
Analyzing Large Code Repositories

by

Petr Maj

A dissertation thesis submitted to
the Faculty of Information Technology, Czech Technical University in Prague,
in partial fulfilment of the requirements for the degree of Doctor.

Dissertation degree study programme: Informatics

Department of Theoretical Computer Science

Prague, December 2022

Supervisor:
Jan Janousek
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Co-Supervisor:
prof. Jan Vitek, Ph.D.
Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9
160 00 Prague 6
Czech Republic

Copyright © 2022 Petr Maj

ii

Abstract and contributions

Mining software repositories is very important for large set of problems as thanks to open
source, online collaboration platforms and version control systems, all of the information
we really need is at our fingertips. The problem, as with any big data problem though is
the signal to noise ratio as the data is extremely messy. This thesis analyzes the hurdles
associated with large scale repository mining in the PL community context, proposes meth-
odologies for correct processing of such data and the intended use and culminates in the
design of a tool that aids researchers in the task.

In particular, the main contributions of the dissertation thesis are as follows:

1. Analysis of cloning and associated biases in large collections of software repositories
(paper 1)

2. Analysis of reproducibility issues and statistical interpretation of large corpora. Pro-
posal of better methodology for reproducibility (paper 2)

3. Design and implementation of a tool for large scale download, archival and querying
of software repositories to aid reproducble project selection and analysis (pape 3)

4. Analysis of the selection bias introduced by the most frequentlty used project selec-
tion by popularity convenience sampling on recent papers. Analysis of the obtained
and missed projects and development of methodology for reproducible and validable
project selection and associated tooling (paper 4)

Keywords:
repository mining, big code, code duplication, selection bias.

As a collaborator of Petr Maj and a co-author of his papers, I agree with Petr Maj’s
authorship of the research results, as stated in this dissertation thesis.

iii

. .
Konrad Siek Jan Vitek Jakub
Zitny Alexander Kovalenko

iv

Acknowledgements

First of all, I would like to express my gratitude to my dissertation thesis supervisors,
Professor Jan Vitek and Docent Jan Janousek.

Special thanks go to the staff of the Department of Theoretical Computer Scien-
ceDepartment of Theoretical Computer Science, who maintained a pleasant and flexible
environment for my research.

My research has been supported by the Czech Ministry of Education, Youth and Sports
from the Czech Operational Programme Research, Development, and Education, under
grant agreement No. CZ.02.1.01/0.0/0.0/15 003/0000421.

I would like to express thanks to my colleagues from the department, namely Mr. . . . ,
Ms. . . . , Dr. . . . , and others, for their valuable comments and proofreading.

Finally, my greatest thanks go to my family members, for their infinite patience and
care.

v

Dedication

In memory of doc. Ing. Karel Müller, CSc. (1946? - 2011)

vi

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis . 9
1.3 Structure of the Dissertation Thesis . 10

2 Background and State-of-the-Art 11
2.1 Sources . 12

2.1.1 Github . 12
2.1.2 Bitbucket . 13
2.1.3 Other VCS Hosts . 13
2.1.4 Package Managers . 14
2.1.5 Software Heritage . 14

2.2 Software Repositories . 15
2.2.1 GitHub . 16
2.2.2 Software Heritage . 18
2.2.3 GH Torrent . 19
2.2.4 Orion . 20
2.2.5 Boa . 20
2.2.6 Other Repositories . 21

2.3 Summary . 22

3 Overview of Our Approach 25
3.1 Sources . 25
3.2 GitHub Ecosystem . 27

3.2.1 Duplication . 27
3.2.2 Project Diversity . 32

3.3 CodeDJ . 32
3.3.1 Querying . 34
3.3.2 Parasite . 35

vii

Contents

4 Main Results 39
4.1 Overview . 39
4.2 Paper 1 - DejaVu: A Map of Code Duplicates on GitHub 41

4.2.1 Author Contributions . 41
4.3 Paper 2 - On the Impact of Programming Languages on Code Quality: A

Reproduction Study . 42
4.3.1 Author Contributions . 42

4.4 Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repos-
itories . 43
4.4.1 Author Contributions . 43

4.5 Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale
Code Analysis Experiments . 44
4.5.1 Author Contributions . 44

4.6 Discussion . 44
4.7 Summary . 44

5 Conclusions 45
5.1 Summary . 45
5.2 Contributions of the Dissertation Thesis 45
5.3 Future Work . 45

Bibliography 47

Reviewed Publications of the Author Relevant to the Thesis 49

Remaining Publications of the Author Relevant to the Thesis 51

Remaining Publications of the Author 53

viii

List of Figures

3.1 Data processing and analysis pipeline. 30
3.2 File versions broken into unique, original and copies. 31
3.3 Changes in GH projects over time . 31
3.4 Lifespan of projects with at least one commit per year 32
3.5 Lifespan of projects with at least one commit per month 33

ix

List of Tables

2.1 Comparison of major data sources and associated tooling. Repositories are
classified in terms of their size, sources (primary menaning the repository main-
tains its own data store), whether they are still active, if and how a repository
supports updates (not at all, regular dumps, or continuous), whether its queries
are deterministic and reproducible . 23

x

Chapter 1

Introduction

”The temptation to form premature theories upon insufficient data is the bane
of our profession.”

- Sherlock Holmes, fictional detective

The world as we know it relies upon billions of computers. From the tiny ones embedded
in their hundreds in our cars, TV sets and even washing machines to the larger smartphones,
laptops and computers, all the way to the very large supercomputers in datacenters, they
are integral part of almost all aspects of the modern society. Over the years the size of
computers has been reduced almosty as fast as their power increased: the smart watches
some of us wear on their wrists are as powerful as desktop computers from the turn of
the century which is about 100000 times faster than the computer that landed the Apollo
missions on the moon.

True ingenuity of a computer comes from the fact that a single physical computer can
perform different tasks depending only on its software, instructions that break the complex
tasks the computer should perform to series of very simple operations the computer knows
how to perform and describe the order in which those operations should be executed.
To make a computer perform a new task then simply means to create a new software
for it. But as computer systems increased their ubiquity and power, supplying all those
computers with new software quickly and reliably become a problem, as Edsger Dijkstra
famously said:

”The major cause of the software crisis is that the machines have become several orders
of magnitude more powerful! To put it quite bluntly: as long as there were no machines,
programming was no problem at all; when we had a few weak computers, programming
became a mild problem, and now we have gigantic computers, programming has become
an equally gigantic problem.”

Edsger Dijkstra, The Humble Programmer (EWD340), Communications of the ACM
In other words, it is not the efficiency of the computer, or even the program itself, but

the efficiency of the programmer in writing the programs that has become the bottleneck
in software development process. The efficiency of a programmer, apart from their skill,

1

1. Introduction

largely depends on two main factors: Programming languages and software development
tools.

Programming languages As the software tasks shifted from simple number crunching
of mathematical equations, the numeric values manipulated by computers become proxies
of much more complex objects with more complicated relations. And while the low level
instructions computers perform remain general enough to express those interactions, doing
so resulted in laborious and error prone decomposion. The efficiency of a programmer
suffered badly as instead of expressing the complex interactions that describe the intended
functionality of a software, programmers spent most of their time in routine decomposition.
To remedy this problem, high level programming languages were designed: Those languages
abstract from the low level capabilities of the machine and focus on expressivity at levels
better suited to the relations and algoritms of the more complex tasks. The decomposition
previously done by a prgrammer is then delegated to automated tools such as compilers.

Software development tools As the size of software itself and the development teams
responsible for its creation increased, actually typing the programs down become only a
smart program of the software development process. Collaboration of multiple developers
over extended periods of time become necessary and code reuse not just within a single
project become more and more beneficial as the amounts of software available increased.

But despite the huge effort, the best intentions and bold claims of the authors, the
goal of making programmers more efficient has been marred by almost complete lack of
evaluation. There is very little facts we know about the effect of programming language
design choices, or the tooling available on the productivity of programmers and quality
of the programs. The absence of facts invites a sea of opinions so flame wars continously
errupt over almost all aspects of software development, from benefits of programming
language features, to superiority of programming styles, text editors, or whether to use
spaces or tabs to visually structure the code.

1.1 Motivation

Let us concentrate on the first problem, which we can reduce into determining which of any
two given programming languages is better - i.e. which language makes its programmers
more effective. The hallmark of answering such questions scientifically is the controlled
experiment: we run two experiments that are identical in their setup with the exception
of a single variable. Any differences in their outcomes can thus be attributed to the single
change with high certainty. To be more specific, we can ask two programmers to develop a
web server in C++ and Haskell programming languages respectively. If the Haskell version
will take less time to develop, we can concur that Haskell is the better language and vice
versa.

But for a controlled experiment to work we must make sure that other variables that
might influence the outcome are indeed controlled for. An obvious way would be to describe
the programmer we are looking for as precisely as possible and then two programmers with
the closest match from a larger pool of candidates. As we want to make sure that the

2

1.1. Motivation

programmers have the same level of skill (both general programming and in their respective
language), have same experience in the application domain the task will come from (i.e. we
will not compare expert server programmer in C++ to an expert compiler programmer in
Haskell) and have followed similar career choices (so that for instance we do not compare
researchers to industry practitioners), the advertisement looking for the candidates might
look like this:

We are looking for a C++/Haskell programmers with exactly 5 years of proffi-
ciency in industry with a masters degree from computer science, or equivalent
field and experience in server programming. Applicants are required to submit
their full CV with special emphasis on their programming language and ap-
plication development skills. The duration of the study is expected to be one
month of full time work1.

Although highly technical discipline, programming is heavily dependent on the human
factor, which is next to impossible to control for. Even after carefully matching the resumes,
the closest pair of programmers will differ in myriad of ways that cannot be infered from
any of their submitted materials. Yet those differences, ranging from different upbringings
and personal traits all the way to the quality of their computer science teachers and the
first programming language they become comfortable with, may have substantial effect on
their performance in the experiment. So when after a month-long programming session
we would see one of the languages coming on top, instead of putting down the flame war
between C++ and Haskell fans, we would have only poured more petrol in the fire.

Software engineering is not the only environment in which controlling for the human
condition is necessary. Consider for instance the clinical trials that determine effectivity of
a certain drug against a disease. Faced with the same impossibility to control for everything
but the drug, the clinical trials establish two large groups of people: The control group that
is not given any medication and the test group that is. The results for each of the groups
are then averaged under the assumption that any variables that could not be controlled
for will be similarly distributed in both the control and test groups and would therefore
cancel each one out. In simple terms, if the test group recovers on average faster, the drug
is effective even if there are a few people that actually recover slower, or even not at all.
The larger samples effectively allow us to reclaim back the uncertainty introduced by the
uncontrollable variables.

The same can be used for our programming languages problem. Instead of one pro-
grammer for each language, we can choose 100 programmers for each. We no longer have
to pay attention to their better matching as long as we make sure the distributions of
C++ and Haskell programmers with respect to the variables we can control for are similar,
which is much easier task. If on average the Haskell programmers will be done sooner,
then Haskell is indeed a better programming language, even if there will be a few real

1This is roughly how long it might take a single person to develop reasonably complex and feature-full
web server for a meaningful comparison

3

1. Introduction

programmers who would finish in C++ in a few days (only using the C subset of course).
So after a month we would have the answer we wanted.

