
Challenge Benchmarks for Verification of Real-time Programs

Tomas Kalibera1,2, Pavel Parizek2, Ghaith Haddad3, Gary T. Leavens3, Jan Vitek1

1Purdue University, 2Charles University, 3University of Central Florida

Abstract
Real-time systems, and in particular safety-critical systems, are a
rich source of challenges for the program verification community
as software errors can have catastrophic consequences. Unfortu-
nately, it is nearly impossible to find representative safety-critical
programs in the public domain. This has been significant imped-
iment to research in the field, as it is very difficult to validate
new ideas or techniques experimentally. This papers presents open
challenges for verification of real-time systems in the context of
the Real-time Specification for Java. But, our main contribution is
a family of programs, called CDx, which we present as an open
source benchmark for the verification community.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems

General Terms Verification, Experimentation

1. Introduction
Safety-critical systems are real-time systems in which an incor-
rect response or an incorrectly timed response can result in sig-
nificant loss to its users; in the most extreme case, loss of life may
result from such failures. For this reason, safety-critical applica-
tions require an exceedingly rigorous validation and certification
process. While traditional approaches to certification, such as the
DO-178B certification for airborne systems in U.S. [32], ED-12B
in Europe [12], have prescribed software engineering processes and
manual verification, there is a growing pressure to use formal, au-
tomated, techniques. This is motivated by the rapidly growing size
of safety-critical code bases and increasing complexity of modern
processors.

The emphasis on timeliness is what sets apart real-time systems
from other computer systems. In a hard real-time system, meeting
deadlines is just as important as giving correct results. The veri-
fication of timeliness is particularly challenging as it requires an
understanding of the complete system, down to the hardware. Any
change made to a program potentially has consequences on timing
due to low-level interactions of hardware, compiler or libraries (by
changing cache behavior, processor pipeline states, or memory al-
locator states). Developers are keenly aware of these interactions
and try to reduce them by design. Thus, safety-critical systems are
often designed to be verifiable. This may entail restricting the fea-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’10, January 19, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-890-2/10/01. . . $10.00

tures available on the target platform, for example by limiting the
hardware (disabled cache or use of scratch-pad memory [33], re-
duced or disabled pipelining [24], disabling processors, or even in-
tentionally simplified instructions [25]), the operating system (no
virtual memory, no memory protection, simple scheduling algo-
rithms), or the programming model (limited multi-threading, pre-
allocation of system structures, no dynamic memory allocation).
Moreover, further reduction of unused code in the operating sys-
tem and libraries is driven by limited resources on embedded de-
vices (memory, storage, CPU speed and power).

If safety-critical developers are willing to restrict their hard-
ware, operating system and programming methodology, to simplify
testing and informal reasoning about their software, it should be
possible to get them to adapt their programming to the limitation of
automated verification tools. But this will only happen if these tools
can provide developers with useful answers. Thus the challenge to
the programming language and programming verification commu-
nities is to come up with languages, methodologies and tools that
can scale to real systems and provide the kinds of guarantees that
are required for certification.

One particularly vexing challenge for both language and veri-
fication communities is the lack of representative, publicly avail-
able benchmark programs to evaluate ideas and tools. What is par-
ticularly missing, is programs that share the size and complexity
characteristics of deployed systems, as well as programs written
by domain experts following best-practice software development
methodologies. Lacking real-world programs, researchers are left
with the choice of using non real-time benchmarks or inventing
their own benchmarks. Thus they ended either trying to address
problems that do not occur in real-time systems or solve oversim-
plified abstractions of real programs. It should thus not come as a
surprise that very few academic tools have seen practical use (with,
of course, some notable exceptions such as AbsInt and Astree).

