
Making Android Run on Time
Yin Yan

University at Buffalo
yinyan@buffalo.edu

Karthik Dantu
University at Buffalo
kdantu@buffalo.edu

Steven Y. Ko
University at Buffalo
stevko@buffalo.edu

Jan Vitek
Northeastern University

j.vitek@northeastern.edu

Lukasz Ziarek
University at Buffalo
lziarek@buffalo.edu

Abstract—Time predictability is difficult to achieve in the com-
plex, layered execution environments that are common in modern
embedded devices. We consider the possibility of adopting the
Android programming model for a range of embedded applica-
tions that extends beyond mobile devices, under the constraint
that changes to widely used libraries should be minimized. The
challenges we explore include: the interplay between real-time
activities and the rest of the system, how to express the timeliness
requirements of components, and how well those requirements
can be met on stock embedded platforms. We report on the
design and implementation of an Android virtual machine with
soft-real-time support, and provides experimental data validating
feasibility over three case studies.

I. INTRODUCTION

Embedded devices are being used in contexts that require
increasingly complex software stacks that often combine real-
time components with timing-oblivious software elements.
This is certainly the case of smartphones and tablets, but also
holds for the Internet of Things and edge devices. While many
applications in these fields have some timeliness requirements,
they are typically not written using best practices for real-time
systems. More often than not developers forsake predictability
in favor of ease of programming. Thus one may see applica-
tions written in dynamic languages such as Java or Python
running on stock operating systems.

This paper investigates the use of the Android program-
ming model to write software systems that mix real-time and
non real-time components. In particular, we are interested in
minimizing the changes to the programming model and to the
libraries. The choice of Android is motivated by its popularity
on mobile devices, but our goal is to broaden its applicability
to a larger class of embedded applications. Our approach is
pragmatic—we have identified a small number of target appli-
cations and extend the platform to support those well. These
applications include personalized health care (e.g. a cochlear
implant) [2], audio-based indoor localization [12], harmonized
sound reproduction [11], timely sound delivery [10], and UAV
flight control [3]. We have also deployed our system on a wind
turbine for blade health monitoring [15].

Android has a programming model based on the Java
programming language with libraries designed and optimized
for mobile devices. The system presented here is a natural
extension of our previous research efforts which included the
design and implementation of the Fiji real-time Java virtual
machine [19] and our first generation RTDroid system [24],
[25] that focused on enhancing integrating the Fiji VM virtual

machine and Android system services with support for the
Real-Time Specification for Java (RTSJ) [5] on top of a real-
time operating system.

Our contributions focus on the programming model exposed
to developers. To retain a familiar style of development, we
make a number of changes to the Android abstractions and
how they interact with the underlying system as well as each
other. We aim to leave legacy Android code unaffected, and
only expose real-time features to components which have
timeliness requirements. The changes required to the Android
platform fall in three categories:

• Components: We introduce real-time services, tasks, and
receivers to represent timing-aware software elements.
The timeliness and resource requirements of these com-
ponents are defined declaratively in a manifest.

• Communication: We extend Android communication
primitives to provide control over how components of
different priority communicate and mechanisms to inter-
act with legacy code.

• Memory Management: We expose a limited form of
region-based memory that allows programmers to circum-
vent the garbage collector and to ensure isolated regions
of memory for each component.

To validate our design and evaluate the quality of our
implementation, we report on three applications deployed on
RTDroid on commodity embedded boards as well as smart-
phones. They are a cochlear implant, a wind turbine health
monitor, and a UAV flight control benchmark. Our results
illustrate that, at least in these three use-cases, the modified
platform delivers significantly better time predictability than
stock Android and reduces the code complexity as compared
to the RTSJ. Readers interested in additional use-cases are
directed to [4] which includes applications for audio-based in-
door localization, harmonized sound reproduction, and timely
sound delivery.

While our experience using Android for embedded tasks has
been mostly positive, we should mention some limitations.
Performance has not been a problem for our target applica-
tions, but clearly using a high-level language can come at a
cost. In addition, we have not optimized our system for small
devices; there are Java-based virtual machines for tiny devices
but this usually comes with degraded performance. Lastly,
unlike the RTSJ which was designed with great care to cover
many different real-time programming styles, our approach is
demand-driven and makes no claims of generality.978-1-5090-5269-1/17/$31.00 c©2017 IEEE

1 class ConfigurationUI extends Activity{
2 ClickListener l = new ClickListener() {
3 public void onClick(View v) {
4 //change processing config
5 } };
6 public void onStart(){
7 button.setOnClickListener(l);
8 } ... }

Fig. 1: Audio Configuration UI written in Android.

1 class ProcessingService extends Service {
2 public void onStartCommand() {
3 /* periodic audio processing */
4 while (true) {
5 //process every 8 ms
6 } }
7 ...
8 }

Fig. 2: Audio Processing Service written in Android.

II. ANDROID-ENABLED REAL-TIME APPLICATIONS

Using the stock Android platform for real-time computing
is challenging for a number of reasons which we summarize
here. Android provides three software architectural elements,
services, activities, and broadcast receivers, for, respectively,
background computation, foreground computation with user
input, and handling system-wide events. The Android sched-
uler is not priority aware and there is no mechanism to
assign priorities to threads. Android offers two communication
mechanisms: messages and intents. Messages are received by a
Handler which is a unique mailbox for all messages directed
at a component. As there is no notion of priority for messages,
the first-in first-out queue associated with a handler can lead
to priority inversion. An Intent is an event that triggers
execution of callbacks in components that have registered for
it. Intents can lead priority inversion as callbacks are executed
by the receiver which may have different timeliness require-
ments than the component that raised the intent. Memory
pressure is also a concern. Android provides no mechanism
other than garbage collection to manage memory, and its
garbage collector does not have real-time guarantees. To makes
matters worse, there is no way to bound memory consumed
by different components. Thus a stray non-critical component
can affect the whole system.

Even with theses limitations, the health care industry has
been studying how to adapt Android for wearable and im-
plantable health devices, like cochlear implants. A cochlear
implant restores hearing abilities through an electronic device
surgically inserted in the inner ear. It relies on external
components to capture ambient audio, convert it into digital
signals, and translate the signals into electrical energy. There
is interest in leveraging smartphones [2] to provide additional
services such as on-the-fly translation or noise cancellation.
In such a scenario, a smartphone records audio streams and
processes them. To provide acceptable performance sound
samples must be handled at rate of one every 8 ms.

