
R3 – Repeatability, Reproducibility and Rigor
Jan Vitek

Purdue University, USA

Tomas Kalibera
University of Kent, UK

Abstract
Computer systems research spans sub-disciplines that in-
clude embedded systems, programming languages and com-
pilers, networking, and operating systems. Our contention
is that a number of structural factors inhibit quality systems
research. We highlight some of the factors we have encoun-
tered in our own work and observed in published papers and
propose solutions that could both increase the productivity
of researchers and the quality of their output.

1. Introduction
“One of the students told me she wanted to do an experiment
that went something like this ... under certain circumstances,
X, rats did something, A. She was curious as to whether,
if she changed the circumstances to Y, they would still
do, A. So her proposal was to do the experiment under
circumstances Y and see if they still did A. I explained to
her that it was necessary first to repeat in her laboratory the
experiment of the other person — to do it under condition
X to see if she could also get result A — and then change
to Y and see if A changed. Then she would know that the
real difference was the thing she thought she had under
control. She was very delighted with this new idea, and
went to her professor. And his reply was, no, you cannot
do that, because the experiment has already been done and
you would be wasting time.” — Feynman, 1974, Cargo Cult
Science

Publications are the cornerstone of academic life. Computer
science is in a unique position amongst scientific disciplines
as conferences are the venue of choice for our best work.
With the perceived benefit of shortening time to publication
due to a single-stage reviewing process, conferences have
had profound impact on the way science is conducted. To
appear competitive, researchers are trapped in an arms race
that emphasizes quantitative measures. The pressure to pub-
lish novel ideas at an ever increasing rate favors perfunctory
feasibility studies over the kind of careful empirical evalu-
ation that is the hallmark of great research. To make matter
worse, few publications venues are willing to accept empir-
ical papers that evaluate a previously formulated theory on
the ground of insufficient novelty.

“When we ignore experimentation and avoid contact with
the reality, we hamper progress.” — Tichy

0 A version appeared as an invited contribution in the proceedings of
EMSOFT’11. Correspondence to: J. Vitek, Dept of Computer Sciences,
Purdue University, 305 N University St, West Lafayette, IN 47907.
jv@cs.purdue.edu

The essence of the scientific process consists of (a) posit-
ing a hypothesis or model, (b) engineering a concrete imple-
mentation, and (c) designing and conducting an experimen-
tal evaluation. What is the value of an unevaluated claim?
How much work is needed to truly validate a claim? What
is reasonable to expect in a paper? Given the death march
of our field towards publication it is not realistic to expect
much. Evaluating a non-trivial idea is beyond the time bud-
get of any single paper as this requires running many bench-
marks on multiple implementations with different hardware
and software platforms. Often a careful comparison to the
state of the art means implementing competing solutions.
The result of this state of affairs is that papers presenting po-
tentially useful novel ideas regularly appear without a com-
parison to the state of the art, without appropriate bench-
marks, without any mention of limitations, and without suf-
ficient detail to reproduce the experiments. This hampers sci-
entific progress and perpetuates the cycle.

“In the exact sciences observation means the study of na-
ture. In computer science this means the measurement of
real systems.” — Feitelson, 2006, Experimental Computer
Science

Systems research, ranging from embedded systems to pro-
gramming language implementation, is particularly affected
due to the inherent difficulties of experimental work in the
field. Unlike many other sub-disciplines of computing, get-
ting realistic software that can be used to conduct measure-
ments is critical. There are limits to publicly available soft-
ware repositories and companies are often tight-fisted with
their source code. Thus researchers often have to (re)invent
“representative” applications from scratch to evaluate their
claims. To make matters worse applications can be tied to
specific features of the operating environment — be that
hardware or software. Finally, the basic properties of inter-
est are not always clear cut. Power consumption or response
time are difficult to measure non-intrusively and there is not
even agreement on what metrics to use to present results.

“An inherent principle of publication is that others should be
able to replicate and build upon the published claims. There-
fore, a condition of publication is that authors are required
to make materials, data and associated protocols available to
readers promptly on request.” — Nature Methods, Author’s
guide

Important results in systems research should be repeatable,
they should be reproduced, and their evaluation should be
carried with adequate rigor. Instead, the symptoms of the
current state of practice include the following quartet:



• Unrepeatable results,
• Unreproduced results,
• Measuring the wrong thing,
• Meaninglessly measuring the right thing.

