, while Rul§4 to S3 bind gate classes.
fact, gates are allocated in their parent scope, just as RT8&Bides the visibility constraints of Rul€d andS1, we also
ScopedMemory objects are allocated in an enclosing area. ThHequire that ¢2) references of scoped type cannot be widened
current allocation context ialways defined by the packageto types in other packages whil€2) the references of gate

in which the current class was defined. Changing allocatidyies cannot be widened to other types. Note that a reference
context is thus as simple as calling a method of an object livisd type C can be widened to type only if C is a subtype of

in a different scope. Concurrency comes in quite naturallyD- Reference widening can happen through operations such as
multiple threads execute in the same scope if they invokeagsignments, casts, and method invocations. The restrictions
method on the same gate. The implementation keeps tr&tk reference widening help us to track references by their
of the number of threads in a scope by a simple reference

counting scheme. Just as in RTSJ, objects within a scope can

be reclaimed when the last thread exits. Fig. 3 illustrates thege A scoped type is visible only to classes in the same

concepts. ¢t package or subpackages.

. ) ] . c2 | A scoped type can only be widened to other scoped
Static guarantees.Our model imposes some static constraints types in the same package.

on the accessibility of classes. We require that scoped classgs .
. K b ibl I he cl defined in thatC3 The methods invoked on a scoped type must be defined
in a package be accessible only 'to the classes defined in that in the same package.

package and its subpackages, while gate classes are only acces- - — :
sible to classes defined in their immediate parent package. Ins1 | A gatde_ ttype IS °”|yk visible to the classes in the
other words, classes amot allowed to access classes in inner 'mmediate super-package.

nested subpackages (other than the gates of their immedigteS2 | A gate type cannot be widened to other types.
subpackage). These constralnts ensure that a packaggs gate3 The methods invoked on a gate type must be defined
classes form an encapsulation boundary for classes outside that® in the same class.

package: scoped classes, and classes in subpackages are inside




static types. statically defined rather than deciding where instance should
These rules are similar in spirit to the confinement ruld®e dynamicallyallocated as in RTSJ.

presented in [9]. The type system presented in the next sectioThe scoped version of the program, shown in Fig. 4 and the

formalizes these intuitive rules. code in Fig. 5, consists of three packagesn, imm.mem and
imm.mem.cdmem mirroring the dynamic scope hierarchy of

Restrictions. Scoped Types do restrict the set of valid Javhe algorithm. The clasBlain is the only class that executes

programs. Even though they do not require changes to theimmortal memory, and its only purpose is to create an

syntax they do change the programming model. To start witlstance of theApp class, which is the gate of thiem.mem

while an instance of a scoped class may extend an arbitrggckage. TheApp class, once started, will then allocate an

class, none of the methods defined outside of the scopfiagtance of theDetector class, which is the gate for the

package can be invoked. This really means that, for scop@fin.mem.cdmem scope. The run loop again boils down to

classes, inheritance of code from classes defined outsidecafling the detector'sun method. The program’s stable state

their package is disallowed. Functionality provided in a (nofis held in theimm.mem package, and is composed of instances

scoped) parent class must be overridden in the scoped cla$she StateTable |, Aircraft , andPosition  classes. Per-

Moreover the restrictions on widening mean that the reuse itdration temporary objects are stored in ttwnem package

library classes, such as vectors, hash tables and the like, will

be limited. We defend these choices by remarking that most

existing Java libraries have not been designed for a real-tipsckage imm;

setting. In our experience most library classes rely on garbage _

collectipn to reclaim _inter_nally allocated objects and are_th Scsotgfig ‘\:/I(?ifjs'vrf;?no{ { new App().start();

not suited for use in with the RTSJ. Another potentially

contentious issue is that, from a software engineering point pf

view, grouping classes with respect to their allocation context _

may lead to somewhat unnatural program structures. Whi@ckage imm.mem;

this may be true, w.e.believe' thgt the benefits in clarity ar@ ate final class App

correctness are sufficient to justify our approach. We discuss’ extends NoHeapRealtimeThread  {

possible extensions to overcome some of these restrictions in void run() {

Section VI. cd = new Detector();
state = new StateTable();
L key = new Aircraft();
A. The Example Revisited while ( true ) cd.run( state, key); }