In this paper we propose challenge problems based on our expe-
rience working with ([5, 21, 23, 36]), and implementing ([5, 31]),
the Real-time Specification for Java, and we offer a family of rep-
resentative programs that can be used for validation. The Real-time
Specification for Java (RTSJ) [8] is a standard that enhances the
Java programming environment with support for writing software
systems with real-time characteristics. With multiple commercial
offerings RTSJ is becoming a viable alternative for real-time de-
velopers [3, 4, 7, 9]. Lockheed Martin used Java to modernize the
Aegis cruiser fleet [2], while Raytheon used it for the computing en-
vironment software of the DDG-1000 warship [27]. Other applica-
tions include unmanned aircraft [5, 18, 19], audio processing [20],
industrial automation [15], and flight entertainment [17]. The RTSJ
is currently being extended to support certification with the JSR-
302 Safety Critical Java specification (SCJ) [16]. The SCJ speci-
fication is designed to enable the creation of safety-critical appli-
cations using a safety-critical Java infrastructure and using safety-
critical libraries that are amenable to certification under DO-178B,
Level A and other safety-critical standards. In the context of Java

technology, this means a much tighter and smaller set of Java vir-
tual machines and libraries, and much more precise performance
requirements on the virtual machines and libraries. Additionally,
the applications must exhibit freedom from exceptions that cannot
be successfully handled. This requires, for example, that there be
no memory access errors at runtime.

In this paper we focus on certification of source level properties.
In a real-world setting, any proof carried out at the source level will
have to be traced through the different layers of compilation all
the way down to machine code. In the case of many real-time Java
VMs this means certifying the translation from source to bytecode,
then from bytecode to C, and finally from C to native [3, 4, 31].
This is an important but distinct problem. Furthermore, while an-
alyzing worst case execution time (WCET) is a key for reasoning
about timeliness and schedulability, we will not address this issue
directly as it requires a deep understanding of the execution plat-
form (operating system and hardware).

The main contributions of this position paper are a list of chal-
lenge problems, some well-known others less so, and benchmark
programs that can be used to validate solutions to these challenges.
For validation we offer CDx, a family of benchmarks implementing
an idealized real-time aircraft collision detection algorithm [21].
While the CDx application is simple and admittedly idealized,
it provides a good starting point for automated verification tech-
niques. In particular, we have made an effort to provide multiple
comparable implementations of the benchmark. The x in the name
refers to configuration options that let users choose between a plain
Java benchmark, an RTSJ or an SCJ version. Furthermore, we offer
both (real-time) garbage-collected and region-allocated versions of
the code base. Lastly, a version of the software written in C for
the RTEMS/LEON embedded platform (being used by both NASA
and ESA in space missions [13, 30]) is provided. We also provide
earlier versions of the code that contain actual errors.

The benchmarks with instructions how to run them can be downloaded
from http://www.ovmj.net/rcd.

2. Real-time Java
The Real-Time Specification for Java was developed within the
Java Community Process as the first Java Specification Request
(JSR-1). Its goal was to “provide an Application Programming In-
terface that will enable the creation, verification, analysis, execu-
tion, and management of Java threads whose correctness conditions
include timeliness constraints” [8] through a combination of addi-
tional class libraries, strengthened constraints on the behavior of
the JVM, and additional semantics for some language features, but
without requiring special source code compilation tools. The RTSJ
covers five main areas related to real-time programming.

• Scheduling: Priority based scheduling guarantees that the highest-
priority schedulable object is always the one that is running (in
a single processor application). The scheduler must also sup-
port the periodic release of real-time threads, and the sporadic
release of asynchronous event handlers that can be attached to
asynchronous event objects that themselves are triggered by
actual events in the execution environment.

• Admission control and cost enforcement: Schedulable objects
can be assigned parameter objects that characterize their tem-
poral requirements in terms of start times, deadlines, periods,
and cost. This information can be used to prevent the admis-
sion of a schedulable object if the resulting system would not
be feasible from a scheduling perspective. Schedulable objects
can also have handlers that are released in the event of a dead-
line miss.

• Synchronization: Priority inversion through the use of Java’s
synchronization mechanism (monitors) is controlled by using
the priority inheritance protocol (PIP), or optionally, the pri-
ority ceiling emulation protocol (PCEP). This applies to both
application code and the virtual machine itself.

• Memory Management: Time-critical threads must not be sub-
ject to delays caused by garbage collection. To facilitate this,
a NoHeapRealtimeThread is prohibited from touching heap al-
located objects, and so can preempt garbage collection at any
time. Instead of using heap memory, these threads can use spe-
cial, limited-lifetime memory areas known as scoped memory
areas, or an immortal memory area from which objects need
never be reclaimed.

• Asynchronous Transfer of Control: It is sometimes desirable to
terminate a computation at an arbitrary point. The RTSJ allows
for the asynchronous interruption of methods that are marked as
allowing asynchronous interruption [10]. This facilitates early
termination while preserving the safety of code that does not
expect such interruptions.