The enabling factors for this state of affairs, beyond the sheer
pressure to publish, include the following trio:

• Lack of benchmarks,
• Lack of experimental methodology,
• Lack of understanding of statistical methods.

This paper argues that we, as a community, can do bet-
ter without hindering the rate of scientific progress. In fact,
we contend that adopting our recommendations will lead to
more opportunities for publication and better science over-
all.1

2. Deadly Sins
“In industry, we ignore the evaluation in academic papers.
It is often wrong and always irrelevant.” — Head of a major
industrial lab, 2011

We list some common mistakes. While not always deadly
in the sense of voiding the scientific claims of the research,
they make the published work much less useful.

Unclear goals. Without a clear statement of the goal of an
experiment, and of what constitutes a significant improve-
ment, there is no point in carrying out any evaluation. Too
often, authors assume that an improvement on any metric,
however small, is sufficient. This is not so, as there are trade-
offs (e.g. speed vs. space or power) and it is necessary to
report on all relevant dimensions. Wieringa et al. [31] rec-
ommend each paper be accompanied by an explicit prob-
lem statement describing: the research questions (what do
we want to know?), the unit of study (about what?), relevant
concepts (what do we know already?), and the research goal
(what do we expect to achieve?).

Implicit assumptions. Authors must describe their experi-
mental setup and methodology. Mytkowicz et al. [24] show
how innocuous aspects of an experiment can introduce mea-
surement bias sufficient to lead to incorrect conclusions;
out of 133 papers from ASPLOS, PACT, PLDI, and CGO,
none adequately considered measurement bias. They suggest
setup randomization, i.e. running each experiment in many
different experimental setups and using statistical methods
to mitigate measurement bias. In general, all assumptions on
which a claim relies should be made explicit. Clarke et al. [8]
uncovered that performance of the Xen virtual machine crit-
ically relied on SMP support being turned off. The original
paper’s authors had not realized that this was a key assump-
tion of their work, and made unwarranted conclusions.

1 Academic integrity is not one of our major consideration. In our experi-
ence, while fraud does occur it is sufficiently infrequent that it can be merely
viewed as an extreme case of mediocre research. We believe, without evi-
dence, that the impact of the latter dominates the former.

Proprietary data. One of the hallmarks of research done in
industry is access to proprietary benchmarks and data sets.
But what is the value of publishing numbers obtained with
unknown inputs? As far as the reader is concerned, there is
little point in showing data on such experiments as nothing
can be learned. Consider for instance the Dacapo benchmark
suite for Java applications [6]. The suite arose out of the ob-
served deficiencies of the previously accepted SPEC JVM98
benchmark suite. Without access to the code and data of the
SPEC benchmark it would have been difficult to identify its
deficiencies. As a recent exercise in forensic bioinformatics
by Baggerly and Coombes [4] demonstrates, access to data
is essential to uncover, potentially life-threatening, mistakes.

Weak statistics. In 2011, 39 of 42 PLDI papers reporting
execution time did not bother to mention uncertainty. Every
student learns about uncertainty in measurements and how
to estimate this uncertainty based on statistical theory [20,
28]. Reporting on an experiment without giving a notion of
the variability in the observations may make weak results
appear conclusive or make statistical noise appear like an
actual improvement. More sophisticated statistical methods
are available but very few authors appeal to them.

Meaningless Measurements. A danger associated with
the complex phenomena being measured is to attribute an
observation to the wrong cause. In our own work on real-
time systems [18], we wanted to measure the impact of com-
piler optimization of high-level language features on a rep-
resentative platform. We failed to realize that our platform
was emulating floating point operations, and the two com-
pilers being compared were emitting different numbers of
those operations. Thus, we ended up measuring the qual-
ity of floating point optimizations instead of what we had
in mind. Another common error is to use training data to
evaluate profile-based techniques or to measure the cost of a
feature in isolation without taking into account its impact on
a complete system. In both cases, the results are likely to be
either wrong or meaningless.