Scoped Types simplify programming within nested memonry
scopes. We can rewrite the collision detector example to use

Scoped Types with very few changes. We first need to defi sggggg g:ggiit?ggtat.)!.e

three packages to model the three scopes of the origig@écoped classPosition ...
application. This is because in Scoped Types, the programmers _
have to choose the package within which each class shouldPggkage imm.mem.cdmem;

@gate final classDetector  {
void run(StateTable state, Aircraft key) {
Main Frame frame = receiveFrame();
TmpAircraft plane = frame.getAircraft();
App plane.update( key);
/I Position pos _in _table = state.get( key);
if ( pos _.in _table == null )
- 4 state.put(plane.copy(),

Position . .
O Staterable ¥ frame.getPosition().copy());
Aircaft Mectot e|Se

/ l frame.getPosition()
package cdmem }
TmpPosition O TmpAircraft }

.update(pos _in _table);
@scoped classTmpAircraft ...
scoped classTmpPosition ...
dscoped classFrame ...

package imm

Fig. 4. The reference patterns of scoped and gate objects in
Scoped Type version of the example. The only references allow
to go from a parent package to a child are references originatifig. 5. The collision detector example with Scoped Types. The
from the gate. The gate object is a dominator for all scoped typesgrogram is split into three packages representing the different scopes
its package and subpackages. Note that although the figure doesused in that program. All support classesg( Aircraft) are defined
show it, references from child packages to their parents are allow@dthe appropriate scope.



and consist offmpAircraft , TmpPosition andFrame. ZEN SCOPEDZEN

. . . . .orb b

Notlc_e that _Wlth Scoped Types it is |mp(_)SS|bIe to (_:onfus eigﬂ.gﬁb.any g:b.acceptor
planes in the inneimm.mem.cdmem scope with planes in the | zen.orb.dynany orb.poa
stableimm.mem scope, as they are represented by differentzen.orb.giop orb.transport
types. Acopy method is implemented immpAircraft ~ to | zen.orb.policies orb.transport. message
create aircraft  object thatmust by definition, be allocated | 2&M-Orb.resolvers orb.threadpool
in th rent scope. Similarly, since the state table is aIIocateiﬁn'orb'tranSport i orb.waiter
in the pa pe. Ys n.orb.transport.iiop

in imm.mem, the types inmm.mem.cdmem are not accessible| zen.poa
to it. Thus, we cannot use BmpAircraft  object as theey zen.poa.mechanism
to find out whether a plane is already stored in the table, angen-poa.policy
we use arpircraft  object instead. Thepdate method of a
TmpAircraft  object refreshes thkey with the information
about the current plane.

In this way, Scoped Types statically maintains the invariang

Fig. 6. Refactoring the Zen CORBA ORB.

' i o grb.acceptor , orb.threadpool and orb.waiter ) are
that RTSJ checks dynamically. By statically associating scop. Pesent to mirror the original design of Zen. They could be

objects to their defining packages, Scoped Types can ensrbrlaed inorb as their lifetime is exactly that afrb .
that illegal incoming references are never created. Similarly,

by modeling nested scopes with nested packages, Scoped IV. THE SJCALCULUS

Types ensure that scopes will never form cycles. Finally, by 15 gain confidence in the programming model underlying
statically tracking the objects contained within each scopgyr proposal, we introduce the SJ calculus, a sparse imperative
Scoped Types ensure that it is safe to discard all the objegisy concurrent object calculus, modeled after Featherweight
in a scope once the last thread has left it. Java [11], in which scopes are first-class values. SJ formalizes
the type confinement rules of Scoped Type in terms of a type