A plausible design for such an application would be to split
the user interface that controls volume and noise reduction
from sound processing. The UI can be implemented as an
activity as shown in Figure 1. It deals with configuration
parameters set by the user. On the other hand, sound process-
ing is best modeled as a service, Figure 2, which repeatedly
processes sound samples. Even in such a simple use-case,
it is important to ensure that sound processing will not be
delayed by UI processing. When components have to interact
through Android-based communication mechanisms, ensuring

non-interference becomes even more tricky.
Figure 3 shows the architecture of our solution in RT-

Droid. It separates real-time (RecordingService, Process-
ingService, and OutputReceiver) and non-real-time com-
ponents (VolumeReceiver and ConfigurationUI). The
former have priorities attached and use communication ser-
vices that prioritize messages. ConfigurationUI has a Han-
dler for other components to update the UI, and a non-
real-time receiver listens on volume key events. It also re-
ceives messages from real-time components. Similarly, the
ProcessingService receives messages from non real-time
components (VolumeReceiver and ButtonListener) and
a real-tine component (RecordingService). RTDroid allows
these components to communicate while enforcing memory
bounds. Each real-time component is provided a fixed amount
of memory for its exclusive use. That memory is divided into
two section, one persists for the lifetime of the component,
the other is cleared each time the component yields con-
trol. Messages are pre-allocated. Non real-time components
allocate messages in heap memory. RTDroid extends the
Android manifest to enable developers to declare properties
of components that include priority, periodicity and memory
bounds.

ProcessingService

ConfigurationUI

VolumeReceiver

ButtonListener

UiHandler

Periodic Audio
Processing

msgmsg msg…

RecordingService

OutputReceiver

Non-Real-Time Components Real-Time Components

MsgHandler

Non-Real-Time Messages Real-Time Messages

Fig. 3: Architecture of the Cochlear Implant Application.

III. REAL-TIME ANDROID

We now review the design and implementation of RTDroid,
our real-time aware version of Android. RTDroid is avail-
able in open source at https://rtdroid.cse.buffalo.edu. Our first
release [24] integrated a real-time JVM and a RTOS with

RTSJ Application

Application Framework

RT Runtime

RTOS Kernel

RT System Services

Libraries

Bionic lib with
RT extension

RT Handler

RT Looper RealtimeService

RealtimeReceiver

Realtime Channels

RT Android
Application

Stock Android

Android Application

Scoped Memory
Extensions

Fiji Virtual Machine

Fig. 4: RTDroid runtime architecture. Gray elements are the
extensions introduced in this paper. Notably, we now support
multiple, interacting real-time applications, real-time applica-
tions written using an Android like programming model, as
well as legacy code and stock Android applications.

the Android framework, as well as re-designed some system
services for real-time support. It relied on real-time garbage
collection and was limited to running a single real-time
application. The present version introduces high level real-time
constructs with concrete memory bounds (RealtimeService and
RealtimeReceiver), low level constructs for communication
(Realtime Channels), and a mechanism for specifying the real-
time properties of the constructs shown in Figure 5. These
new constructs allow for programming real-time applications
in an Android-like manner and for communication between
applications. We also support running stock Android appli-
cations in a separate VM, this is well suited to run user
interface components and applications that have no timeliness
requirements.

It is important to realize that, while RTDroid supports
dynamic loading of code, our system has a dedicated bootstrap
sequence divided into two stages: compile time and application
runtime, shown in Figure 5. The two stage process ensures that
memory can be pre-allocated and components are correctly
configured. During compile time, our framework parses the
manifest file of an application, runs verification checks (de-
scribed in more detail in Section sec:rt-manifest, and emits
configuration bytecode for all components. This configura-
tion bytecode provides a unique handler for each application
component. At boot time, the system goes through the list of
handlers and calls each handler to instantiate its corresponding
application component. After instantiation, a handler registers
its component with our component manager. This component
manager manages the lifetime of each component.

A. Components

RTDroid supports three different real-time components:
services, tasks and receivers. A RealtimeService is a coun-

Compile Time

Manifest XML
Parser

Configuration
Validation

Configuration
Bytecode

Generation

System Service
Initialization

Component
Initialization /
registration

Application
Execution

Configuration
Bytecode

Configuration
Object Initilization

Component
Manager

Fig. 5: Bootstrap sequence.

terpart to Android’s service used for one-shot aperiodic or
sporadic computation. As the notion of periodic computation
is foreign to Android, we introduce the PeriodicTask class
to model such behavior. Tasks are used internally within a
real-time service. A RealtimeReceiver is used to react to
system-wide events delivered via intents. We do not provide
a counterpart to Android’s activities; they are used for UI
programming and we have not yet observed real-time re-
quirements for these. We do allow for interaction between
UI components and real-time components through message
channels.

Real-time components are statically assigned the following:
a priority, a starting time, a deadline, and a memory limit.
This is done declaratively by extending Android’s manifest
with properties (priority, memSizes, release, etc.). The
association between a periodic task and its parent is also
specified in the manifest by a periodic-task tag. The
manifest provides information for boot-time verification and
pre-allocation of components. RTDroid ensures that the to-
tal memory requested specified for a component equals the
objects in its persistent memory, its per-release memory, and
that of its sub-components. Figure 6 shows a manifest for the
processing service of our running example.

Managing the lifetime of components requires: (1) ensuring

1 <service name="pkg.ProcessingService"
priority="79">

2 <memSizes total="3M" persistent="1M"
release="1M" />

3 <release start="0ms">
4 <periodic-task name="processingTask">
5 <priority priority="79"/>
6 <memSizes release="1M"/>
7 <release start="0ms" periodic="8ms" />
8 </periodic-task>
9 <!-- subscribes to the msgHandler

channel -->
10 <intent-filter count="2"

role="subscriber">
11 <action name="msgHandler"/>
12 </intent-filter>

Fig. 6: An extended Android manifest.

priorities, deadlines, and periodicity of components, (2) au-
tomatically managing memory allocated by components, and
(3) guaranteeing per-component memory bounds. We extend
RTDroid’s priority based scheduler and introduce a declarative
specification for configuration of component requirements to
ensure point (1). We introduce memory regions and specialized
channels for ensuring points (2) and (3). Our VM parses
this declarative specification and pre-allocates all necessary
constructs, memory regions, and channels.

