
Integrating Typed and Untyped Code in a Scripting Language

Tobias Wrigstad Francesco Zappa Nardelli∗ Sylvain Lebresne Johan Östlund Jan Vitek
PURDUE UNIVERSITY ∗ INRIA

Abstract
Many large software systems originate from untyped scripting lan-
guage code. While good for initial development, the lack of static
type annotations can impact code-quality and performance in the
long run. We present an approach for integrating untyped code
and typed code in the same system to allow an initial prototype to
smoothly evolve into an efficient and robust program. We introduce
like types, a novel intermediate point between dynamic and static
typing. Occurrences of like types variables are checked statically
within their scope but, as they may be bound to dynamic values,
their usage is checked dynamically. Thus like types provide some
of the benefits of static typing without decreasing the expressive-
ness of the language. We provide a formal account of like types in
a core object calculus and evaluate their applicability in the context
of a new scripting language.

Categories and Subject Descriptors D Software [D.3 Programming
Languages]: D.3.1 Formal Definitions and Theory
General Terms Theory

Keywords Compilers, Object-orientation, Semantics, Types

1. Introduction
Scripting languages facilitate the rapid development of fully func-
tional prototypes thanks to powerful features that are often inher-
ently hard to type. Scripting languages pride themselves on “opti-
mizing programmer time rather than machine time,” which is espe-
cially desirable in the early stages of program development before
requirements stabilize or are properly understood. A lax view of
what constitutes a valid program allows execution of incomplete
programs, a requirement of test-driven development. The absence
of types also obviates the need for early commitment to particular
data structures and supports rapid evolution of systems. However,
as programs stabilize and mature—e.g. a temporary data migra-
tion script finds itself juggling with the pension benefits of a small
country [31]—the once liberating lack of types becomes a problem.
Untyped code, or more precisely dynamically typed code, is hard
to navigate, especially for maintenance programmers not involved
in the original implementation. The effects of refactoring, bug fixes
and enhancements are hard to trace. Moreover performance is often
not on par with more static languages. A common way of dealing
with this situation is to rewrite the untyped program in a statically
typed language such as C# or C++. Apart from being costly and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2009, Madrid, Spain.
Copyright c© 2009 ACM 978-1-60558-479-9/10/01. . . $10.00

far from guaranteed to succeed [35], a complete rewrite is likely to
slow down future development as it is a snapshot of the dynamic
system at one particular point in time. Not surprisingly, the idea of
being able to gradually evolve a prototype into a full-fledged pro-
gram within the same language has been a long standing challenge
in the dynamic language community [3, 8, 22, 28, 32, 33].

An early attempt at bridging the gap between dynamic and static
typing is the soft typing proposed by Cartwright and Fagan [12] and
subsequently applied to a variety of languages [2, 9, 17, 23, 24].
Soft typing tries to transparently superimpose a type system on
unannotated programs, inferring types for variables and functions.
When an operation cannot be typed, a dynamic check is emitted
and, possibly, a warning for the programmer. A compiler equipped
with a soft type checker would never reject a program, thus pre-
serving expressivity of the dynamically typed language. The main
benefit of soft typing is the promise of more efficient program exe-
cution and warnings for potentially dangerous constructs. Its draw-
back is the lack of guarantees that a given piece of code is free of
errors. It is thus not possible for programmers to take key pieces of
their system and “make” them safe, or fast. Furthermore, no guid-
ance is given on how to refactor code that is not typable.

Incremental typing schemes have been explored by Bracha and
Griswold in Strongtalk [8] which inspired pluggable types [7], in
various gradual type systems [3, 19, 26, 29, 30], and recently Typed
Scheme [32, 33]. In these works, dynamically typed programs can
be incrementally annotated with static type information and un-
typed values are allowed to cross the boundary between static and
dynamic code. Run-time type checks are inserted at appropriate
points to ensure that values conform to the annotations on the vari-
ables they are bound to. The strength of incremental approaches is
that programmers can decide which parts of their program to an-
notate and will get understandable error messages when code does
not type check. The drawback is that any operation, even one that is
fully annotated, may fail due to a non-conforming value passed in
from an untyped context. This has a direct consequence on perfor-
mance as type information can not be used for optimization. Even
worse, program performance may decrease substantially when type
annotations are added to an untyped program.

While our goal is related to this previous work, namely to
explore practical techniques for evolving scripts to programs, we
come from a different perspective which impacts some of our
design decisions. Unlike most of the previous work which had its
root in dynamically typed languages (Smalltalk, Scheme, Ruby and
JavaScript) and tried to provide static checking, we would like to
provide the flexibility of dynamic languages to static languages.
At the language level, we are willing to forgo some of the most
dynamic features of languages, such are run-time modification of
object interfaces, in languages like JavaScript or Ruby. At the
implementation level, the addition of opcodes to support dynamic
languages in Java virtual machines makes it possible to envision
mixing typed and untyped code without sacrificing performance.
The research question is thus how to integrate these different styles

of programming within the same language. In particular, it would
not be acceptable for statically typed code to either experience run-
time failures or be compiled in a less efficient to support dynamic
values. Conversely, the expressiveness of dynamic parts of the
system should not be restricted by the mere presence of static types
in unrelated parts of the system.

We use, as a vehicle for our experiments, a new object-oriented
scripting language called Thorn [6] which runs on a JVM and
ought to support the integration of statically and dynamically typed
code. The statically typed part of Thorn sports a conventional nom-
inal type system with multiple subtyping akin to that of Java. Thorn
has also a fully dynamic part, where every object is of type dyn
and all operations performed on dyn objects are checked at run-
time. We introduce a novel intermediate point, dubbed a “like type,”
between dynamic and compile-time checked static types. For each
type C, there is a type like C. Uses of variables of type like C
are checked statically and must respect C’s interface. However, at
run-time, any value can flow into a like C variable and their con-
formance to C is checked dynamically. Like types allow the same
degree of incrementality as previous proposals for gradual typing,
but we have chosen a design which favors efficiency. In contrast to
inference-based systems, like types allow static checking of opera-
tions against an explicit, programmer-declared, protocol. Notably,
this allows catching spelling errors and argument type errors which
are simple and frequent mistakes. Furthermore they make it possi-
ble to provide IDE support such as code completion.

To summarize, this paper makes the following contributions:

• A type system that incorporates dynamic types, concrete types
and like types to provide a way to integrate untyped and typed
code. The separation of concrete and like types makes it possi-
ble to optimize concretely typed code, and retain flexibility in
the rest of the program.

• A formalization of the type system in an imperative class-based
object-oriented language; a proof of the standard theorems for
typed subsets of the code; a formalization of a wrapper-less
compilation scheme, and a proof of its adequacy.

• An implementation in the Thorn compiler that supports the type
system and performs optimizations for concretely typed code.

• A report on an application of like types to evolve an untyped
script into a partially typed program.

A technical report extended with proofs is available at http://
moscova.inria.fr/∼zappa/projects/liketypes.

2. Background and Motivating Example
This section introduces closely related work dealing with the inte-
gration of dynamically typed and statically typed code through a
series of examples written in Thorn [6].

The Typing of a Point. In a language that supports rapid pro-
totyping, it is sometimes convenient to start development without
committing to a particular representation for data. Declaring a two-
dimensional Point class with two mutable fields x and y and three
methods (getX, getY, and move) can be done with every variable
and method declaration having the (implicit) type dyn. Run-time
checks are then emitted to ensure that methods are present before
attempting to invoke them.

class Point(var x, var y) {
def getX() = x;
def getY() = y;
def move(pt) { x:=pt.getX(); y:=pt.getY() }

}

As a first step toward assurance, the programmer may choose to an-
notate the coordinates with concrete types, say Int for integer, but

leave the move method unchanged allowing it to accept any object
that understands getX() and getY(). The benefit of such a refac-
toring is that a compiler could emit efficient code for operations on
the integer fields. As the argument to move is untyped, casts may
be needed to ensure that values returned by the getter methods are
of the right type.

class Point(var x: Int, var y: Int) {
def getX(): Int = x;
def getY(): Int = y;
def move(pt){ x:= (Int)pt.getX(); y:= (Int)pt.getY()}