B. Refactoring an existing system |
, . system. Our proof of type soundness gives us the guarantee
We are in the process of refactoring & RTSJ program callgths confinement cannot be breached during execution of

Zen to use Scoped Types. Zen is a CORBA object requestye|i.typed program. We can then proceed to prove that
broker designed to support distributed, real-time and embgfg shape of the scope hierarchy is restricted to tree. And,
ded (DRE) applications, written in the Real-time Specificatiofy,q)ly, that deallocation of a scope will not result in dangling
for Java [10]. Zen has been designed for memory-constraingfrences. SJ is a simple object calculus, to keep the semantics
DRE applications. For our experiment we have selected gnise we have omitted some features that are not essential
minimal configuration (about 20K LOC of Java code) thah, the main results. These features include static methods,
provides sufficient functionality for a number of benchmark, nchronization, access modifiers, and down-cast expressions.
applications that will be tested on a 300Mhz PPC boa,me specific features related to scoped memory such as

with 64MB of memory. We used the Eclipse developmenfe size and the type of the memory area (linear or variable
environment to assist in the refactoring exercise. allocation time) are also omitted.

The process of refactoring Zen proved surprisingly simple.
The first step is to instrument the program to print for each. Syntax and Types
object instantiated its class and the scope in which itis createdrhe syntax of the SJ calculus, Figure 7, draws on our

and also to print the parent relation between scopes. Th&vious work [9]. The formalism and syntax is based on
second step involve creating Java packages that mirrored fhe Featherweight Java (FJ) system which has been widely
scope hierarchy. Then, classes that are used unambiguoggfpted as a vehicle of language research. SJ has two kinds of
in only one scope can be moved to the respective packaggss declarationscoped classeandgate classeshe former
(with Eclipse this is painless). The remaining classes are usgthotated with acoped and the latter with aate. Classes

in several scopes, for these it may be necessary to either fmong to packages, which can be nested in an arbitrary
a way to modify the application logic, or, in last resort, to

duplicate code.
Figure 6 summarizes the difference in package structure

P © L == oclassP.C « D {Cf;KM}

between Zen and ScopedZen. The majority of classes in o
subpackages ofen.orb are moved up to the new package K = C() {super(); this.f :=newD();}
orb . This corresponds to the main memory area in which M := ¢un(C %) {returne; }
an ORB executes. The clagdRBis the gate class for the e = x| ef|em) |newl() | efi=e
orb package, each instance of this class represent one ORB | goaune | reset e | v o
running in the virtual machine. Therb.transport and

. . o = gate|scoped via=/{ Pu:=p | pP
orb.transport.message are used in the processing of

requests. Once a request has been processed all objects allo-
cated in those scopes are reclaimed. Finally, the other scopes Fig. 7. Syntax of the SJ calculus.



Allocation: namely the restriction that threads enter scopes in the same

Supposer(¢) = Cf () order as the nesting relation of the packages containing the
allocScope,, (C,£) = £ if Co is a gate type gate classes.
eitherC is a scoped type and As in Featherweight Java, the semantics assumes the exis-
and C,Co in the same package tence of a class table containing the definitions of all classes.
or C is a gate type and We had to add a store and a collection of thread®B labeled
€ in the immediate subpackage f by distinct identifierst. Objects are of the forns?(v), where
allocScope,, (C,£) = allocScope,,(C,¢')  otherwise C is a classv the value of the fields, and the gate of the
Evaluation context: scope in which it was allocated. The stareis a sequence,