The concept of region-based memory allocation is an old
one. The idea is to avoid having to manage individual objects,
instead objects are allocated in regions, which can be deallo-
cated in one fell swoop. The RTSJ introduced this idea to Java
to provide an alternative to garbage collection. In the RTSJ,
each thread may be associated to a particular scope, and scopes
can be nested to make a cactus stack. For RTDroid, region-
based allocations has two important benefits, threads that are
using it need not be paused during garbage collection and they
make it possible to bound the amount of memory allocated by
any thread.

The RTDroid system supports a much simpler form of
scoped memory than the RTSJ. Each component has access
to two scopes, one is Persistent Memory for data that lives
as long as the component and the other is Release Memory
which is cleared before each release of a periodic task. The
size of these scopes is given in the manifest. The total memory
of a component is the sum of its persistent memory, release
memory, and the memory of internal components.

1) Service: A real-time service is an abstract class; a
programmer needs to implement its callbacks. These callbacks
are directly inherited from Android’s service and they are
invoked at different points in the lifetime of a service. The
onCreate() callback is invoked at service creation. The
onStartCommand() method is called at startup and usually
implements application logic. Figure 8 shows a service that
starts a periodic task. Unlike Android services which run in the
main thread, RTDroid services execute in dedicated threads.
This change is necessary in order to allow services to run with
different priorities.

Services are bound to real-time threads from the underlying
real-time JVM. By default, when a service is initialized, it is

Persistent Scope

RealtimeService

Release
Scope

Release
Scope

Release
Scope …

Periodic
Task …

Intent Queue

Intent Queue

periodic
logic

service
callbacks

periodic
logic

…Periodic
Task

Fig. 7: Scope Structure for a Service.

1 class ProcessingService extends
RealtimeService{

2 PeriodicTask task = new PeriodicTask(){
3 public void onRelease(){
4 /* periodic audio processing logic */
5 } }; ...
6 public int onStartCommand(...){
7 /* Each registered task starts after the
8 onStartCommand() callback. */
9 registerPeriodicTask("processingTask",

task);
10 }
11 }

Fig. 8: Real-Time Service and Periodic Task.

assigned a persistent memory scope that has the same lifetime
as the service. The scope is allocated when the service starts
and deallocated when the service terminates. Static initializers
for the service are run in this scope. In addition, if the service
uses communication channels, intent queues are allocated in
persistent memory. Callbacks execute within the scope of
release memory for the associated service. The release memory
is cleared when the callback returns. Similarly, when a periodic
task is started in a service, it is also assigned a release
scope. Note that our manifest requires specification of memory
bounds for callbacks and periodic tasks, and this information is
used to size release scopes appropriately. Figure 7 depicts the
scope structure for a service as well as pre-allocated objects
during boot.

2) Periodic Task: A periodic task is a sub-component of a
service. In addition to the characteristics of its parent service,
a task needs a period. Figure 8 shows an example which pro-
cesses audio input periodically. A programmer needs only to
implement onRelease() to specify a periodic computation.

3) Receiver: In Android a new broadcast receiver is allo-
cated whenever an intent is received, which results in frequent
object allocation and deallocation if many intents are sent
from a component. In RTDroid, a real-time receiver is a
persistent construct, we reuse the same receiver to reduce
memory pressure. As a direct consequence, a receiver can only
process one intent at a time. Application logic is expressed
in callbacks. The onReceive() defines logic to react to
events, it is invoked when an intent is received. A new
callback, onClean(), resets class variables in a receiver.
This callback is used to cleanup any state between intents
and is necessary if the programmer wishes to have stateless
processing. This callback is not needed if the receiver only
modifies local variables as they live in release memory and
will be cleared automatically. In our running example we
implement OutputReceiver as a receiver to react to the
processed audio output sent by the ProcessingService.

One important design choice is the priority of a callback,
RTDroid decouples intent delivery from the callback execu-
tion. Intents are delivered according to policy enforced by real-
time channels (described later). Callbacks are executed at the
priority of their component. Multiple callbacks triggered by a

series of intents are serialized and will be executed in-order.
In the cochlear implant, ProcessingService sends audio to
OutputReceiver through a real-time channel. The channel
guarantees that intents are delivered to the receiver with the
priority of the ProcessingService, and the callback is
invoked asynchronously with the priority of the receiver.

In implementation terms, a receiver is bound to an asyn-
chronous event handler in the underlying JVM and backed
by a priority message queue. An asynchronous event handler
can serialize multiple releases from different senders, and
the priority queue ensures the intent delivery order is based
on the sender’s priority. The callback is executed by the
asynchronous event handler, which is assigned the priority of
callback method’s owner.

B. Communication

RTDroid provides four types of real-time channels for
communication: (1) message passing channels, (2) broadcast
channels, (3) bulk data transfer channels, and (4) cross-context
channels to communicate with non real-time components.
Following Android conventions, programmers declaratively
specify channel name, events, data type, and size. Real-
time components must specify the number of messages that
they send or receive per release. This ensures that we can
preallocate the messaging objects and enforce memory bounds
for all channels. There is one primordial cross-context channel
to facilitate interaction with other Android applications and
services. All other channels are explicitly created by program-
mers.

Figure 9 shows a real-time message passing channel dec-
laration with a name attribute as an event identifier. Each
channel should define its runtime behavior via: type at-
tribute (channel communication type), order (message de-
livery order), execution (execution priority of the invoked
function), drop (message dropping policy), data size and
data type. Components can use intent-filter to identify
themselves as publishers or subscribers of a channel and to
specify the number of messages sent or read in each callback
release.

One of the major benefits of using declarative manifest in
our programming model is that it provides information for
static verification. RTDroid guarantees the correctness of the
application in two aspects: (1) Memory boundary checking:
the total memory of a component should be equal to the sum
of objects of its persistent memory, its release memory and
the release memories of all its sub-components. (2) Channel
overflow checking: The incoming message rates should not
exceed the message processing rates for each channel.

1) Message Channels: A real-time message passing chan-
nel has three distinctive characteristics: (1) the associated
RealtimeHandler must be registered in a real-time service;
(2) only primitive arrays (or fixed length byte-buffers) can be
exchanged on it; and (3) the number of waiting messages is
bounded.