2.1 Safety Critical Java
The main goal of JSR-302 is to facilitate a certification of Java pro-
grams as far as possible. For this purpose, radical subsetting of the
full Java environment is required. First of all, as garbage collection
is not supported, heap memory is not available, thus some conve-
nient methods of the java.lang package can not be supported. Em-
phasis is placed on using periodic event handlers instead of threads,
with preemptive, priority based scheduling. SCJ supports the prior-
ity ceiling emulation protocol for avoiding priority inversion, but
not the priority inheritance protocol.

The complexity of safety-critical software varies greatly. At one
end of the spectrum, safety-critical applications contain only a sin-
gle thread and support only a single function, with only simple tim-
ing constraints. At the other end, there exist highly complex multi-
modal safety-critical systems. The cost of certification of both the
application and the infrastructure is highly sensitive to their com-
plexity, so enabling the construction of simpler applications and in-
frastructures is highly desirable. Therefore, SCJ defines three com-
pliance levels to which both implementations and applications may
conform. The SCJ refers to the distinct compliance configurations,
such as Level 0 and Level 1. Level 0 refers to the simplest applica-
tions, while Level 1 refers to slightly more complex applications.

2.1.1 Level 0
A Level 0 application’s programming model is a familiar model of-
ten described as a timeline, frame-based, or cyclic executive model.
In this model, a mission can be thought of as a set of computa-
tions, each of which is executed periodically in a precise, clock-
driven timeline, and processed repetitively throughout the mission.
A Level 0 application’s schedulable objects shall consist only of
a set of Periodic Event Handlers (PEHs). Each PEH has a period,
priority, and start time relative to the beginning of a major cycle.
A schedule of all PEHs is constructed by either the application de-
signer or by an offline tool provided with the implementation. All
PEHs execute under control of a single underlying thread. This en-
forces the sequentiality of every PEH, so the implementation can
safely ignore synchronization. The use of a single thread to run all
PEHs without synchronization implies that a Level 0 application
runs only on a single CPU. If more than one CPU is present, it is
necessary that the state managed by a Level 0 application not be
shared by any application running on another CPU. The operations
wait and notify are not available at Level 0 or Level 1. Each PEH
has a private scoped memory area created for it before invocation
that will be entered and exited at each invocation.

2.1.2 Level 1
A Level 1 application uses a familiar programming model consist-
ing of a single mission with a set of concurrent computations, each
with a priority, running under control of a fixed-priority preemptive
scheduler. The computation is performed in a set of PEHs and/or
Aperiodic Event Handlers (APEHs). A Level 1 application shares
objects in mission memory among its PEHs and Aperiodic Event
Handlers (APEHs), using synchronized methods to maintain the
integrity of its shared objects. Each Level 1 PEH or APEH has a
private scoped memory area created for it before invocation that
will be entered and exited at each invocation. During execution, the
PEH or APEH may create, enter, and exit one or more other scoped
memory areas, but these scoped memory areas must not be shared
among PEHs or APEHs.

3. Challenge Problems
This section presents a non-exhaustive list of software hazards that
have to be prevented and properties that should be established in
RTSJ applications. It is not expected that automated techniques
alone will be able to establish them for complex real-time systems.
Indeed, real-time programmers are used to providing additional in-
formation to convince certification authorities. Typically this comes
in the from of various design documents, and copious test cases.
But it is conceivable that experts could be trained to provide suffi-
cient annotations to automated tools provided that they get, in ex-
change, strong correctness guarantees.

3.1 Exceptions
The first challenge is to ensure the absence of uncaught exceptions,
thrown either by user code, libraries or the virtual machine. The
first group of exceptions (see Figure 1) is not specific to real-time
Java, but must nevertheless be checked. Out of memory conditions
are somewhat special, and will be revisited later. Stack overflow
errors require bounding the size of the call stack, but source-level
analysis results may be invalidated by low level compiler optimiza-
tions which impact the size of individual stack frames (inlining can
increase the number of local variables in a frame for instance).

ArithmeticException
ArrayIndexOutOfBoundsException
ArrayStoreException
NegativeArraySizeException
NullPointerException
OutOfMemoryError
StackOverflowError

Figure 1. Exceptions not specific to RTSJ.