_ ct(v), of objects, each denoted by a distinct label Fig. 8
Elo] u= o | Blo]n(®) | va(...,vis, Elo], es11...) defines a number of auxiliaries relations. The partial function
| Eloty | Elo]fs:=e | vy :=E[o] | reset Elo]  110c5cope, (C, ) retrieves the allocation scope for an object
Scope reference counts: of the typeC when the current receiver object 4s Our type
system ensures that all the scopes form a tree. Intuitively,
allocScope,, (C, ) searches the scope tree upward starting from
refecount(£,0) =0 counte(9) =0 ¢ or the scope of? until it finds a scope/’ of the type
count(€.€) = 1+ count(?) count(€.0') = count,(0) ¢/, which is in the same package a&sif C is scoped and
is in the immediate super-package ©fif C is a gate. For
someC and/, allocScope,(C,¥¢) is not defined. An evaluation
context, Fig. 8, is an expressidiic] with a hole that can be
filled in with another expression of proper type. An expression

package hierarchy. Each package may contain a mixtureSof IS Written asEfe] only if e is in the form ofv, (C) v,
scoped and gate classes. We add an assignment expreséibn?-f := v/, v.n(v), spaune, Or reset e. For a non-value
and an expression for creating a new thread of control. FinalfXPressiore, there exists an unique evaluation contéxb]
we add aresetexpression, which clears the fields of a gat@Uch thateo = Ele] ande is not a value. Evaluation contexts
object if the objects is not used by any threads. Reseting a gdfenot include the body afpawn. _
corresponds to deallocating a scope in RTSJ, the operation washe dynamics semantics of SJ is split in two: expression
added to model GC, but is interesting in its own right as V\;-fé\_/aluatlon rules given in Fig. 9 and the computation rules in
observed in [8]. Fig. 10.

We take metavariable§,D to range over classe® to
range over methods§ over constructors, and and x to Expression rules. These evaluation rules consider only
range over fields and variables (including parameters and grerations performed within a single thread. The evaluation
pseudo variablehis), respectively. We also usefor package 'elation has the formv,l e — o',¢" e’ wheres is the
namese for expressions anéfor memory references. We usdhnitial store, ¢ is the reference to object currently execut-
over-bar to represent a finite ordered sequence, for instarlf§; ande the expression to evaluate. The reduction rules
T representst; £, ... f,. The termT. 1 denotes sequencefield select (R-FELD), field update (R-WDATE), and method
concatenation. The calculus has a call-by-value semantics. Th@cation (R-Nvk) are not surprising, wherenbody(m, C)
expression /,,]¥ yields a sequence identical toexcept in retuns parametergs and method bodye of m when it is
the ith field which is set tor. We use the usual dot notationinvoked on an object of the type The instantiation rule (R-
to represent nested packages. That is, the packages a NEw) must ensure that the class of the object about to be
subpackage op. The presentation of the calculus inherit§reatedg, can be instantiated in thg current scope (as defined
some of the syntactic oddities of FJ, 8@ is a short hand bY allocScope,(C,ly) = ). The fields ofC must also be

refcount(€,t[€e] | P') = counte(f) + refcount(£, P")

Fig. 8. Auxiliary definitions.

for ey ...eye, andm(C%) stands fom(C; x1, ..., Ca %y). initialized, though not in the current scope but rather in the
) scope of the newly allocated object (this only matters i
B. Semantics a gate). Finally the store is updated with a fresh reference

In SJ, each gate object represents a distinct scoped membityound to the newly allocated object. The helper function
area and whenever a gate is reset all of the objects that wéré(C) returns the list of initial values of the fields ia
allocated within the associated scope are reclaimed. Whilecluding the fields inherited from its super-classes). Rule
the package hierarchy imposes a static structure on sco&,RESET) clears all fields of the target object. This ensures
gate objects allow multiple scope instances to be createdtlzt all objects previously in the scope are now unreachable.
runtime. The main restriction imposed by SJ is that a gale practice, programmers do not explicitly write such reset
can only allocate objects of scoped classes belonging to #gressions, they are performed implicitly by the VM.
same package and gates defined in immediate subpackages.