Our implementation creates a fixed-length message queue
for each channel. Along with the message queue, message ob-

1 <channel name="msgHandler" type="rt-msg" >
2 <order>priority-inheritance</order>
3 <execution>component-priority</execution>
4 <drop>priority&oldest</drop>
5 <data size="256B"

type="app/octet-stream"/>
6 </channel>

Fig. 9: Real-time Channel Declaration.

jects are also pre-allocated. They live in persistent memory of
the receiver. Figure 10 illustrates the scope memory hierarchy
of our design.

Queuing of messages is handled at the sender’s priority,
while de-queuing is done according to the receiver’s priority.
If a queue is full, high-priority component can steal a message
from a low priority sender. When this happens, the high-
priority component will be able to enqueue its message while
the low-priority component will receive an exception.

Persistent Scope

Release Scope

handleMessage(…)

…

Persistent
Scope

Persistent
Scope

Immortal Memory
Real-time Message Passing Channel

message copy message pollmessage

Release
Scope
obtain

send send

Release
Scope
obtain

Fig. 10: Real-time Message Passing Channel.

Sending messages is slightly tricky as they are pre-allocated
and senders should not retain references messages after the
message has been sent. The protocol for sending a message
is thus indirect. A MessageClosure is allocated by the
sender, and the genMsg() callback is used to populate the
message’s payload with data. This unifies message population
and queuing and is shown in Figure 11. In our running
example, high-priority messages from RecordingService

can be prioritized over the messages from non-real-time Con-

figurationUI.
The message is served based on sender priority as a message

pool. As a direct consequence, the obtain operation can fail
when no messages are available as they have been given to
higher priority component. An exception is raised in this case.
If a high priority component attempts to obtain a message
and all message objects are currently in use, the high priority
thread can steal message objects that are currently being used

1 MessageClosure c = new MessageClosure(){
2 @Override
3 public RTMSG genMsg(RTMSG m){
4 Bundle b = m.getData();
5 b.setInt(idx, 3);
6 ...
7 return m;
8 }
9 };
10 rmsg.send("channel", c);

Fig. 11: Message Passing Interface.

by low priority and non real-time senders. Since messages are
obtained during the send method of MessageClosure, all
message objects in use will correspond to messages that have
been enqueued, but not yet received. If the message is stolen
from a construct, an asynchronous exception is delivered to the
construct by utilizing the RTSJ AsynchronousInterrupt-

edException mechanism.
Once a message has been obtained, the sender must copy the

data to be sent from its local allocation context to the message
pool of the the channel. This ensures that a sender cannot
utilize or fill the allocation context of a receiver directly, the
receive must choose to receive the message. Since each chan-
nel is itself bounded, non real-time senders cannot overflow
the channel. The message content will only be copied to the
receiver when the receiver is ready to receive and process the
message. Once the message is copied to the receivers handler,
the message object is returned the message object pool. This
strategy keeps the amount of memory dedicated to message
passing constant. The sender must utilize its own memory
(heap or its release scope) to create the data that it wishes
to send and cannot use system resources to store this data
unless it is able to obtain a message object.

2) Broadcast Channels: Real-time broadcast channels are
used to invoke callbacks of real-time components. We decou-
ple the priority of intent delivery from invocation of callbacks
which execute at their own priority, however intents are by
default delivered in priority order in the same was as messages
over a message channel. The main difference between intents
and messages is the number of recipients. For messages this is
always one and for intents this is the number of subscribers.
Subscription to an intent must be declared in the manifest.
Figure 12 shows how an intent object persists in immortal
memory until it is copied to the intent queues in multiple
subscribers. Although the message will be replicated for each
subscriber to the intent, only one message is stored in channel
itself. A count is associated with the message identifying the
number of recipients subscribed to the intent. On receipt, when
the message is copied to the receivers intent queue the count is
decremented. The last recipient releases the message back to
the message pool in exactly the same fashion as the message
passing channel. The memory usage of the broadcast channel
is bounded, because we pre-allocate intent objects in each
subscriber’s intent queue based on the size and type of data in
the manifest as well as a bounded number of intent messages.

Persistent Scope

Release Scope

sendBroadcast(intent)

Persistent
Scope

Release
Scope

Persistent
Scope

Release
Scope

Immortal Memory
Real-time Intent Broadcast Channel

broadcast

message copy message pollmessage

Fig. 12: Real-time Intent Broadcast Channel.

3) Bulk Data Channels: The bulk data transfer channel
allows zero-copy data transfers for large messages. To support
bulk transfers we extend the notion of nested memory regions
with transferable nested scopes. A nested scope, which in this
case encapsulates the bulk data, is removed from the scope
stack (a tracking structure used for correctness guarantees)
of the sending construct and pushed onto the scope stack of
the receiving construct. As a result, the sender can no longer
allocate into the scope, nor can the sender write to the memory
of the scope. We observe that ownership transfer only works
if the scope being transferred is at the top of the scope stack
and the scope stack is linear. Since our programming model
does not expose scopes to programmers, the constraints are
ensured by the structure of the channel as well as the real- time
constructs. Communication with bulk channels thus entails, a
sender creating a transferable scope, populating it with data,
and relinquishing access to the scope.

4) Cross-Context Channels: Cross-context channels allow
Android’s activities to communicate with real-time compo-
nents. In this scenario communication is occurring between
two separate VMs, one of which is executing the non real-time
application and RTDroid executing a real-time application.
This allows us to support interaction with both legacy Android
code as well as other Android applications. We note that cross-
context channels are not required for communication between
multiple real-time applications as the Fiji VM supports mul-
tiple VMs in the same address space.

To enable such communication an Android application
must declare a service (RTsProxyService) that subscribes
to channels declared in an real-time application that uses our
real-time constructs. For communication in the other direction,
a real-time application need only to subscribe to intents the
non real-time application has declared in its manifest. Since
our manifest is an extension of the Android manifest, no
changes are require to the configuration of Android. The proxy
service allows non-real-time code to send an intent to real-time

components. Communication in the other direction requires the
activity can subscribe to intents defined by real-time code. To
preserve memory bounds, the number of intents in a cross-
context channel is bounded and each intent has a fixed-length
payload. Figure 13 shows how the bi-directional communi-
cation is established through sockets between RTDroid and
Android. To do so, we leverage two proxy components in each
runtime, To avoid interference, the Android proxy component
is executed in heap memory, and it runs at the lowest real-
time priority. The incoming message objects are translated
to real-time intents or messages with the lowest priority and
sent to the subscribing real-time components via real-time
channels. Only one message is deposited into a real-time
channel at a time, preventing non real-time components from
exhausting memory used by real-time constructs. Non-real-
time components can exhaust the heap, but this will not affect
real-time components using pre-allocated memory regions.