}

Of course, this modification is disruptive to clients of the class:
all places where Point is constructed must be changed to ensure
that arguments have the proper static type. In the long run, the pro-
grammer may want more assurance for invocations of move(), e.g.,
by annotating the argument of the method as pt:Point. This has
the benefit that the casts in the method’s body become superfluous.
This has the drawback that all client code must (again) be revisited
to add static type annotations on arguments and decreases flexibil-
ity of the code, as clients may call move passing an Origin object.

class Origin {
def getX(): Int = 0;
def getY(): Int = 0;

}

While not a subclass of point, and thus failing to type check,
Origin has the interface required by the method. This is not un-
usual in dynamically typed programs. Part of the last issue could
be somewhat mitigated by the adoption of structural subtyping [10].
This would lift the requirement that argument of move be a declared
subtype Point and would accept any type with the same signature.
Unfortunately, this is not enough here, as Origin is not a struc-
tural subtype either. The solution to this particular example is to
invent a more general type, such as getXgetY which has exactly
the interface required by move.

class getXgetY {
def getX(): Int;
def getY(): Int;

}

This solution does not generalize as, if it was applied systemati-
cally, it would give rise to many special purpose types with little
meaning to the programmer. A combination of structural and in-
tersection types are often the reasonable choice when starting with
an existing untyped language such as Ruby, JavaScript or Scheme
(see for example [17, 33]) but they add programmer burden, as a
programmer must explicitly provide type declarations, and are brit-
tle in the presence of small changes to the code. For these reasons,
Typed Scheme is moving from structural to nominal typing.1

Soft Typing. A soft typing system in the tradition of Cartwright
and Fagan [12] would infer a type such as getXgetY above with-
out programmer intervention. Thus obviating the need to litter the
code with overly specific types, but soft typing is inherently brittle
as something as trivial as a spelling mistake in a method name will
generate a constraint that will never be satisfied and only caught
when the method is actually used by client code. Also, inferred
types can easily get unwieldy and hard to understand for a human
programmer. Furthermore, the absence of type declarations means
programmers will not have much help from their IDE. In terms
of performance, run-time checks are eliminated when the compiler
can show that an operation is safe. This makes the performance

1 Matthias Felleisen, presentation at the STOP’09 (Script to Program Evo-
lution) workshop.

model opaque as a small change in the code can have a large im-
pact on performance simply because it prevents the compiler from
optimizing an operation in a hotspot. The work on soft typing can
be traced to early work by Cartwright [11] and directly influenced
research on soft Scheme [36] and Lagorio et al.’s Just [2, 23] bring-
ing soft typing to Java.

Gradual typing. The gradual typing approach of Siek and Taha
allows for typed and untyped values to commingle freely [26].
When an untyped value is coerced, or cast, to a typed value, a wrap-
per is inserted to verify that all further interactions through that
particular reference behave according to the target type’s contract.
At the simplest a wrapper is a cast 〈T ⇐ R〉 saying, intuitively,
that the value was of type R and must behave as a value of type T .
The number of wrappers is variable and can, in pathological cases,
be substantial [19]. In practice, any program that has more than a
single wrapper for any value is likely to be visibly slower. In the
presence of aliasing and side-effects the wrappers typically can not
be discharged on the spot and have to be kept as long as the value
is live. The impact of this design choice is that any operation on a
value may fail if that value is a dynamic type which does not abide
by the contract imposed by its wrapper. Wrapper have to be manip-
ulated at run-time and compiler optimizations are inhibited as the
compiler has to emit code that assumes the presence of wrappers
everywhere. Some of these problems may be avoided with program
analysis, but there is currently no published work that demonstrates
this. To provide improved debugging support researchers have in-
vestigated the notion of blame control in the context of gradual typ-
ing, [14, 29, 32, 34]. The underlying notion is that concretely typed
parts of a program should not be blamed for run-time type errors.
As an example, let T be a type with a method m and x be a vari-
able of type T. Now, if some object o, that does not understand m, is
stored in T, blame tracking will not blame the call x.m()—which is
correct as x has type T—for throwing a “message not understood”
exception at run-time. Rather, it will identify the place in the code
where o was cast to T. Fine-grained blame control requires that a
reference “remembers” each cast it flows through, perhaps modulo
optimizations on redundant casts. Storing such information in ref-
erences and not in objects is key to achieve traceability, but incurs
additional run-time overhead on top of the run-time type checks.
Evaluating the performance impact of blame tracking and its prac-
tical impact on the ability to debug gradually typed programs has
not yet been investigated. We use the term gradual typing to refer
to a family of approaches that includes hybrid typing [15] and that
have their roots in a contract-based approach of [14, 18].

3. A Type System for Program Evolution
In this paper we propose a type system for a class-based object-
oriented programming language with three kinds of types. Dynamic
types, denoted by the type dyn, represent values that are manipu-
lated with no static checks. Dynamic types offer programmers max-
imal flexibility as any operation is allowed, as long as the target ob-
ject implements the requested method. However, dyn gives little
aid to find bugs, to capture design intents, or to prove properties. At
the other extreme, we depart from previous work on gradual typ-
ing, by offering concrete types. Concrete types behave exactly how
programmers steeped in statically typed languages would expect. A
variable of concrete type C is guaranteed to refer to an instance of C
or one of its subtypes. Concrete types drastically restrict the values
that can be bound to a variable as they do not support the notion
of wrapped values found in other gradual type systems. Concrete
types are intended to facilitate optimizations such as unboxing and
inlining as the compiler can rely on the static type information to
emit efficient code. Finally, as an intermediate step between the
two, we propose like types. Like types combine static and dynamic

checking in a novel way. For any concrete type C, there is a cor-
responding like type, written like C, with an identical interface.
Whenever a programmer uses a variable typed like C, all manipu-
lations of that variable are checked statically against C’s interface,
while, at run-time, all uses of the value bound to the variable are
checked dynamically. Figure 1 shows the relations between types
(dyn will be implicit in the code snippets). Full arrows indicate
traditional subtype relations (so, for instance if B is a subtype of A,
then like B is a subtype of like A), dotted lines indicate implicit
dyn casts, and finally, dashed lines show situations where like
casts are needed.

In this paper, we have chosen a nominal type system, thus sub-
type relation between concrete types must be explicitly declared
by extends clauses. While we believe that our approach applies
equally well to structural types, our choice is motivated by prag-
matic reasons. Using class declarations to generate eponymous
types is a compact and familiar (to most programmers) way to con-
struct a type hierarchy. Moreover, techniques for generating effi-
cient field access and method dispatch code sequences for nominal
languages are well known and supported by most virtual machines.

The first key property of like type annotations is that they are
local. This is both a strength and a limitation. It is a strength
because it enables purely local type checking. Returning to our
example, like types allow us to type the parameter to move thus:

def move(p: like Point) {
x := p.getX(); y := p.getY();
p.hog(); # !Raises a compile time error!

}

Declaring the variable p to be like a Point, makes the compiler
check all operations on that variable against the interface of Point.
Thus, the call to hog would be statically rejected since there is no
such method in Point. The annotation provides the static informa-
tion necessary to enable IDE support commonly found in statically
typed languages (but not in dynamic ones).

The second key property is that like types do not restrict flexi-
bility of the code. Declaring a variable to be like C is a promise
on how that variable is used and not to what value that variable
can be bound to. For the client code, a like typed parameter is sim-
ilar to a dyn. The question of when to test conformance between
a variable’s type and the value it refers to is subtle. One of our
goals was to ensure that the addition of like type annotations would
not break working code. In particular, adding type annotations to
a library class should not cause all of its clients to break. So in-
stead of checking at invocation time, each use of a like typed vari-
able is preceded by a check that the target object has the requested
method. If the check fails, a run-time exception is thrown. Consider

B

like B

A

like A

dyn

<:

<:

<:

D

C

related by (dyn) cast

related by (like) cast
related by subtyping

<:

Figure 1. Type Relations. C and D are unrelated by inheritance.

the Coordinate class, which is similar to Point, but lacks a move
method:

class Coordinate(var x: Int, var y: Int) {
def getX(): Int = x;
def getY(): Int = y;

}

In our running example, if move expects a like Point, then call-
ing move with a Coordinate works exactly as in an untyped lan-
guage. Even if Coordinate does not implement the entire Point
protocol, it implements the relevant parts, the methods needed for
move to run successfully. If it lacked a getY method, passing a
Coordinate to move would compile fine, but result in an excep-
tion at run-time. More interestingly, move can also accept an un-
typed definition of Coordinate:

class Coord(x,y) { def getX() = x; def getY() = y; }

Here, the run-time return value of getX and getY are tested against
Int: invoking move with the argument Coord(1,2) would suc-
ceed, Coord("a","b") would raise an exception. Observe that if
Point used like Int, checking the return type would not be nec-
essary as assigning to a like type always succeeds.