When this restriction is combined with confinement invarianS8omputation rules. The computation rules are of the form
that prevents gate objects leaking from their parent packageP = o', P’ whereo is a store andP is a set of threads.
we obtain the key property for scoped memory managemeBgch thread[/e] in P has a distinct label and a runtime call
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Fig. 9. Expression evaluation. Fig. 10. Computation rules.

stack which is a list of receiver-expression pdirs. Rule (G- not cleared (this make®setnonblocking to avoid deadlock).
STEP) is simple, it picks one thread for execution and evaluat
the expressiotE[e] on the top of the thread’s stack. Note tha
this rule applies wher is not a method invocation or reset The typing rules are shown in Figure 11 and 12. Some
expression. Rule (GHETER) evaluates a thread[7e./e] auxiliary functions usgd in typing rules are defi_ned as follows:
containing a method cak = Ele,] and e, = ¢ .m(¥). It fields(C) returns the list of field declarations in the class
creates a new stack frame for the body of the metkgdand (including the inherited fields) in the form &f£; mdef (m, C)

the result is a framde .l E[eo]. ¢ ¢. If the expression on returns the defining class of the methadby searching the
the top of a thread's stack is reduced to a vaiyehen by class hierarchy upward fror®; miype(m,C) returns the type
Rule (G-RETURN), the thread can pop the stack frame angignatureC — C’ of the method called on the type, where
continue execution witly as the resulted value of a method: C’ are the parameter and return types. The type judgments
call. Note that if the expression replaced bys not a value, are of the forml’, X e : C, whereT" is the type environment
then its evaluation context is unique. Thus, the replacemen@fsvariables and. is the type environment of object labels.
unambiguous. Rule (GwN) evaluates a threat] (e . (e ] The subtyping rglation<: is a rgflexive and transitive
containing a spawn expressien= F[spawn eo]. The value closure of the relation that <: C’ if the classC extends

of the spawn expression ia is the distinguished®® which the clasC’. We define the partial order< on types to limit

is a unique, global reference to an object of classead the variables that can refer to scoped objects and gatesC’

and we assume that® is allocated in immortal memory. A is defined ifC <: ¢’, andC,C’ are both scoped types in the
new threadt’ is created to evaluatée,. The new thread is Same package ar is a gate type an@ = C'. If C < C’, then
started with a call stack/*™ that matches the call stack ofWe say thaC is a scope-safesubtype ofc’ and the widening

the original thread to ensure that scope reference counts afé a reference from the type to ¢’ is scope-safe

accurate. Rule (G-BSET) clears the fields of a gaté when  BY Rules (T-UPDATE) and (T-INvk), the reference widen-

no thread is using that gated, when refcount(¢, P) = 0). ing in the field assignments and parameters passisgdpe-

For simplicity, the fields of a gate are reset to default valig@fe Rule (T-STORE) of the formX - o says that object store
explicitly by a resetexpression of the fornreset ¢ and if ¢ is well typed, if the type environment has the same domain

the reference count of is not zero, then the fields df are aso and for each object labélin the domain ofs, £(¢) is
equal to the type of(¢) ando(¢) must also be well-typed. If

. Type Rules




Ik x:I(x) (T-VAR) Store Typing:
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[,5Fnewc():C (T-NEW) I'=%:Cthis:Cy TI,fFe:C" ¢ =<¢C
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(T-RESET)

Fig. 12. Type rules of store, method, and class.
Fig. 11. Expression typing.

o(¢) = ¢’ (v), then by Rule (T-$0RELOC), an objectc! (v) gate class.
is well-typed, if the types off arescope-safesubtypes of the  We check the method body to determine whether type
field types. visibility constraints are violated in a class. In Rule (T-
In the typing rule for class (T-Cass), we require that in a METHOD), the judgment” - visible(e, Co) holds if e of type
classc, and the types of the fields and the base class must®és Visible in a classy, which means that eithes = this
visible inC. Also, all methods in a class must be well-typed bgr the typecC is visible in the clasCy (i.e. wisible(C,Co))
Rule (T-METHOD). If a method in the clasg, is well-typed, and all the subexpressions efare visible inCy. We make
then the method body is well-typed by the expression typingan exception forthis because even though a gate type is
rules, the type of the method body isseope-safesubtype of Visible only to the classes of its immediate super-package, a
the return type, and in addition, the method body must g&te object must be able to use the variaies for accessing
visible in ¢y as defined by the judgmeiit - wvisible(e, Co). its fields and calling its methods. For any scoped class, the type
The predicateverride(m, Co, C — C) in Rule (T-MeTHoD) is  Of the variablethis are always visible in its class.
true if either the method is not accessible i, or the type
signature returned byidef (m, Cy) is the same a€ — C. Note