Heap Memory

Immortal Memory

AndroidProxy

Android
Activity

RTDroid
Proxy

Service

Socket

Socket intentSocketReal-time
Channels

Socket

RTDroid Runtime Android Runtime

Android
Service

Android
System
Service

intent

intentReal-time
Persistent Scopes

…

message copy message pollmessage socket communication

Fig. 13: Cross-Context Channel.

C. Memory Management

For real-time applications, providing memory usage guar-
antees implies that the underlying system provides predictable
allocation – object allocation should not be blocked by the
memory usage of any other construct, and predictable recla-
mation – the underlying memory management scheme should
not interfere with the execution of a real-time component. To
achieve both, we use scoped memory, a region based memory
management scheme. Scoped memory provides fixed amount
of memory for real-time tasks through the usage of memory re-
gions and predictable object allocation and deallocation within
scopes. Additionally, scoped memory ensures that real-time
threads executing within scopes are not blocked during GC
if they only utilize scoped memory. The RTSJ provides three
types of memory areas: (1) heap memory, which is garbage
collected, (2) immortal memory, which is never reclaimed, and
(3) scoped memory, which provides bounded memory regions.
To guarantee referential integrity, RTSJ imposes a number of
rules on how scoped memory must be used, such as (1) the
objects in a scope are only reclaimed after all threads in that
scope have finished, (2) every thread must enter a scope from
the same parent scope, and (3) a scope with a longer lifetime
cannot hold a reference to an object allocated in a scope with a

shorter lifetime. Fundamentally, we leverage scoped memory
to provide memory bounds corresponding to the lifetime of
different computations as well as data across computations.
To provide memory boundary for each component, we group
the computation and associated allocations performed by the
computation into two separate lifetimes: (1) the duration of
the lifetime of the component (persistent scope), and (2) the
duration of one callback invocation (release scope). The scopes
correspond directly to the types of memory defined by our
system; persistent memory and release memory respectively.
Each component run is bound to its own thread of control that
starts in the immortal memory. This assures that the memory
necessary for creating the execution context for the thread is
always available, even if the construct has to be terminated
and restarted. Similarly channels are allocated in immortal
memory.

IV. EVALUATION

To evaluate our system we use three application case
studies: a cochlear implant application described in Section II,
a UAV flight control system, jPapaBench [6], and a turbine
health monitoring application. We use these case studies to
compare against Android as well as RTSJ. All results are
collected on a Raspberry Pi Model B, which has a single-core
ARMv6-based CPU with 512 MB RAM, and runs Debian
with Linux preemptive kernel v3.18 and on a Google Nexus
5 smartphone, which has a quad-core 2.3 GHz Krait 400
Processor and 2GB RAM, running Android v6.0.1. On both
platforms we only enable one core and fix CPU frequency. For
the turbine health monitoring application, we use an external
Wolfson audio codec in order to provide high-quality audio
playback and capture for vibro-acoustic analysis. Raw data
and plotting scripts can be found under the publications tab
and cases study code under the application tab on our website:
rtdroid.cse.buffalo.edu.

A. Channel Micro Benchmarks

To demonstrate that our channels provide real-time guar-
antees, we use a micro benchmark that runs two real-time
services and one non real-time service. One real-time service
acts as a sender that sends a message every 100 ms with the
highest priority and one as a receiver of the message. The third
service, executing in heap memory, starts 30 noise-making
threads with the lowest priority to inject noise into the system.
We use three types of noise-making threads: (1) heap noise
that allocates an array of 512 KB in the heap memory every
200 ms, (2) computational noise that computes π every 200
ms, and (3) message noise that sends a low-priority message
to the receiving service every 200 ms.

Figure 14 shows raw performance measurements for the
baseline performance of our channel implementations. Mes-
sage passing consists of message allocation by the sender,
message delivery, and context switch from the sender to the
receiver. Figure 14a shows this breakdown with just the sender
and the receiver, and it is our baseline performance. In the
figure, we plot the latency of 2000 message passing events.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

Release Number

Message Passing Latency
Context Switch Latency

Message Allocation Latency

(a) Message Passing

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

s

Release Number

Intent Delivery Latency
AsyncEvent Fire Latency

(b) Intent Broadcast

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

M
ic

ro
se

co
nd

s

Release Number

Intent Delivery Latency
AsyncEvent Fire Latency

(c) Bulk Data Transfer

Fig. 14: Real-time Communication Channels: Baseline Scatter Plot for Micro benchmarks.

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

Pe
rc

en
ta

ge

Message Passing Latency (us)

Baseline
Computational Noise

Memory Noise
Message Noise

(a) CDF for Message Passing

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

Pe
rc

en
ta

ge

Intent Delivery Latency (us)

Baseline
Computational Noise

Memory Noise
Message Noise

(b) CDF for Intent Broadcast

0

20

40

60

80

100

0 50 100 150 200 250

Pe
rc

en
ta

ge

Data Transferring Latency (us)

Baseline
2M
4M
6M
8M

10M

(c) CDF for Bulk Data Transfer

Fig. 15: Micro-benchmarks for Real-time Communication Channels.

For each event, the message allocation latency is the amount
of time it takes for a sender to instantiate a message. The
message passing latency is the time taken for delivery. The
context switch latency is the difference between the time the
sender sends a message and before the receiver processes
the message. As shown, all three types of latency are tightly
bounded across all events, and there is no outlier that takes
much more time to process than others. It shows that without
any other background load, our implementation provides stable
and predictable performance.

We have conducted a similar experiment to evaluate our
Intent delivery channel. The experimental configuration is
the same except that we use our Intent broadcast channel
instead of message passing; the sender sends an Intent

every 100 ms, and the receiver executes a dummy callback
that responds to the Intent. The Intent delivery latency is
the overall latency for each Intent event, and the callback
trigger latency is the amount of time it takes to spawn a
new callback. Figure 14b shows the baseline performance.
Similarly Figure 14c shows the baseline performance for bulk
data transfer, which also leverages the Intent mechanism
for delivery, but is specialized to use the bulk data transfer
channel.