Interfacing typed and untyped code. Consider a call p1.move(p2)
with different declared types for variables p1, p2 and pt (the type
of the parameter in the move method). Depending on the static
type information available on the receiver, different static checks
are enabled, and different run-time checks are needed to preserve
type-safety. We go through these in detail in Figure 2.

p1 p2 pt Result
dyn OK
like Point OK

dyn Point OK
Point dyn Point ERR
Point like Point Point OK ∗

Point Point Point OK
like Point dyn Point ERR
like Point like Point Point OK ∗

like Point Point Point OK

Figure 2. Configurations of declared types. The column labeled
Result indicate if there will be a compile-time error. Note that the
calculus is slightly more strict and requires explicit casts in cases
labeled ∗.

Assume that the parameter pt in move has type dyn, then all con-
figurations of receiver and argument are allowed and will compile
successfully. In case the parameter has the type like Point, again,
all configurations are statically valid. The last case to consider is
when pt has the concrete type Point. In that case, there are sev-
eral subcases that need to be looked at. If the receiver p1 is un-
typed, then, as expected, no static checks are possible. At run-time,
we must consequently check that p1 understands the move method
and if so, that p2’s run-time type satisfies the type on the parameter
in the move method. Since, pt is Point, a subtype test will be per-
formed at run-time. If the receiver p1 is a concrete type, the type of
the argument p2 will be statically checked: if it is dyn, a compile-
time error will be reported; if it is like Point, the compiler will
accept the call and emit a run-time subtype test; if p2 is a Point a
straightforward typed invocation sequence can be emitted. Finally,
the case where the receiver is declared like Point is similar to the
previous case, with the exception that a run-time test is emitted to
check for the presence of a move method in p1.

If move had some concrete return type C, invoking it on a like
typed receiver, would then check that the value returned from the
method was indeed a (subtype of) C. If this cannot be determined

statically, for instance if the actual method does not return a con-
crete type, then a type test is performed on the value returned. Calls
with untyped receivers never need to type-check return values, as
client code has no expectations that must be met. The concretely
typed case follows from regular static checking.

Revisiting a previous example, consider a variant of move with
a call to getY guarded by an if and assume that p is bound at
run-time to an object that does not have a getY.

def move(p: like Point) {
x := p.getX();
if (unlikely) y := p.getY();

}

As the system only checks uses of p, the error triggers if the
condition is true. Some situations, which are hard to type in systems
that perform eager subtype tests, e.g., at the start of the method call,
work smoothly thanks to this lazy checking. As a result like types
are not structural, but “semi-structural” since they only require the
methods called to be present.

Code evolution. Like types provide an intermediate step between
dynamic and concrete types. In some cases the programmer might
want to replace like C annotations with concrete C annotations, but
this is not always straightforward. The reason is the shift in notion
of subtype—from (a variant on) structural to nominal. Fortunately,
studies of the use of dynamic features in practice in dynamically
typed programs [4, 20] suggest that many dynamic programs are
really not that polymorphic. When this is the case, the transition
is as simple as removing the like keyword. Changing a piece
of code that is largely like typed to use concrete types imposes
an additional level of strictness on the code. Subsequently, stores
from like typed (or dyn) variables into concretely typed variables
must be guarded by type checks. The Thorn compiler inserts these
checks automatically where needed and prints a warning to avoid
suppressing actual compile-time errors. Notably, when accessing a
concretely typed field or calling a method with concrete return type
on a like typed receiver, the resulting value will be concretely typed.
Subsequent operations on the returned value will enjoy the same
strict type checking as all concrete values and can be compiled
more efficiently than operations on like typed receivers.

In some cases, one can imagine going from typed code to un-
typed, for example to facilitate interaction with some larger un-
typed program, or to increase the flexibility in the code. Simply
adding a like keyword in the relevant places, e.g., in front of
types in the interface, or on key variables, immediately allows for
a higher degree of flexibility without losing the local checking and
still keeping the design intent in the code.

Compile-Time Optimizations In Thorn, all method calls go thro-
ugh a dispatching function. With like types, three different dis-
patching functions are used to perform the necessary run-time
checks described above. Every user written method call is com-
piled down to one of those dispatching functions depending on the
type information available at the call-site. The dispatching function
used for untyped calls performs run-time type checks and unboxes
boxed primitives. The like typed dispatching function checks that
the intended method is actually present in the receiver and has com-
patible types. The concretely typed dispatching function performs
a simple and fast lookup, knowing that the method is present. Addi-
tionally, if the static type of the argument is a like type when some
concrete type is expected, the Thorn compiler will insert a run-time
type test and issue a warning.

Like types allow interaction with an untyped object through a
typed interface and guarantees that operations that succeed satisfy
the typing constraints specified in the interface. Consider the fol-
lowing code snippet that declares two cells—one for untyped con-
tent and one for integers:

class Cell(var x) {
def get() = x;
def set(x’) { x:= x’ }

}
class IntCell(var i: Int) {
def get(): Int = i;
def set(j:Int) { i:= j }

}
box = Cell(32);
y = box.get();
ibox: like IntCell = box;
z: Int = ibox.get();
ibox.set(z+10);

If ibox.get() succeeds, we statically know its return type to be
an Int since the cell is accessed through a like typed interface.
Subsequent operations on z enjoy static type checking and can be
optimized, contrarily to uses of y. For example, the + operation on
the last line can be compiled into machine instructions or equiva-
lent, rather than a high-level method call on an integer object. Alter-
natively, the programmer might explicitly cast y to Int. However,
typing the cell like IntBox type checks all interactions with the
cell statically and gives static type information about what is put
into and taken from it: this requires a single annotation at a decla-
ration rather than casts spread all over the code.

Relating Like Types to Previous Work Like types add local
checking to code without restricting its use from untyped code.
In contrast to gradual typing [3, 19, 26, 29, 30] and pluggable types
[7], it introduces an intermediate step on the untyped–concretely
typed spectrum and uses nominal rather than structural subtyp-
ing. Furthermore, it only requires operations to be present when
actually used. As a result, operations on concrete types can be
efficiently implemented and like types used where flexibility is de-
sired. Typed Scheme [32, 33] uses contracts on a module level,
rather that simple type annotations, and does not work with ob-
ject structures. Soft typing [12] infers constraints from code, rather
than lets programmers expressly encode design intent in the form
of type annotations. Adding soft typing to Java [2, 23] faces simi-
lar although fewer problems. An important difference between like
types and gradual typing systems like Ob?

<: [26], is that code com-
pletely annotated with like types can go wrong due to a run-time
type error. On the other hand, a code completely annotated with
concrete types will not go wrong.

A perhaps unusual design decision is the lack of blame control.
If a method fails, e.g., due to a missing method in an argument ob-
ject, we cannot point to the place in the program that subsequently
lead to this problem. In this respect, the blame tracking support
offered by like types is not much better than what is offered by
a run-time typecast error. This is a design decision. Nothing pre-
vents adding blame control to like types in accordance with pre-
vious work (e.g., [1, 27]). The rationale for our design is to avoid
performance penalties. Keeping like types blame-free allows for a
wrapper-less implementation.

As part of the aborted ECMAScript 4 standard, Cormac Flana-
gan proposed a type system closely related to the one we present in
this paper [16]. The Objective-C language has like types for objects
and no concrete object types. Classes can be either dyn (called id)
or like typed, and the compiler warns rather than rejects programs
due to other language features that can make non-local changes to
classes.

4. A Formalization of Like Types
To investigate the meta-theory of like types we define mini-Thorn,
an imperative variant of FJ [21] extended with dyn and like types.
Mini-Thorn is a language tailored to study the interaction between
untyped and typed code. Compared to FJ, it lacks subexpressions

but allows assignment, because aliasing, and understanding what
happens when objects are accessed through different views, is es-
sential to our study. Mini-Thorn also lacks some features of the
Thorn type system (like multiple inheritance or method overload-
ing on arity). Extending the formalization would not be difficult but
would take us away from the purpose of this section. The Thorn
compiler checks source code without these restrictions.