The second group of exceptions (see Figure 2) is specific to
real-time Java. The first exception will occur when a schedulable
object attempts to lock a PriorityCeilingEmulation lock with an
effective priority higher than the lock’s ceiling. A MemoryScope-

Exception occurs when a wait-free queue is referenced from an in-
compatible memory area (the wait-free end of a queue can only be
used from a non-heap region). The next two exceptions are thrown
when memory areas are given invalid arguments at construction
time. The last four exceptions are thrown in response to invalid
memory operations and will be detailed later.

The above focused on uncaught exceptions. Caught exceptions
require attention as well. First, while Java allows the specification
of catch-all patterns these must be avoided in safety critical sys-
tems. Thus automated tools should verify that there is a catch clause
for every exception. In general, safety-critical system will strive to
avoid try-catch and provide explicit checks instead.

CeilingViolationException
MemoryScopeException
SizeOutOfBoundsException
OffsetOutOfBoundsException
IllegalAssignmentError
InaccessibleAreaException
MemoryAccessError
ScopedCycleException

Figure 2. Exceptions specific to RTSJ.

3.2 Type Analysis
The size of the code base that must be validated is an important
concern in safety-critical applications. It is thus essential to reduce
the size of the code base that need to be certified. In object oriented
systems, heavy use of features such as subtyping and dynamic bind-
ing, while easing software reuse and modularity, make it harder for
developers to determine which parts of a system will be exercised
in any run. Thus, one of the challenges for tool support is to provide
for any call site of the form

obj.method(...);

a tight bound on the potential class of the object referenced by obj.
Thus a second challenge is to tightly bound the size of the set of
candidate classes at each dispatch. It is also noteworthy that in the
case of an interface dispatch (i.e. the static type of obj is a Java
interface) the dispatch is not guaranteed to be constant time. Thus,
such operations should either be avoided or shown to have a small
fixed-size set of target methods.

Similarly, tools should attempt to predict the outcome of type
test expressions (obj instanceof C) and checked casts ((C)obj).

3.3 Memory Analysis
There are several important questions with respect to memory us-
age. In a real-time garbage collected real-time system, the key piece
of information required to avoid an OutOfMemoryError is the allo-
cation rate of each schedulable object. This is needed to ensure that
the schedule leaves enough time for the real-time GC to keep up
with the application (see [22] for more details). This gives a third
challenge: to automatically determine how many bytes will be al-
located per release of each thread or even handler. For real-time
threads, a release is bounded by an invocation of the waitForNext-

Period() method, e.g.

boolean missedDeadline = false;
while (!missedDeadline) {

... // per release operations
missedDeadline = ! RealtimeThread.waitForNextPeriod();

}

In the case of event handlers, the per release cost is based on
the memory allocated (transitively) by the event handler’s run()

method. The RTSJ provides a way for declaring the allocation rate
of a schedulable object, via the MemoryParameters class. If this
argument is used, then tools should validate that actual usage is
bounded by the value given to the corresponding argument.

For memory allocated in non-heap areas, things are slightly dif-
ferent. Instead of allocation rate, the relevant measure is maximum
allocation per activation of the memory area, in a multi-threaded
setting an activation ends when all threads that have entered an area
exit it. In the case of ImmortalMemory, there is a single activation
that lasts for the lifetime of the VM. It is necessary to establish
that the maximal size of the area is no smaller than sum of the
maximum per activation allocations performed by all threads that
could potentially execute in it. Each schedulable object may spec-
ify its memory usage requirements in terms of ImmortalMemory and
one associated scoped memory (in the MemoryParameter object at-

tached to the schedulable). Tools should validate that these values
indeed bound the schedulable’s memory usage. While memory al-
location mostly occurs via direct invocation of the new operation,
there are also reflexive construction operations using newInstance

that require alias analysis to disambiguate the target region, and
implicit exceptions (e.g. NullPointerExceptions), which consume
memory in the current memory region.

There are other memory related errors that must be prevented.
The ScopedCycleException and InaccessibleAreaException are
thrown when a thread performs an invalid enter operation. Prevent-
ing these requires modeling the scope stack of each thread.

