
Scoped Types for Real-time Java
Tian Zhao

University of Wisconsin – Milwaukee
James Noble

Victoria University of Wellington
Jan Vitek

Purdue University

Abstract— A memory model based on scoped areas is one of
the distinctive features of the Real-Time Specification for Java
(RTSJ). Scoped Types ensure timely reclamation of memory and
predictable performance. The price to pay for these benefits is
an unfamiliar programming model that, at the same time, is
complex, requires checking all memory accesses, and rewards
design-time errors with run-time crashes. We investigate an
alternative approach, referred to asScoped Types, that simplifies
the task of managing memory in real-time codes. The key feature
of our proposal is that the run-time partition of memory imposed
by scoped areas is straightforwardly mirrored in the program
text. Thus cursory inspection of a program reveals which objects
will inhabit the different scopes, significantly simplifying the
task of understanding real-time Java programs. Moreover, we
introduce a type system which ensures that no run-time errors
due to memory access checks will occur. Thus a RTSJ-compliant
virtual machine does not require memory access checks. The
contributions of this paper are the concept of Scoped Types, and
a proof soundness of the type system. Experimental results will
be described in future work.

I. I NTRODUCTION

The Real-Time Specification for Java (RTSJ) [1] is designed
to allow the construction of large scale real-time systems
in a type-safe programming language. The benefits of using
Java for mission critical systems are currently being evaluated
by, e.g., Boeing [2] and JPL [3]. As of this writing a high-
quality commercial implementation of the specification has
been released by TimeSys (JTime [4]) and an open source
virtual machine is being developed at Purdue (Ovm [5]). While
the RTSJ includes many necessary features, the one that is
most likely to affect how real-time Java programs are written is
the new memory management model based onscoped memory
areas.

An obvious concern for meeting hard real-time constraints
in Java is the interaction of automatic memory management
with real-time tasks. While garbage collection (GC) frees the
programmer from the burden of tracking memory usage, it
introduces unpredictability because the timing and duration of
GC pauses is unknown. To address this problem, the RTSJ
provides: (a) regions of memory which are not subject to
garbage collection, called scoped memory areas, orscopes,
(b) threads that can not access the heap and thus can never
interfere with, or be preempted by, the garbage collector.
Scoped memory areas provide predictable allocation, and
ensure that hard real-time threads will not block while memory
is being reclaimed.

In principle, scoped memory is similar to a cactus-stack [6],
[7]. Each scope provides a pool of memory that can be used
to allocate objects. Individual objects cannot be deallocated,

instead the entire scope is reclaimed when its contents become
unreachable. The main difference with stack allocation is that
scopes are first-class entities which can be entered by multiple
threads. The order in which threads enter scopes induces
a runtime structure on scopes that determines permissible
reference patterns. When a real-time thread executing in scope
M1 first enters scopeM2, scopeM1 becomes the parent ofM2.
RTSJ semantics guarantees thatM2 will be reclaimed beforeM1,
the lifetime of a nested scope is thus always shorter than that
of its parent. Threads executing in an scope allocate objects
from the same pool of memory and communicate though
shared variables. When the last thread exits a scope, the objects
allocated within it are reclaimed. The last-in first-out natures of
scoped memory allows for objects allocated in nested scopes,
e.g. M2, to refer objects in their parent,e.g. M1, but not the
converse as holding on to a reference into a shorter-lived scope
may lead to dangling references, and jeopardize type safety.

To ensure type safety of real-time Java programs, the
following invariants must be maintained at runtime:

1) Because a scope can be reclaimed at any time, an outer
scope may not hold a reference to an object within an
inner scope.

2) To avoid cycles in the scope parent relation, the nesting
structure of scopes is restricted to trees. In other words,
a scope may have at most one parent.

3) Because scopes can be shared by multiple threads,
objects allocated within a scope cannot be discarded
until all threads have finished using that scope.

Maintaining these invariants impose burdens on programmers
and increases the potential for bugs as they require reasoning
about localities. With the RTSJ, programmers must be aware
where an object has been allocated, a piece of information
that cannot be obtained straightforwardly by inspection of the
program text. The result is that scopes are, in our experience,
the main source of program errors in RTSJ programs.

We propose a new programming mechanism calledScoped
Types, designed to support safe scoped memory programming
in concurrent real-time systems. Our goal is to devise a
solution which does not require changes to the language or
the tools that are used to write and run programs (e.g. compil-
ers, development environment, and preprocessors) and ensure
that programs will not experience run-time access violations.
Yet Scoped Types should not impose undue restrictions on
RTSJ programs. The underlying motivation for the proposed
mechanisms is to keep the cost of adopting low. In fact, we
have tried to retain the option of translating programs using

Scoped Types into RTSJ programs and running them on an
unmodified real-time Java virtual machine.

To appeal to programmers, our proposal requires minimal
syntactic overhead and only modest changes to RTSJ pro-
grams. With Scoped Types, the run-time hierarchy of scopes
and subscopes is captured in the program text by the static
hierarchy of Java packages. Thus, to comply with scoped
types, RTSJ programs must be refactored so that objects that
are meant to live in the same scope are declared in the same
Java package. While this requires changes to grouping of
classes and may entail increasing the visibility of some classes,
these costs are mitigated by gains in clarity. The definition
and behavior of scoped classes is constrained by six simple
rules which taken together ensure that scope access errors
will never occur, and object deallocation will never introduce
dangling pointers. Furthermore, cycles in the scope hierarchy
are impossible.

The contributions of this paper are the following:
1) A new programming model which provides static

correctness guarantees while remaining simpleand es-
chewing the need to modify Java in a significant way.

2) Proof of soundnessby extracting the essence of scoped
types in a core object calculus and proving soundness
of the type system.

One of the difficulties in extending a language such as Java is
that features interact. This can lead to undesirable side effects,
even for seemingly simple changes, significantly complicating
the lives of implementers and users. This motivates our choice
of starting with a formalization of scoped types as a proof of
soundness is an essential first step to any language extension
of the kind we are considering here. We are currently imple-
menting support for scoped types in the Ovm RTSJ virtual
machine [5] and refactoring several large programs to abide
with the scoped type discipline.

II. A N EXAMPLE : A REAL-TIME COLLISION DETECTOR

To illustrate the usage of scopes, we present the example of
an aircraft collision detection algorithm [8]. Collision detection
is performed by a single real-time thread which receives
a series offrames containing aircraft call signs along with
positions and direction vectors. The output of the algorithm
is a warning each time any pair of aircraft are on a collision
course. We have implemented two versions of the algorithm —
one in plain Java and one in RTSJ. The Java implementation
is 2500 lines of code of which fewer than 200 lines had to be
adapted to make the program RTSJ compliant.