Except of course many C++ programmers would object saying that C++ has not been
designed to be tool for writing web servers, for which other languages, such as Java are
more suited to. To silence them we would rerun the experiment, but this time we would
give different programming assignment. And if C++ wins this time, we will likely hear
objections from the Haskell folks this time. Certainly there are many programs for which
C++/Haskell were designed for and those might not even intersect. But let us not despair
- we can use statistics again. Perhaps the actual programming task itself should also not be
controlled - what if we give multiple different programming assignments and again average
the results. Clearly then, the question will be settled once and for all.

Maybe. But now is the time to evaluate the practical (economical) feasibility of our
endeavour: According to Statista2 in 2019, Haskell and C/C++, although being the last
two out of 10 languages with highest average salaries in the US averaged to $125000
and $121000 respectively, which rounded to $120k and converted to a monthly payment
averages to a nice $10k per month. For our experiment, we require 200 man-months for
a total cost of $2m for a single programming assignment, excluding the salaries of the
involved researchers. Since this amount surpasses many reasearch grants themselves, it
should be obvious that our proposal does not survive the reality and the win of C++ or
Haskell remains as elusive as ever. And indeed for much of the relatively short history of
the computer science, studies about the qualities of programming language design similar
to our proposal were scattered far between and of very limited impact. Yet with more and
more software being written and penetrating still larger parts of our lives, the problem of
making programmers measurably more productive has only grown in importance.

The biggest hurdle is the practical impossibility to actually develop software in a con-
trolled environment so that it can be compared in the study. But with more are more
software being written every day, there might just be enough software out there that
actually fulfills our requirements already. If we can get a hand on those programs and
measure the efficiency of their development we just might be able to decide between C++
and Haskell feasibly. It will require even more statistics - the software analyzed will have
not identical, nor even similar specification, it will be implemented by teams of various
sizes, from various backgrounds, perhaps not entirely in the languages we are interested in.
There will be unknowns (such as the actual development time) that we will have to work
around. But if our sample sizes will be large enough, it might just be possible to refine the
results enough for a statistically significant answer. To summarize, for our new approach,
we require:

◦ access to very large amount of software programs

◦ knowledge of their development teams and other characteristics so that at least some
control can be asserted

2https://www.statista.com/statistics/1127190/programming-languages-associated-
highest-salaries-worldwide/

4

https://www.statista.com/statistics/1127190/programming-languages-associated-highest-salaries-worldwide/
https://www.statista.com/statistics/1127190/programming-languages-associated-highest-salaries-worldwide/

1.1. Motivation

◦ viable software quality metrics that can be inferred from the data available

◦ statistical framework to correctly interpret the results

Due to the very large number of programs analyzed, it is imperative that the whole
process is fully automated so that it can be processed in a practical time frame. And
finally, as scientists, we should make sure that our method allows reproducibility so that
our results can be verified and built upon by the research community. Recent evolution
and widespread adoption of software development tools combined with the upsurge in the
open source development popularity even among big companies have dramatically changed
our ability to obtain and analyze large software repositories and the development process
that led to their creation:

Version control systems, first introduced in [14] allowed programmers to record and
track changes to the source code making progress on long duration projects easier. Ver-
sion control systems quickly matured to distributed version control systems offering the
same functionality for entire teams of developers collaborating on a single project. Their
use skyrocketed around the time git, a decentralized distributed version control system
conceived by Linus Torvalds for the Linux kernel developers has been published in 2005.
The version control systems allow programmers to store smaller changes to the program
in batches called commits. Each commit usually contains a text message explaining the
change and the changes to the source code themselves. The version control system im-
poses order on commits made by different users, helps dealing with conflicts (i.e. when
two developer alter the same part of the program at the same time) and allow reverting
the program to any previous state.

Hosted Software Repositories With the increased availability of internet bandwidth and
the transition towards cloud-based services several companies and organizations started
providing internet hosting for version control systems around the turn of the century.

Open Source Software Development Since the beginning, some of the project hosting
providers, such as SourceForge, specialized on open source projects, i.e. not only was the
project hosted, but the source code was also accessible for all to download. Industrial
providers, such as GitHub often offered a paid tier with private hosting and free public
hosting for open source projects as well. As the providers increased their portfolio of
hosted services to cover other aspects of the software development process, such as bug
trackers, continous integration, release management and feature discussions, those were
often provided for free to public open source projects as well, making the whole software
development process open.

Open Source Adoption Finally, open source software has gained a lot of popularity in
recent years. Even large companies often open source vast parts of their codebases and
develop them in the open. One of the best examples of the amplitude of this shift is
Microsoft: A company well known for fiercely protecting its codebase started using public
GitHub for some of its projects as early as 2012. Over the years Microsoft become one of the
largest open-source contributing companies on GitHub, including large software pieces such
as Visual Studio Code, JavaScript engine for the original Edge browser and the Windows

5

1. Introduction

Terminal, leading eventually to Microsoft buying GitHub in 2018. Microsoft is not alone
in adopting open software and development principles. Many of the technology giants,
including Google, Facebook and Apple as well as countless smaller companies worldwide
have large public repositories available.

So here we are: We now have access to source code of millions of projects hosted
publicly online. Better still those project vary from single person projects of passion to
large open source applications and to applications developed in the industry. Thanks to
the version control systems we can reconstruct the historic record of how the projects were
developed and features added. And thanks to the public hosting of associated services, we
can correlate the source code changes to new features, bugs and fixes using the metadata
from issue metadata and continous integration logs, We can inspect the behavior of the
development teams with relation to product releases via the release metadata and so on.
The information about the entire software development process for millions of projects is at
our fingertips and we can mine it to reliably analyze the effects our tools and abstractions
have on it.

It should therefore be not surprising that as soon as those trends converged, researchers
quickly recognized the potential of analyzing large software repositories and the method
has been used in so many papers that it even gave rise to a specialized conference, Mining
Software Repositories, available since 2004. While the initial research analyzing software
repositories was merely setting the stage, operating on smaller datasets and exploring the
boundaries of what can be analyzed, finally, in 2014 a paper titled A Large Scale Study of
Programming Languages and Code Quality in Github appeared[13].

The paper attempts to answer the motivation question we set out earlier by analyzing
about 1000 projects from Github in 17 different languages . Instead of focusing on the
developer productivity in terms of the speed of development, which is next to impossible
to determine from the available data, the paper analyzes another metric of development
productivity - the number of errors in programs. For all other things being equal, if one
language leads to fewer errors than the other, then its design is better as developers will
be more productive simply by having less errors to fix. But how to automate finding
errors in programs? Detecting the errors by analyzing the source code itself would be
next to impossible so the paper turns to the history of the analyzed projects and analyzes
the commit messages, short pieces of text that explain the change committed. When
an error is spotted in an existing program, the error is usually corrected in a smallest
possible commit and the commit message is very likely to reflect this information. Therefore
instead of automatically detecting the programming errors, the paper uses the thousands
of developers as classifiers and simply aggregates their findings.

So when the number of commits and the number of error-fixing commits is normalized
for each project and language, the paper ends up with coefficients describing the propensity
of each of the studied languages towards introducing errors in the programs. The paper
reports those coefficients per language, aggregates the languages into groups of similar
languages to judge the programming paradigms themselves and amongst other things,

6

1.1. Motivation

includes more analyses to safeguard the results against uncontrolled variables, such as an
exploration whether the ratio of errors rather than a language depends on the domain of
the programs themselves, i.e. whether certain programming domains are simply harder
than others and this extra complexity leads to more errors being observed instead of the
language used (assuming that a languages correlate with program domains).

Overall, the paper has been very successful. As a hallmark of how statics and software
repository mining can be used to answer the previosly impossible extremely complex ques-
tions, it has been reprinted as a research highlight three years later in the Communications
of the ACM [12].

But, to quote a famous meme, one does not simply mine big data. While the scope and
power of statistical analysis of big data is tempting, it comes with its own set of problems:
The bigger the dataset the noisier it is. In the case of software repositories, noise comes
from various sources. The version control system’s functionality is advantageous not only
to source code, but to a wide variety of tasks that store their information predominantly
in a textual representation. Therefore software repositories such as GitHub consist of not
just programs, but also books, examples, code snippets, programming tutorials, webpages,
research papers (including this thesis) and so on. Furthermore, even when focusing on
actual programs, the noise levels are huge. The projects are developed by people of varrying
skill levels and teams of varying sizes. Majority of programming projects are short-lived
and abandoned personal projects or student assignments. These projects are created by
people often in the process of acquiring the skills in a particular languge and they are much
less likely to follow the software development discipline.

For analyses such as the language quality paper outlined above, this is bad news. Res-
ults obtained from student projects, will likely not generalize to experienced developers.
Furthermore, using projects that are not properly developed may even invalidate the meth-
ods of the paper: Detecting bugs by analyzing commit messages, a crucial step for the paper
only works if the commit messages actually reflect those. This is true for large software
projects with active user base and development teams, but much less likely in personal or
even student projects.

Large software repositories are also full of copies of both actual code, and of entire
histories of programs. Apart from the practice of copying verbatim source code snippets
or entire libraries to projects that use them, Github allows an user to copy any project
with its entire history into own for either collaboration, or customization purposes. Such
project copies are called forks and they comprise up to a half of all projects hosted on
the platform. While forks may also contain new code, including them in any analysis is
dangerous as they may lead to overrepresentation.

To mitigate those issues, datasets obtained through large software repositories (same
as any big data source) must be thoroughly filtered and cleaned before actual analysis
otherwise they risk invalidation of their results on more rigorously curated datasets. This
warning is not hypothetical, the paper on which we demonstrated the benefits of large
software repositories suffered exactly this fate in [2] and [?].

7

1. Introduction

Let us consider how a good data filtering for our demonstration paper would look like.
The projects should be predominantly in the languages we are interested in (so that the the
bug attribution to language would work) and should actually be rigorously developed to
increase the chance of spotting bugfixed in commit messages. We should obviously exclude
non-software projects, clones and forks as well. To put our requirements into more precise
terms we may be looking for projects that fulfill the following criteria:

◦ projects whose majority of changes is in one of the languages we are interested in

◦ projects with more than 1 developer

◦ projects with more than 6 months of development (distance between the time of first
and last commit) and at least 100 commits

◦ non forked and non-cloned projects

After applying those criteria we will still be left with many thousands, if not millions of
projects and it would be infeasible to analyze them all. A sufficiently large random sample
for each language should then be selected and analyzed. Finally, as researchers, we would
like the process to be repeatable and modifyable in the future for easy reproducibility so
that the paper can be easily checked against other languages, same languages at different
times, or the filter criteria altered.

Unfortunately, doing so is currently impossible. Github and other large software repos-
itories are tailored towards the use of one’s own repositories. Searching for repositories is
possible, the search queries are nowhere close to even the simple filter criteria expressed
above. Search results also cannot be randomized, a necessary condition for any later pro-
cessing. Any queries to the Github API are subjected to strict rate limiting so that even
simple tasks such as project discovery (just learning the URLs from which projects can be
cloned) is extremely time consuming task measured in months.

The only way to accomplish the filter as described above currently is to discover all
github projects (month of work), then clone every project found. Once cloned, verify the
other attributes and keep the project for further analysis if pass, or delete upon failure
3. This operation alone would take many months and any slight change to the initial
conditions would require a restart. Even worse with such a long timeframe, the dataset
analyzed in the end will not correspond to any particular time - some projects will be
analyzed in states months older than others.