Finally, in order to prevent dangling pointer errors, the RTSJ
VM will throw an IllegalAssignmentError on an attempt to store
a reference to an object allocated in a shorter lived scope into a field
of an object allocated in a longer lived scope. And, for threads that
have been marked as no-heap, any attempt to load a reference to
an object allocated in the heap will result in a MemoryAccessError.
To prevent these errors tools will have to resolve for any read or
write of a reference variable: where the source and target objects
are allocated and what thread is performing the operation.

Scoped memory related errors are not an issue for purely real-
time garbage collected systems. In SCJ some errors are ruled out by
construction, for instance, ScopedCycleException can not occur.

3.4 Blocking Analysis
The fourth challenge is to compute the blocking time of each
schedulable object per release, which is critical for schedulability
analysis of multi-threaded real-time systems. At the source level
this translates to discovering which locks can be contended for
among any group of threads and providing a bound on the amount
of computation that can be performed within critical section. In
general, it is an error to perform a blocking operation within a criti-
cal section, thus tools should demonstrate that no I/O or other long
latency operation is being performed within a potentially contended
lock. If a lock implements a priority ceiling protocol, it must be es-
tablished that the thread acquiring does not have a higher priority
than the ceiling. It is also, in general, an error to call waitForNext-
Period() while holding a lock as this may result in unbounded
blocking time. Deadlock prevention should be performed although,
on a single-processor system, the ceiling protocol can be imple-
mented so that deadlocks are impossible (usually this is done by
turning off interrupts during the critical section).

3.5 Loop Bound Analysis
While we do not focus on timing analysis, as this requires more
low-level information, one of the necessary inputs for tools such
as AbsInt or Rapita is static loop bounds. It is customary for
programmers to provides those by hand. Automated tools can help.
The fifth challenge is thus to infer bounds when possible, or at
least validate user provided annotations. There are limits of course,
annotations related to the range of inputs (eg. possible values read
from external sensors, etc) will have to be trusted.

4. Benchmark Application
We propose a family of benchmarks based on the CDx suite [21].
CDx is open source application benchmark suite that targets dif-
ferent hard and soft real-time virtual machines. CDx is, at its core,
a real-time benchmark with a single periodic task, which imple-
ments aircraft collision detection based on simulated radar frames.
The benchmark can be configured to use different sets of real-time
features and comes with a number of workloads. The main com-
ponents of the application are an air traffic simulator and a colli-
sion detector. The air traffic simulator generates radar frames, each
containing a set of aircraft with their current coordinates. The radar

frames are generated periodically at a pre-set frequency and are
passed to the collision detector. The collision detector maintains
a list of the last known aircraft positions. Upon receiving a frame
from a radar, the collision detector calculates trajectories from each
aircraft (last known stored position to new position received in the
radar frame), and checks if any two aircraft are on collision course.
The time between two radar frames is very small (i.e. 10ms), and
thus the planes can be assumed to travel on straight paths and at
constant speed within this time interval. For performance reasons,
collision detection is performed in two steps: 2-d reduction and 3-
d collision checking. The first step is to rule out collisions of air-
craft that are very far apart: it ignores aircraft altitude and uses a
coarse-grained resolution for latitude and longitude. Only aircraft
identified as potentially colliding are checked for collision using
the full 3-d collision checker that calculates the minimum distance
of two points traveling in time along line segments in 3-d space.
The collision detection checker uses dynamic memory allocation,
and aircraft positions are stored in a hash table to reduce memory
usage. The 3-d collision detection is a task with intensive floating
point computation. Both time and memory complexity rise with
the number of aircraft and number of collisions (both suspected at
some level of the algorithm and finally detected with 3-d collision
checking).

The implementation language is Java. The following table sum-
marize the main configuration options that are supported:

CDjgns Plain Java with garbage collection
CDrsns RTSJ with scoped memory
CDrgns RTSJ with real-time garbage collection
CDss0s SCJ with scoped memory

The value of n can be either 0 to indicate the absence computa-
tional noise, j for the SPEC JVM 98 javac benchmark or s for the
ATS simulator. The value of s defines the ATS implementation: a
is the ATS simulator, b is the version that reads the simulation from
a binary file, and e is for the case where the simulation is encoded
in a Java class.