Collision detection is performed iteratively. AFrame object
containing a number ofAircraft objects is received from
the sensors once per iteration of the main run loop. The
contents of the frame are used to update a state table and then
compute collision vectors. The RTSJ implementation of the al-
gorithm uses four scopes, the distinguishedImmortalMemory

and HeapMemory, along with two user-defined instances of
ScopedMemory . Fig. 1 illustrates the memory structure of the
program. While the main object,App, of the application is
created in immortal memory, none of the other objects should

be allocated there, as objects in immortal memory are never
deleted. Thus, the first action of theApp.run() method is to
create and enter a new scope,mem. That scope will be used to
contain the program’s stable storage. A second scope,cdmem,
is used for temporary storage, so that all the temporary objects
are deleted at the end of each iteration.

Fig. 2 illustrates the main points of the algorithm. The
App.main() method is responsible for starting a new real-
time thread (App extendsNoHeapRealtimeThread). As real-
time threads may not execute within the heap, the first action
that is performed by that method is to enter immortal memory.
Note the use of reflection (newInstance) to create objects in
different scopes. Then theApp.run() method creates a new
scope to hold the application’s stable store (all state that must
be preserved between iterations is stored in the instance of
classStateTable) and starts an instance ofRunner in the
newly created scope.

The Runner.run() method is an example of thescoped
run loop pattern [8]. The method starts by creating a scope,
cdmem, to hold temporary objects. Then it repeatedly executes
theDetector.run() method withincdmem. Since there is no
other thread contending for that scope, after each iteration the
scope is cleared. We remark that theScopedMemory object
itself remains intact between invocation, as does theDetector

– both are allocated in thememarea which is not reclaimed
for the lifetime of the application.

As can be seen from Fig. 2, although perhaps simple in
theory, RTSJ Scoped Memory is complex in practice. For
example, in each iteration of the run loop a new frame
object is created along with an aircraft and a position. These
objects are all allocated in thecdmem scope, whereas the
state table is in the parentmemscope. In order to store a
newly detected plane in the state table, the program has to
reflectively create instances ofAircraft and Position in
the correct (mem) scope. For another example, consider that

cdmem

HeapMemory

mem

ImmortalMemory

App

Runner

Detector

Frame

StateTable

ScopedMemory instance
Scope parenting relation
Legal memory reference
Backing store association
Physical memory
Realtime Thread

Fig. 1. Scopes in the example application. The mainApp object is
allocated in immortal memoryimm. Application stable state is held
in the scoped areamem, per-iteration objects are allocated incdmem.

class App extends NoHeapRealtimeThread {

static void main() {
imm = ImmortalMemory.instance();
app = (App) imm.newInstance(App.class);
app.start(); }

void run() {
LTMemory mem = new LTMemory(...);
mem.enter(new Runner()); }

}
class Runner implements Runnable {

void run() {
LTMemory cdmem = new LTMemory(...);
Detector cd =

new Detector(new StateTable());
while (true)

cdmem.enter(cd); }
}

class Detector implements Runnable {

StateTable state;

void run() {
Frame frame = receiveFrame();
Position pos in table =

state.get(frame.getAircraft());
if (pos in table == null) {

mem = MemoryArea.getMemoryArea(this);
Aircraft new plane =

mem.newInstance(Aircraft.class);
frame.getAircraft().update(new plane);
pos in table =

mem.newInstance(Position.class);
state.put(new plane, pos in table);

}
pos in table.update(frame.getPosition());

}
}

Fig. 2. The main method of the application is used to bootstrap the real-time task. The run method ofApp is used to set up the application’s
stable store. TheRunner class holds the application’s main loop. All methods are public unless stated otherwise. ClassLTMemory is a
particular kind of scoped memory area which guarantees linear time allocation. ClassNoHeapRealtimeThread is the parent class of all
hard real-time thread classes, it is guaranteed not to interfere with the garbage collector.

the Aircraft.update() method (not shown here), takes an
aircraft as argument and copies the information out of itself
into its argument. We were forced to use this tortured design
so that we can copy data allocated in the innercdmemscope
into an object in the out stable storememscope.

Discussion. This complex explanation shows that a large
amount of information about this example is implicit in the
RTSJ code. The memory scopes within which variables are
allocated (and therefore to which they can refer) are not
recorded in the text of the program; there is no information
about the scope that a particular instance of theAircraft

class is stored in, for example. This means that a minor
typographical error could go undetected by the compiler, and
then cause a runtime failure during rare circumstances as the
program is run — such as when the program actually detects a
collision. Similarly, the nesting relationship between theimm,
mem, andcdmemscopes is implicit in the code: if therun()

method of theDetector class attempted to reenter themem

scope, the program would suffer aScopedCycleException .
Finally, the programmer intends all objects contained within
the cdmem to be discarded after each iteration, but this is not
in any way obvious from the code of the program.

III. R EAL-TIME PROGRAMMING WITH

SCOPEDTYPES

To make real-time Java programming more reliable and pre-
dictable, we have developed a type system that can statically
guarantee the absence of reference assignment errors, enforce
the single parent rule for scopes, and ensure that there can be
no references into the contents of a scope when it is scheduled
to be discarded. Our proposal is referred to asScoped Types.
Scoped Types require the addition of two modifiers to the

language, no compiler changes, and minimal support from the
underlying virtual machine.

Language extensions.Our model distinguishes between two
kinds of classes in a real-time Java program:scoped classes
which are allocated within a particular memory scope, and
gate classeswhich reify memory scopes. Most of the objects in
the program are instances of scoped classes, and are allocated
in memory scopes. Instances of gate classes turn scopes into
first-class entities: threads enter memory scopes by invoking
methods of gate objects, and exit scopes when these calls
return. The key observation is that an object allocated in a
scoped memory area can only be used in that scope and its
nested subscopes. Thus, we statically restrict the accessibility
of a scoped class to the classes whose instances are allocated
in the same or nested scopes.

Integration with Java. To minimize the changes to the
language, or at least to its syntax and to the tool processing
the language, we take advantage of existing concepts, such as
visibility rules and access modifiers, to integrate Scoped Types
with Java. Scoped and gate classes are declared by appending
the respective modifiers to class declarations (@scoped and
@gate), no other annotations are needed. These annotations
are consistent with the Metadata JSR, and will be recognized
by Java 1.5 compilers. We call packages that contain scoped
types scoped packages. Scoped packages are the unit of
protection and of allocation. Each scoped package is the static
representation of a family of memory scopes and defines the
types of objects that may be allocated in these scopes. We
use nested packages to represent potentially nested memory
scopes: a memory scope created by some gate class in a scoped
package can only contain nested subscopes defined by gate

package b

portal instance
Legal memory reference
Backing store association

Physical memory
Realtime Thread

c c c

A

BB

package b

package a package a;

@scoped classA {
...