Types. We denote class names by C , D , the dynamic type by
dyn, and like types by like C where C is a class name.

t ::= types
| C class name
| like C like class C
| dyn dynamic

The distinguished class name Object is also the top of the subtype
hierarchy. The function concr (t) tests if the type t is concrete,
and returns true if t is a class name and false otherwise.

Programs. A program consists of a collection of class definitions
plus a statement to be executed. A class definition

classC extendsD { fds ; mds }
introduces a class named C with superclass D . The new class has
fields fds and methods mds; a field is defined by a type annotation
and a field name t f , while a method is defined by its name m , its
signature, and its body:

t m (t1 x1 .. tk xk) { s ; return x } .

Statements include object creation, field read, field update, method
call, and cast. Fields are private to objects, and can be accessed only
from an object’s scope. With an abuse of notation, we will consider
lists of statements, rather than trees. We omit null-pointers: the only
run-time errors we are interested in this formalization are due to
dynamic type-checks that fail. As a consequence, fields must be
initialized at object creation.

s ::= statements
| skip skip
| s1 ; s2 sequence
| this . f = x field update
| x = this . f field read
| x = y .m (y1 .. yn) method call
| x = newC (y1 .. yn) object creation
| x = y copy
| x = (t) y cast

Static semantics. Figure 3 defines the static semantics of mini-
Thorn. Method invocation on an object accessed through a variable
which has a dynamic type, e.g. x = y .m (y1 .. yn) where Γ ` y :
dyn, is trivially well-typed: all type-checks are postponed to run-
time. On the contrary, as in FJ, if the variable y has a concrete
type, e.g. Γ ` y : C , then method invocation can be statically
type checked; the run-time guarantees that the objects actually
accessed through y are instances of the class C (or of subclasses
of C) and no run-time checks are needed. Type-checking method
invocation boils down to ensuring that the method exists, that the
actual arguments matches the types expected by the method, and
that the type of the result matches the type of the return variable.
Observe that type-checking of values is performed only if the
expected type is concrete, as in the hypothesis concr (ti) ⇒ Γ `
yi <: ti ; since any value can be stored in a like or dynamic typed
variable, no static type-checking is required. Like types behave as
contracts between variables and contexts: if a variable has a like
type, e.g. Γ ` y : like C , then a well-typed context uses it only as
a variable pointing to an instance of the class C. Operations on such

The subtyping relation<: is the reflexive and transitive relation closed under the rules below.

classC extendsD { fds ; mds }
C <: D C <: Object

C1 <: C2

like C1 <: like C2 C <: like C

Method lookup functions are inherited from FJ.

C = Object

mtype (m, C) = ⊥

classC extendsD { fds ; mds }
t m (t1 x1 .. tk xk) { s ; return x } ∈ mds

mtype (m, C) = t1 .. tk → t

classC extendsD { fds ; mds }
m /∈ mds

mtype (m, C) = mtype (m, D)

classC extendsD { fds ; mds }
t m (t1 x1 .. tk xk) { s ; return x } ∈ mds

mbody (m, C) = x1 .. xk . s ; return x

classC extendsD { fds ; mds }
m /∈ mds

mbody (m, C) = mbody (m, D)

The typing judgment for statements, denoted Γ ` s , relies on the environment Γ to record the types of the local variables accessed by s .
We write Γ ` x <: t as a shorthand for Γ (x) = t ′ and t ′ <: t .

[T VAR]

Γ (x) = t

Γ ` x : t

[TYPE SEQUENCE]

Γ ` s1
Γ ` s2

Γ ` s1 ; s2

[TYPE NEW]

Γ (x) = C
fields (C) = t1 f1 .. tk fk
∀i . concr (ti) ⇒ Γ ` yi <: ti

Γ ` x = newC (y1 .. yk)

[TYPE COPY]

Γ ` x : t
Γ ` y <: t

Γ ` x = y

[TYPE CAST]

Γ ` y : t2
Γ ` x : t1
t <: t1

Γ ` x = (t) y

[TYPE FIELD]

Γ ` this :C
fields (C) = t1 f1 .. tk fk
Γ ` x : t ′

concr (t ′) ⇒ ti <: t ′

Γ ` x = this . fi

[TYPE ASSIGN]

Γ ` this :C
fields (C) = t1 f1 .. tk fk
Γ ` x : t ′i
concr (ti) ⇒ t ′i <: ti

Γ ` this . fi = x

[TYPE CALL]

Γ ` y :C ∨ Γ ` y : like C
mtype (m, C) = t1 .. tk → t ′

Γ ` y1 : t ′1 .. Γ ` yk : t ′k
∀i . concr (ti) ⇒ t ′i <: ti
Γ ` x : t
concr (t) ⇒ t ′ <: t

Γ ` x = y .m (y1 .. yk)

[TYPE CALL DYN]

Γ ` y :dyn
Γ ` y1 : t1 .. Γ ` yk : tk
Γ ` x :dyn

Γ ` x = y .m (y1 .. yk)

Typing of methods and classes is inherited from FJ.

x1 : t1, .., xk : tk , this:C ` s x1 : t1, .., xk : tk , this:C ` x : t0
classC extendsD { fds ; mds }
if mtype (m, D) = t ′1 .. t ′k → t ′0 then (t1 = t ′1 .. tk = t ′k) ∧ t0 = t ′0

C ` t0 m (t1 x1 .. tk xk) { s ; return x }

fieldnames (D) = f ′1 .. f ′n
∀f ∈ f1 .. fk . f /∈ f ′1 .. f ′n
C ` md1 .. C ` mdn

` classC extendsD {C1 f1 ..Ck fk ; md1 .. mdn }

Figure 3. The type system

variables are then statically checked as if their type was concrete.
However in this case the run-time does not guarantee that the object
accessed are instances of the class C, and the conformance of
the value actually accessed will be checked individually at each
method invocation. These intuitions suggest that, even if it adds
the overhead of redundant conformance checks, it is always safe
to consider a variable of type C as a variable of type like C , as
allowed by the subtyping rule C <: like C . Similarly, it is easy to
see that the like constructor is covariant. Since fields are private to
each object, the operations to read or update them are always made
in a context where the type of this is known with great precision,
and the type constraints can be checked statically. The other rules
are unsurprising.

Dynamic semantics. At run-time objects live in the heap and are
referenced via pointers p. Different variables can have different
views of the same object; for instance, the variables x :C , y :like D
and z :dyn might be aliases and refer to the same object stored at
location p. The dynamic semantics keeps track of a variable’s view
of an object using wrapped pointers (also called stack-values and
denoted by sv). So the stack-value of z is (dyn) p while that of y

is (like D) p. No wrapper is needed for x, whose stack-value is just
the pointer p.

The dynamic semantics is then defined as a small-step opera-
tional semantics over configurations. A configuration consists of a
heap H of locations p mapped to objects

C (f1 = sv1 ; .. ; fn = svn)

and of a stack S of activation records

〈F1 | s1 〉 ... 〈Fn | sn 〉

where each activation record consists of an environment Fi that
maps variables to stack-values, and a statement si to be executed.
Computation, defined in Figure 4, progresses by executing the
statement in the stack-frame on the top of the stack. We write
H(p).fi 7→ sv to denote the object stored at H(p) where the field
fi has been updated with the stack-value sv.

An invariant relates the type of variables and wrappers of stack-
values:

Auxiliary functions to extract the run-time type of a pointer and of a stack-value, or to compute wrappers.