The plain Java version of CDx is obtained through wrapper
functions that provide plain Java implementations of the requested
RTSJ functionality. While the dependency of the benchmark code
on RTSJ library can be removed by the wrappers, the impact of
RTSJ memory semantics on the architecture could not be abstracted
out. The use of scopes and immortal memory by itself requires
additional threads in the application. Also, memory assignment
rules sometimes lead to the need of copying arguments passed
between memory areas (i.e. heap to scope, inner scope to outer
scope). Even more, we also structured the code to make it is easier
for programmers to keep track of which objects live in which
memory areas. Thus, the architecture is representative of an RTSJ
application, but not of plain Java application.

The plain Java version of the benchmark can be both compiled
and run with standard Java. The RTSJ Java libraries and a RTSJ VM
are only needed to build and run the RTSJ version of the benchmark
with immortal memory, scopes or RTGC. The RTSJ code has been
tested with Sun’s Java Real-Time System (RTS), IBM’s WebSphere
Real-Time (WRT), and Ovm.

To measure the complexity of the benchmark code, we use
the Chidamber and Kemerer object-oriented programming (CK)
metrics [11] measured with the ckjm software package [34]. We
apply the CK metrics to the classes that the application loads.
The results are shown in Table 1, separately for the CD and the
ATS. The CD only uses selected collection classes from the Java
libraries, which we isolated into the javacp.util package. For the
CD we thus also have the complexity metrics for standard libraries
it uses. For the ATS, we exclude the standard libraries from the
analysis.

Package Name WMC DiT NOC CBO RFC LCOM Ce NPM
Detector

immortal 35 6 0 21 87 13 8 25
immortal.persistentScope 32 4 0 29 77 6 8 23
immortal.persistentScope.transientScope 196 17 0 41 93 530 58 87
javacp.util 936 113 68 508 1506 7003 474 687

Simulator
command.* 607 45 53 452 1569 3763 206 611
heap 187 44 18 101 420 511 80 144

WMC Weighted methods/class CBO Object class coupling
DIT Depth inheritance tree RFC Response for a class
NOC Number of children LCOM Lack of method cohesion

Ce Afferent couplings NPM Number of public methods

Table 1. CK metrics for loaded classes.

4.1 Customized Benchmarks
We provide a number of customized versions of CDx.

We present a benchmark rtsjmem-error for methods and
tools that aim at checking whether a program does not violate
the memory access rules defined by the RTSJ memory model. The
code includes a violation of one of the memory access rules that we
actually made earlier when refactoring the application. As there are
currently no tools for checking of the memory access rules (that we
know of), the challenge is to develop methods and tools (i) that can
statically detect violations of the memory access rules and (ii) that
scale well to systems at least of size and complexity comparable to
the collision detector application.

We provide three benchmarks for methods and tools aim-
ing at verification of general correctness properties of Java pro-
grams — concur-error, charsize-error, and error-free.
The concur-error benchmark contains a race condition that we
discovered using Java PathFinder. Although this error would be
discovered by most of the verification tools for Java that aim at
concurrency errors, it could be used as a good test for scalabil-
ity and efficiency of the tools. The challenge is to minimize the
time and memory needed to find the error. The charsize-error
benchmark contains a buffer overflow error that is caused by in-
correctly assuming that the size of a character in a native encoding
is always one byte. This is not true, for example, in case of Java
programs running on platforms that use UTF-8 as the native encod-
ing. Such an error can be discovered only by tools that correctly
model size of characters in various encodings and character sets.
The error-free benchmark does not contain a violation of any
non-real-time correctness property, as far as we know. In case of
this benchmark, the challenges for verification tools and methods
are (i) to traverse the whole state space of the application in rea-
sonable time and memory and show that there are really no errors,
or (ii) to find some errors that we are not aware of.

4.2 RTEMS/LEON
The open-source RTEMS operating system [1] and the open-
specification of LEON hardware form a platform for embedded
real-time systems which is being used by both NASA and ESA
in some present missions and is planned for future ESA missions.
This platform is thus a realistic target for verification tools. Unlike
traditional operating system, RTEMS from the view of an appli-
cation resembles a library; with RTEMS the build process of an
application results in a binary executable on bare hardware. Only
the services needed by specific application are included: timer
support, individual drivers, individual filesystems, support for a
floating point unit, etc. The application programmer has to specify