}

package a.b;

@gate classB {
...

}

@scoped classC {
...

}

Fig. 3. A program written with Scoped Types. The program’s static structure consists of two packagesa anda.b . At runtime two instance
of the gate classB are created, thus giving rise to two distinct scopes. Notice that gate objects, likeScopedMemory instances in the RTSJ,
are allocated in the parent scope. Overall, the code is shorter than the RTSJ version and makes explicit the allocation context of objects.

classes in immediate subpackages. Instances of classes defined
in top-level package are allocated in immortal memory.

Dynamics. While scoped packages describe the static struc-
ture of an application, restricting programs to a single instance
of each scope (and thus exactly matching the static package
hierarchy) prevents some useful programming idioms. Thus, at
runtime, everyinstanceof a gate class corresponds to a new
memory scope. So an application that creates two gates for
the same package, gets two distinct scopes which can be used
independently. The type system guarantees that references
across sibling scopes cannot arise, thus objects allocated within
two instances of the same gate class can safely be reclaimed
at different times. A scope’s gate is theonly object from
the scoped package that is visible in the parent package. In
fact, gates are allocated in their parent scope, just as RTSJ
ScopedMemory objects are allocated in an enclosing area. The
current allocation context isalways defined by the package
in which the current class was defined. Changing allocation
context is thus as simple as calling a method of an object living
in a different scope. Concurrency comes in quite naturally –
multiple threads execute in the same scope if they invoke a
method on the same gate. The implementation keeps track
of the number of threads in a scope by a simple reference
counting scheme. Just as in RTSJ, objects within a scope can
be reclaimed when the last thread exits. Fig. 3 illustrates these
concepts.

Static guarantees.Our model imposes some static constraints
on the accessibility of classes. We require that scoped classes
in a package be accessible only to the classes defined in that
package and its subpackages, while gate classes are only acces-
sible to classes defined in their immediate parent package. In
other words, classes arenot allowed to access classes in inner
nested subpackages (other than the gates of their immediate
subpackage). These constraints ensure that a package’s gate
classes form an encapsulation boundary for classes outside that
package: scoped classes, and classes in subpackages are inside

that encapsulation boundary. More importantly, they ensure
that objects allocated in one scope may never have outgoing
inferences to objects allocated in inner scopes, and thus that
IllegalAssignmentError s can never happen. Threads can
only enter the scopes defined in some package (by calling
methods on gate classes in that package) from the code in
the immediate super-package. This ensures that the hierarchy
of memory scopes always follows the same hierarchy as the
corresponding packages, enforcing the single parent rule and
preventingScopedCycleException s.

Scoped Type Confinement Rules. Scoped Types’ static
guarantees are enforced by the following syntactic rules that
must hold for all scoped and gate classes. RulesC1, C2, andC3
bind scoped classes, while RulesS1 to S3 bind gate classes.
Besides the visibility constraints of RulesC1 andS1, we also
require that (C2) references of scoped type cannot be widened
to types in other packages while (S2) the references of gate
types cannot be widened to other types. Note that a reference
of type C can be widened to typeD only if C is a subtype of
D. Reference widening can happen through operations such as
assignments, casts, and method invocations. The restrictions
on reference widening help us to track references by their

C1 A scoped type is visible only to classes in the same
package or subpackages.

C2 A scoped type can only be widened to other scoped
types in the same package.

C3 The methods invoked on a scoped type must be defined
in the same package.

S1 A gate type is only visible to the classes in the
immediate super-package.

S2 A gate type cannot be widened to other types.

S3 The methods invoked on a gate type must be defined
in the same class.

static types.
These rules are similar in spirit to the confinement rules

presented in [9]. The type system presented in the next section
formalizes these intuitive rules.

Restrictions. Scoped Types do restrict the set of valid Java
programs. Even though they do not require changes to the
syntax they do change the programming model. To start with,
while an instance of a scoped class may extend an arbitrary
class, none of the methods defined outside of the scoped
package can be invoked. This really means that, for scoped
classes, inheritance of code from classes defined outside of
their package is disallowed. Functionality provided in a (non-
scoped) parent class must be overridden in the scoped class.
Moreover the restrictions on widening mean that the reuse of
library classes, such as vectors, hash tables and the like, will
be limited. We defend these choices by remarking that most
existing Java libraries have not been designed for a real-time
setting. In our experience most library classes rely on garbage
collection to reclaim internally allocated objects and are thus
not suited for use in with the RTSJ. Another potentially
contentious issue is that, from a software engineering point of
view, grouping classes with respect to their allocation context
may lead to somewhat unnatural program structures. While
this may be true, we believe that the benefits in clarity and
correctness are sufficient to justify our approach. We discuss
possible extensions to overcome some of these restrictions in
Section VI.

A. The Example Revisited

Scoped Types simplify programming within nested memory
scopes. We can rewrite the collision detector example to use
Scoped Types with very few changes. We first need to define
three packages to model the three scopes of the original
application. This is because in Scoped Types, the programmers
have to choose the package within which each class should be

package mem

cTmpPosition

package cdmem

package imm

TmpAircraft

Detector
StateTable

Position

Aircaft

Main

App

Fig. 4. The reference patterns of scoped and gate objects in the
Scoped Type version of the example. The only references allowed
to go from a parent package to a child are references originating
from the gate. The gate object is a dominator for all scoped types in
its package and subpackages. Note that although the figure does not
show it, references from child packages to their parents are allowed.

statically defined, rather than deciding where instance should
be dynamicallyallocated, as in RTSJ.

The scoped version of the program, shown in Fig. 4 and the
code in Fig. 5, consists of three packages,imm, imm.mem and
imm.mem.cdmem mirroring the dynamic scope hierarchy of
the algorithm. The classMain is the only class that executes
in immortal memory, and its only purpose is to create an
instance of theApp class, which is the gate of theimm.mem

package. TheApp class, once started, will then allocate an
instance of theDetector class, which is the gate for the
imm.mem.cdmem scope. The run loop again boils down to
calling the detector’srun method. The program’s stable state
is held in theimm.mempackage, and is composed of instances
of the StateTable , Aircraft , andPosition classes. Per-
iteration temporary objects are stored in thecdmem package

package imm;

@scoped classMain {
static void main() { new App().start();
}

}

package imm.mem;

@gate final classApp
extends NoHeapRealtimeThread {

void run() {
cd = new Detector();
state = new StateTable();
key = new Aircraft();
while (true) cd.run(state, key); }

}

@scoped classStateTable ...
@scoped classAircraft ...
@scoped classPosition ...

package imm.mem.cdmem;

@gate final classDetector {
void run(StateTable state, Aircraft key) {

Frame frame = receiveFrame();
TmpAircraft plane = frame.getAircraft();
plane.update(key);
Position pos in table = state.get(key);
if (pos in table == null)

state.put(plane.copy(),
frame.getPosition().copy());

else
frame.getPosition()

.update(pos in table);
}

}

@scoped classTmpAircraft ...
@scoped classTmpPosition ...
@scoped classFrame ...