H(p)=C (...)

ptype (H , p) = C

H(p)=C (...)

svtype (H , p) = C svtype (H , (like D) p) = like D svtype (H , (dyn) p) = dyn

[[C]] = [[like C]] = (like C) [[dyn]] = (dyn) w2c () = w2c ((like C)) = (like C) w2c ((dyn)) = (dyn)

Dynamic semantics.
[RED NEW]

p fresh for H fields (C) = t1 f1 .. tn fn F(y1) = w1 p1 .. F(yn) = wn pn sv1 = [[t1]] p1 .. svn = [[tn]] pn

H | 〈F | x = newC (y1 .. yn) ; s 〉S −→ H [p 7→C (f1 = sv1 ; .. ; fn = svn)] | 〈F [x 7→ p] | s 〉S

[RED COPY]

H | 〈F | x = y ; s 〉S −→ H | 〈F [x 7→F(y)] | s 〉S

[RED RETURN]

H | 〈F0 | return x 〉 〈F1 | s1 〉S −→ H | 〈F1 [ret 7→F0(x)] | s1 〉S

[RED CAST CLASS]

F(y) = w p ptype (H , p) = D D <: C

H | 〈F | x = (C) y ; s 〉S −→ H | 〈F [x 7→ p] | s 〉S

[RED CAST OTHER]

F(y) = w p t = like C ∨ t = dyn

H | 〈F | x = (t) y ; s 〉S −→ H | 〈F [x 7→(t) p] | s 〉S

[RED FIELD]

F(this) = p
H(p)=C (f1 = w1 p1 ; .. ; fn = wn pn)
F(x) = w ′ p′

H | 〈F | x = this . fi ; s 〉S −→ H | 〈F [x 7→w ′ pi] | s 〉S

[RED ASSIGN]

F(this) = p F(x) = w ′ p′

H(p)=C (f1 = sv1 ; .. ; fn = svn)
fields (C) = t1 f1 .. tn fn sv = [[ti]] p′

H | 〈F | this . fi = x ; s 〉S −→ H [p 7→(H (p) . fi 7→sv)] | 〈F | s 〉S

[RED CALL]

F(y) = p ptype (H , p) = C mbody (m, C) = x1 .. xn . s0 ; return x0

mtype (m, C) = t1 .. tn → t F(y1) = w1 p1 .. F(yn) = wn pn sv1 = [[t1]] p1 .. svn = [[tn]] pn

F(x) = w ′ p′ cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast ret ; s 〉S

[RED CALL LIKE]

F(y) = (like C) p ptype (H , p) = D
mbody (m, D) = x1 .. xn . s0 ; return x0 mtype (m, C) = t1 .. tn → t
mtype (m, D) = t ′1 .. t ′n → t ′ ∀i . ti <: t ′i ∨ t ′i = dyn
(concr (t) ∧ concr (t ′)) ⇒ t ′ <: t F(y1) = w1 p1 .. F(yn) = wn pn

sv1 = [[t ′1]] p1 .. svn = [[t ′n]] pn F(x) = w ′ p′ cast = w2c (w ′)

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = cast (t) ret ; s 〉S

[RED CALL DYN]

F(y) = (dyn) p ptype (H , p) = C mbody (m, C) = x1 .. xn . s0 ; return x0

mtype (m, C) = t1 .. tn → t F(y1) = w1 p1 .. F(yn) = wn pn

∀i . concr (ti) ⇒ svtype (H , wi pi) <: ti sv1 = [[t1]] p1 .. svn = [[tn]] pn

H | 〈F | x = y .m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→sv1 .. xn 7→svn] [this 7→ p] | s0 ; return x0 〉 〈F | x = (dyn) ret ; s 〉S

Figure 4. Dynamic semantics

1. if a variable x has a concrete type C, then its stack-value will
always be an unwrapped pointer p and the pointer will always
point in the heap to a valid object of type (or subtype of) C;

2. if a variable x has type like C , then its stack-value will always
be a (like C) p wrapped pointer; no guarantee about the type
of the object pointed to by p in the heap;

3. if a variable x has type dyn, then its stack-value will always be
a (dyn) p wrapped pointer; no guarantee about the type of the
object pointed to by p in the heap.

To preserve this invariant across reductions, operations on objects
must perform different checks according to their view (that is, the
wrapper stored in the stack-value) of the object.

Suppose that a stack-value w p must be stored in a local variable
x (or in an object field). Let t be the static type of x. If t is some
concrete type C, then the static semantics and the run-time invariant
guarantee that the type of the stack-value w p is compatible with C:
this implies that the wrapper w is empty and p points to an object
of type D for D <: C. In this case, the link x 7→ p can be safely
stored in the stack, and the invariant is preserved. If t is like C
(resp. dyn), then any pointer can be used to build a valid stack-
value for x, provided that it is wrapped properly in a (like C) (resp.
(dyn)) wrapper. The appropriate wrapper is built by the function
[[t]] when the type t is known, or, in some cases, copied from the
old stack-value of x.

For instance, when a new object is created, (rule ([RED NEW]),
its fields are initialized with stack-values that are built by wrapping
(if needed) the actual arguments according to the field types. Field

update goes along similar lines. Field read illustrates a subtlety:
when executing x = this . f the static type of x is not easily
accessible. However, since the variable x is in the scope, its current
stack-value already reflects the view that the variable has of objects.
In particular, if the static type of x was like C (resp. dyn), then
its current stack-value contains a (like C) (resp. (dyn)) wrapper.
The semantics simply updates the pointer, bundling it with the older
wrapper (a cast is built from a wrapper by the function w2c). Since
fields are private to each object, the type of the enclosing object is
known precisely (the variable this always has a concrete type), and
no extra care is required to check the type constraints.

Invoking a method (say x = y .m (y1 .. yn)), requires more
care, as different checks and actions must be performed according
to view that the variable y has of the object. The first condition of
the three rules for method invocation tests exactly this: if the object
is accessed via a like or dyn wrapper, or not.

If it is accessed directly (rule [RED CALL]), that is if F(y) = p,
then the run-time invariant guarantees that the object on which
the method is called is an instance of the class statically checked.
The static semantics guarantees that the method m exists. Let
t1 .. tn → t be the type of the method; if some ti is a concrete type,
then the static semantics also guarantees that the actual argument
yi is an instance of ti, and no run-rime type checks are needed.
If ti is like or dyn, then the actual arguments are wrapped with
[[ti]], and, again, no run-time checks are performed. The run-time
allocates a new stack-frame to evaluate the body of the method
in an environment where the actual arguments are bound to the
method parameters and this points to the object itself. The return
value is passed to the previous stack-frame via the ret distinguished
variable. If the return value must be stored in a variable that has like
or dyn type, then a cast (computed from the previous stack-value of
the return variable) around ret ensures that the new stack-value will
be properly wrapped. Observe that this rule boils down to standard
FJ method invocation if the type of the method m does not involve
like or dyn types.

If the object is accessed via a (dyn) wrapper, that is if F(y) =
(dyn) p, (rule [RED CALL DYN]), then the run-time must verify
that the method exists (contrarily to the previous case, the condition
mbody(m, D) = ... might fail), and that the actual arguments
are compatible with the types expected by the method, via the
condition svtype (H , wi pi) <: ti (this check is performed only
if ti is a concrete type, otherwise the arguments are simply wrapped
according to ti). Also, the returned pointer is bundled in a (dyn)
wrapper via a cast, since there are no static guarantees about the
use that the context makes of the returned pointer.

If the object is accessed through a (like C) wrapper, that is if
F(y) = (like C) p, (rule ([RED CALL LIKE]), then the arguments
of the method call have been statically type-checked against the
type of the method m in class C (). The run-time must then check
that a method of name m exists in the object actually accessed
(which can be an instance of some class D not related to C), and
that its type is compatible with the type of m in C (via the condition
∀i.ti <: t′i). This strict type matching is not required when t′i is of
type dyn, as the argument will be wrapped with (dyn) anyway.
The return value must be wrapped (via casts) not only to the type
of the return variable, but also to the return type t of the method m
in class C.

Mini-Thorn’s dynamic semantics does not rely on chains of
wrappers and every reference to an object goes through at most
one wrapper. Upcast of class types is always allowed: when the
cast is evaluated no new wrappers are added, and the previous one
(if any) is discarded (rule [RED CAST CLASS]). A cast to a con-
crete type that is not a super-type of the type of the object fails.
Casting to a like type as like C (resp. to dyn) always succeeds

(rule [RED CAST OTHER]); the run-time forgets the previous wrap-
per (if any) and insert a (like C) (resp. a dyn) wrapper.

The rule for copy of a variable is straightforward, while the
return x instruction simply deallocates the current stack-frame
and stores the stack-value of x in the distinguished ret variable of
the previous stack-frame.

4.1 Meta-theory
A configuration is well-typed if it satisfies the run-time invariant
informally described above. The invariant relates the static type
of each variable to the stack-value and heap object it can refer
to, and we show that well-typed configurations are closed under
reductions.