Simply put, mining software repositories for precisely selected projects in reasonable
amounts of time and in a reproducible manner is impossible. This lack of functionality
is what drives many researchers to easily obtainable but vastly inferior substitutes, such
as utilizing project popularity (one of the very few project properties Github allows semi-
deterministic searches for).

And this lack of functionality is also the motivation for this thesis.

3Modulo the details of detecting duplicates and random sampling for which we ideally need the entire
population

8

1.2. Thesis

1.2 Thesis

Thesis statement: It is possible to create infrastructure that allows precise, scalable,
deterministic and reproducible filtering of projects from large software repositories.

Such an infrastructure must improve over the state of the art in the following ways:

Data Acquisition and Querying Although there are multiple sufficiently large soft-
ware repositories available, none of them provides enough expressivity and/or bandwidth
to support reliable and targetted data acquisition without introducing any bias. Github
for instance provides API for downloading entire projects, but projects discovery capabilit-
ies, i.e. determining which projects to actually download is extremely limited. Imagine we
want to analyze projects that are written in the Java programming language and have been
developed for at least 1 year, a reasonable expectation. Github offers no way to find those
projects, let alone to obtain a random sample of those. Lacking the ability to explicitly de-
scribe the projects of interest, most of current research focuses on the undefined developed
projects that are themselves selected by proxy measures such as project popularity. Data
cleaning and filtering is often done ad-hoc with little understanding of the full contents are
rsults are often left unverified.

Reproducibility Last, but not least, the volume of the collected data and the complex-
ity of the selection makes reproducibility challenging. Obvious solutions, although being
implemented by some existing papers do not work: Having all research papers analyze the
same sample of projects is wrong as it means that whatever bias could have been in the
selection will be repeated by every paper that uses it. And requiring each paper to archive
with it the entire input dataset is (a) not feasible and (b) not enough: having only the
analyzed dataset available does not allow checking that the dataset itself is robust.

The thesis introducesfour research papers that together advance the theoretical under-
standing and practical usability of large software repositories:

1. Analysis of cloning and associated biases in large collections of software repositories
(paper 1)

2. Analysis of reproducibility issues and statistical interpretation of large corpora. Pro-
posal of better methodology for reproducibility (paper 2)

3. Design and implementation of a tool for large scale download, archival and querying
of software repositories to aid reproducble project selection and analysis (pape 3)

4. Analysis of the selection bias introduced by the most frequentlty used project selec-
tion by popularity convenience sampling on recent papers. Analysis of the obtained
and missed projects and development of methodology for reproducible and validable
project selection and associated tooling (paper 4)

9

1. Introduction

1.3 Structure of the Dissertation Thesis

1. This chapter, the Introduction describes the motivation behind the thesis and intro-
duces its goals.

2. Background and State of the Art surveys the past and current solutions and meth-
odologies available for mining software repositories in order to analyze programming
languages and software development practices.

3. Overview of the Approach summarizes the author’s work towards more scalable and
reproducible large software repository mining.

4. Relevant Papers presents a collection of author’s related papers. These papers form
the basis of the thesis and detail the contributions. A context and timeline for the
papers is provided and each paper contains a detailed list of author’s contributions.

5. Conclusions summarize the results of the thesis, hints at possible improvements and
future work and concludes the thesis.

10

Chapter 2

Background and State-of-the-Art

The benefits of analyzing large software repositories have been exploited for many years.
During that time many tools have been either (ab)used or created especially for data
mining. Recently, researchers have started to point out problems associated with large
repository mining and advocated for an improved methodology. This chapter gives the
overview of current and past work in these areas.

This section gives an overview of the main large software repositories and their basic
properties. At its heart, a software repository comprises of two essential features: (a) a
data source containing the projects and associated metadata and (b) an interface allowing
retrieval and querying of the dataset. The size and composition of the data source define
the theoretical usefulness of the repository, while the precision and speed of the retrieval
determine the practical usability.

As an example, consider a repository that contains all of the software projects ever
created. In theory this repository contains all of the inormation ever to be mined. However,
if such repository provides only a very primitive API that allows retrieval of the projects
from the oldest to the youngest that is limited by 1000 projects downloaded per day, the
repository is practically unusable for anything but the analysis of the oldest projects as
getting to the more recent projects would take decades. In other words, two key questions
must be answered about a repository: What is in it and how do I get it.

Creating and maintaining a large database of software projects is a complex under-
taking. Therefore, there exists only a relatively small number of such data sources and
they are usually not built to primarily support a niche task like data mining, but focus
on aiding the software development process itself. A larger number of softare repositories
follow a different approach and instead of maintaining their own unique source, to reduce
the costs, they choose to mirror an existing source, or its portion (in both size and kinds
of data stored) and often provide more complex interface to data retrieval that is better
suited for data mining.

This chapter splits the discussion about existing software repositories into first discuss-
ing the primary data sources available in terms of their composition and volume. It then

11

2. Background and State-of-the-Art

looks at the software repositories from the querying and retrieval perspective alone. A
software repository that also maintains its own data source thus appears in both sections.

2.1 Sources

A software source can be characterized by the following main attributes:

◦ Size and bias - the number of projects available in the store and any bias associtated
with the store. For all the sources mentioned in this section, one has to accept the
bias towards publicly available open source software, but other biases, such as pro-
gramming language, project popularity and so on are mentioned where appropriate.

◦ Contents - data sources differ in the data they store. Historically the first sources we
built around version control system hosting providers and therefore they contained
not only the most recent code but also a history of changes as recorded by the VCS. As
development switched to open distributed model, extra metadata information about
the software, such as code reviews, regression test results and so on become avail-
able. Dedicated repositories may also synthesize and store extra software engineering
metrics.

The rest of this section describes the main software sources in the above terms.

2.1.1 Github

GitHub started in 2008 as a online hosting for git projects. Its key advantage was the
inclusion of a free plan that allowed individuals and companies to host unlimited number
of open source projects with paid plans for private and closed projects. Over the years, this
policy together with the popularity rise of git itself has made GitHub extremely popular
amongst programmers.

This success has made GitHub the hegemon in terms of number of software projects
stored and the variety of extra information available. GitHub hosts an enormous number
of projects: As of 2022, there is over 230M of publicly available projects on GitHub and
the total number of projects hosted might well attach half a billion (this number cannot
be obtained precisely as private repositories cannot be distinguished from deleted ones).
GitHub is used by over 73M developers [9].

GitHub’s focus on supporting the development process has some important implica-
tions for its quality as a software repository source: As its popularity increased, GitHub
diversified the services provided and went from a simple version control system hosting to a
complete platform for software development, integrating a plethora of extra services under
its name. GitHub now provides project web hosting, issue tracking, code review process,
continuous integration builds, release management, deployment and much more. This vast
portfolio of extra services and their widespread use as most are still offered free of charge for
open source projects has made GitHub a treasure trove of both software projects’ code and

12

2.1. Sources

an extensive information of their entire development process and deployment and usage
patterns.

All this makes GitHub the single most complete source currently available, but this
popularity comes at a price, especially when mining software repositories is the task at
hand: The notoriety of GitHub and the amount of extra services it sports has led its use
to transcend the original software development niche. Large amount of projects hosted
on GitHub are not software per se (including, but not limited to hosted web pages, book
manuscripts and documentation). Even larger amounts are pieces of software that was
never intended to be developed as GitHub is a popular vehicle for conducting computer
science courses (with repositories automatically generated in vast numbers for all enrolled
students), showcasing demo applications and even a dump site for abandoned projects for
archival purposes.

Finally, being oriented towards the development process itself, GitHub does not provide
any guarantees about future ability of its data. Projects can be deleted or made private,
their histories can be altered, or even purged and none of these changes are archived. The
new content, or lack thereof simply overwrites the past data with no going back.

2.1.2 Bitbucket

Bitbucket is the other relevant primary software repository. Founded in 2008 as a hosting
service for Mercurial, another version control system, following the upsurge in git’s pop-
ularity, git was added as option to bitbucket as well and finally, Mercurial support was
removed from Bitbucket in 2020, cementing git’s dominance. Bitbucket is much smaller
and thanks to its policy of allowing privately hosted repositories for free, unlike Github it
is used much less for open source software. In terms of repository contents, Bitbucket is
very similar to github, offering own bug trackers, discussions, pull requests and continous
integration.

As Bitbucket is much less oriented towards supporting the open source community, it is
much harder to determine its size. Furthermore, as Bitbucket uses unique text identifiers
for its projects, simple enumeration as in the case of GitHub is also not possible. A
reasonable estimate of 3.4M public projects can be obtained from archival sites records1.

2.1.3 Other VCS Hosts

Numerous other primarily version control system based software sources exist. As their
usefulnes for software repository mining pales with the comparison of GitHub, they are
only briefly discussed in the following paragraphs:

GitLab GitLab is a service bearing striking similarity to GitHub itself with a major
twist: GitLab is geared towards a self-hosted deployment, making its usefulness as a project

1Number of Bitbucket projects in Software Heritage corpus is about 2M projects, compared to 136M
for GitHub. Using the same ratio of completeness for both providers would give us 3.4M public projects

13

2. Background and State-of-the-Art

source more complicated as large amount of GitLab instances would have to be scanned for
reasonable number of projects to be acquired. In addition to self-hosted option, GitLab also
provides cloud hosting, with the number of projects available reaching 3.4M/footnoteVia
Software Heritage.

SourceForge Created to support open software project and their development directly
with no paid options, SourceForge provides capabilities similar to alredy mentioned ser-
vices. Its membership stands at over 500K projects2. In addition to the popular git VCS,
SourceForge supports also Mercurial, CVS and others.

2.1.4 Package Managers

Package managers provide software developers with access to large numbers of third party
libraries available for their programs that can be easily integrated into applications. In-
stead of the continuous development process supported by version control systems, package
managers focus on the releases - updates to the libraries they save made explicit by the
users.

Package managers contain less noise in the form of non-software projects and often
provide extra metadata about the usage and downloads analysis of the packages that can
be used to further filter the interesting projects. Historic reproducibility is also better than
version control systems as older versions of packages are kept for backwards compatibility.
Unfortunately, a package can still be withdrawn by its developers, such as the infamous
withdrawal of leftpad in 20163.

In terms of size, package managers for the most popular platforms, such as JavaScript
reach millions of libraries, while less widespread languages such as the R programming lan-
guage usef mainly for statistics with its CRAN package manager with merely 20k packages.

Their biggest weakness is strong bias towards library code as virtually no applications
(standalone executables) are part of any package manager. And while this may not be a
problem for library code oriented analyses, package managers are rarely the primary source
of the code and most of their contents is available from version control systems, notably
GitHub.

2.1.5 Software Heritage

Started in 2015 by Inria, the Software Heritage Project [4] aims to preserve the large code
base mankind has created. It archives software projects from various primary sources
including GitHub, Bitbucket, Gitlab, CRAN, SourceForge and Debian repositories. The
project is actively maintained and updated via means of automated crawlers or direct
access by partners. As of Fall 2022 the Software Heritage has archived over 184M projects
with GitHub being its major source with 136m projects, followed from a distance with

2https://sourceforge.net/about
3https://www.theregister.com/2016/03/23/npm left pad chaos/

14

https://sourceforge.net/about
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

2.2. Software Repositories

GitLab (4M), Bitbucket (2M) and NPM (1.8M). All other sources contribute less than
1m projects.Compared to development oriented platforms such as GitHub or BitBucket,
Software Heritage stores only limited metadata directly conncted to the software itself,
such as commit messages.