Fig. 5. The collision detector example with Scoped Types. The
program is split into three packages representing the different scopes
used in that program. All support classes (e.g. Aircraft) are defined
in the appropriate scope.

and consist ofTmpAircraft , TmpPosition andFrame .
Notice that with Scoped Types it is impossible to confuse

planes in the innerimm.mem.cdmem scope with planes in the
stable imm.mem scope, as they are represented by different
types. A copy method is implemented inTmpAircraft to
create aAircraft object thatmust, by definition, be allocated
in the parent scope. Similarly, since the state table is allocated
in imm.mem, the types inimm.mem.cdmem are not accessible
to it. Thus, we cannot use aTmpAircraft object as thekey

to find out whether a plane is already stored in the table, and
we use anAircraft object instead. Theupdate method of a
TmpAircraft object refreshes thekey with the information
about the current plane.

In this way, Scoped Types statically maintains the invariants
that RTSJ checks dynamically. By statically associating scoped
objects to their defining packages, Scoped Types can ensure
that illegal incoming references are never created. Similarly,
by modeling nested scopes with nested packages, Scoped
Types ensure that scopes will never form cycles. Finally, by
statically tracking the objects contained within each scope,
Scoped Types ensure that it is safe to discard all the objects
in a scope once the last thread has left it.

B. Refactoring an existing system

We are in the process of refactoring a RTSJ program called
Zen to use Scoped Types. Zen is a CORBA object request
broker designed to support distributed, real-time and embed-
ded (DRE) applications, written in the Real-time Specification
for Java [10]. Zen has been designed for memory-constrained
DRE applications. For our experiment we have selected a
minimal configuration (about 20K LOC of Java code) that
provides sufficient functionality for a number of benchmark
applications that will be tested on a 300Mhz PPC board
with 64MB of memory. We used the Eclipse development
environment to assist in the refactoring exercise.

The process of refactoring Zen proved surprisingly simple.
The first step is to instrument the program to print for each
object instantiated its class and the scope in which it is created
and also to print the parent relation between scopes. The
second step involve creating Java packages that mirrored the
scope hierarchy. Then, classes that are used unambiguously
in only one scope can be moved to the respective package
(with Eclipse this is painless). The remaining classes are used
in several scopes, for these it may be necessary to either find
a way to modify the application logic, or, in last resort, to
duplicate code.

Figure 6 summarizes the difference in package structure
between Zen and ScopedZen. The majority of classes in
subpackages ofzen.orb are moved up to the new package
orb . This corresponds to the main memory area in which
an ORB executes. The classORB is the gate class for the
orb package, each instance of this class represent one ORB
running in the virtual machine. Theorb.transport and
orb.transport.message are used in the processing of
requests. Once a request has been processed all objects allo-
cated in those scopes are reclaimed. Finally, the other scopes

ZEN SCOPEDZEN

zen.orb orb
zen.orb.any orb.acceptor
zen.orb.dynany orb.poa
zen.orb.giop orb.transport
zen.orb.policies orb.transport.message
zen.orb.resolvers orb.threadpool
zen.orb.transport orb.waiter
zen.orb.transport.iiop
zen.poa
zen.poa.mechanism
zen.poa.policy

Fig. 6. Refactoring the Zen CORBA ORB.

(orb.acceptor , orb.threadpool and orb.waiter) are
present to mirror the original design of Zen. They could be
folded in orb as their lifetime is exactly that oforb .

IV. T HE SJCALCULUS

To gain confidence in the programming model underlying
our proposal, we introduce the SJ calculus, a sparse imperative
and concurrent object calculus, modeled after Featherweight
Java [11], in which scopes are first-class values. SJ formalizes
the type confinement rules of Scoped Type in terms of a type
system. Our proof of type soundness gives us the guarantee
that confinement cannot be breached during execution of
a well-typed program. We can then proceed to prove that
the shape of the scope hierarchy is restricted to tree. And,
finally, that deallocation of a scope will not result in dangling
references. SJ is a simple object calculus, to keep the semantics
concise we have omitted some features that are not essential
to the main results. These features include static methods,
synchronization, access modifiers, and down-cast expressions.
Some specific features related to scoped memory such as
the size and the type of the memory area (linear or variable
allocation time) are also omitted.

A. Syntax and Types

The syntax of the SJ calculus, Figure 7, draws on our
previous work [9]. The formalism and syntax is based on
the Featherweight Java (FJ) system which has been widely
adopted as a vehicle of language research. SJ has two kinds of
class declarations,scoped classesandgate classes, the former
annotated with ascoped and the latter with agate. Classes
belong to packages, which can be nested in an arbitrary

L ::= ◦ class P.C / D { C f; K M }

K ::= C() {super(); this.f := new D(); }

M ::= C m(C x) { return e; }

e ::= x | e.f | e.m(e) | new C() | e.f := e
| spawn e | reset e | v

◦ ::= gate | scoped v ::= ` P ::= p | p.P

Fig. 7. Syntax of the SJ calculus.

Allocation:

Supposeσ(`) = C
`′
0 (v)

allocScopeσ(C, `) = ` if C0 is a gate type

and


eitherC is a scoped type and

C, C0 in the same package
or C is a gate type and

C in the immediate subpackage ofC0

allocScopeσ(C, `) = allocScopeσ(C, `′) otherwise

Evaluation context:

E[◦] ::= ◦ | E[◦].m(e) | v.m(. . . , vi−1, E[◦], ei+1 . . .)

| E[◦].fi | E[◦].fi := e | v.fi := E[◦] | resetE[◦]

Scope reference counts:

refcount(`, t[` e] | P ′) = count`(`) + refcount(`, P ′)

refcount(`, ∅) = 0 count`(∅) = 0

count`(` . `) = 1 + count`(`) count`(` . `′) = count`(`)

Fig. 8. Auxiliary definitions.

package hierarchy. Each package may contain a mixture of
scoped and gate classes. We add an assignment expression
and an expression for creating a new thread of control. Finally,
we add areset expression, which clears the fields of a gate
object if the objects is not used by any threads. Reseting a gate
corresponds to deallocating a scope in RTSJ, the operation was
added to model GC, but is interesting in its own right as we
observed in [8].