The environment Σ associates class names C to pointers p, and
it records the concrete types of the objects in the heap. We then
define a type relation for stack-values:

Σ(p) = D
D <: t

Σ ` p : t

Σ(p) = E
D <: C

Σ ` (like D) p : like C

Σ(p) = C

Σ ` (dyn) p :dyn

The key property of this relation is that either it reflects the wrapper
of the stack-value (imposing no conditions on the actual object
accessed), or, if no wrappers are present, the concrete type of the
object actually accessed. A heap H is then well-typed in Σ if:

Σ ` H p /∈dom(H) Σ(p) = C
fields (C) = t1 f1 .. tn fn
Σ ` w1 p1 : t1 .. Σ ` wn pn : tn

Σ ` H [p 7→C (f1 = w1 p1 ; .. ; fn = wn pn)]

and the definitions of well-typed stack and well-typed configuration
(denoted Σ ; Γ ` H | S) follow accordingly:

Γ (x) = t
Σ ` w p : t
x /∈dom(F)
Σ ; Γ ` F

Σ ; Γ ` F [x 7→w p]

Σ ; Γ ` F
Γ ` s
Σ ; Γ ` H | S

Σ ; Γ ` H | 〈F | s 〉S

(we omit the trivial rules for empty heap and stack).

THEOREM 1 (Preservation). If Σ ; Γ ` H | S and H | S −→
H ′ | S ′, then there exist Σ′ and Γ′ such that Σ, Σ′ ; Γ, Γ′ `
H ′ | S ′.

Given a well-typed program, it is easy to see that the initial config-
uration of the program is well-typed. This guarantees that variables
with a concrete type C will only point to unwrapped objects which
are instances of class C: it is safe to optimize accesses to such vari-
ables at compile time.

We can also show that no type-related run-time errors can arise
from operations on variables which have a concrete type. We say
that a configuration H | 〈F | s 〉S is stuck if s is non-empty and
no reduction rule applies; stuck configurations capture the state just
before a run-time error.

THEOREM 2 (Progress). If a well-typed configuration Σ ; Γ `
H | 〈F | s 〉S is stuck, that is H | 〈F | s 〉S 6−→, then the state-
ment s is of the form x = y .m (y1 .. yn) ; s ′ and Γ (y) is dyn
or like C for some C, or s is of the form x = (C) y ; s ′ and
F(y) = w p with ptype(H, p) 6<: C .

4.2 Compilation
Run-time wrappers reflect the static view that a variable has of an
object. The run-time invariant guarantees that all the stack-values
associated to a given variable will have the same wrapper, and that
this wrapper depends only on the static type of the variable. The

[RED CALL TARGET]

F(y) = p ptype (H , p) = C mbody (m, C) = x1 .. xn . s0 ; return x0

F(y1) = p1 .. F(yn) = pn

H | 〈F | x = y @ m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→ p1 .. xn 7→ pn] [this 7→ p] | s0 ; return x0 〉 〈F | x = ret ; s 〉S

[RED CALL LIKE TARGET]

F(y) = p ptype (H , p) = D mbody (m, D) = x1 .. xn . s0 ; return x0

mtype (m, C) = t1 .. tn → t mtype (m, D) = t ′1 .. t ′n → t ′ ∀i . ti <: t ′i ∨ t ′i = dyn
(concr (t) ∧ concr (t ′)) ⇒ t ′ <: t F(y1) = p1 .. F(yn) = pn

H | 〈F | x = y @ (likeC)m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→ p1 .. xn 7→ pn] [this 7→ p] | s0 ; return x0 〉 〈F | x = ret ; s 〉S

[RED CALL DYN TARGET]

F(y) = p ptype (H , p) = C mbody (m, C) = x1 .. xn . s0 ; return x0

mtype (m, C) = t1 .. tn → t F(y1) = p1 .. F(yn) = pn

∀i . concr (ti) ⇒ ptype (H , pi) = D ∧ D <: ti
H | 〈F | x = y @ (dyn)m (y1 .. yn) ; s 〉S −→ H | 〈 [] [x1 7→ p1 .. xn 7→ pn] [this 7→ p] | s0 ; return x0 〉 〈F | x = ret ; s 〉S

Figure 5. Dynamic semantics of method dispatch in the compiled language

d = [[Γ (y)]]

[[Γ, x = y .m (y1 .. yn)]]
4
= x = y @ d m (y1 .. yn) [[Γ, F [x1 7→w1 p1 .. xn 7→wn pn]]]

4
= [[Γ, F]] [x1 7→ p1 .. xn 7→ pn]

[[Γ, H | S]]
4
= [[Γ, H]] | [[Γ, S]] [[Γ, H [p 7→C (f1 = w1 p1 ; .. ; fn = wn pn)]]]

4
= [[Γ, H]] [p 7→C (f1 = p1 ; .. ; fn = pn)]

[[Γ, 〈F1 | s1 〉 .. 〈Fn | sn 〉]]
4
= 〈 [[Γ, F1]] | [[Γ, s1]] 〉 .. 〈 [[Γ, Fn]] | [[Γ, sn]] 〉

Figure 6. Compilation of method invocation and of configurations

dynamic semantics relied on wrappers to determine the correct re-
duction rule for method invocation: since the wrapper information
can be derived from the static types, it is possible to determine for
each method invocation the right behavior statically.

We can then define the three different dispatchers for method
invocation, identified by a dispatch label, denoted d, which is either
empty, or (like C), or (dyn). With an abuse of notation, we
use the same syntax for wrappers and dispatch labels, and rely
on the function [[t]] described above to compute the appropriate
dispatch label for a given type. These dispatchers implement the
three reduction rules for method invocation. A method invocation
can then be compiled down to the invocation of the right dispatcher
for the given static type, and wrappers can be erased from stack-
values altogether.

Consider the target language defined by the grammar below:

s ::= statements
| skip skip
| s1 ; s2 sequence
| this . f = x field update
| x = this . f field read
| x = y @ d m (y1 .. yn) method dispatch
| x = newC (y1 .. yn) object creation
| x = y copy
| x = (t) y cast

In the semantics of the target language, stack-values are always
unwrapped pointers: the stack simply associates variables to point-
ers. The reduction rules for method dispatch are reported in Fig-
ure 5; the reduction rules for the other constructs are inherited from
the source language simply by erasing all the wrappers.

The compile function, denoted [[−]], transforms well-typed
source statements into target statements, and more generally well-

typed source configurations into target configurations. The compile
function, described in Figure 6, is the identity on statements ex-
cept for method invocation. Method invocation is compiled into the
invocation of the appropriate dispatch function, according to the
static type of the variable pointing to the object. Compilation of
configurations compiles all the statements in all the stack-frames,
and discards all the wrappers.

We can show a simulation result between the behavior of well-
typed source configurations and the behavior of compiled configu-
rations.

THEOREM 3 (Compilation). Let Σ ; Γ ` H | S be a well-typed
source configuration’:

1. if H | S −→ H ′ | S ′, then [[Γ, H | S]] −→ [[Γ, H ′ | S ′]];
2. conversely, if [[Γ, H | S]] −→ H ′′ | S ′′, then there exists a

well-typed source configuration Σ′ ; Γ′ ` H ′ | S ′ such that
H | S −→ H ′ | S ′ and [[Γ′, H ′ | S ′]] = H ′′ | S ′′.

The Thorn implementation is built upon this wrapper-less compi-
lation strategy.

Generics. Like types extends nicely to a language that features
bounded parametric polymorphism. Following FGJ, let X range
over type variables and let concrete types CN ::= C〈T1..Tn〉,
non-variable types N ::= CN | like CN | dyn and types T ::=
N |X . The key design decision is to restrict bounds in class defini-
tions to concrete types:

classC 〈X1 / CN1 ..Xk / CNk 〉 / N { fds ; mds }
where / abbreviates extends. If the programmer specifies a bound
different from Object, like in List〈X / Foo〉, then the parameter
can only be instantiated by concrete types and the usual FGJ type
guarantees are recovered. If the type Object is instead specified as a
bound, as in List〈X/Object〉, then the parameter can be instantiated

with any type, including dyn or like C : This guarantees ease of
reuse of the List class.