No baseline. Establishing a credible baseline is crucial to
meaningful results. Many authors use as baseline their own
implementation with and without some optimization. But to
be thorough, they should compare with the state of the art.
This means, e.g. in the field of compilers, comparing against
a production compiler. Sometimes coming up with the ap-
propriate baseline requires re-implementing previously de-
scribed algorithms, a time consuming but necessary task.

Unrepresentative workloads. Unrepresentative workloads
are perhaps the greatest danger for empirical work. Either the
benchmark over-represents some operations (such as micro-
benchmarks tend to do, or are order of magnitudes smaller
than real programs), the distribution of inputs is unlike real
application (as is often the case in simulations), or when the
external environment is modeled in an inappropriate fashion
(e.g. running on an over-powered configuration, or failing



to capture the complexity of the external world). In our
research on JavaScript performance we have observed that
industry standard benchmarks do not accurately represent
the behavior of websites [26] and shown that performance
improvement claims do not generalize to real-world usage.

3. Case Studies
We illustrate our discussion with examples.

Bad benchmarks can stifle progress. Research on trace-based
compilation was motivated by JavaScript. In 2009, A. Gal
et al. [11] published a highly regarded paper which showed
that speed ups ranging from 2× to 20× could be achieved
by integrating a trace-based just-in-time compiler in Fire-
fox. They evaluated their work using SunSpider, an industry
standard JavaScript benchmark suite consisting of 26 short-
running programs. Unfortunately, Richards et al. showed
in [27] that SunSpider has very little in common with the
JavaScript code found in real web sites. Then, Richards
et al. [26] constructed representative benchmark programs
by automatically extracting them from popular web sites.
The performance improvement of the trace-based just-in-
time compiler on those benchmarks was very small. As it
turns out, real-world JavaScript lacks the regularity needed
to amortize trace-based compilation. It is our understanding
that trace-based compilation has been abandoned in recent
version of Firefox. Figure 1 (from [26]) illustrates our ob-
servations by contrasting speed improvements obtained on
SunSpider vs. a popular website (Amazon). Firefox 3.5 in-
troduced trace-based compilation. On SunSpider, this led to
an almost 10× improvement, whereas there was no percep-
tible speed up on Amazon.

3.1 

13.4 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

14.0

15.0

Firefox 1.5 Firefox 2.0 Firefox 3.0 Firefox 3.5 Firefox 3.6.12

P
er

fo
rm

an
ce

 R
el

at
iv

e 
to

 F
ir

ef
o

x 
1

.5
 Amazon9

Sunspider 0.9.1

Figure 1. Throughput improvements of different versions
of Firefox. (sunspider, amazon; FF1.5 - FF 3.6.12) Mea-
surements on an HPZ800, dual Xeon E5630 2.53Ghz, 24GB
memory, Windows 7 64-bit Enterprise. Numbers normalized
to FF 1.5.

Good benchmarks can be an enabler for research. Garbage
collection (GC) is a mature research area, about 40 years
old, which involved heavy experimentation from the begin-
ning. Over the years the quality of experiments has improved

as members of the GC community have come together to
form the Dacapo group and standardized best practice re-
porting and methodology: the Dacapo benchmark suite [6],
which includes a range of highly non-trivial benchmarks
built using open-source highly used Java libraries (close to
a million lines of code). The suite has recently been up-
dated by more recent workloads, which make heavier use of
multiple cores. To support reproduction studies, the Mem-
ory Management Toolkit (MMTk) [7] provides an open-
source library of memory managers and garbage collectors
that can be evaluated with Jikes RVM [3], an open-source,
community supported Java Virtual Machine. The fact that
many GCs are implemented within a common platform,
JikesRVM/MMTk, allows comparisons against a base-line
without duplication of efforts. The number of benchmarks
in the Dacapo suite is small enough to make looking at indi-
vidual benchmarks possible, and as they are widely known
to the community, a seasoned analyst can infer information
simply based on which benchmarks a GC performed well
and on which it did not. Quantitative characteristics of the
individual benchmarks have been published. Comparisons
of two systems are common, with the main metric of interest
being the ratio of mean execution times. Although there is
some understanding in the community that confidence inter-
vals should be used, they rarely are and if so then almost al-
ways for individual systems only (and not say for the ratio of
means of the two systems [10, 22]). Statistical tests or anal-
ysis of variance (ANOVA) seem to be used only in papers
about how statistics should be applied in the field [12, 13].
Experiment design is still primitive — the best studies in
systems research repeat benchmark runs as well as itera-
tions in benchmarks, but summarize the results with a single
arithmetic mean, as if they were all independent and iden-
tically distributed. They are not, and hence, if provided, a
confidence interval or standard deviation are computed in-
correctly. The best studies use multiple platforms or compil-
ers, but do not attempt to summarize data over these (e.g.
using ANOVA). Except for varying platforms or compilers,
little is being done to avoid bias.