We take metavariablesC, D to range over classes,M to
range over methods,K over constructors, andf and x to
range over fields and variables (including parameters and the
pseudo variablethis), respectively. We also useP for package
names,e for expressions and̀for memory references. We use
over-bar to represent a finite ordered sequence, for instance,
f representsf1 f2 . . . fn. The terml . l′ denotes sequence
concatenation. The calculus has a call-by-value semantics. The
expression[v/vi]v yields a sequence identical tov except in
the ith field which is set tov. We use the usual dot notation
to represent nested packages. That is, the packagep.q is a
subpackage ofp. The presentation of the calculus inherits
some of the syntactic oddities of FJ, soe e is a short hand
for e1 . . . en e, andm(C x) stands form(C1 x1, . . . , Cn xn).

B. Semantics

In SJ, each gate object represents a distinct scoped memory
area and whenever a gate is reset all of the objects that were
allocated within the associated scope are reclaimed. While
the package hierarchy imposes a static structure on scopes,
gate objects allow multiple scope instances to be created at
runtime. The main restriction imposed by SJ is that a gate
can only allocate objects of scoped classes belonging to the
same package and gates defined in immediate subpackages.
When this restriction is combined with confinement invariants
that prevents gate objects leaking from their parent package,
we obtain the key property for scoped memory management,

namely the restriction that threads enter scopes in the same
order as the nesting relation of the packages containing the
gate classes.

As in Featherweight Java, the semantics assumes the exis-
tence of a class table containing the definitions of all classes.
We had to add a storeσ and a collection of threadsP labeled
by distinct identifierst. Objects are of the formC`(v), where
C is a class,v the value of the fields, and̀ the gate of the
scope in which it was allocated. The storeσ is a sequence,
C`(v), of objects, each denoted by a distinct label`i. Fig. 8
defines a number of auxiliaries relations. The partial function
allocScopeσ(C, `) retrieves the allocation scope for an object
of the typeC when the current receiver object is`. Our type
system ensures that all the scopes form a tree. Intuitively,
allocScopeσ(C, `) searches the scope tree upward starting from
` or the scope of̀ until it finds a scope`′ of the type
C′, which is in the same package asC if C is scoped and
is in the immediate super-package ofC if C is a gate. For
someC and`, allocScopeσ(C, `) is not defined. An evaluation
context, Fig. 8, is an expressionE[◦] with a hole that can be
filled in with another expression of proper type. An expression
e0 is written asE[e] only if e is in the form of v, (C) v,
v.f, v.f := v′, v.m(v), spawn e, or reset e. For a non-value
expressione0, there exists an unique evaluation contextE[◦]
such thate0 = E[e] ande is not a value. Evaluation contexts
do not include the body ofspawn .

The dynamics semantics of SJ is split in two: expression
evaluation rules given in Fig. 9 and the computation rules in
Fig. 10.

Expression rules. These evaluation rules consider only
operations performed within a single thread. The evaluation
relation has the formσ, ` e → σ′, `′ e′ where σ is the
initial store, ` is the reference to object currently execut-
ing, and e the expression to evaluate. The reduction rules
field select (R-FIELD), field update (R-UPDATE), and method
invocation (R-INVK) are not surprising, wherembody(m, C)
returns parametersx and method bodye of m when it is
invoked on an object of the typeC. The instantiation rule (R-
NEW) must ensure that the class of the object about to be
created,C, can be instantiated in the current scope (as defined
by allocScopeσ(C, `0) = `′). The fields ofC must also be
initialized, though not in the current scope but rather in the
scope of the newly allocated object (this only matters ifC is
a gate). Finally the store is updated with a fresh reference
` bound to the newly allocated object. The helper function
init(C) returns the list of initial values of the fields inC
(including the fields inherited from its super-classes). Rule
(R-RESET) clears all fields of the target object. This ensures
that all objects previously in the scope are now unreachable.
In practice, programmers do not explicitly write such reset
expressions, they are performed implicitly by the VM.

Computation rules. The computation rules are of the form
σ, P ⇒ σ′, P ′ whereσ is a store andP is a set of threads.
Each threadt[` e] in P has a distinct labelt and a runtime call

σ(`) = C`′(v) fields(C) = (C f)

σ, `0 `.fi → σ, `0 vi
(R-FIELD)

σ(`) = C`′(v) fields(C) = (C f)

σ′ = σ[` → C`′([v/viv])]

σ, `0 `.fi := v → σ′, `0 v
(R-UPDATE)

allocScopeσ(C, `0) = `′ ` fresh
init(C) = new D() σ′′ = σ[` → C`′(null)]

σ′′, ` new D1() → σ1, ` v1
. . .

σn−1, ` new Dn() → σn, ` vn
σ′ = σn[` → C`′(v)]

σ, `0 new C() → σ′, `0 `
(R-NEW)

σ(`) = C`′(v) init(C) = new D()
σ, ` new D1() → σ1, ` v

′
1

. . .
σn−1, ` new Dn() → σn, ` v

′
n

σ′ = σn[` → C`′(v′)]

σ, `0 reset ` → σ′, `0 `
(R-RESET)

σ(`) = C`′(v′) mbody(m, C) = (x, e)

σ, `0 `.m(v) → σ, ` [v/x, /̀this]e
(R-INVK)

Fig. 9. Expression evaluation.

P = P ′′ | t[` e . ` E[e]]

P ′ = P ′′ | t[` e . ` E[e′]]
e 6= reset `′, `′.m(v) σ, ` e → σ′, ` e′

σ, P ⇒ σ′, P ′ (G-STEP)

P = P ′′ | t[` e . ` E[e0]]

P ′ = P ′′ | t[` e . ` E[e0] . `
′ e′]

e0 = `′.m(v) σ, ` e0 → σ, `′ e′

σ, P ⇒ σ, P ′ (G-ENTER)

P = P ′′ | t[` e . ` E[e] . `′ v]

P ′ = P ′′ | t[` e . ` E[v]]
E[e] = `th ∨ e is not a value

σ, P ⇒ σ, P ′ (G-RETURN)

P = P ′′ | t[` e . ` e]

P ′ = P ′′ | t[` e . ` E[`th]] | t′[` `th . ` e′]
e = E[spawn e′] t′ fresh

σ, P ⇒ σ, P ′ (G-SPAWN)

P = P ′′ | t[` e . ` E[reset `′]]

P ′ = P ′′ | t[` e . ` E[`′]]
if refcount(`′, P) 6= 0 thenσ′ = σ

elseσ, ` reset `′ → σ′, ` `′

σ, P ⇒ σ′, P ′ (G-RESET)

Fig. 10. Computation rules.