5. Experience with Program Evolution
We report on our experience using the proposed type system. We
implemented support for like types in our Thorn compiler which
runs on top of a standard JVM. Method calls go through a dispatch-
ing function that is used to implement dispatch in the presence of
multiple inheritance which the JVM does not support. What dis-
patch function to route a call through is determined by the type
information available at the call-site. The concretely typed func-
tion simply handles lookup as it assumes that the run-time types of
arguments are correct. The untyped function additionally performs
run-time type checks for arguments to any concretely typed param-
eters. A call to a method m on a like typed receiver x goes trough
a dispatching function that checks that x has an m with the cor-
rect types before proceeding. As a consequence of this design, calls
with varying degree of typing are handled differently. Type checks
are performed not at the call-site but as part of the dispatching func-
tion in the receiver object. Consequently, adding type information
to some class does not require recompilation of client code to take
advantage of the type checking. Run-time type checks will be car-
ried out as part of the untyped dispatching function, and just like in
e.g., Java, changing concrete types in the interface can break client
code that was compiled assuming other types in the interface.

5.1 Types In Libraries
Thorn’s libraries constitute a first interesting test case. To doc-
ument design intents, the initial library implementation included
comments that described the expected type of the functions. From
these comments, we refactored libraries to use a mixture of like
types and concrete types. The choice of appropriate type annota-
tions for the interfaces of a class calls for a compromise between
flexibility vs. safety and performance. Most of Thorn’s libraries
have like typed interfaces for maximal flexibility. Most return types
are either like typed or dynamically typed. This is unsurprising
since like types primarily provide local guarantees. Return values
that were locally created generally have a known (concrete) type.

When adding types to untyped code, we found that it is key that
the effects of adding the types do not propagate “too far.” As an
example, consider the following two classes, declared in separate
files:

class A { def p(x) = println(x); }
class B { a = A(); def q(s) { a.p(s) } }

At a later date, the class A is replaced with a typed one, obtaining:

class A { def p(x: String) = println(x); }

Despite the type annotation, the signatures of the untyped and like
typed dispatching functions in A are unchanged. The first addition-
ally performs a type test on the x argument to make sure it is a
String. Thus, old bytecode generated from the untyped code in
B will still work with A without recompilation. Notably, concretely
typed and like typed code will call a dispatching function that does
not need to test run-time types of arguments.

Thorn supports a notion of pure classes that create immutable
objects. A pure class is a functional immutable data type and
many of the standard library data types are pure, Int, Float,
String etc. The increase the flexibility, we could, although we
have not implemented this, allow value classes to be automatically
augmented with a parallel, like typed version, e.g.,:

class Int: Value {
def +(x: Int): Int = ...

}

can be compiled into

class Int: Value {
def +(x: Int): Int = ...
def +(x: like Int): like Int = ...

}

where the second method overloads the first to allow + etc. to be
called on any argument. This facilitates interaction between typed
and untyped code, and is safe since pure classes do not modify
state. Notably, x+"foo" when x: Int is still rejected statically.
Following this practise would allows us to annotate most basic data
types in the standard library with concrete types for speed while
enjoying the flexibility of like types.

5.2 Refactoring an Untyped Program
We ported a dynamic program to Thorn along with its libraries and
gradually added type annotations to it. The application we chose
was Pwyky [25] a simple wiki of about 1,000 lines of Python.
Pwyky relies on a generic parser module that was also ported (an-
other 1,000 lines). This allowed us to investigate the interaction
between library and user code annotations. The application is rep-
resentative of scripting language code and relies on patterns that
are inherently hard to type, such as using the same variable for val-
ues of different types depending on some run-time test. The ported
program, “Thyky,” is about the same size as the initial Python pro-
gram, including libraries (2,000 LOC). Once we had an untyped
version of Thyky running, we set out to gradually add type annota-
tions to it. To illustrate this process, consider the function upos in
the ParserBase class. The function upos is called when moving
from a position i in the parsed string to some position j to update
the fields lineno and offset of the ParserBase:

class ParserBase(var lineno, var offset, var rawdata) {
def upos(i, j) {
if (i >= j) return j;
nlines = count(rawdata.slice(i, j), "\n");
if (nlines != 0) {
lineno := lineno + nlines; offset := j;

} else offset := offset + j-i;
return j;

}
}

As a first step, we added like type annotations in a naive and
straightforward way. The result was the following:

class ParserBase(var lineno: like Int,
var offset: like Int,
var rawdata: like String) {

def upos(i: like Int, j: like Int): like Int {
if (i >= j) return j;
nlines: Int = count(rawdata.slice(i, j), "\n");
... # identical

}

Even if the types are simple data types, there is a rationale behind
the choice of like types. ParserBase was the first class we
annotated. This class is extended by the class HTMLParser and in
turn by the class Wikify which at that time were still untyped:
concrete types would have caused a number of implicit type tests
to be inserted and a large number of warnings, since methods in
ParserBase were called with untyped arguments. With the like
type annotations, the type checker is now able to verify that code
in ParserBase respects the declared types for lineno, offset
and rawdata. The variable nlines is concretely typed: the count
function returns an Int and, since nlines is internal to upos, there
is no extra need for flexibility here. We added like type annotations
to HTMLParser and all the code in Thyky in the same fashion. At
this point we had an untyped and a like-type annotated version of

0.0

0.5

1.0

1.5

2.0

2.5

3.0

spectral-norm
1000 1500 1000 1500 11 12

mandelbrot fannkuch

Typed Thorn
Dynamic Thorn

Python 2.5.1
Ruby 1.8.6

ru
nn

in
g

sp
ee

d
re

la
tiv

e
to

 P
yt

ho
n

2.
5.

1

4.87 4.84

Figure 7. Performance comparison between Typed Thorn, dy-
namic Thorn, Python 2.5.1, Ruby 1.8.6 normalized on the Python
timings. Typed Thorn notably runs the benchmarks between 2x and
4x the speed of Python.

each file; it was possible to compile and link the annotated version
of one file against the untyped version of the other, and all the eight
possible combinations worked as expected.

Following the annotations above, we attempted to harden the
type annotations of classes such as ParserBase by turning the
like-type annotations into concrete types. This often amounted to
removing the like keywords from field declarations, while we kept
the like type annotations for the arguments of function upos to
allow calls to upos from untyped contexts without forcing run-time
type tests and to retain the flexibility of dynamic typing. This meant
that we had to rewrite the assignment to the, now concretely typed,
offset field to make a type test on j, written as follows in Thorn:

offset := (Int) j orelse Int(j); # cast or covert to int

This line of code tries to cast j to an Int and if failing, tries to
create a new integer value from j. (The orelse keyword executes
its RHS if the LHS throws an exception.)

Our exercise revealed a bug in the original Python program that
had survived the port to Thorn. In the code below, the variable s
always contains a string at run-time, but was used in the following
test in Python:

if (s < 10): area = s[0:pos+10]
else: area = s[pos-10:pos+10]

The test (comparison on strings and integers) is nonsensical, but
nevertheless valid Python code, and always returns false. As soon
as we added a type annotation to s, our type-checker caught the
problem.

5.3 Optimizing Thorn

To demonstrate the value of concrete types, we present timing data
from running three simple benchmarks ported from [13]. The origi-
nal code was ported straight from Python and thus did not have any
type annotations (reported as dynamic Thorn). We subsequently
added type annotations to parameters to the critical functions. Run-
ning the programs side by side, we observed significant speed ups
in the typed version. To give some perspective to these numbers,
we present our timed runs in relation to the C implementation of
Python (2.5.1) and also include the C implementation of Ruby
(1.8.6), two relatively similar class-based object-oriented scripting
languages. The data is presented in Figure 7. It should be noted that
all the library code used by our Thorn programs is untyped. Typed
version of the libraries are currently being written and should fur-
ther improve performance. As shown in Figure 7, Typed Thorn
runs the benchmarks between 2x and 4x faster than Python and
about 3x and 6x faster than dynamic Thorn. The Ruby implemen-
tation is the slowest by far and is outperformed by a factor 7x to
12x by Typed Thorn.

Dissecting Spectral-Norm. As demonstrated in Figure 7, adding
type annotations to programs in Thorn can cause significant speed-
ups. Let us look at the spectral-norm benchmark [13] in additional
detail. We naively translated the existing Python implementation
into Thorn. Inspecting the code, we found the following frequently
executed function:

def a(i, j) =
1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1);

With boxed Thorn primitives this line of code creates 8 new in-
stances of Int or Float causing the method to execute slowly. The
compiled Thorn code for this function is 87 byte code instructions
of which 8 are invokeinterface. Adding concrete type anno-
tations to the method’s arguments brought the number of objects
created down to 1, the (untyped) return value:

def a(i: Int, j: Int) = ...