The right metrics are not obvious. The main metric in quan-
titative studies of GCs is execution time of complete sys-
tems. This is what users experience, what is easy to interpret,
and what can be measured on benchmark applications. But
there is a well known trade-off between maximum memory
size and execution time: the smaller the memory, the more
often the GC runs, and hence the longer the execution. To
address this trade-off the GC community devised a reporting
best practice which is to show results for multiple heap sizes.
The workings of the GC algorithm are often intimately inter-
twined with the application. This makes GC benchmarking
hard: one has to worry about non-obvious factors, such as
code inserted by the compiler into the application (so called
barriers) to make a particular GC work, or overhead of the
memory allocator. As the experiments involve execution of



the complete systems, factors not directly related to GC or
memory have also to be taken into account. One such fac-
tor is the just-in-time compiler of the Java VMs which picks
methods to optimize. Java VMs make this decision based on
how hot the methods are. Due to statistical nature of sam-
pling, re-running the experiment can lead to different sets of
methods optimized, with different performance. Hence, we
have a random factor that influences whole VM executions,
and thus we need to repeat VM executions many times. Such
a repetition is needed for other reasons as well, such as to
reliably randomize memory placement. Sometimes it is pos-
sible to enforce the same sets of methods to compile to both
systems [13] and perform paired experiments, which can be
more precise within given time budget for experiments. This
is, however, only possible when the code of the systems dif-
fers only slightly, and thus these sets of methods to compile
are defined and realistic for both systems.

The current practice for summarization of results is to cal-
culate geometric mean over different benchmarks. There is
an ongoing debate which mean is more appropriate (arith-
metic, harmonic, or geometric) and a general understand-
ing that a single number is not enough, and that the anal-
ysis should look at individual benchmarks separately. This
is mainly because we have still a relatively small set of
benchmarks that is unlikely to cover all applications, and
that we are nowhere near heaving weights that would ex-
press how common particular benchmarks are in real ap-
plications. These weights would otherwise be excellent for
weighted means. Given the lack of such weights, the mean
calculated over benchmarks of a suite depends very much on
the outlying benchmarks in the suite. It is not uncommon that
one or several benchmark dominate all the others according
to some metric, e.g. allocation rate or lock acquisition rate.
Adding or removing one such benchmark then could have
big impact on the calculated means.

So, while not perfect, the state of affairs in measuring
garbage collection algorithms has acquired some rigor to
make understanding (and trusting) reported results possible.

4. How to move forward
We identify five areas in need of improvement.

4.1 Statistical methods
The phenomena we observe, postulate hypotheses about, and
later measure, are influenced by numerous factors. In sys-
tems research, a common phenomenon is performance, mea-
sured by execution time. Factors involved are many and stem
from the architecture, operating system, compiler, and the
application. Some factors are controlled by the experimenter
(i.e. architecture, compiler options, or time of day of running
the experiment). They are either fixed for the whole experi-
ment and become assumptions of the hypothesis, or they are
systematically varied. There are uncontrolled factors, some
of which can be observed and some of which cannot. All

uncontrolled factors need to be randomized. Some parts of
the experiment can be out of the control of the experimenter.
Many systems respond to stimuli from the real world, which
themselves have random nature. Given these complexities, it
is difficult to decide how many repetitions of what combi-
nations of factor configurations to run (experiment design)
and how to summarize the results, separating the random-
ness from the properties of interest (statistical inference).
Both experimental design and statistical inference are ma-
ture fields of statistics. Pointers to literature and basic prin-
ciples of the scientific method can be found in [16, 21, 32].
Few advanced statistical methods are actually used in com-
puter science.