stack which is a list of receiver-expression pairs`, e. Rule (G-
STEP) is simple, it picks one thread for execution and evaluates
the expressionE[e] on the top of the thread’s stack. Note that
this rule applies whene is not a method invocation or reset
expression. Rule (G-ENTER) evaluates a threadt[` e . ` e]
containing a method calle = E[e0] and e0 = `′.m(v). It
creates a new stack frame for the body of the method,e′, and
the result is a framè e . ` E[e0] . `′ e′. If the expression on
the top of a thread’s stack is reduced to a valuev, then by
Rule (G-RETURN), the thread can pop the stack frame and
continue execution withv as the resulted value of a method
call. Note that if the expression replaced byv is not a value,
then its evaluation context is unique. Thus, the replacement is
unambiguous. Rule (G-SPAWN) evaluates a threadt[` e . ` e]
containing a spawn expressione = E[spawn e0]. The value
of the spawn expression ine is the distinguished̀th which
is a unique, global reference to an object of classThread
and we assume that`th is allocated in immortal memory. A
new threadt′ is created to evaluatèe0. The new thread is
started with a call stack̀ `th that matches the call stack of
the original threadt to ensure that scope reference counts are
accurate. Rule (G-RESET) clears the fields of a gatè′ when
no thread is using that gate (i.e. when refcount(`′, P) = 0).
For simplicity, the fields of a gate are reset to default value
explicitly by a resetexpression of the formreset `′ and if
the reference count of̀′ is not zero, then the fields of̀′ are

not cleared (this makesresetnonblocking to avoid deadlock).

C. Type Rules

The typing rules are shown in Figure 11 and 12. Some
auxiliary functions used in typing rules are defined as follows:
fields(C) returns the list of field declarations in the classC
(including the inherited fields) in the form ofC f; mdef (m, C)
returns the defining class of the methodm by searching the
class hierarchy upward fromC; mtype(m, C) returns the type
signatureC→ C′ of the methodm called on the typeC, where
C, C′ are the parameter and return types. The type judgments
are of the formΓ,Σ ` e : C, whereΓ is the type environment
of variables andΣ is the type environment of object labels.

The subtyping relation<: is a reflexive and transitive
closure of the relation thatC <: C′ if the classC extends
the classC′. We define the partial order� on types to limit
the variables that can refer to scoped objects and gates;C � C′

is defined ifC <: C′, andC, C′ are both scoped types in the
same package orC is a gate type andC = C′. If C � C′, then
we say thatC is a scope-safesubtype ofC′ and the widening
of a reference from the typeC to C′ is scope-safe.

By Rules (T-UPDATE) and (T-INVK), the reference widen-
ing in the field assignments and parameters passing isscope-
safe. Rule (T-STORE) of the formΣ ` σ says that object store
σ is well typed, if the type environmentΣ has the same domain
asσ and for each object label̀ in the domain ofσ, Σ(`) is
equal to the type ofσ(`) andσ(`) must also be well-typed. If

Γ, Σ ` x : Γ(x) (T-VAR)

Γ, Σ ` ` : Σ(`) (T-LOC)

Γ, Σ ` e0 : C fields(C) = (C f)

Γ, Σ ` e0.fi : Ci
(T-FIELD)

Γ, Σ ` e0 : C0 mdef (m, C0) = C′0
mtype(m, C′0) = C→ C

Γ, Σ ` e : D D � C C0 � C′0

Γ, Σ ` e0.m(e) : C
(T-INVK)

Γ, Σ ` new C() : C (T-NEW)

Γ, Σ ` e0 : C0 fields(C0) = (C f)
Γ, Σ ` e : C C � Ci

Γ, Σ ` e0.fi = e : Ci
(T-UPDATE)

Γ, Σ ` e : Thread

Γ, Σ ` spawn e : Thread
(T-SPAWN)

Γ, Σ ` e : C C is a gate
Γ, Σ ` reset e : C

(T-RESET)

Fig. 11. Expression typing.

Store Typing:

dom(Σ) = dom(σ) ∀` ∈ dom(σ) .

Σ ` σ(`) ∧ Σ(`) = C if σ(`) = C`0(v)

Σ ` σ
(T-STORE)

fields(C) = (C f) ∅, Σ ` v : D D � C

Σ ` C` (v)
(T-STORELOC)

Method typing:

Γ = x : C, this : C0 Γ, ∅ ` e : C′ C′ � C

override(m, D, C→ C) Γ ` visible(e, C)

C m(C x) { return e; } OK IN C0 / D
(T-METHOD)

Class typing:

K = C() {super(); this.f := new D(); }
M OK IN C / D D � C visible(CDD, C)

◦ class P.C / D { C f; K M } OK
(T-CLASS)

Fig. 12. Type rules of store, method, and class.

σ(`) = C`′
(v), then by Rule (T-STORELOC), an objectC`′

(v)
is well-typed, if the types ofv arescope-safesubtypes of the
field types.

In the typing rule for class (T-CLASS), we require that in a
classC, and the types of the fields and the base class must be
visible inC. Also, all methods in a class must be well-typed by
Rule (T-METHOD). If a method in the classC0 is well-typed,
then the method bodye is well-typed by the expression typing
rules, the type of the method body is ascope-safesubtype of
the return type, and in addition, the method body must be
visible in C0 as defined by the judgmentΓ ` visible(e, C0).
The predicateoverride(m, C0, C→ C) in Rule (T-METHOD) is
true if either the methodm is not accessible inC0 or the type
signature returned bymdef (m, C0) is the same asC→ C. Note
that in (T-CLASS) we abuse notation by writingvisible(C, C)
to assert that all types in theC are visible inC.

Visibility of types and expressions. The static constraints in
our model are mostly to restrict widening of references, and
also to limit the accessibility of expressions by their types.
For example, an expression of scoped typeC is only visible
in the defining package ofC and its subpackages. We define a
relation on types –visible(C, C0) (type C is visible from type
C0), which encodes the SJ access control rules: a scoped type
defined in packageP is visible to the classC0 defined inP
and its subpackages; a gate classC is only visible from the
classC0 defined in the immediate parent package. One slightly
surprising implication of this definition is that a gate type is
not visible in its own class definition. Thus a gate classC
does not contain code that refers to itself with the exception,
as we shall see later, of the pseudo variablethis which may
indeed be used to access fields and methods from within the

gate class.
We check the method body to determine whether type

visibility constraints are violated in a class. In Rule (T-
METHOD), the judgmentΓ ` visible(e, C0) holds if e of type
C is visible in a classC0, which means that eithere = this
or the typeC is visible in the classC0 (i.e. visible(C, C0))
and all the subexpressions ofe are visible inC0. We make
an exception forthis because even though a gate type is
visible only to the classes of its immediate super-package, a
gate object must be able to use the variablethis for accessing
its fields and calling its methods. For any scoped class, the type
of the variablethis are always visible in its class.