Similarly to package managers, Software Heritage is not the primary source of the
programs it stores and merely archives their code. But since its mission is the archival of
the source, for the purposes of this thesis we count it as a source as well. As such, it is the
only source providing excellent historical reproducibility which is provided by snapshoting
the software - every time a crawler hits upon a software project already known to the
archive, a new snapshot is created. Therefore noting the unique identifier of a snapshot
used allows accessing the same data in the future and no data is lost.

2.2 Software Repositories

After describing the sources themselves, this section focuses on the software repositories
themselves. Similarly to a source, software repositories can be characterized by a few key
attributes:

◦ Sources - whether a repository maintains its own primary source, creates a mirror of
its own, or simply provides a frontend to another repository.

◦ Active - repositories are accessible and can be used. Inactive repositories are included
for their historical signifficance. TODO You said in the notes this should be removed,
but I feel just having the sentence about active ones is a bit too little in the newer
version. If that’s not the case, please mark again

◦ Updated - a repository can be accessible, but may hold stale data. Some repositories
offer a single view of the projects they store, while others are regularly updated at
varying intervals.

◦ Query power - while virtually any repository provides some form of querying the
projects it contains, the expresiveness of the queries is a limiting factor. For these
purposes, a basic querying capability indicates that querying via few selected attrib-
utes is supported (such as popularity, language, size, etc.). Filter query indicates
that the query attributes can be combined to form more complex filters. Full query-
ing capacity allows queries to execute over all items stored in the repository, usually
using a query language, such as SQL.

◦ Deterministic - a deterministic repository will, for a given query, return always the
same answer as long as its underlying data remains unchanged. Determinism of
a repository is usually violated by advanced distribution techniques, such as load
ballancing.

15

2. Background and State-of-the-Art

◦ Reproducible - a reproducible repository goes beyond simple determinism by requiring
that a query can be constructed in such way that identical results are returned even
if the underlying data gets updated in the meantime. Non-updating repositories
achieve reproducibility trivially, for updationg repositories, especially the primary
ones, reproducibility is much harder as projects may be deleted or their history
altered using version control systems.

This section describes the major software repositories along those attributes, paying
attention to any limitations. To illustrate these, we describe how each of the repositories
can be used to obtain a random sample of 10000 Haskell and C++ projects with at least
50 commits together with their commit messages and issues for the analysis described in
the introduction chapter. TODO this is my attempt to make the sections that deal with
the usage details to be more part of the thesis. I hope it works

2.2.1 GitHub

Although primarily a data source, GitHub is also a software repository. Very much active
in 2022 and thanks to its main purpose of VCS hosting, GitHub is constantly updated as
projects are being updated, or indeed created (TODO fill in rate). However, those project
can also be deleted, made private, or their histories may be overwritten by their authors.
Since GitHub does not keep historic records, it is not reproducible. GitHub offers multiple
different ways of accessing the data it stores and while all of those have been used for
data mining purposes previously, none of the querying mechanisms have been created for
that purpose. The next paragraphs details the various APIs, their original purpose and
discusses their shortcomings for the purposes of this thesis:

Git The simplest method is to simply use git, the underlying version control system, to
retrieve the contents and history of hosted projects. The git access exists so that developers
can obtain the project (one at a time) they are involved with and upload their changes.
It therefore features no project filtering, or even discovery capabilities so the urls of the
projects downloaded must be known by some other means. Furthermore, only information
maintained by git itself is accessible using this method (only file contents and commit
history). GitHub imposes no official data rate limits on downloading repository contents
via the git API, but we have observed heavy throttling for continous multi-thread accesses.
Despite the throttling, cloning GitHub projects remains the fastest method of getting the
actual contents en masse. The git access is deterministic.

REST API Provides the complete access to all data types available on GitHub. The
API is geared towards programmatic inspection and manipulation of owned projects, such
as automatic releasing, code scanning, pull request alerts and summaries, etc. The API
also provides an endpoint capable of searching for projects based on simple queries that al-
low filtering based on user or organization name, project description and readme contents,

16

2.2. Software Repositories

project size in bytes, number of followers, forks, stars, creation and last update time, pro-
gramming language used, topics associated with the project, issues ready for contribution
and various project properties (mirrors, forks, archived projects, sponsorability). Lim-
ited sorting is supported (by stars, forks and help-wanted issues). Looking at the search
capabilities, its intended use is to promote community involvement, not any form of min-
ing. This is exacerbated by the limitation of at most 1000 search results per query, which
makes constructing larger datasets an impossibility. A query must not be longer than 256
characters and can contain at most 5 clauses. The query results are not guaranteed to
be deterministic - if a query timeouts, partial results found so far are returned. Special
endpoint exists that allows listing all public projects in the order of their creation with no
additional filtering capabilities. Unlike the other queries, this one is not limited to 1000
results and can therefore be used to obtain urls of all public projects hosted on GitHub.
The REST API has rate limits that reduce its appeal for mining purposes. At most 5000
requests per hour can be made by a single user, whereas the search API incurrs additional
rate limit at no more than 30 search requests per minute. GitHub also uses secondary
rate limiting which may be activated at any time GitHub suspects overuse of its resources,
details of which are not publicly disclosed.

GraphQL API On top of the REST API, GitHub provides a GraphQL API. This API
offers more precise queries to be formed, but its main advantage is the precise control over
the data returned and the ability to construct a single query that would have required
multiple REST API endpoints. For instance, to return all mergeable pull requsts of a
repository, the REST API would need a call to determine pull-requests of a repository first
and then a call per pull request to determine whether it is mergeable. The GraphQL API
can achieve the same result in a single query. For the purposes of data mining though,
it suffers from the same drawbacks: limited query power, severe rate limiting, inability to
fetch all results (GraphQL queries are limited to 500000 nodes, the meaning of a node
depends on the exact query) and non-determinism.

Web search Not indended for automated use, the web search presents itself as a search
bar within Github’s webpage. On top of searching for repositories via same queries as
the REST API, the web search also allows searching for particular files and even pattern
matching over the file contents. Web search results are non-deterministic even for simple
queries that do not timeout, presumably due to load ballancing of the web requests.

Although none of the provided querying mechanisms is expressive enough to retrieve the
projects we are interested in our example, combining them together takes us closer: The
search API must be ruled out due to the limitation of 1000 results. We must therefore use
the public repositories query and obtain all of the public projects. At 100 projects returned
per request and given GitHub’s size of 230M public projects and the rate limiting, this step
would take 19 days to complete and give us the urls of all public projects. We then must
determine those that belong to Haskell and C++, which at a single request per project

17

2. Background and State-of-the-Art

would cost us approximately 5 years. We can parallelize this step at the cost of risking
GitHub’s wrath, or select urls at random until we accumulate enough in both languages.
This would be relatively straightforward for C++, but given to its relative scarcity might
be impractical for Haskell. We would then need an extra request per project to determine
the number of commits. Once we have the urls of projects that belong to the sample
we are interested in, we can proceed to download their contents using the git API and
the information about their issues via the REST API (there would be additional requests
here, but the subset is now small). Alternatively, we can get faster results downloading
all the public projects in parallel, then analyzing the sources to determine language and
number of commits, keeping only the projects we are interested in. Assuming a 30 second
download per project, 100 downloads in parallel, the whole process can be completed in
about 2 years.

Those timelines are squarely outside of the realm of practicality and they no-doubt
provide a worst case scenario. Clever hacks can be used to speed up the various parts, we
can use other repositories with their own GitHub mirrors (such as GHTorrent described
below) to speed some parts of the process. But despite all those effors and the tradeoffs we
would make along the road, it would still take a lot of effort to write all the code gathering
the information from various sources and APIs and the data will be ready in moths at
least.

TODO Should I mention here that this is why people often fall to do the top 1k stars,
which is a query they can get instantly. SHould I point out how unreproducible this would
be?

2.2.2 Software Heritage

Although Software Heritage is updated both for new software and for new updates to
existing projects, the update and discovery rates are slow and unpredictable and can go
into years4. Softare Heritage is both deterministic and reproducible as different visits for
the same project are all archived and can be retrieved separately.

As Software Heritage stores projects from various primary sources, it offers a special
API, called Vault that can asynchronously collect any archived project and export it as a
bundle in a variety of formats, such as git. In this regard the vault service is essentially
equivalent to downloading projects from GitHub.

Each piece of software is assigned an unique identifier and this identifier, project name,
url and and assigned tags are the only things Software Heritage can query on. The API
is limited to 1000 results per request. It offers a REST API similar to that of GitHub
with endpoints geared towards retrieval of known items, not advanced search and filtering.
Rate limiting is more severe at 1200 requests per hour per authenticated user. Software
Heritage is work in progress and it is likely the querying capabilities will increae in the
future.

4As an anecdotal evidence, this thesis author’s own software terminalpp has been discovered and
archived, but not updated in two years. Software Heritage offers manual trigger for selected projects in
such cases, but this approach does not scale

18

2.2. Software Repositories

Using Software Heritage for our example would therefore suffer from the same weaknesses
GitHub did, namely severely limited querying capabilities and rate limits. Furthermore, as
Software Heritage only captures the code and its history, we would not be able to obtain
the issues and would have to use GitHub or other primary sources for them, making data
acquisition much more complex and loosing reproducibility in the process.

TODO this is a research project and likely if we asked, we would have been given better
access to it as established researchers. Should we mention it?

2.2.3 GH Torrent

GhTorrent started in 2012 as an scalable, queriable and offline mirror to data offered
through the GitHub APIs. It monitors the GitHub public timeline, a special API endpoint
that publishes many GitHub public events in a single stream. The stream allows the
GhTorrent crawler to observe each such event in real-time and store them in its own offline
database. There have been no updates to the project since 2020. At its peak, GHTorrent
archived over 18 TB (compressed) of recorded activity for more than 150M projects. For
selected projects, their activity outside of the GHTorrent’s active years was analyzed and
added to the database.

The database exists in two versions, a MongoDB dump of the raw GitHub public event
timeline records and a SQL version that contains the information processed from the public
events, such as basic project information, popularity, commits, messages and comments,
issues and so on. Almost every metainformation available on GitHub is archived and
processed with the notable exception of actual file contents. Both MongoDB and SQL
databases could be searched online, and can still be downloaded offline for local use. Rate
limits are moot in the local download scenario and determinism and reproducibility were
guaranteed via the monthly released snapshots.

The databases also form the querying and retrieval API for the repository. All of the
archived information can be can be searched, filtered and ordered easily by complex queries
that far surpass the ability of GitHub or Software Heritage. Even more complex queries
can be calculated offline as GHTorrent archives enough metadata to allow calculation of
various aggregated software engineering metrics.

GitHub suffers from two major drawbacks (other than not being active anymore): the
dataset integrity is not guaranteed. Due to the nature of its data accretion, it favours
active projects. Downtime in either the crawler, of GitHub public events timeline results
in data loss for GHTorrent. Efforts have been made to remedy some of those by recrawling,
but the dataset is filled with inconsistencies (textit TODO quote our last paper with the
info about the big dip). Furthermore, the dataset only consists of the metadata published
on the timeline and most notably lacks any source code.