It is crucial that the factors relevant to our field are
known and well understood. In contrast to natural and so-
cial sciences, which focus on objects that have not signif-
icantly changed over the last few hundred years, comput-
ers are new and change rapidly. Factors influencing them
are hard to find and not well studied. For example, mem-
ory placement is a known factor influencing execution time,
through the number of cache misses. Some factors that in
turn influence memory placement are less obvious: link-
ing order, size of the space for environment variables in
UNIX [24], symbol names [14], mapping of virtual to phys-
ical pages [15, 17], or randomly generated symbol prefixes
during compilation [19]. If we miss a factor, the results we
get are biased and only a reproduction study can find this.

There are also certain limits to which we can readily
adopt all statistical methods used in natural and social sci-
ences. These methods are based on the normal distribution,
which is common for a wide range of phenomena observed
in nature, but less so in computer systems. The normal dis-
tribution can be viewed as a model where many indepen-
dent sources of error can add as well as each remove a con-
stant from the true quantity. A good example of violation of
this principle is execution time. The sources of “error” here
(such as cache misses at all levels, slow-paths, etc.) often can
add much more to execution time than they could remove.
Also, they are often not independent. Consequently, execu-
tion time usually has a multi-modal distribution, where each
fragment is highly skewed to the right (things can go ex-
ceptionally slow, but not so much exceptionally fast). Still,
we get asymptotic normality through repetitions of the same,
independent, measurements, when we summarize via arith-
metic mean. This can partially justify the use of some meth-
ods that do require normality, e.g. we can get asymptotic
confidence interval for the mean, perform a statistical test,
or ANOVA. The asymptotic normality does not justify the
use of these methods fully, additional assumptions need to
be met that are beyond the scope of simple applied statistics
and that cannot be easily checked anyway as we do not know
much about the real distributions of our data [5, 23, 25].
However, using these methods that require normality when
the data is in fact not normal is better than nothing. And, for



additional rigor, there are also non-parametric methods that
do not rely on the normality assumptions, and particularly
the bootstrap methods are intuitively simple [9].

4.2 Documentation
...“must include instructions for building and installing the
software from source, and any dependencies on both pro-
prietary and freely available prerequisites. For software li-
braries, instructions for using the API are also required.
Test data and instructions. The test dataset(s) must enable
complete demonstration of the capabilities of the software,
and may either be available from a publicly accessible data
archive, or may be specifically created and made available
with the software. The results of running the software on
the test data should be reproducible, and any external de-
pendencies must be documented.” — PLoS Computational
Biology author’s guide.

The smallest bar we have to clear is documentation and
archival of all experiment artifacts for future reference. The
authors thus can look up later exactly under what conditions
the earlier results were obtained, to confront the results with
and validate against new findings. Good archival and docu-
mentation allows this even long after the actual hardware or
software infrastructures to repeat the experiment become un-
available. Indeed, this can also lead to negative results, such
as finding an error in the earlier experiments. The commu-
nity should provide means of corrections of published papers
for these instances.

4.3 Repetition
Repetition is the ability to re-run the exact same experiment
with the same method on the same or similar system and ob-
tain the same or very similar result. While this is needed for
authors to ensure stability of their results, we argue that it is
also needed for the community at large. The ability to repeat
an experiment gives a baseline against which to evaluate new
ideas. Thus, supporting repetition makes systems research
easier. For reviewers, requiring submissions to be repeatable
(e.g. by requiring executables or web interfaces) allows them
to vary the input to the program and test the robustness of the
proposed method, at least in cases when this does not require
special hardware or software infrastructure. And generally, it
helps to gain confidence as to the lack of random errors on
the experimenter side and sufficient statistical methods for
the random effects in the underlying system. Of course there
is a cost in repetition — submitting a paper with enough sup-
porting material for repeatability takes more time and may
prevent authors from publishing results early. A good thing
in our opinion. Is a paper for which the author feels that it is
not worth making the code available worth reviewing? Sup-
port for repetition (access to data and protocols) was crucial
in uncovering recent mistakes in biological studies [4].