Moreover, the produced bytecode for the calculation is equivalent
to that of Java—18 instructions. This speed-up should not come
as a surprise. After all, we have added concrete type annotations to
allow the compiler to generate the optimized code for 32-bit integer
values. But we note that with a traditional gradual typing system, it
would not be possible to achieve this due to the need to account for
wrappers (or structural subtyping). Now, let’s examine what would
happen if we typed the arguments with like types:

def a(i: like Int, j: like Int) =

1.0 / (((i + j) * (i + j + 1) >> 1) + i + 1);

As the methods + and >> in class Int are annotated to accept like
Int and return Int (a reasonable choice with respect to interaction
with mixed-typed code), the highlighted additions above would be
method calls, and the rest optimized into operations on primitive
values. Notably, no unboxing of primitive values and no new cre-
ation of boxed integer objects are needed. Clearly, the like typed
approach produces more efficient bytecode than the untyped.

6. Conclusions
We presented a type system designed to allow the gradual integra-
tion of values of dynamic and static types in the same programming
language. Our design departs from the majority of previous work
which takes an existing dynamic language as a starting point and in-
sists that the type system be somehow backwards compatible with
legacy untyped code. In our view, the drawback of those works is
that the static type system is necessarily weak and fails to rule out
run-time errors or permit compiler optimizations. Our proposal puts
the dynamic and static parts of a program on equal footing. While
dynamically typed code is unconstrained, we guarantee that stati-
cally typed code does not experience run-time type errors. By sepa-
rating (semi)-structural like types from concrete types, we are able
to treat the latter more strictly and as a consequence apply compiler
optimizations to the generated code. Like types interact very well
with untyped code, in particular, adding like type annotation will
never cause working code to fail due to type errors.

Choosing nominal subtyping for the statically typed part of our
design is in line with all modern object-oriented languages. But
our decision of reusing type names without requiring structural
subtyping for like types is more controversial. We argue that it is in
line with the design philosophy of scripting languages: namely to
minimize programmer effort. Like types do not require the scripting
language programmer to declare new types while a program is
being migrated from untyped to typed, instead they let them reuse
existing types even if these types are only an approximation of the
“right” ones. As such, a program with like type annotations already
requires more “finger typing” (the pejorative term for inserting

type information used by the scripting community) than completely
untyped code. But the additional effort is small and optional as
it is always possible to interact with a like typed library without
writing a single type annotation and the library will still enjoy some
safety and speed-up. Like types are good for documentation and
traceability. Although they impose weaker constraints on behavior
than in a language such as Java, like typed code will be forced
to evolve as the referenced types evolve. A consequence of the
definition of like types is that exactly what subset of the operations
of a type is used within a method is not visible on the outside.
From a dynamic typing perspective, this is positive as it decreases
coupling and makes code more modular. This is similar to the
Smalltalk pattern of encoding type information in variable names
[5] and essentially the same reasoning that is used by programmers
in object-oriented scripting languages such as Ruby and Python,
except that like types give machine-checked hints to go on.

The proposed type system is being co-designed with a new pro-
gramming language called Thorn. The advantage of co-designing
the type system with the language is that we can focus on key is-
sues without having to fight corners cases of the language defini-
tion as would have been the case if we had picked Java or C# as a
starting point. Some simplifications that we have allowed ourselves
included ruling out method overloading on parameter types (typi-
cally supported in statically typed languages) as well as addition of
fields and methods (typically supported in dynamically typed lan-
guages). Nevertheless we believe that one could add like types and
dyn to other static languages and obtain much of the same benefits
we have outlined in this paper.

Acknowledgments. We thank the entire Thorn team: Brian Burg,
Gregor Richards, Bard Bloom, Nate Nystrom, and John Field. This
work was partially supported by ONR grant N140910754 and ANR
grant ANR-06-SETI-010-02.

References
[1] Amal Ahmed, Robert Bruce Findler, Jacob Matthews, and Philip

Wadler. Blame for all. In Script to Program Evolution (STOP), 2009.

[2] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Type inference
for polymorphic methods in Java-like languages. In Italian Conference
on Theoretical Computer Science (ICTCS), 2007.

[3] Christopher Anderson and Sophia Drossopoulou. BabyJ: From object
based to class based programming via types. Electronic Notes in
Theoretical Computer Science, 82(7), 2003.

[4] John Aycock. Aggressive type inference. In International Python
Conference, 2000.

[5] Kent Beck. Smalltalk: Best Practice Patterns. Prentice-Hall, 1997.

[6] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor
Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. Thorn–robust,
concurrent, extensible scripting on the JVM. In Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), 2009.

[7] Gilad Bracha. Pluggable type systems. OOPSLA04, Workshop on
Revival of Dynamic Languages, 2004.

[8] Gilad Bracha and David Griswold. Strongtalk: Typechecking
Smalltalk in a production environment. In Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOP-
SLA), 1993.

[9] Patrick Camphuijsen, Jurriaan Hage, and Stefan Holdermans. Soft
typing PHP. Technical report, Utrecht University, 2009.

[10] Luca Cardelli. Structural Subtyping and the Notion of Power Type. In
Symposium on Principles of Programming Languages (POPL), 1988.

[11] Robert Cartwright. User-defined data types as an aid to verifying LISP
programs. In International Colloquium on Automata, Languages and
Programming (ICALP), pages 228–256, 1976.

[12] Robert Cartwright and Mike Fagan. Soft Typing. In Conference on
Programming language design and implementation (PLDI), 1991.

[13] The Computer Language Benchmarks Game. http://shootout.
alioth.debian.org/.

[14] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-
order functions. In International Conference on Functional Program-
ming (ICFP), 2002.

[15] Cormac Flanagan. Hybrid type checking. In Symposium on Principles
of Programming Languages (POPL), 2006.

[16] Cormac Flanagan. ValleyScript: It’s like static typing. Technical
report, UC Santa Cruz, 2007.

[17] Michael Furr, Jong hoon An, Jeffrey Foster, and Michael Hicks. Static
type inference for ruby. In Symposium in Applied Computing (SAC),
2009.

[18] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-
grained interoperability through mirrors and contracts. In Conference
on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 231–245, 2005.

[19] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient
gradual typing. In Trends in Functional Programming (TFP), 2007.

[20] Alex Holkner and James Harland. Evaluating the dynamic behaviour
of Python applications. In Australasian Computer Science Conference
(ACSC), 2009.

[21] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: a minimal core calculus for Java and GJ. ACM Transac-
tions on Programming Languages and Systems, 23(3), 2001.

[22] Adobe Systems Inc. ActionScript 3.0 Language and Components
Reference, 2008.

[23] Giovanni Lagorio and Elena Zucca. Just: Safe unknown types in Java-
like languages. Journal of Object Technology, 6(2), 2007.

[24] Sven-Olof Nyström. A soft-typing system for Erlang. In Erlang
Workshop, 2003.

[25] Sean B. Palmer. Pwyky (A Python Wiki).
[26] Jeremy Siek and Walid Taha. Gradual typing for objects. In European

Conference on Object Oriented Programming (ECOOP), 2007.
[27] Jeremy Siek and Philip Wadler. Threesomes, with and without blame.

In Script to Program Evolution (STOP), 2009.
[28] Jeremy G. Siek. Gradual Typing for Functional Languages. In Scheme

and Functional Programming Workshop, 2006.
[29] Jeremy G. Siek, Ronald Garcia, and Walid Taha. Exploring the design

space of higher-order casts. In European Symposium on Programming
(ESOP), 2009.

[30] Jeremy G. Siek and Manish Vachharajani. Gradual typing with
unification-based inference. In Symposium on Dynamic languages
(DLS), 2008.

[31] Ed Stephenson. Perl Runs Sweden’s Pension System. O’Reilly Media,
2001.

[32] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migra-
tion: From scripts to programs. In Symposium on Dynamic languages
(DLS), 2006.

[33] Sam Tobin-Hochstadt and Matthias Felleisen. The design and imple-
mentation of Typed Scheme. In Symposium on Principles of Program-
ming Languages (POPL), 2008.

[34] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In European Symposium on Programming (ESOP), 2009.

[35] Ulf Wiger. Four-fold increase in productivity and quality. In Workshop
on Formal Design of Safety Critical Embedded Systems, 2001.

[36] Andrew K. Wright and Robert Cartwright. A practical soft type system
for Scheme. In Conference on LISP and Functional programming,
pages 250–262, 1994.