Figure 15 shows cumulative distribution function (CDF)
plots comparing the performance of all three types of channels.
The CDF illustrates what percent of the total measured points
are equal to or less than a given time value. For basic mes-
saging, shown in Figure 15a, our implementation effectively

provides an unchanged overall latency profile, regardless of the
types of background load. We observe in Figure 15b similar
performance characteristics for our intent broadcast channel,
though we do notice additional overhead as compared to the
message passing channel. This is to be expected as the intent
broadcast channel results in the creation of a callback, which
adds a fixed amount of overhead. Figure 15c shows the CDF
comparing the transfer latencies with different sizes of data
payload for the bulk data transfer channel. The transfer latency
is the delivery time of an intent with a bulk data payload.
Instead of stressing the system with noise-making threads,
we increase the size of data payloads to demonstrate the
performance of our zero-copy data transfer.

B. Comparison with RTSJ and Android

We conduct three case studies consisting of a cochlear
implant application, a UAV flight control system, and a turbine
health monitoring application to compare RTDroid in realistic
settings against Android as well as RTSJ.

1) Cochlear Implant: The cochlear implant application
has a real-time service for audio processing and a real-time
receiver for output error checking. Each run of the audio
processing needs to acquire 128 audio samples, process them,
and send processed audio output to the output receiver. This
process should complete within 8 ms [2], [1]. Our main
measurement and comparison point is this audio processing
task since it has a strict timing requirement. We collected

0

500

1000

1500

2000

2500

3000

0 500 1000 8000 10000

Deadline

N
um

be
r

of
R

el
ea

se
s

Release Duration (us)

RTDroid
RTSJ

(a) Cochlear Implant: Audio Processing Duration

0

500

1000

1500

2000

2500

3000

3500

0 500 1400 50000

Deadline

N
um

be
r

of
R

el
ea

se
s

Release Duration (us)

RTDroid
RTSJ

(b) jPapaBench: Stabilization Task Duration

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 50000

Deadline

N
um

be
r

of
R

el
ea

se
s

Release Duration (us)

RTDroid
RTSJ

(c) Turbine Monitoring: Audio Recording Duration

Fig. 16: Performance Measurements on Raspberry Pi.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(a) Cochlear Implant: Audio Processing Duration

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(b) jPapaBench: Stabilization Task Duration

0

20

40

60

80

100

1000 2000 3000 4000

Pe
rc

en
ta

ge

Release Duration (us)

RTDroid
RTSJ

(c) Turbine Monitoring: Audio Recording Duration

Fig. 17: CDFs of Performance Measurements on Raspberry Pi.

Application Cochlear Implant jPapaBench Wind Turbine
RTDroid RTSJ Android RTDroid RTSJ Android RTDroid RTSJ

Sampling Numbers 40,000 40,000 40,000 91,840 91,791 92,816 2,295 2,295
Mean (µs) 238 194 5,353 1,055 698 360 3,000 2,779

Standard Deviation (µs) 16 15 2,831 55 49 1,530 107 103
Deadlines Missed 0 0 5,160 0 0 14 0 0

TABLE I: Task Execution Duration Statistics.

40,000 release durations for each execution, and repeat the
experiment 10 times.

2) jPapaBench: jPapaBench is a real-time Java benchmark
that simulates autonomous flight control. We have ported it
to our system as well as Android and divided the code into
two services: (1) an autopilot service that executes sensing,
stabilization, and control tasks, (2) a fly-by-wire (FWB) ser-
vice that handles radio commands and safety checks. The
original communication is replaced with intent broadcasts.
We measure release durations of the autopilot stabilization
task, which runs periodically with a 50 ms deadline, over 10
benchmark executions. Due variations in the physics simulator,
each execution takes roughly 91,000 releases to complete the
same flight path.

3) Wind Turbine Health Monitoring: The wind turbine
health monitoring application was developed originally using
RTSJ. We have also created a version to execute on our
system. Since this application requires specialized hardware
we did not implement an Android version. The application
performs crack detection on turbine blades based on vibro-

acoustic modulation [15]. It consists of an probing task that
imposes a clean sine-wave audio tone at one side of a blade,
a recording task that stores the captured audio from the other
end of the blade, and an analyzing task that detects cracks by
analyzing the stored audio stream. The audio recording task
must be executed every 50 ms in order to capture meaningful
data, and as such is our main point of measurement. We
collected release durations of the audio recording task over 2
hours, and only kept releases that perform recording logic. The
size of the audio buffer recorded per release is around 2MB
and as such we leverage our bulk data transfer channel for
communication between the recording and audio processing
tasks for the version implemented in our system. The RTSJ
version uses a shared memory buffer.

Figure 16 shows aggregated task execution durations over
each application, and plots the frequency of the execution
duration for each release. These results show that the use of
scoped memory as well as performing communication over
channels does increase the execution duration for each release,
but this overhead is bounded. Android, not surprisingly, is

0
200
400
600
800

1000
1200
1400
1600
1800
2000

8000100 1000 100000

Deadline

N
um

be
r

of
R

el
ea

se
s

Release Duration (us)

RTDroid
Android

(a) Cochlear Implant: Audio Processing Duration

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5000010 100 1000 10000

Deadline

N
um

be
r

of
R

el
ea

se
s

Release Duration (us)

RTDroid
Android

(b) jPapaBench: Stabilization Task Duration

Fig. 18: Performance Measurements on Nexus 5.

not very predictable. Figure 18 shows that there is extreme
variance in the duration for each release. To quantify the
overhead imposed by our system, we report the statistical
results of each application in Table I. Both our system and
RTSJ have similar standard deviations even in the presence
of scoped memory and channel based communication. Our
system’s overhead is particularly visible in the stabilization
task of jPapaBench. In the RTSJ version, the stabilization
tasks reads sensor data from global shared memory buffers,
performs at tight numeric computation, and produces control
commands for the motors, which are also stored in global
shared memory buffers. The version executing on our system,
in comparison, receives sensor readings and sends control
commands over channels, instead of reading from global
buffers.