that in (T-QLASS) we abuse notation by writingisible(C, C) The purpose of our model is to simplify the allocation
to assert that all types in ti@are visible inc. of objects in scoped memory areas. Thus, we would like to

statically guarantee the properties that during the evaluation

Visibility of types and expressions. The static constraints in ©f @ real-time program,

our model are mostly to restrict widening of references, and1) the nesting structure of scopes remain a tree,

also to limit the accessibility of expressions by their types. 2) deallocated objects in scopes are no longer accessible.
For example, an expression of scoped types only visible In RTSJ, the nesting structure of scopes is determined by
in the defining package df and its subpackages. We define &ow threads enter scopes. In our model, the scope structure
relation on types -wisible(C, Cp) (type C is visible fromtype is fixed by how the gate objects representing the scopes are
Co), Which encodes the SJ access control rules: a scoped tgpeated. That is, if a scope is represented by a gate object
defined in package is visible to the clasg, defined inP created in the scopk thena must be directly contained in

and its subpackages; a gate clasis only visible from the b; moreover, the gate object representings defined in the
classCy defined in the immediate parent package. One slightijmmediate subpackage of the gate object representiigus,
surprising implication of this definition is that a gate type isur type system guarantees that the scopes represented by the
not visible in its own class definition. Thus a gate class gate objects always form a tree. It also ensures that the threads
does not contain code that refers to itself with the exceptiom, a program will preserve such a scope tree such that each
as we shall see later, of the pseudo variatdés which may thread either enters the scopes already entered by the thread or
indeed be used to access fields and methods from within #rgers a new scope directly contained in the current scope of

D. Properties.



the thread. Thus, even though a scope stack of a thread raay terminated or there exists', P’ such thato, P = ¢/, P'.
grow indefinitely (e.g. the thread reenters the scopes already

on stack), the nesting structure of scopes resembles the nesting h irreducibl . K if .
structure of the scoped packages and always remains a tré’(\:(.e say that an Irreducible program.P Is stuck It P contains

- i * i 1t
To ensure that deallocated objects are no longer accessiB(_{)iFon terminated thread. As usuah™ is the transitive and

we require that a scoped object can only access objects witheXIve closure ot

the same or longer lifetime, while a gate object can in addition

access the objects allocated in the scope that it represeftigaorem 3 If o, P is well-typed ando, P =* o', P’, then
Thus, when the last thread in a scope exits, the objectsn p is not stuck and it is well-typed.

that scope can be deallocated. The deallocated objects are

no longer accessible in the program because they are onlyrneorem 4 shows that in a well-typed programP, if

accessible to the scoped objects with the same or shotegare(4,) is reset successfully, then the objects allocated
lifetime and to the gate of the scope, but those scoped quelﬁt%e scope represented by(,) are not reachable im, P.
are already deallocated and no method of the gate objecis.a that if a scope represented dis) is not used by any

being invoked. The above accessibility constraints are enforggge,q thervefeount(, £y) = 0. We say that is reachable
by SJ's type rules, where a scoped type is accessible in {j€; p it either it is referenced in a thread &f or it is in the

classes of its defining package and the subpackages. It;dsq of o(¢), where?” is reachable i, P.
possible for two instances of the same class to be allocated in ' ’