Due to the lack of source code, GHTorrent alone cannot be used for our example. But
when used together with GitHub it greatly speeds up the process: The latest snapshot
of GHTorrent can be downloaded and then queried for Haskell and C++ projects with
sufficient amount of commits in a matter of mere hours. Since GitHub public events

19

2. Background and State-of-the-Art

timeline also contains information about issues, these too can be obtained from GHTorrent
and virtually no additional costs (but likely with errors). The urls obtained can then be
used to download the projects’ source code directly from GitHub. Since the GHTorrent
dataset contains errors, some of the selected projects will not be available while others will
not fulfill the required criteria, but we can compensate by selecting more projects initially.
However, by using GitHub we again lose reproducibility. TODO should I give real examples
here, like when we used GHT and GH for the TOPLAS to reconstruct the dataset, etc

2.2.4 Orion

Orion [3] is an example of a different approach to mining software repositories. Instea of
simply maintaining large dataset and/or providing access to one, it recognizes the difficulty
in using the raw databases and focuses on scalable and expressive querying mechanisms. Its
dataset comprises of 185K projects from GitHub, Google Code and SourceForge and con-
tains all kinds of information from the project contents, version control history, metadata
and synthesized attributes related to software engineering. The project is no longer main-
tained.

The design of a domain specific language for querying large software repositories and
the implementation of its search engine is the main focus of the paper. To showcast the
querying capabilities, the paper even opens with a sample question: ”What projects con-
tain more than 10,000 lines of code developed by less than 10 people and are still actively
maintained with a high bug-fixing rate?”. The queries link different artifacts of software
development, such as the code itself, version control history, addition metadata and syn-
thesized arguments with software enginnering signifficance.

Orion is both consistent and reproducible trivially as the database has not been up-
dated. Live synchronization has not been part of the project. If updated, it would provide
similar guarantees to GHTorrent, i.e. periodic snapshots of the database.

Obtaining the required projects via Orion would have been simple had it been still
available. However as Orion did not support updates to the corpus, the data we would
get would be extremely outdated now. Furthermore, for larger studies, it has not been
demonstrated that Orion’s approach would scale beyond hundreds of thousands of projects.

2.2.5 Boa

Like Orion, Boa [5] addresses the need of efficient searching over large software repositories.
Boa goes even further and strives to provide tools to mine specifically the source code itself.
The dataset started with 490K Java projects obtained from SourceForge, but later switched
to GitHub (380K projects since 2015) and was extended to support Python (2020) and
Kotlin (2021). The dataset contains additional 7.5M Java projects for which the source
code information is not parsed and therefore Boa would only search for the aggregate
project attributes. The dataset is updated and snapshoted infrequently with no changes

20

2.2. Software Repositories

to the Java dataset since 2015. Boa is both deterministic and reproducible due to the
infrequent dataset updates.

Boa supports not only serching the aggregated attributes, but also parsed abstract
syntax trees of the stored source files. It then uses own domain specific language based on
the visitor pattern to allow constructing efficient queries over the syntax trees and project
attrributes. It thus offers the biggest expressing power from the tools reviewed. The queries
are excuted in parallel on a hadoop cluster and provide fast retrieval.

Access to the Boa dataset must be requested first, after which the full potential of the
system is available to its users including the computing infrastructure to run the queries
on.

Although in terms of the querying capability, Boa is the most complete solution thans
to its ability to search the code as well, this comes at a price: Adding new language to
Boa is a substantial effort and unfortunately, neither C++, nor Haskell are supported as
of 2022. Furthermore, the infrequent updates would make the results quickly obsolete (it’s
Java corpus is now 7 years old). It also remains to be seen if Boa can scale further.

2.2.6 Other Repositories

This section provides a cursory overview of other software repositories. While some of
them are still active, they are of much smaller scope in either dataset size or features and
as such cannot be used for the purposes of this thesis. We mention them for their historic
value and/or uniqueness of their approach.

Bitbucket The similarity with GitHub as a source of data also translates to Bitbucket as
a software repository. Although Bitbucket provides no web search facility, its REST API
is very similar to that of GitHub. Its querying capabilities are slightly more advanced, but
the amount of searchable attributes is still far from being useful for efficient mining. One
notable improvement is that anything than can be filtered can also be sorted. However,
randomization of results is not supported and due to the use of text unique identifiers for
projects, random project acquisition is not possible either.

Flossmetrics This work analyzed 2800 open source projects and computed statistics
about various aspects of their development process, such as number of commits and de-
velopers [7]. Information from additional sources such as project mailing lists and issue
trackers was included. Queries could be formulated on metrics such as COCOMO effort,
core team members, evolution and dynamics of bugs. Filtering based on these criteria was
supported. The project is inactive and it did not support updates.

Black Duck Open Hub A public directory of open source software5 that offers search
services for discovering, evaluating, tracking, and comparing projects. It bears similarity

5https://www.openhub.net

21

https://www.openhub.net

2. Background and State-of-the-Art

to the older Flossmetrics projects upon which it improves in both quality and quantity,
including continous updates. It analyzes both the code’s history and ongoing updates to
provide reports about the composition and activity of code bases. The Open hub does
not store any contents of the analyzed projects, nor does it keep historic data other than
the aggregated metrics. However since the links between Open Hub projects and their
repositories is kept and the querying capabilities over the analyzed attributes are extensible,
the Open Hub can be used to bootstrap an analysis by selecting projects whose contents
will be downloaded from a primary source. Open Hub does nort suppoort randomization
of the results, but given its relatively small size, getting all the data first and then doing
own randomization is indeed a possibility.

Sourcerer The single aim of this project is to detect code clones [15]. The tool scales to
large datasets and can detect near-identical code at various granularities. It has been used
to analyze cloning across large corpora of Java, JavaScript, Python, C and C++ projects
on GitHub [?]. Sourcerer does not keep the metadata or code of the analyzed projects,
but keeps a hash of each file contents as well as a fingerprint obtained by tokenizing each
file and remembering the token counts. Only source files in the four analyzed languages
are kept. It could be used by researchers to detect duplication in their samples specified
by links to GitHub projects, after which a report of cloned files found within the dataset
was provided. The project’s web page appears to be inactive.

Stress [6] One of the first attempts at reproducibility of project selection, stress works
either locally, or online (with the url now defunct). Its accompanying paper surveys the
reproducibility of project selections in 68 studies and finds none to be completely reprodu-
cible. It then proposes a selection tool that allows extensive filtering based on the project
information and 100 synthesized arguments from the projects version control data and
metadata, such as project lifetime, open tickets, etc.. The tool is verified on a corpus of
211 Apache projects. Stress supports queries to be stored and repeated later. Querying
over source code is not supported.

2.3 Summary

This chapter reviewed current and past software repositories and their data sources in
terms of their size, querying capacity and reproducibility, all of which are essential for
their mining for research purposes, summary of which is presented in table 2.1.

It shows that there indeed exist software repositories that are either (a) large, (b)
support access to source code, (c) offer expressive filtering capabilities that are (d) determ-
inistic and (e) reproducible and (f) are up-to date with current development of the projects
they contain. However, integrating those features into a single repository is challenging
and none of the existing solutions provide all of the features together.

22

2.3. Summary

Size Sources A
ct

iv
e

U
p

d
a
te

s

D
et

er
m

in
is

ti
c

R
ep

ro
d

u
ci

b
le

Query Contents

GitHub 210M primary Y continuous – basic code,vcs,meta
Software Heritage [4] 175M many Y continuous Y basic code,vcs

GHTorrent [8] 157M GitHub – continuous – full vcs,meta
Orion [3] 185K many – – Y Y full code,vcs,meta,attr

Boa [5] 980K Github Y – Y Y full code,vcs,meta,attr
8M Github Y regular Y full meta,attr

Bitbucket primary Y continuous – basic code,vcs,meta
Flossmetrics [7] 2800 many – – Y Y filter attrs

Black Duck 1.4M many Y continuous – filter attrs
Stress [6] 211 Apache – – Y Y full attrs

Sourcerer [15] 4.5M GitHub – – Y Y basic attrs

Table 2.1: Comparison of major data sources and associated tooling. Repositories are
classified in terms of their size, sources (primary menaning the repository maintains its own
data store), whether they are still active, if and how a repository supports updates (not at
all, regular dumps, or continuous), whether its queries are deterministic and reproducible

, the power of queries (basic pre-set queries, filter over multiple attributes and full querying
of all stored data) and the types of data stored per project (general project attributes only,
version control information (commit history), additional metadata (such as issues, etc.)
and actual code).

23

Chapter 3

Overview of Our Approach

Many of the existing tools and datasets reviewed in the previous chapter state the prohibit-
ive cost of large repository analysis as their motivation [3, 5]. Ddespite their advancements,
it has indeed been my experience as well. My original background is from the programming
languages, not data mining and I wanted to analyze the modern JavaScript language and
its evolution. But before I could even attempt a moderate analysis, enormous amount of
work had to be done. This work was not in vain as it both generated interesting results of
its own [10] and identified the ongoing need of better tooling for the very large repositories
we have access to. The lack of tooling led to my switch from programming languages
analysis to large software repository mining and to this thesis.

The existing approaches share a common theme: The larger the dataset, the fewer
features. This is not surprising as any functionality becomes harder at scale. Corners
must be cut and compromises must be made as workarounds. GHTorrent discards pro-
ject contents and dataset integrity for scale and speed which limits its use for any more
complicated analyses to simply non-reproducible project discovery. Software Heritage pri-
oritizes long-time preservation over retrieval and short-term correspondence with reality.
Orion and Boa sacrifice the same attachment to reality and scale in order to get much more
powerful search capabilities. All those sacrifices make sense for certain applications, but I
believe that for the specific purpose of supporting mining very large software repositories
for mainly research purposes, they all fall short of the goal.

Let us recall the thesis statement, that aims to create an infrastructure that allows
precise, scalable, deterministic and reproducible filtering of projects from large software
repositories. This chapter introduces CodeDJ, the solution presented in this thesis, a query-
able large software repository built with expresiveness, scalability, long-time relevance and
reproducibility in mind.

3.1 Sources

The most important design consideration is what the dataset should actually consist of
as it has profound impact on the other categories as well. We investigate the dataset

25

3. Overview of Our Approach

description from two angles: that of its primary sources, and the types of data stored in
it.

Sources Not limiting oneself to a single primary source has its benefits, namely more
coverage, which is why many of the tools from ten years ago opted for multiple sources.
However, this is one of the very few categories where the development in the last decade has
made the design actually easier: In 2022, GitHub is the only relevant primary data source.
Software Heritage, which aims to preserve software from all kinds of sources is essentially
an outdated GitHub mirror. Of the 180M projects it archives, 135M (74%) come from
GitHub. The second most represented source is Gitlab with mere 4M projects. While it
is possible that certain niche populations are not represented enough on GitHub, evidence
suggests that such niche populations will be exceedingly rare as many other sources either
point to GitHub projects in the first place, or simply provide a GitHub mirror for user
convenience. In 2019 I have analyzed XYZ JavaScript NPM packages (a Node.js package
manager and also a Software Heritage source with close to 2M projects) and found that
XYZ% of them are actually developed as GitHub projects. This number is even greater
for more popular packages. Similar situation exists in other popular repositories, such as
CRAN for R language.