4.4 Reproducibility
Independent confirmation of a scientific hypothesis through
reproduction by an independent researcher/lab is at the core

of the scientific method. The reproductions are carried out
after a publication, based on the information in the paper and
possibly some other information, such as data sets, published
via scientific data repositories or provided by the authors on
inquiry. Some journals (e.g. PLOS and Nature Methods) and
some government institutions (e.g. NIH) require authors to
archive all data and provide it on demand to anyone inter-
ested, so as to allow reproduction and promote further re-
search. While there is an ongoing discussion of what should
be mandatorily disclosed, as there is a trade-off between the
confidence we get into scientific theories and duplication of
efforts, the need for independent reproduction is accepted
as a matter of course, and reproductions are in addition to
new research and reviews part of the scientist’s job. Repro-
ductions are published in journals, no matter whether they
end up confirming or disapproving the original work. This
is not happening in computer “science”. Notable attempts
to change this include Reproducible Research Planet [2]
and the Evaluate Collaboratory [1]. Reproducible Research
Planet is a webspace for scientists to archive and publish data
and code with their papers. It was promoted in several sci-
entific papers in various fields of scientific computing. The
motivation for authors to disclose data should be, apart from
good practice, increased chance of being cited. The Evaluate
Collaboratory then, in addition to organizing workshops on
experimental evaluation of software and computer systems,
initiated a petition to program committee chairs of confer-
ences and workshops that called for acceptance of reproduc-
tion studies as first class publications. Although the petition
got notable support, reproduction studies are not yet being
published at major conferences. The reasons for the lack of
reproductions is not just the lack of will, but also lack of
knowledge, methods, and tools that would allow repeatabil-
ity of experimental studies in computer science.

Reproduction is more powerful that repetition as it can
uncover mistakes (or fraud) more readily. Repetition is im-
portant as it provides a baseline and facilitates extending and
building on previous work.

4.5 Benchmarks
Experimental studies in systems are based on benchmark ap-
plications. A benchmark is a factor in an experiment as much
as anything else. If we run just one benchmark, we have
measured the phenomenon of interest just for this bench-
mark. If the benchmark is actually the application the user
wants to run, then this is fine (modulo inputs). Otherwise, to
draw more general conclusions, we need to randomize the
benchmark factor as well: run using many different bench-
marks that are representative of real applications, and statis-
tically summarize the results. Despite a journey of improve-
ment from instruction mixes, kernel benchmarks, and micro-
benchmarks, today’s benchmarks are often inadequate. In
some domains, they do not exist. Application benchmarks,
which mimic the real applications to the highest extent possi-
ble, are essential. Ideally, application benchmarks are simply



instrumented real applications with realistic data sets. When
evaluating systems, we usually want the system to perform
best/well for any application from a particular domain. Then,
we need not one but many application benchmarks, as di-
verse as possible, to rule out bias through some factors hid-
den in most of the benchmarks. Micro-benchmarks can also
be useful, as they simplify complex experiments by splitting
them into several simpler experiments and allow the experi-
menter to vary a given factor of interest. Given the complex-
ity of computer systems and the limited knowledge of fac-
tors that influence performance, hypotheses formed based on
results with micro-benchmarks need to be validated by ap-
plication benchmarks.

5. Recommendations
We propose the following changes to our practices:

• Develop open source benchmarks: We need bench-
marks. Good, documented, open-source, and thoroughly
evaluated benchmarks should be fully accepted as first
class contributions for publications at premier confer-
ences and journals, and should be worthy of support by
governmental research agencies. This is important both
to validate them through the review process and to cre-
ate a reward system. So far, published benchmarks have
been an exception rather than a rule and the authors are
not aware of any funding being available for that thank-
less task.

• Codify best practice documentation, methodologies
and reporting standards: We need to agree on mini-
mal standards for documenting experiments and report-
ing results. This can be done through community effort
and dedicated working groups. Software artifacts should
be made available.2 We need to understand the factors
that influence measurable properties of computer sys-
tems, and we need to have better understanding of their
statistical properties. Good observational studies on these
topics have appeared at premier conferences, and this
needs to continue. Reviewers should be encouraged to
recognize the value of statistical methods and educated
in their proper use. Lectures on statistical methods should
be incorporated in the curriculum and statisticians should
be consulted when designing new experiments.