these dependencies, as well as the maximum number of certain
OS objects needed (i.e. tasks or semaphores). The system supports
multi-tasking without processes (it has no memory protection), and
to a limited extent also multi-processing. RTEMS runs on about 20
kinds of processors, including x86 and LEON. The hardware speci-
fication of the LEON processor and hardware controllers necessary
to build a complete system [14] is available in VHDL, allowing im-
plementation of system-on-chip architectures on FPGA or directly
as hardware on ASIC. The processor uses a 32-bit SPARC v8 in-
struction set with instruction and data caches and with a pipeline.
Unlike PRET [25], it is thus not designed to make WCET analy-
sis easy, but to have acceptable performance and to work in space
(i.e., with a radiation-hardened RAM). We provide a version of
CDx written in C for the RTEMS/LEON platform. For comparison
purposes, we also provide the output of a Java-to-C compiler.

5. Conclusion
There exist many techniques and tools for verification and anal-
ysis of Java programs. Some are based on model checking [35],
while others are based on static data- and control- flow analy-
sis [6, 28, 29]. However, these techniques and tools have important
drawbacks – they do not support all the properties, do not scale to
large Java programs, or report a prohibitive number of false posi-
tives. The challenge is to improve the precision and scalability of
existing methods and tools, or to develop novel techniques, such
that the tools can be successfully applied to Real-time Java pro-
grams of the size and complexity comparable to the collision detec-
tor application. Little work exists that directly address timeliness.
While, for instance, there is an extension of Java PathFinder for
checking whether a RTSJ program meets all deadlines [26] using
discrete event simulation to represent time periods, it does not sup-
port any other RTSJ-specific correctness property, and we are not
aware of any other work in this area. We hope that making the CDx

benchmark program available, will be enabler for new research.

Acknowledgments. The collision detector benchmark has been
originally created by Ben Titzer, then extended by Jeff Hagelberg,
Filip Pizlo, and later by Tomas Kalibera. The C version was writ-
ten by Ghaith Haddad, Petr Maj, and Tomas Kalibera. CK met-
rics were measured by Ales Plsek. Different versions of the bench-
mark were used and have been customized at Purdue, IBM, INRIA
Lille, and Charles University. This work was partially supported
by NSF grants CNS-0938256, CCF-0938255, CCF-0916310 and
CCF-0916350, the Grant Agency of the Czech Republic project
201/08/0266, and by the Ministry of Education of the Czech Re-
public (grant MSM0021620838).

References
[1] Real-time executive for multiprocessor/missile systems (RTEMS).

http://www.rtems.com/, 2009.
[2] Aegis. Lockheed Martin selects Aonix PERC Virtual Machine for

Aegis Weapon System. Military Embedded Systems, 2006. http:
//www.mil-embedded.com/news/db/?4224.

[3] aicas. The Jamaica Virtual Machine homepage. http://www.aicas.
com, 2005.

[4] Aonix. PERC Pico 1.1 user manual. http://research.aonix.com/jsc/
pico-manual.4-19-08.pdf, 2008.

[5] A. Armbruster, J. Baker, A. Cunei, C. Flack, D. Holmes, F. Pizlo,
E. Pla, M. Prochazka, and J. Vitek. A real-time java virtual machine
with applications in avionics. ACM Transactions on Embedded Com-
puting Systems (TECS), 2007.

[6] C. Artho and A. Biere. Applying static analysis to large-scale, multi-
threaded java programs. In Australian Software Engineering Confer-
ence (ASWEC), 2001.

[7] J. Auerbach, D. F. Bacon, B. Blainey, P. Cheng, M. Dawson, M. Ful-
ton, D. Grove, D. Hart, and M. Stoodley. Design and implementation
of a comprehensive real-time Java virtual machine. In ACM & IEEE
International Conference on Embedded Software (EMSOFT), 2007.

[8] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull.
The Real-Time Specification for Java. Addison-Wesley, 2000.

[9] G. Bollella, B. Delsart, R. Guider, C. Lizzi, and F. Parain. Mackinac:
Making HotSpot real-time. In International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC), 2005.

[10] B. Brosgol, S. Robbins, and R. Hassan II. Asynchronous trans-
fer of control in the Real-Time Specification for Java. In Interna-
tional Symposium on Object-Oriented Real-Time Distributed Comput-
ing (ISORC), 2002.

[11] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 1994.

[12] EUROCAE. EUROCAE ED-12B software considerations in airborne
systems and equipment certification, 1992.