The dominance of a single source increases ever more when we consider not the provider,
but the version control system itself. While different hosting services offer different extra
products and their accompanied metadata (user information, discussions, etc.), the core
history of the project’s contents and its updates is the same and in the same format as
long as the same VCS is used. Here git reigns supreme. Used exclusively by Software
Heritage three biggest providers, GitHub, GitLab and Bitbucket and countless others, it
is the de facto standard VCS of today.

The situation is more complex for non code related features, such as continous integ-
ration, issue tracking systems, project discussions, etc. While GitHub offers an in-house
alternative to almost all of such services, the market is much more fragmented (BugZilla,
JIRA, Jenkins, TFS, Travis, Appveyor, etc.)

Finally not all source code relevant for research and analysis is found in GitHub repos-
itories. A lot of code comes from less organized and smaller form factors such as Jupyter
and R Notebooks, documentation and examples and even on-line helper forums such as
StackOverflow.

And although there is nothing that can be said about private repositories, it should be
noted that such repositories are nowhere close to extinction in the wild. The hegemony of
GitHub in the private ranks is not as obvious with services as Team Foundation Server and
cetralized solutions such as Perforce or even previous generation of VCS such as Subversion
and Current Versions System (cvs) seem to have much larger presence in the corporate
sector. Even on GitHub, while exact data are scarce, we can observe that public projects
form only 42% of all project identifiers know to GitHub1.

1The remaining 58% is either deleted projects, or private projects and it is impossible to differentiate
between the two.

26

3.2. GitHub Ecosystem

Our extensive use of GHTorrent has made us aware of the severe drawbacks of using
one source for project selection and the other for actual data for analysis. If either of
the data sources is not reproducible (as is the case of GitHub as contents source), such
use cases must give up on reproducibility. Furthermore extensive effort is often needed to
make sure the two datasets are consistent, i.e. the contents obtained from second dataset
correspond to the state of the first dataset used for their selection. Another argument for
storing project’s contents is that without the contents, the selection queries the dataset is
capable of must exclude any search in files, a limiting factor especially for the programming
languages research. A single dataset for both selection and contents is thus much easier to
use, but equally harder to maintain as the volumes that need to be stored and processed
will immediately be dominated by the stored contents.

We have thus decided to design CodeDJ around git as the sole provider for project
contents and GitHub as the sole provider of the metadata.

3.2 GitHub Ecosystem

In order to better understand the expected volumes and composition of data that CodeDJ
would have to hold, we have conducted various analyses of the GitHub ecosystem.

3.2.1 Duplication

In an attempt to estimate the volume of data CodeDJ would have to store we turned
our attention first towards cloning. We analyzed projects in four different programming
languages (JavaScript, Java, Python and C/C++) chosen for their different usage scenarios
and software development practices to minimize chances of bias and analyzed file-level
identical and nearly identical files. Our study found that the percentage of file-level clones
is high, ranging from 40% for Java to a staggering 94% of all JavaScript files being copies.
Details of the analysis can be found in [10].

We now present a more detailed study of the JavaScript ecosystem alone. The study
not only sheds light on the types of cloning used, but since it was done before CodeDJ it
also illustrates the costs of large software repository mining. Figure 3.1 shows the stages
of the data acquisition and analysis pipeline. The pipeline is divided into three parts:
data sources, data preparation, and analysis. Data sources are the raw data that we
retrieved from various sources. Data preparation combines, filters, and cleans the data we
initially retrieved to create a data source we can use for performing analysis. Analyses
each perform an examination of some specific portion of the data, and then remove the
data they analyzed, preparing the field for the next analysis in the sequence.

Data Sources Our initial data set comes from three sources. The bulk of the data
we use comes from the GHTorrent data source, which was scraped from GitHub over a
period of 4 mo by cloning repositories and extracting information about each repository
using Git. Due to space constraints, we discarded each repository after scraping and

27

3. Overview of Our Approach

only keep the generated summary. The list of repositories to extract was compiled by
selecting all of the JavaScript projects in GHTorrent and consists of 3.3M repositories. We
limit our scraping efforts to just the master branch of each repository. The most basic
data we extract for each repository consists of commit metadata which includes commit
hashes (used to identify commits), author and committer emails (which identify persons
resposnible for commits), author and commit timestamps (used to place commits on a
timeline), and commit tags (to determine the master branch), as well as commit parent-
child relationships. For each commit, we also extract a list of file changes. Each change
is specified by a before and after hash, and either a single the file path for ordinary file
modifiations, or old and new file paths in case of renaming. Finally we retrieve the history
of the contents of each repository’s submodule file which allows us to keep track of which
directories are submodules throughout the life of each repository. This data is collected for
a list of 3.3M projects and contains information about 62M commits and 2.1B changes.

NPM is a supplementary data source that is extracted in the same way as GHTorrent,
except the list of projects is compiled from the addresses of GitHub repositories of NPM
packages that advertise a them in their JSON manifests. This data source took 14 d
to retrieve and holds data from 194K repositories and includes 10M commits and 110M
changes.

GitHub metadata is the third data source. It is obtained via over 28 d days via the
GitHub REST API by retrieving basic project information2 for each of the 1.8M repositories
found in either of the two other data sources.

Overall the data acquisition took over 5 months, excluding the time required to develop
and debug the scrappers. We had to resort to cloud-based virtual machine providers for
distributed acquisition to at least partially circumvent rate limiting induced by GitHub
for project cloning. The metadata information was also distributed using multiple GitHub
identities for the same reasons.

Data preparation After the acquisition, the data obtained from the three distinct
sources had to be merged together and cleaned. This process took place in four consecutive
steps:

This first step is to join the data coming in from the NPM and GHTorrent data sources
into a single data set of 3.5M projects, 66M commits, and 2.1B changes. The join step
takes 12 h to run and the result takes up 106GB on disk.

We then proceed to patch commit creation times. Since the timestamps used by git

are arbitrary, a small number of projects contains child commits older than their parents.
Since this makes reasoning about commit histories more complex, we patch commit times
so that no commit is younger than its oldest child. This affected 1% of commits.

To determine original projects, we also needed to know when particular project was
created. This data is not something we can gather form Git, but must get directly from
GitHub (note that a project creation time is not identical to the time of its first commit).
Thus in step three we turned to two sources: we extracted the timestamps from GHTorrent

2https://developer.github.com/v3/projects/#get-a-project

28

3.2. GitHub Ecosystem

for the majority of projects and GitHub metadata for those not listed in GHTorrent and
attached them to the data set. We managed to retrieve project creation times for 98%
repositories and we discarded the remaining 2%. The discarded repositories accounted for
1% commits and 4% changes.

Compared to the data acquisition, data preparation took less than a day on a machine
with 2 Intel Xeon Gold 6140 CPUs with total of 36 cores and 72 threads and 512GB
memory.

Analysis Finally, the actual analysis was performed in five distinct steps. In each step
we extract and analyze discrete a portion of the data set that comports to a specific type
of cloning behavior. After each step of the analysis, we discard the just-scrutinized subset
of the data from further analysis.

While our data set specifically precludes GitHub forks, not all forks are created through
the GitHub interface, and therefore not all forks could have been properly filtered out yet.
It is possible to fork a project by checking it out and manually changing its origin. This
preserves the projects history intact but allows the project to diverge from the original
at the point of cloning. The first step of the analysis scrutinizes the 7% of the remaining
projects in our data set that constitute such manaually created forks which account for 5%
of the remaining commits and 32% of the changes. We show the results of this part of the
analysis are presented in Sec. ??.

In the second and third steps of the analysis we look at project clones. Among these we
distinguish two distinct cloning practices. Root-to-root project cloning acts as impromptu
project forking. These implicit forks are created by copying all of the files in some repository
to the root of a new repository. In this way, the implicit fork does not preserve the commit
history of the original project. Such impromptu forks make up 4% of our data at this
point in the pipeline and constitute 5% of all commits and 32% of all changes. The other
class of project cloning is root-to-subfolder cloning. when this happens, the cloned project
becomes an ersatz submodule in the cloning project. As opposed to actual submodules, an
ersatz submodule recieves no special treatment, so it is up to the developer to keep them
updated. They may, but might not, keep around the history of the original repository.
Only ¡1% of the remaining projects contain such ersatz submodules, which make up ¡1%
of commits and 2% of changes. This results of this part of the analysis are presented in
Sec. ??

In the fourth step we analyze folder clones, which occur when a folder at some point in
the lifetime of some repository is copied to another repository. % of the remaining projects
contain such clones and they affect % of commits and % of changes. We analyze folder
clones in detail in Sec. ??

The final step of the analysis is concerned with file clones, where individual files or
groups of files are copied. They make up % of the data set at this point in the pipeline
and affect % of the remaining commits and % of changes. We discuss these clones further
in Sec. ??

After we analyzed and removed the clones, we are left with 2.8M repositories, 52M

29

3. Overview of Our Approach

Data pre-
paration

Analysis

Data
sources

NPM

�14 d to
retrieve

194K projects
10M commits
110M changes

GHTorrent

�4 mo to
retrieve

3.3M projects
62M commits
2.1B changes

GitHub
metadata

�28 d to
retrieve

1.8M projects

Join

� duration:
12 h

3.5M projects
66M commits
2.1B changes
106GB on disk

Patch
com-
mit
cre-
ation
times

� duration:
1 h

patched 1%
commits

Attach
project
cre-
ation
times

� duration:
2 h

patched 98%
projects
removed 2% pro-
jects

1% com-
mits

4%
changes

Filter
NPM

� duration:
1 h

removed 1% pro-
jects

¡1% com-
mits

63%
changes

Data
for
ana-
lysis

3.4M projects
65M commits
709M changes

Manual
forks

� duration:
31 m

250K projects
(7%)
3.1M commits
(5%)
228M changes
(32%)

Project
clones
(forks)

� duration:
1 h

122K projects
(4%)
1.4M commits
(2%)
15M changes
(2%)

Project
clones
(submodules)

� duration:
1 h

8.8K projects
(¡1%)
172K commits
(¡1%)
17M changes
(2%)

Folder
clones

� duration:
1 h

73K projects
(2%)
2.6M commits
(4%)
154M changes
(22%)

File
clones

� duration:
55 m

134K projects
(4%)
5.9M commits
(9%)
102M changes
(14%)

Remainder

2.8M projects
52M commits
193M changes

Figure 3.1: Data processing and analysis pipeline.

commits, and 193M changes. This data set consists of 83% of the cleaned up data set in
terms of projects, 79% in terms of commits, and 27% in terms of changes.

The actual analysis took the least amount of time, less than 5 hours on the machine
used for data preparation.

Results The detailed analysis confirmed the results we reported in [10]. Interestingly,
we see that while cloning is indeed rampant, it is not evenly distributed across projects
with only a few projects being responsible for very large volumes of cloned files. As already
described by [10], most of the cloned files come from the inclusion of the NPM packages
used by a project to its source code. Other reasons for cloning include, perhaps surprisingly
re-pushing whole projects, including their history to different repositories, which we dubbed
manual forking, as opposed to automatic forking facilitated by GitHub (such projects were
already excluded from the dataset). Folder and single file clones are also reasonably populat
at 22% and 14% of the remaining dataset.