D. Properties.

The purpose of our model is to simplify the allocation
of objects in scoped memory areas. Thus, we would like to
statically guarantee the properties that during the evaluation
of a real-time program,

1) the nesting structure of scopes remain a tree,
2) deallocated objects in scopes are no longer accessible.

In RTSJ, the nesting structure of scopes is determined by
how threads enter scopes. In our model, the scope structure
is fixed by how the gate objects representing the scopes are
created. That is, if a scopea is represented by a gate object
created in the scopeb, then a must be directly contained in
b; moreover, the gate object representinga is defined in the
immediate subpackage of the gate object representingb. Thus,
our type system guarantees that the scopes represented by the
gate objects always form a tree. It also ensures that the threads
in a program will preserve such a scope tree such that each
thread either enters the scopes already entered by the thread or
enters a new scope directly contained in the current scope of

the thread. Thus, even though a scope stack of a thread may
grow indefinitely (e.g. the thread reenters the scopes already
on stack), the nesting structure of scopes resembles the nesting
structure of the scoped packages and always remains a tree.

To ensure that deallocated objects are no longer accessible,
we require that a scoped object can only access objects with
the same or longer lifetime, while a gate object can in addition
access the objects allocated in the scope that it represents.
Thus, when the last thread in a scope exits, the objects in
that scope can be deallocated. The deallocated objects are
no longer accessible in the program because they are only
accessible to the scoped objects with the same or shorter
lifetime and to the gate of the scope, but those scoped objects
are already deallocated and no method of the gate object is
being invoked. The above accessibility constraints are enforced
by SJ’s type rules, where a scoped type is accessible in the
classes of its defining package and the subpackages. It is
possible for two instances of the same class to be allocated in
two sibling scopes (they share some parent scope). To prevent
such objects from accessing each other, we limit the access to
a gate object to itself and the classes in its immediate super-
package. Consequently, an object may only gain access to the
gate of its own scope and the gates of its immediate nested
scopes and thus, it cannot reference objects in its sibling scope.

Our proof strategy for the above properties is to show that
the safety invariant that we define below is preserved in each
reduction step. We say that an objecto cansafely accesso′ if
eithero′ has longer lifetime thano or o is the gate of the scope
whereo′ is allocated. A programσ, P is safeif for each label
` defined inσ, the objectσ(`) can safely accessthe objects
referenced in its fields, and for each frame` e in the call stack
of each thread inP , the objectσ(`) can safely accessevery
object referenced ine.

A programσ, P is well-typed if it is safeand∃Σ such that
Σ ` σ and the call stack of each thread inP is well-typed.

Given Σ, the call stack̀ e . ` E[e] . `′ e′ is well-typed, if
∃C′ such that∅; Σ ` e′ : C′, and∅; Σ ` e : C implies C′ � C,
visible(e, `) is true (defined below), and̀e . ` E[e] is well-
typed. GivenΣ, the call stack̀ e is well-typed if∃C such that
∅; Σ ` e : C andvisible(e, `) is true.

Given Σ, the constraintvisible(e, `) is true if eithere = `
or, Σ(`) = C0 and ∅; Σ ` e : C imply visible(C, C0) and for
each subexpressione′ of e, visible(e, `) is true.

In Theorem 3, we prove that if a program is well-typed,
then it will not get stuck. We model deallocation using the
explicit resetexpression, which clears the fields of a gate if
the gate is not used by any threads. We prove in Theorem 4
that the objects allocated in the gate before the reset are no
longer accessible afterward.

Lemma 1 If σ, P is well-typed andσ, P ⇒ σ′, P ′, thenσ′, P ′

is well-typed.

We say that a thread of the formt[`0 v] in P is terminated.

Lemma 2 If σ, P is well-typed, then either all threads inP

are terminated or there existsσ′, P ′ such thatσ, P ⇒ σ′, P ′.

We say that an irreducible programσ, P is stuck ifP contains
a non-terminated thread. As usual,⇒∗ is the transitive and
reflexive closure of⇒.

Theorem 3 If σ, P is well-typed andσ, P ⇒∗ σ′, P ′, then
σ′, P ′ is not stuck and it is well-typed.

Theorem 4 shows that in a well-typed programσ, P , if
a gateσ(`0) is reset successfully, then the objects allocated
in the scope represented byσ(`0) are not reachable inσ, P .
Recall that if a scope represented byσ(`0) is not used by any
thread, thenrefcount(σ, `0) = 0. We say that̀ is reachable
in σ, P if either it is referenced in a thread ofP or it is in the
field of σ(`′), where`′ is reachable inσ, P .

Theorem 4 If P = P ′′ | t[` e . ` E[reset `0]], σ, P is well-
typed, refcount(σ, `0) = 0, and σ, P ⇒ σ′, P ′, then the
objects ofσ that are allocated in the scope represented by
the gateσ(`0) are not reachable inσ′, P ′.

V. RELATED WORK

The dangers involved in the RTSJ programming model have
motivated Kwonet.al. to propose a restricted programming
model called Ravenscar-Java [12]. In Ravenscar memory areas
cannot be nested and are single threaded. Scoped Types are
intended to relax some of the restrictions of Ravenscar while
remaining easy to understand and to verify. Boyapati [13]
combine region-based memory management with ownership
types to statically guarantee that real-time threads do not
interfere with GC. While more flexible than Scoped Types,
this approach is more invasive, requiring more program anno-
tations, and more complex overall. Cyclone [14] is a type-safe
language derived from C and it supports region-based memory
management. Cyclone includes dynamic regions with lexically
scoped lifetimes, stack and a heap region. To prevent deref-
erencing dangling pointers, Cyclone uses types parameterized
by region names to track pointers to regions and uses effect
annotations to prevent unsafe access to regions. The regions in
Cyclone are limited to single threaded execution model. Also,
the use of effects may not work with real-time Java, since
the Java’s type safety requirement does not allow objects to
hold invalid references even if never used. Grossman extended
Cyclone with a type system for preventing data races [15]. The
MLKit is an implementation of ML which uses regions and
region-inference [16], [17]. One of the main difference with
the model presented here is that ML is a functional language
without built-in support for concurrency.

There are two other open source virtual machines that
implement parts of the RTSJ: Flex [18] and JRate [19], [5],
as well as a number of commercial products and alternative
proposals [20], [21], [22], [23], [24].