• Require repeatability of published results: Repeatabil-
ity should be part of the publication reviewing process.
Based on the paper and supplementary material on the

2 The http://www.researchwithoutwalls.org effort is arguing that
“research that is reviewed by volunteers and often funded by the pub-
lic should be freely available to all.” The ACM Digital Library now
supports the addition of ancillary material, http://www.acm.org/

publications/policies/dlinclusions/, without requiring the au-
thors to relinquish copyrights to the ACM. We would like to add meta-data
to all ACM papers: Code Complete could indicate papers with source code,
and Data Complete could denote papers that come with all necessary ex-
perimental data.

experiments (documentation, configuration, source code,
input data sets, scripts), the reviewers should verify that
the experiments are repeatable. This includes checking
the documentation and reporting standards, including ap-
propriate use of statistics, but does not mean that review-
ers should be expected to re-run the experiments. Lack
of repeatability can then be discovered by a reproduction
study.

• Encourage reproduction studies: Thorough reproduc-
tion studies should be fully accepted as first class contri-
butions for publications at premier conferences and jour-
nals. Researchers should be expected to have some publi-
cations of this kind on their curricula. Reproduction stud-
ies should be supported by governmental research agen-
cies. The standards for good reproduction studies should
require high level of rigor, repeatability and thorough-
ness, no matter if they approve or disapprove the origi-
nal work. The credit of publications on new ideas should
increase when independently confirmed in published re-
production study. Students should be expected to carry
out a reproduction study early in their PhD.

What we propose will lead to higher quality of research.
And, pragmatically, while there is a cost to the additional re-
quirements, authors should think of this as “pay it forward”.
The benefits kick in when building on earlier work that pro-
vided artifacts to facilitate follow ons. Although it would
be slightly harder to publish new ideas, one can get credit
for publishing reproductions or benchmarks or observational
studies.3 Also, to be clear, we are not arguing against pub-
lishing “idea papers”, papers that put forward a novel idea
or theory. A good but unevaluated idea should be published,
but an ill-evaluated idea shouldn’t.4

“Beware of bugs in the above code; I have only proved it
correct, not tried it.” — Don Knuth

Acknowledgments. This paper would not have been without
Sebastian Fischmeister’s encouragements. We thank Phil Wadler
for suggesting that we publish a version of this paper in SIGPLAN
Notices. We greatly benefited from discussions with Richard Jones,
Matthias Hauswirth, Tony Hosking, James Noble, Filip Pizlo, Olga
Vitek and Mario Wolzcko. Many of the references used in this
paper are available at the excellent Evaluate Collaboratory web
site (http://evaluate.inf.usi.ch) where a letter to PC chairs
awaits signatures.

3 The continuing discussion on the role of conferences and journals and
the state of publishing in computer science is not directly related to our
concerns [29, 30], but the pressure to publish clearly shoulders part of the
blame for the state of experimental research.
4 We would argue that “idea papers” should be in a category of their own,
one that does not require experimental data. A follow up to an “idea paper”
that evaluates the idea rigorously ought to be valued and publishable in the
same venue.

http://www.researchwithoutwalls.org
http://www.acm.org/publications/policies/dlinclusions/
http://www.acm.org/publications/policies/dlinclusions/
http://evaluate.inf.usi.ch


References
[1] Evaluate collaboratory: Experimental evaluation of software

and systems in computer science. http://evaluate.inf.

usi.ch/, 2011.

[2] Reproducible research planet. http://www.rrplanet.

com/, 2011.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapeno virtual machine. IBM Syst. J., 39(1):211–238, 2000.

[4] K. Baggerly and K. Coombes. Deriving chemo sensitivity
from cell lines: Forensic bioinformatics and reproducible re-
search in high-throughput biology. Annals of Applied Statis-
tics, 2008.

[5] S. Basu and A. DasGupta. Robustness of standard confidence
intervals for location parameters under departure from nor-
mality. Annals of Statistics, 23(4):1433–1442, 1995.

[6] S. Blackburn, R. Garner, K. S. McKinley, A. Diwan, S. Z.
Guyer, A. Hosking, J. E. B. Moss, D. Stefanović, et al. The
DaCapo benchmarks: Java benchmarking development and
analysis. In Conference on Object-Oriented Programing, Sys-
tems, Languages, and Applications (OOPSLA), 2006.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with
MMTk. In Proceedings of the 26th International Conference
on Software Engineering (ICSE), pages 137–146, 2004.