two sibling scopes (they share some parent scope). To prevent
such objects from accessing each other, we limit the accestworem 4 If P = P” | t[{e .l E[reset )], o, P is well-
a gate object to itself and the classes in its immediate supstped, refcount(o,4y) = 0, and o, P = o', P’, then the
package. Consequently, an object may only gain access to ¢hgects ofs that are allocated in the scope represented by
gate of its own scope and the gates of its immediate nestbe gateo(¢;) are not reachable irv’, P'.
scopes and thus, it cannot reference objects in its sibling scope.
Our proof strategy for the above properties is to show that V. RELATED WORK
the safety invariant that we define below is preserved in each
reduction step. We say that an objectansafely access’ if ~ The dangers involved in the RTSJ programming model have
eithero’ has longer lifetime than or o is the gate of the scope motivated Kwonet.al. to propose a restricted programming
whereo’ is allocated. A prograra, P is safeif for each label model called Ravenscar-Java [12]. In Ravenscar memory areas
¢ defined ing, the objects(¢) cansafely accesshe objects cannot be nested and are single threaded. Scoped Types are
referenced in its fields, and for each frate in the call stack intended to relax some of the restrictions of Ravenscar while
of each thread inP, the objects(¢) cansafely accesgvery remaining easy to understand and to verify. Boyapati [13]
object referenced ie. combine region-based memory management with ownership
A programo, P is well-typed if it is safeand 3% such that types to statically guarantee that real-time threads do not
¥ I o and the call stack of each thread fhis well-typed. interfere with GC. While more flexible than Scoped Types,
Given ¥, the call stackle.? Ele]./ ¢ is well-typed, if this approach is more invasive, requiring more program anno-
3¢’ such that); £ e’ : ¢/, and); ¥ e : C impliesC’ < C, tations, and more complex overall. Cyclone [14] is a type-safe
visible(e, ¢) is true (defined below), ande ./ Ele] is well- language derived from C and it supports region-based memory
typed. Giveny, the call stack e is well-typed if 3¢ such that management. Cyclone includes dynamic regions with lexically
0; ¥ F e : C and wisible(e, ¢) is true. scoped lifetimes, stack and a heap region. To prevent deref-
Given X, the constrainwisible(e, ¢) is true if eithere = ¢ erencing dangling pointers, Cyclone uses types parameterized
or, ©(¢) = Co and ;X - e : C imply wisible(C,Co) and for by region names to track pointers to regions and uses effect
each subexpressiast of e, visible(e, () is true. annotations to prevent unsafe access to regions. The regions in
In Theorem 3, we prove that if a program is well-typedCyclone are limited to single threaded execution model. Also,
then it will not get stuck. We model deallocation using théhe use of effects may not work with real-time Java, since
explicit resetexpression, which clears the fields of a gate fhe Java's type safety requirement does not allow objects to
the gate is not used by any threads. We prove in Theorenh@d invalid references even if never used. Grossman extended

that the objects allocated in the gate before the reset are clone with a type system for preventing data races [15]. The
longer accessible afterward. MLKit is an implementation of ML which uses regions and

region-inference [16], [17]. One of the main difference with
Lemma 1 If o, P is well-typed andr, P = o', P’, theno’, P’ the model presented here is that ML is a functional language
is well-typed. without built-in support for concurrency.
There are two other open source virtual machines that
We say that a thread of the formily v] in P is terminated. implement parts of the RTSJ: Flex [18] and JRate [19], [5],
as well as a number of commercial products and alternative
Lemma 2 If o, P is well-typed, then either all threads iR proposals [20], [21], [22], [23], [24].



VI. CONCLUSION

In this paper we have introduced Scoped Types, a stat[é]
programming discipline to support the kind of scoped memory2]
management found in the Real-Time Specification for Java.
The key contribution of our proposal is that it statically g
maintains the invariants that the RTSJ checks dynamically,
yet imposes minimal syntactic overheads upon programme }
In particular, by statically associating scoped objects to their
defining packages, Scoped Types ensure that illegal incomirg
references are never created, eliminating the potential for
run-time errors caused by illegal assignment operations. By,
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