VI. CONCLUSION

In this paper we have introduced Scoped Types, a static
programming discipline to support the kind of scoped memory
management found in the Real-Time Specification for Java.
The key contribution of our proposal is that it statically
maintains the invariants that the RTSJ checks dynamically,
yet imposes minimal syntactic overheads upon programmers.
In particular, by statically associating scoped objects to their
defining packages, Scoped Types ensure that illegal incoming
references are never created, eliminating the potential for
run-time errors caused by illegal assignment operations. By
modeling nested scopes with nested packages, Scoped Types
ensure that scopes will never form cycles, again eliminating
the potential for runtime exceptions. By statically tracking the
objects contained within each scope, Scoped Types ensure
that it is safe to discard all the objects in a scope once the
last thread has left it. We have formalized Scoped Types
within the SJ-calculus and demonstrated that it avoids dangling
references and cycles of scopes. We hope the techniques
embodied within Scoped Types may be useful in many RTSJ
applications, making real-time Java programming more prac-
tical, convenient and reliable.

For future work, we plan to relax the type constraints
in SJ so that more programs can be written. For example,
the current type rules prevent a scoped class from invoking
methods inherited from parent packages. Such invocation can
result in the implicit reference widening of the variablethis
in the method call and consequently, objects in the outer scope
may hold references to the receiver object. To prevent such
problems, we may require such methods to beanonymous[9]
so that the variablethis can only be used for field access
and calls to other anonymous methods. Another limitation of
Scoped Types is the lack of reuse of library classes. This
problem may be addressed by introducing generics to Scoped
Types similar to the Confined Generic Types in [9]. For
example, a generic classVector<X> may be used in a scoped
package as containers for instances of the scoped classC if
we instantiate the class asVector<C> . Instances of the class
Vector<C> can be allocated in the scope of theC objects and
be confined in that scope and its nested scopes. Of course,
we have to decide where to allocate the objects created in the
vector class. For example, if the vector class is implemented
using linked list, then we may allocate the linked list objects in
the current scope as well but we must take care to protect the
references to those objects from illegal access. An alternative is
to allocate those objects in heap memory but this would make
such vector class less usable inNoHeapRealtimeThread .

ACKNOWLEDGMENTS

This work is partially supported by DARPA/ITO under
the PCES program and by NSF award HDCCSR-0341304.
The authors are grateful to Alex Potanin for refactoring Zen,
and to David Holmes, Filip Pizlo and Dave Clarke for their
contributions to earlier versions of this work.

REFERENCES

[1] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull,
The Real-Time Specification for Java. Addison-Wesley, June 2000.

[2] D. Sharp, “Real-time distributed object computing: Ready for mission-
critical embedded system applications,” inProceeding of the Third In-
ternational Symposium on Distribtued-Objects and Applications, 2001.

[3] NASA/JPL and Sun, “Golden gate,” 2003,
http://research.sun.com/projects/goldengate .

[4] Timesys Inc., “JTime,” 2003,http://www.timesys.com .
[5] S3 Lab, “The ovm customizable virtual machine project,” Purdue

University, Tech. Rep., 2004.
[6] D. G. Bobrow and B. Wegbreit, “A model and stack implementation

of multiple environments,”Communications of the ACM, vol. 16, pp.
591–602, 1973.

[7] K. H. Randall, “Cilk: efficient multithreaded computing,” Ph.D. dis-
sertation, Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 1998.

[8] F. Pizlo, J. Fox, D. Holmes, and J. Vitek, “Real-time java scoped
memory: design patterns and semantics,” inProceedings of the IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing, May 2004.

[9] T. Zhao, J. Palsberg, and J. Vitek, “Lightweight confinement for Feath-
erweight Java,” inProceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOP-
SLA’03). ACM Press, Oct. 2003, pp. 135–148.

[10] A. Krishna, D. Schmidt, and R. Klefstad, “Enhancing Real-Time
CORBA via Real-Time Java Features,” in24th International Conference
on Distributed Computing Systems (ICDCS 2004), Hachioji, Tokyo,
Japan, 2004, pp. 66–73.

[11] A. Igarashi, B. C. Pierce, and P. Wadler, “Featherweight Java: a minimal
core calculus for Java and GJ,”ACM Transactions on Programming
Languages and Systems, vol. 23, no. 3, pp. 396–450, May 2001.

[12] J. Kwon, A. Wellings, and S. King, “Ravenscar-Java: A high integrity
profile for real-time Java,” inJoint ACM Java Grande/ISCOPE Confer-
ence, November 2002.

[13] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard, “Ownership
types for safe region-based memory management in Real-Time Java,”
in Proceedings of Conference on Programming Languages Design and
Implementation. ACM Press, 2003.

[14] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney,
“Region-based memory management in Cyclone,” inProceedings of the
ACM Conference on Programming Language Design and Implementa-
tion, June 2002.

[15] D. Grossman, “Type-safe multithreading in Cyclone,” inACM Workshop
on Types in Language Design and Implementation, January 2003.

[16] M. Tofte and L. Birkedal, “A region inference algorithm,”ACM Trans-
actions on Programming Languages and Systems, vol. 20, no. 4, pp.
724–767, July 1998.

[17] M. Tofte and J.-P. Talpin, “Region-based memory management,”Infor-
mation and Computation, Feb. 1997.

[18] W. S. Beebee, Jr. and M. Rinard, “An implementation of scoped memory
for real-time Java,” inProceedings of the First International Workshop
on Embedded Software (EMSOFT), 2001.

[19] A. Corsaro and D. Schmidt, “The design and performace of the jRate
Real-Time Java implementation,” inThe 4th International Symposium
on Distributed Objects and Applications (DOA’02), 2002.

[20] K. Nilsen, “Adding real-time capabilities to Java,”Communications
of the ACM, vol. 41, no. 6, pp. 49–56, June 1998. [Online].
Available: http://www.acm.org:80/pubs/citations/journals/cacm/1998-
41-6/p49-nilsen/

[21] D. Buytaert, F. Arickx, and J. Vos, “A profiler and compiler for the
Wonka Virtual Machine,” inUSENIX JVM’02 Work in Progress, San
Francisco, CA, August 2002.

[22] J. Tryggvesson, T. Mattsson, and H. Heeb, “Jbed: Java for real-time
systems,”Dr. Dobb’s Journal of Software Tools, vol. 24, no. 11, Nov.
1999.

[23] U. Gleim, “JaRTS: A portable implementation of real-time core exten-
sions for Java,” inProceedings of the Java Virtual Machine Research
and Technology Symposium (JVM ’02). Berkeley, CA, USA: USENIX,
2002.

[24] F. Siebert, “Hard real-time garbage collection in the Jamaica Virtual
Machine,” in Sixth International Conference on Real-Time Computing
Systems and Applications (RTCSA’99), Hong Kong, 1999.