Figure 17 show the CDFs of the experiments detailed in
Figure 16. We can observe that the curves of the CDFs for
RTSJ performance compared to RTDroid performance are
similar. Based on this observation as well as similar standard
deviations presented in Table I, we can conclude that RTDroid
does introduce additional latency, but does not impact the
predictability of the code as compared to RTSJ. Figure 19
and Figure 20 show the CDFs of the experiments detailed in
Figure 18. Although not surprising, our numbers indicate that
a non trivial portion of releases in Android exhibit significant
delays, even when not in the presence of a loaded system.

Although our system does induce additional overhead when
compared to applications written in RTSJ, it does provide tan-
gible benefits in terms programability. In addition to hiding the
complexity of writing code that leverages scoped memory, our
system also decouples configuration from application logic and

0

20

40

60

80

100

0 100 200 300 400 500 600

Pe
rc

en
ta

ge

Message Passing Latency (us)

(a) Audio Processing Duration with RTDroid

0

20

40

60

80

100

0 20000 40000 60000 80000

Pe
rc

en
ta

ge

Message Passing Latency (us)

(b) Audio Processing Duration with Android

Fig. 19: CDFs of Performance Measurements of the Cochlear
Implant on Nexus 5.

0

20

40

60

80

100

100 200 300 400 500

Pe
rc

en
ta

ge

Release Duration (us)

(a) Stabilization Task Duration with RTDroid

0

20

40

60

80

100

0 20000 40000 60000 80000

Pe
rc

en
ta

ge

Message Passing Latency (us)

(b) Stabilization Task Duration with Android

Fig. 20: CDFs of Performance Measurements of the jPa-
paBench Stabilization Task on Nexus 5.

Application Type of Code SLoCa Synb Manifestc

Cochlear Implant
Common 175 0 0

RTSJ 256 4 0
RTDroid 235 2 69

jPapaBench
Common 3,844 0 0

RTSJ 300 6 0
RTDroid 230 0 149

Wind Turbine
Common 1,387 3 0

RTSJ 539 9 0
RTDroid 387 0 52

aSource Lines of Code as counted by David A.Wheeler’s SLoCCount.
bMethods or blocks protected by synchronized statements
cLines of XML cod

TABLE II: Code Complexity Measurements.

simplifies interactions between components via Android like
communication over channels. Table II shows code metrics
over three types of code—the common code in both versions
of implementation (mostly the application logic), specific code
to our system, and RTSJ specific code, but excludes common
libraries (i.e. the FFT and signal processing libraries for the
cochlear implant). It shows that applications written for our
system are implemented with fewer lines of code. This occurs
because RTSJ requires developers to manually instantiate all
tasks, and provide release logic with the multi-threading APIs.
In our system all application components are declared in
the manifest and the boot process initiates and starts them.
Additionally, since our system uses message passing, it re-
moves explicit programmer written synchronization between
interacting components.

V. RELATED WORK

Previous attempts to make Android amenable to real-time
include the work of Maia et al. who proposed four different
architectures [13], [16], [18], [20], [14] that enforce a strict
separation between real-time and non real-time apps. Kang
et al. [9] and Ruiz et al. [21] implemented such separation
in the standard Linux kernel, assigning one or more cores
for real-time tasks and isolating those cores from the rest of
the system. Our work strives to make such interactions safe.
Kalkov et al. [7] proposed to explicitly trigger the GC to
reduce pause time during critical periods. Our work avoids
this as choosing when to run the GC is difficult. They also
explored how components interact through intents, providing
a mechanism to prioritize intents [8], but did not provide any
memory bounds on communication. Our work provides static
bounds on memory consumption of communication between
tasks, allows communication between real-time and non real-
time tasks, and observers that only prioritizing intents can
induce priority inversion in the callbacks that handle those
intents. Other efforts have the left the Android framework un-
modified [17], instead focusing on exposing the degree of jitter
present in sensor data in the system so that applications can
make necessary adjustments. Our system strives to eliminate
such jitter.

In addition to integrating a real-time capable VM and RTOS,
RTDroid [24] explored how to add priorities to three exemplar
constructs in Android and to study the feasibility of adding
guarantees within the internals of the Android framework.
We adopt the priority mechanisms provided by RTDroid for
communication with framework services such as sensors, but
observe that they are not enough to correctly encode intents
nor to provide memory bounds. The channels provided by our
system replace the communication mechanism of the original
RTDroid. The original RTDroid did not provide a mechanisms
for interacting with legacy code and did not provide support for
Android APIs; programmers were stuck using libraries provide
by the VM and the RTSJ. Our work provides an Android-
like programming model that hides the complexities of the
RTSJ, allows for interaction with legacy code, and disentangles
configuration from application logic.

Our work leverages previous results on region-based mem-
ory management [23]. Scope memory was introduced in the
RTSJ [5] to avoid GC interference. Scope memory allows the
system designer to prove properties about the predictability of
the overall system including static memory bounds [22]. In our
system scopes are mostly hidden from the programmer. The
developer needs to configure the system to specify necessary
bounds, but does not need to worry about adhering to the
scope memory rules enforced by RTSJ. Bounds are speci-
fied declaratively through our manifest extensions, instead of
programmatically, thereby abstracting out configuration from
function. Since services communicate through message pass-
ing the complexity of reasoning about cross scope references
and scope nesting levels (scope stacks) is handled seamlessly
by our underlying system. This largely removes the cognitive
burden from the programmer of using scope memory in
application development.

VI. CONCLUSION

Real-time capabilities have the potential of increasing the
range of applications that can be written on the Android
platform. This paper is a step towards turning Android into
a high-level real-time programming environment in which
developers can freely mix time-critical code with code that
is blissfully unaware of any timing constraints. In this paper
we have shown that the changes required to the Android
programming model from the programmers perspective are
quite modest. Our constructs, which expose familiar Android
interfaces, additionally provide statically specified memory
bounds and priority awareness.
Acknowledgments. This work was partially supported by
NSF Grants 1523426, 1513006, 1405614 and 1544542.

REFERENCES

[1] Android-Based Research Platform for Cochlear Implants.
http://www.utdallas.edu/∼hussnain.ali/publications/CIAP 2015 Poster
Android CRSS-CIL.pdf.