[8] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. N. Matthews. Xen and the art of repeated
research. In USENIX Annual Technical Conference, 2004.

[9] A. C. Davison and D. V. Hinkley. Bootstrap Methods and
Their Applications. Cambridge University Press, 1997.

[10] E. C. Fieller. Some problems in interval estimation. Journal
of the Royal Statistical Society, pages 175–185, 1954.

[11] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based just-in-time type spe-
cialization for dynamic languages. In Proceedings of the Con-
ference on Programming Language Design and Implementa-
tion (PLDI), pages 465–478, 2009.

[12] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rig-
orous Java performance evaluation. In Conference on Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA), 2007.

[13] A. Georges, L. Eeckhout, and D. Buytaert. Java performance
evaluation through rigorous replay compilation. In Confer-
ence on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA), 2008.

[14] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source
of noise in JVM performance. In Component And Middleware
Performance Workshop, OOPSLA, 2004.

[15] M. Hocko and T. Kalibera. Reducing performance non-
determinism via cache-aware page allocation strategies. In

Proceedings of the First Joint WOSP/SIPEW International
Conference on Performance Engineering, pages 223–234,
2010.

[16] R. Jain. The Art of Computer Systems Performance Analysis.
Wiley, 1991.

[17] T. Kalibera, L. Bulej, and P. Tuma. Automated detection of
performance regressions: The Mono experience. In Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2005.

[18] T. Kalibera, J. Hagelberg, P. Maj, F. Pizlo, B. Titzer, and
J. Vitek. A family of real-time Java benchmarks. Concurrency
and Computation: Practice and Experience, 2011.

[19] T. Kalibera and P. Tuma. Precise regression benchmark-
ing with random effects: Improving Mono benchmark re-
sults. In Third European Performance Engineering Workshop
(EPEW), 2006.

[20] L. Kirkup. Experimental Methods: An Introduction to the
Analysis and Presentation of Data. Wiley, 1994.

[21] D. J. Lilja. Measuring Computer Performance: A Practi-
tioner’s Guide. Cambridge University Press, 2000.

[22] Y. Luo and L. K. John. Efficiently evaluating speedup using
sampled processor simulation. Computer Architecture Letters,
4:22–25, 2004.

[23] S. E. Maxwell and H. D. Delaney. Designing experiments and
analyzing data: a model comparison perspective. Routledge,
2004.

[24] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.
Producing wrong data without doing anything obviously
wrong! In Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2009.

[25] D. Rasch and V. Guiard. The robustness of parametric statis-
tical methods. Psychology Science, 46(2):175–208, 2004.

[26] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated con-
struction of JavaScript benchmarks. In Conference on Object-
Oriented Programing, Systems, Languages, and Applications
(OOPSLA), 2011.

[27] G. Richards, S. Lesbrene, B. Burg, and J. Vitek. An analysis of
the dynamic behavior of JavaScript programs. In Proceedings
of the ACM Programming Language Design and Implementa-
tion Conference (PLDI), June 2010.

[28] B. N. Taylor and C. E. Kuyatt. Guidelines for evaluat-
ing and expressing the uncertainty of NIST measurement re-
sults. Technical Note 1297, National Institute of Standards
and Technology, 1994.

[29] M. Y. Vardi. Conferences vs. journals in computing research.
Commun. ACM, 52(5):5, 2009.

[30] D. S. Wallach. Rebooting the CS publication process. Com-
mun. ACM, 54(10):32–35, 2011.

[31] R. Wieringa, H. Heerkens, and B. Regnell. How to read and
write a scientific evaluation paper. In Requirements Engineer-
ing Conference (RE), 2009.

[32] E. B. Wilson. An Introduction to Scientific Research. McGraw
Hill, 1952.

http://evaluate.inf.usi.ch/
http://evaluate.inf.usi.ch/
http://www.rrplanet.com/
http://www.rrplanet.com/

	Introduction
	Deadly Sins
	Case Studies
	How to move forward
	Statistical methods
	Documentation
	Repetition
	Reproducibility
	Benchmarks

	Recommendations