Not only does the cloning affect only a minority of projects, it also affects only a
minority of files. Figure 3.2 breaks all file versions into unique , which were observed only
once, originals, and copies.

In total, the effects of cloning are signifficant: After all clones are removed, we ended
up with 85% of the projects, 79% of commits, but only 9% of file versions.

30

3.2. GitHub Ecosystem

kind

Clone

Original

Unique

Figure 3.2: File versions broken into unique, original and copies.

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

1.3e+09 1.4e+09 1.5e+09

time

of

 c
ha

ng
es

 (
de

le
tio

ns
, h

as
he

s
an

d
or

ig
in

al
s

item

allChanges

deletions

hashes

originals

File changes

Figure 3.3: Changes in GH projects over time

31

3. Overview of Our Approach

3.2.2 Project Diversity

TODO bad name, do not know a better one, not sure it belongs in the thesis though, does
it?

Talk about how the projects composition is pretty different too and how only a handful
of the projects is actually interesting. This can be extended with the spider webs we
created for the codedj2 but did not use?

0e+00

1e+06

2e+06

3e+06

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

year

pr
oj

ec
ts

kind

inactive

new

2 years

3 years

Total projects and active projects over years (commit/year)

Figure 3.4: Lifespan of projects with at least one commit per year

3.3 CodeDJ

This section introduces CodeDJ and summarizes its main features, details of which can be
found in [A.2]. The design of CodeDJ flows from four high-level principlest:

◦ Consistent, eventually: The sheer size and churn in data sources such as GitHub
means that obtaining a snapshot of the whole data source is not practical. But, it
is often the case that a slightly out-of-date view is sufficient for most investigations.
We choose to refresh entire projects atomically at irregular intervals. Thus, any
individual project is consistent, but for any group of projects, the lower bound on
their refresh times is the last consistent time point (git histories can be destructively
updated, allowing for post factum inconsistencies, we ignore these).

32

3.3. CodeDJ

0e+00

1e+06

2e+06

3e+06

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

year

pr
oj

ec
ts

kind

inactive

new

2 years

3 years

Total projects and active projects over years (commit/month)

Figure 3.5: Lifespan of projects with at least one commit per month

◦ Code-centric, language agnostic: We aim to support queries on project metadata and
file contents written in any programming language. To reduce space requirements,
the only source artifacts we store is code, deduplication is used to remove redundancy,
and metadata is trimmed where possible.

◦ Flexible query interface: Popular data science tools such as dplyr [19] or Spark [20]
offer a mix operations inspired by database query languages extended with general
purpose capabilities. Inspired by these, we propose an interface expressed in Rust as
a library with operations for selecting, grouping, filtering and sampling data. The
benefits of our approach over, say, SQL, is that queries are type-safe and benefit from
the full generality of the Rust language.

◦ Reproducible by design: The importance of reproducibility cannot be overstated [5],
consider [15] which recorded the names of the most starred projects seven years ago,
without author names it is not possible uniquely to identify projects, and even with
their full names, reconstructing a historical star count is not possible. CodeDJ is
designed so it is possible to run any query with the information that the datastore
had at an arbitrary point in the past. For this purpose the datastore is time-indexed,
strictly append-only.

33

3. Overview of Our Approach

3.3.1 Querying

The querying method and its expressivity is an important aspect from user’s perspective.
Designing such interface is a ballancing act between user friendlines and expressivity as
well as between complexity and generality of the queries: A simple query language as
used by GitHub is trivial to express, but offers only very limited queries to be executed.
Extension of the conjunctive queries to all attributes stored in the dataset helps, but cannot
ever match dedicated query languages. Those can either be existing solutions, such as the
SQL, or domain specific solutions. Using existing querying languages means that users will
likely be already familiar with their concept. Furthermore they often exist within proven
data storage solutions, such as databases that can be reused. They may however limit
the expressivity or needlessly complicate the queries. As an example consider searching
for all projects that use JavaScript as their main language and call the eval function.
Furthermore, their existing storage solutions may not provide features required by CodeDJ
dataset needs. On the other hand, domain specific languages such as Boa, if well designed,
offer excellent query expresiveness and their backends can be tailored towards our specific
needs. The price for their usage is the gamble (and extra work) placed upon their correct
design of our side and the necessity to learn them for CodeDJ users.

As to what data should be queryable, the simple answer would be everything. However,
one can only query what the system understands and so the more complex and detailed
the queries, the more work is required from CodeDJ. Recall that Boa, the most complex
project’s search engine that allows searching within parsed source code files had to limit
itself to a single language to provide the functionality. We believe that limiting CodeDJ to a
single, or handful of, languages would be severely limiting to its users as exciting research
happens in all kinds of programming languages and it is often the less popular languages
where the task of finding relevant projects is the hardest. CodeDJ is thus intended to start
as, and remain language agnostic. Querying file contents should be possible, but only a
general pattern matching should be allowed.

Aside from searching and ordering, the query method used should support sampling.
As the data volumes increase, it may not be feasible to analyze all projects fullfilling the
query. At a minimum, a true random sampling, feature not available in any of the existing
solutions, should be supported.

Decoupling Dataset Maintenance and Querying The most innovative idea of CodeDJ
in terms of querying is however its complete decoupling of querying from the dataset main-
tenance. The actual querying API of CodeDJ is a simple linear scan and random access to
all of the data items stored in the database with minimal overhead. This API will then
be consumed by clients, that may leverage the CodeDJ infrastructure and guarantees while
providing tailored search interfaces. CodeDJ already contains a reference search engine
called Djanco, which was not developed by the author of this thesis and whose description
can be found in the CodeDJ paper[A.2].

34

3.3. CodeDJ

3.3.2 Parasite

Parasite is a dedicated, perpetually running application whose task is to synchronize its
on-disk representation with GitHub. This task is complicated by these four constraints:

◦ Scalability: as the dataset is expected to eventually grow to hundreds of millions of
projects, the storage and memory requirements must be kept compact and fast to
access.

◦ Peaceful co-existence: Parasite must co-exist with GitHub peacefully, abiding by its
terms of service.

◦ Robustness: As the size of the dataset grows, snapshots or dedicated backups will
become impossible. So will working copies. The datset Parasite updates must at the
same time support querying.

◦ Reproducibility: No data must ever be lost. Historical reproducibility must be baked
in, i.e. the dataset must support being viewable at any given time in the past with
no overhead.

Parasite’s storage format is designed for minimal overhead, while maintaining fast linear
and random access times. The information Parasite stores is broken down to multiple key-
value pairs and those are stored in dedicated storage files. The files are append only, i.e. no
information is ever lost. The storage files are optimized for efficient updates and forward
linear scanning so that variable sized items are supported.

As an example, a project is broken into the following entities, each saved in its separate
storage file:

◦ project information - consists of the project url, creator name, created time, etc.

◦ project heads - lists branches scanned for the project, their names and their head
commits at the time the project was acquired. A project may be acquired multiple
times, in which case a new visit simply add newer record of project heads

◦ commits - basic commit information (message, author, time, parents) and the changed
files (paths and content hashes for all changes)

◦ snapshots - mapoping from a contents hash to actual file contents

In reality, more storage files are used. Paths and users are given their own storage files.
All keys are replaced with integers and special storage files mapping the identifiers to the
key values are added for commits and snapshots. Project metadata is split into multiple
storage files and so on.

35

3. Overview of Our Approach

Indexes While the storage files contain all the information in the dataset, they are
extremely inefficient for random access and deduplication necessary for their updating
when keys are converted to identifiers. For fast random accesses, index files are used
heavily. Any storage file can be accopanied with an index file that in its simplest form
provides offsets to the storage file for any id at predefined positions. Unlike storage files,
index files can also be modified and most importantly are not part of the dataset proper.
Different clients of the same dataset may keep different index files that suit their needs.

Snapshots Parasite supports snapshotting via special snapshot files. Unlike traditional
database snapshots, these do not contain the actual contents, but due to the append-only
nature of storage files, a snapshot only needs to remember for each storage file its length.
Snapshots can be created manually, or automatically and Parasite furthermore ensures
that when a snapshot is taken, the datastore is in a valid state. Valid state means that
all keys used in the dataset have their corresponding values stored as well such as for
instance if a commit is in the database, its parents must be there too and so on. The
simplest way to ensure validity is to only ever snapshot between project scanning, not
in the middle. However, indexing very large projects, which can take hours to complete
would then severely limit the snapshot granularity. Instead, when a project is scanned, it
is scanned in a fashion that always keeps the dataset valid.

Whenever the dataset is accessed, a valid snapshot must be specified. Since the database
is append only, this ensures that new projects can be added while the dataset is used with
no data corruption. Furthermore, since all snapshots ever created become part of the
dataset, the snapshot information also ensures historial reproducibility.

Finally, snapshots protect the dataset from failures. When the Parasite’s scanner is
restarted it verifies the latest snapshot agains the state of the dataset. If a discrepancy is
detected, the dataset is rolled back to the last snapshot by clipping the excess file contents.
Some data is lost, but this is unobservable from user’s point of view as users can never
access the data after the latest snapshot. Parasite makes sure that when orderly shut down
a new snapshot is created when needed.

Schema updates As Parasite is expected to remain relevant for many years while pre-
serving historical reproducibility, the dataset must deal with schema updates. Similar to
the append-only data updates, schema is also append only, in the sense that a schema of
existing storage file cannot be altered, but new storage files can be added at any time.
With snapshoting, this ensures simple and robust mechanism as old clients accessing new
data do not have to worry about new storage files and new clients accesing old data will
see the new storage files as having length 0.

Initialization Acquiring the entirety of GitHub takes time. The Software Heritage has
been around for years and still does not have all of GitHub. However, for many analyses,
it is not necessary to have all of GitHub and a large enough portion would do. To this end,
Parasite as presented in our paper used initial seed from GHTorrent to determine projects

36

3.3. CodeDJ

belonging to a prioritized list of languages that were then downloaded. However, when
analyzing the data, we have discovered that inconsistencies with GHTorrent are too large
to be dismissed [A.1]. Current version of Parasite thus uses GitHub alone. We scan the
public repositories endpoint to obtain the urls of all public repositories. We then randomly
pick repositories for which we obtain metadata information, which gives us among other
things the language of the project. Finally, a random subset of those projects belonging to
the languages of interest is acquired. As both samples are increasing over time, eventually
all of GitHub will be acquired, while at any point, the dataset remains an usable random
subset.

37

Chapter 4

Main Results

This chapter presents the 4 papers that together present the thesis contributions. The
chapter opens with an overview of the research presented and timeline of the papers,
followed by the papers themselves. Each paper is accompanied by a short clarification of
the author’s contributions.

4.1 Overview

We start with the foray into analysis of large corpora that poignantly illustrates the problem
of bias in automated analysis of big code. We conducted an analysis of all non-forked public
repositories available from GitHub in four major languages. However, as getting project
urls from GitHub API is hard, we used GhTorrent for those first. Our aim was to look
at the percentage of code duplicities (talk about different kinds and why they are bad).
Report results.

With our knowledge, we wanted to see how much the huge duplication numbers can
affect research results. For this we decided to conduct a replication of paper claiming
interesting results with some non-trivial statistics. We have chosen the FSE paper to
familiarize ourselves with these issues. During this we observed many problems with large
code analysis (talk them all here). The single most alarming lesson was that reproducibility
of historical papers is extremely hard. Reproducibility crisis.