[13] European Space Agency. Venus express mission. http://www.esa.int/
SPECIALS/Venus Express, 2009.

[14] J. Gaisler, E. Catovic, M. Isomki, K. Glembo, and S. Habinc. GRLIB
IP core users manual. http://www.gaisler.com/products/grlib/grip.pdf,
2009.

[15] S. Gestegard Robertz, R. Henriksson, K. Nilsson, A. Blomdell, and
I. Tarasov. Using real-time Java for industrial robot control. In Inter-
national Workshop on Java Technologies for Real-time and Embedded
Systems (JTRES), 2007.

[16] J. Hunt, D. Locke, K. Nilsen, M. Schoeberl, and J. Vitek. Java for
safety-critical applications. In Certification of Safety-Critical Software
Controlled Systems (SafeCert), 2009.

[17] Inflight. Aonix PERC selected for inflight entertainment system. Em-
bedded Computing Design, 2007. http://www.embedded-computing.
com/news/db/?8205.

[18] J-UCAS. Boeing selects software for J-UCAS X-45C. Defense
Industry Daily, 2005. http://www.defenseindustrydail.com/boeing-
selects-software-for-jucas-x45c-01413/.

[19] JB. The JamaicaVM brings Java technology to mission software in
an unmanned aircraft by EADS. Military Embedded Systems, 2006.
http://www.mil-embedded.com/news/db/?3302.

[20] N. Juillerat, S. Müller Arisona, and S. Schubiger-Banz. Real-time, low
latency audio processing in Java. In International Computer Music
Conference (ICMC), 2007.

[21] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek.
CDx: A family of real-time Java benchmarks. In International Work-
shop on Java Technologies for Real-time and Embedded Systems
(JTRES), 2009.

[22] T. Kalibera, F. Pizlo, A. Hosking, and J. Vitek. Scheduling hard
real-time garbage collection. In IEEE Real-Time Systems Symposium
(RTSS), 2009.

[23] T. Kalibera, M. Prochazka, F. Pizlo, J. Vitek, M. Zulianello, and
M. Decky. Real-time Java in space: Potential benefits and open
challenges. In Proceedings of DAta Systems In Aerospace (DASIA),
2009.

[24] E. Lee and D. Messerschmitt. Pipeline interleaved programmable
dsp’s: Architecture. IEEE Transactions on Acoustics, Speech and
Signal Processing, 1987.

[25] B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee. Predictable programming on a precision timed architecture. In
International conference on Compilers, Architectures and Synthesis
for Embedded Systems (CASES), 2008.

[26] G. Lindstrom, P. C. Mehlitz, and W. Visser. Model checking real time
Java using Java PathFinder. In Automated Technology for Verification
and Analysis (ATVA), 2005.

[27] B. McCloskey, D. Bacon, P. Cheng, and D. Grove. Staccato: A parallel
and concurrent real-time compacting garbage collector for multipro-
cessors. Research report, IBM, 2008. http://www.eecs.berkeley.edu/
∼billm/rc24504.pdf.

[28] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
java. In Programming Language Design and Implementation (PLDI),
2006.

[29] M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective static deadlock de-
tection. In International Conference on Software Engineering (ICSE),
2009.

[30] National Aeronautics and Space Administration. Dawn mission. http:
//dawn.jpl.nasa.gov, 2009.

[31] F. Pizlo, L. Ziarek, and J. Vitek. Towards Java on bare metal with the
Fiji VM. In International Workshop on Java Technologies for Real-
time and Embedded Systems (JTRES), 2009.

[32] RTCA and EUROCAE. Software considerations in airborne systems
and equipment certification. Radio Technical Commission for Aero-
nautics (RTCA), European Organization for Civil Aviation Electronics
(EUROCAE), DO178-B, 1992.

[33] N. R. Shah. Memory issues in PRET machines. Technical report,
Columbia University, 2008.

[34] D. D. Spinellis. CKJM Chidamber and Kemerer metrics software, v
1.6. Technical report, Athens University of Economics and Business,
2005. http://spinellis.gr/sw/ckjm.

[35] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering, 2003.

[36] L. Zhao, D. Tang, and J. Vitek. A technology compatibility kit for
safety critical Java. In International Workshop on Java Technologies
for Real-time and Embedded Systems (JTRES), 2009.