[2] Hamza Ali, Arthur Lobo, and Philipos Loizou. Design and Evaluation
of A Personal Digital Assistant-Based Research Platform for Cochlear
Implants. IEEE Transactions on Biomedical Engineering, 60(11):3060–
3073, 2013. doi:10.1109/TBME.2013.2262712

[3] Adam Czerniejewski, Shaun Cosgrove, Yin Yan, Karthik Dantu, Steven
Ko, and Lukasz Ziarek. jUAV: A Java Based System for Unmanned
Aerial Vehicles. In International Workshop on Java Technologies for
Real-Time and Embedded Systems, JTRES, 2016. doi:10.1145/2990509.
2990511

[4] Girish Gokul, Yin Yan, Karthik Dantu, Steven Ko, and Lukasz Ziarek.
Real Time Sound Processing on Android. In International Workshop on
Java Technologies for Real-Time and Embedded Systems, JTRES, 2016.
doi:10.1145/2990509.2990512

[5] James Gosling and Greg Bollella. The Real-Time Specification for Java.
Addison-Wesley, 2000.

[6] Tomas Kalibera, Pavel Parizek, Michal Malohlava, and Martin Schoe-
berl. Exhaustive Testing of Safety Critical Java. In Workshop on
Java Technologies for Real-Time and Embedded Systems, JTRES, 2010.
doi:10.1145/1850771.1850794

[7] Igor Kalkov, Dominik Franke, John Schommer, and Stefan Kowalewski.
A Real-Time Extension to The Android Platform. In International
Workshop on Java Technologies for Real-time and Embedded Systems,
JTRES, 2012. doi:10.1145/2388936.2388955

[8] Igor Kalkov, Alexandru Gurghian, and Stefan Kowalewski. Predictable
Broadcasting of Parallel Intents in Real-Time Android. In International
Workshop on Java Technologies for Real-time and Embedded Systems,
JTRES, 2014. doi:10.1145/2661020.2661023

[9] Hyeongseok Kang, Dohyeon Kim, Jeongnam Kang, and Kanghee Kim.
Real-Time Motion Control on Android platform. The Journal of
Supercomputing, 72(1):196–213, 2016. doi:10.1007/s11227-015-1542-5

[10] H. Kim, S. Lee, W. Han, D. Kim, and I. Shin. SounDroid: Supporting
Real-Time Sound Applications on Commodity Mobile Devices. In Real-
Time Systems Symposium, RTSS, 2015. doi:10.1109/RTSS.2015.34

[11] Hyosu Kim, SangJeong Lee, Jung-Woo Choi, Hwidong Bae, Jiyeon Lee,
Junehwa Song, and Insik Shin. Mobile Maestro: Enabling Immersive
Multi-speaker Audio Applications on Commodity Mobile Devices. In
International Conference on Pervasive and Ubiquitous Computing, Ubi-
Comp, 2014. doi:10.1145/2632048.2636077

[12] Kaikai Liu, Xinxin Liu, and Xiaolin Li. Guoguo: Enabling Fine-grained
Indoor Localization via Smartphone. In Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’13, pages 235–248, New York, NY, USA, 2013. ACM. doi:
10.1145/2462456.2464450

[13] Cláudio Maia, Luı́s Nogueira, and Luis Miguel Pinho. Evaluating An-
droid OS for Embedded Real-Time Systems. In International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications,
OSPERT, 2010.

[14] Wolfgang Mauerer, Gernot Hillier, Jan Sawallisch, Stefan Hönick, and
Simon Oberthür. Real-time Android: Deterministic Ease of Use. In

Proceedings of Embedded Linux Conference Europe, ELCE, 2012.
[15] Noah Myrent, Douglas Adams, Gustavo Rodriguez-Rivera, Denis Uly-

byshev, Jan Vitek, Ethan Blanton, and Tomas Kalibera. A robust
algorithm to detecting wind turbine blade health using vibro-acoustic
modulation and sideband spectral analysis. In Wind Energy Symposium,
2015. doi:10.2514/6.2015-1001

[16] Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi, and Soo-Mook
Moon. Evaluation of Android Dalvik Virtual Machine. In International
Workshop on Java Technologies for Real-time and Embedded Systems,
JTRES, 2012. doi:10.1145/2388936.2388956

[17] E. Peguero, M. Labrador, and B. Cook. Assessing Jitter in Sensor Time
Series From Android Mobile Devices. In International Conference on
Smart Computing, SMARTCOMP, 2016. doi:10.1109/SMARTCOMP.
2016.7501679

[18] Luc Perneel, Hasan Fayyad-Kazan, and Martin Timmerman. Can
Android Be Used for Real-Time Purposes? In Computer Systems and
Industrial Informatics ICCSII, 2012. doi:10.1109/ICCSII.2012.6454350

[19] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj, and Jan Vitek.
High-Level Programming of Embedded Hard Real-Time Devices. In
European conference on Computer Systems, EuroSys, 2010. doi:10.
1145/1755913.1755922

[20] Ganesh Jairam Rajguru. Reliable Real-Time Applications on An-
droid OS. International Journal of Management, IT and Engineering,
4(6):192, 2014.

[21] Alejandro Pérez Ruiz, Mario Aldea Rivas, and Michael González
Harbour. CPU Isolation on the Android OS for Running Real-Time
Applications. In Workshop on Java Technologies for Real-time and
Embedded Systems, JTRES, 2015. doi:10.1145/2822304.2822317

[22] Daniel Tang, Ales Plsek, and Jan Vitek. Static Checking of Safety
Critical Java Annotations. In International Workshop on Java Tech-
nologies for Real-Time and Embedded Systems, JTRES, 2010. doi:
10.1145/1850771.1850792

[23] Mads Tofte and Jean-Pierre Talpin. Implementation of the Typed
Call-by-value λ-calculus Using a Stack of Regions. In Symposium
on Principles of Programming Languages, POPL, 1994. doi:10.1145/
174675.177855

[24] Yin Yan, Sree Harsha Konduri, Amit Kulkarni, Varun Anand, Steve Ko,
and Lukasz Ziarek. Real-Time Android with RTDroid. In International
Conference on Mobile Systems, Applications, and Services, MOBISYS,
2014. doi:10.1145/2594368.2594381

[25] Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni, Sree Harsha
Konduri, Steve Ko, and Lukasz Ziarek. RTDroid: A Design for
Real-Time Android. In IEEE Transactions on Mobile Computing,

15(10):2564–2584, 2016. doi:10.1109/TMC.2015.2499187