Our next work thus concentrated on providing a service both for us and for other
researchers that would help with the reproducibility issues of big code research. This
revolved around creating a local copy of relevant Github information and providing a
reproducible and scalable means of scrapping new information, retaining historical records
and reproducible queries. CodeDJ. Using such a tool provides many benefits for researchers
as it helps identifying and removing biases from their corpora. We demonstrated this
on showing how the selection of projects to analyze can introduce variations to paper
conclusions, for which we repurposed the previously done replication paper.

Noting that selecting by stars was not very representative of the whole GitHub cor-
pora, for our next paper we updated CodeDJ to support more queries and datasets and

39

4. Main Results

concluded an analysis of recent MSR papers and their selection methods, as well as in-
formal reproduction of three papers using stars compared to a more robust random sample
from an explicit selection supported by CodeDJ. (Stars are bad paper).

TODO should citations be included here, or at the very end, or both?

40

4.2. Paper 1 - DejaVu: A Map of Code Duplicates on GitHub

4.2 Paper 1 - DejaVu: A Map of Code Duplicates on
GitHub

Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny, Hitesh
Sajnani, and Jan Vitek.

In: Proc. ACM Program. Lang. 1, OOPSLA, Article 84 (October 2017), 28 pages.
https://doi.org/10.1145/3133908

4.2.1 Author Contributions

The author of this PhD thesis was responsible for the following contributions in this paper:
The author was responsible for most of the JavaScript pipeline: data acquistion, adapt-

ation of the tools used for Javascript and their improved scalability to support JavaScript
sizes (some of which were later used for the other three languages as well), Almost all data
visualization and graphs in the paper including the heatmaps and their analysis.

The author also implemented I also designed and implemented a framework in the R
programming language that automatically generated all numbers used anywhere in the
paper, which we used in subsequent papers as well.

41

4. Main Results

4.3 Paper 2 - On the Impact of Programming Languages
on Code Quality: A Reproduction Study

Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek.
In: ACM Trans. Program. Lang. Syst. 41, 4, Article 21 (October 2019), 24 pages.

https://doi.org/10.1145/3340571

4.3.1 Author Contributions

I was responsible for the paper’s main idea, analysis of the original paper, review and
reproduction of the paper’s artifact, data acquisition and reporting.

Due to the sensitivity of the topic, the paper’s authors were presented in alphabetical
order.

42

4.4. Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories

4.4 Paper 3 - CodeDJ: Reproducible Queries over Large-
Scale Software Repositories

Petr Maj, Konrad Siek, Alexander Kovalenko, Jan Vitek.
In: 35th European Conference on Object-Oriented Programming (ECOOP 2021). Art-

icle No. 7; pp. 7:1–7:24

4.4.1 Author Contributions

I was responsible for the paper’s main idea, the overall design of the system and its com-
ponents. the design and implementation of parasite, the reproduction analysis (without
the graphs) and I helped a bit with the query language interface design.

43

4. Main Results

4.5 Paper 4 - The Fault in Our Stars: How to Design
Reproducible Large-scale Code Analysis Experiments

Petr Maj, Stefanie Muroya, Konrad Siek, Jan Vitek

4.5.1 Author Contributions

I was responsible for the paper’s main idea, acquisition and curation of all datasets, data-
set analysis, stars analysis, most extensions of the Djanco Query engine, one replication
experiment and supervision of Stefanie.

4.6 Discussion

4.7 Summary

44

Chapter 5

Conclusions

TODO I’ll write this when I have the rest mostly ok-ish...

5.1 Summary

5.2 Contributions of the Dissertation Thesis

TODO again the template says this should happen three times, so here it is:

1. Analysis of cloning and associated biases in large collections of software repositories
(paper 1)

2. Analysis of reproducibility issues and statistical interpretation of large corpora. Pro-
posal of better methodology for reproducibility (paper 2)

3. Design and implementation of a tool for large scale download, archival and querying
of software repositories to aid reproducble project selection and analysis (pape 3)

4. Analysis of the selection bias introduced by the most frequentlty used project selec-
tion by popularity convenience sampling on recent papers. Analysis of the obtained
and missed projects and development of methodology for reproducible and validable
project selection and associated tooling (paper 4)

5.3 Future Work

An obvious improvement would be in the scalability of the presented tools. While CodeDJ
queries run fast enough for a typical research problem, and authorized researchers can be
given direct access to the database and servers for more ad-hoc query processing, such
approach will not scale for use outside of academia.

45

5. Conclusions

Currently, only GitHub is supported as data source. CodeDJ has already been created
with modularity in mind and supports addition of extra sources, although none has been
implemented yet. Any git backed VCS will be almost trivial and others can be adapted with
relative ease as none of git objects survive into the datastore itself. Primary candidates
are archives (such as Software Heritage), other source code hosting providers (Sourceforge,
BitBucket, etc.), or source package managers (NPM, crates.io, etc.). Those additional
sources will have varying metadata available, which the query engine would have to account
for.

Selecting by stars has already been discredited enough. And while the thesis provides
a general methodology for its replacement, this is by no means complete. More detailed
directions and in-depth analysis of various methods should be attempted.

TODO something else?

Synthesized attributes Schema updates in Parasite are expected to bemore frequent
than as necessitated by addion of new GitHub features.

46

Bibliography

[1]

[2] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. On
the impact of programming languages on code quality: A reproduction study. ACM
Trans. Program. Lang. Syst., 41(4), oct 2019.

[3] T. F. Bissyande, F. Thung, D. Lo, L. Jiang, and L. Reveillere. Orion: A software
project search engine with integrated diverse software artifacts. In International Con-
ference on Engineering of Complex Computer Systems, 2013.

[4] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to pre-
serve software source code. In iPRES 2017: 14th International Conference on Digital
Preservation, Kyoto, Japan, 2017.

[5] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories. In
International Conference on Software Engineering (ICSE), 2013.

[6] Davide Falessi, Wyatt Smith, and Alexander Serebrenik. Stress: A semi-automated,
fully replicable approach for project selection. In International Symposium on Empir-
ical Software Engineering and Measurement (ESEM), 2017.

[7] Jesus M. Gonzalez-Barahona, Gregorio Robles, and Santiago Dueñas. Collecting data
about FLOSS development: The FLOSSMetrics experience. In International Work-
shop on Emerging Trends in Free/Libre/Open Source Software Research and Develop-
ment (FLOSS), 2010.

[8] Georgios Gousios and Diomidis Spinellis. GHTorrent: GitHub’s data from a firehose.
In Michael W. Godfrey and Jim Whitehead, editors, Working Conference on Mining
Software Repositories (MSR), 2012.

[9] Github LLC. The 2021 state of the octoverse, 2021.

47

Bibliography

[10] Cristina V. Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. Déjàvu: a map of code duplicates on github. Proceed-
ings of the ACM on Programming Languages, 1:1 – 28, 2017.

[11] Petr Maj, Konrad Siek, Alexander Kovalenko, and Jan Vitek. CodeDJ: Reproducible
Queries over Large-Scale Software Repositories. In Anders Møller and Manu Srid-
haran, editors, 35th European Conference on Object-Oriented Programming (ECOOP
2021), volume 194 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1–6:24, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik.

[12] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. A large-
scale study of programming languages and code quality in github. Commun. ACM,
60(10):91–100, sep 2017.

[13] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. A large
scale study of programming languages and code quality in github. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, page 155–165, New York, NY, USA, 2014. Association for
Computing Machinery.

[14] Marc J. Rochkind. The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364–370, 1975.

[15] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K. Roy, and Cristina V.
Lopes. Sourcerercc: scaling code clone detection to big-code. In International Con-
ference on Software Engineering (ICSE), 2016.

48

Reviewed Publications of the Author
Relevant to the Thesis

[A.1] P Maj, S Muroya, K Siek, J Vitek The Fault in Our Stars: How to Design Reprodu-
cible Large-scale Code Analysis Experiments to be accepted somewhere.

[A.2] P Maj, K Siek, A Kovalenko, J Vitek CodeDJ: Reproducible Queries over Large-Scale
Software Repositories 35th European Conference on Object-Oriented Programming
(ECOOP 2021) 2021.

[A.3] ED Berger, C Hollenbeck, P Maj, O Vitek, J Vitek On the impact of programming
languages on code quality: a reproduction study ACM Transactions on Programming
Languages and Systems (TOPLAS), vol 41, issue 4, pages 1-24 2019.

[A.4] C. Lopez and P. Maj and P. Martins and V. Saini and D. Yang and J. Zitny and H.
Sajnani and J. Vitek DéjàVu: A Map of Code Duplicates on GitHub. Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA) 2017.

49

Remaining Publications of the Author
Relevant to the Thesis

[A.5] ED Berger, P Maj, O Vitek, J Vitek SE/CACM Rebuttal 2: Correcting A Large-
Scale Study of Programming Languages and Code Quality in GitHub arXiv preprint
arXiv:1911.11894 2019,

[A.6] P. Maj and C. Hollenbeck and S. Hussain and J. Vitek Analyzing Duplication in
JavaScript. BenchWork 2018.

[A.7] P. Maj and F. Gauthier and C. Hollenbeck and S. Hussain and J. Vitek and C.
Cifuentes Building a node.js Benchmark: Initial Steps. BenchWork 2018.

[A.8] P Maj Analyzing Large Code Repositories. Ph.D. Minimum Thesis, Faculty of
Information Technology, Prague, Czech Republic, 2018.

51

Remaining Publications of the Author

[A.9] J Sliacky, P Maj Lambdulus: teaching lambda calculus practically Proceedings of the
2019 ACM SIGPLAN Symposium on SPLASH-E, pages 57-65 2019.

[A.10] T. Kalibera and P. Maj and F. Morandat and J. Vitek A Fast Abstract Syntax Tree
Interpreter for R. Conference on Virtual Execution Environments (VEE), 2014.

[A.11] P Maj, T Kalibera, J Vitek TestR: R language test driven specification The R
User Conference, useR! July 10-12 2013 University of Castilla-La Mancha, Albacete,
Spain, vol 10, issue 30, pages 149 2013.

[A.12] T Kalibera, J Hagelberg, P Maj, F Pizlo, B Titzer, J Vitek A family of real-time
Java benchmarks Concurrency and Computation: Practice and Experience, vol 23,
issue 14, pages 1679-1700 2011.

[A.13] F Pizlo, L Ziarek, E Blanton, P Maj, J Vitek High-level programming of embedded
hard real-time devices Proceedings of the 5th European conference on Computer
Systems, pages 69-82 2010.

[A.14] F Pizlo, L Ziarek, P Maj, AL Hosking, E Blanton and J Vitek Schism:
fragmentation-tolerant real-time garbage collection ACM Sigplan Notices, vol 45,
issue 6, pages 146-159 2010.

53

	Introduction
	Motivation
	Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Sources
	Github
	Bitbucket
	Other VCS Hosts
	Package Managers
	Software Heritage

	Software Repositories
	GitHub
	Software Heritage
	GH Torrent
	Orion
	Boa
	Other Repositories

	Summary

	Overview of Our Approach
	Sources
	GitHub Ecosystem
	Duplication
	Project Diversity

	CodeDJ
	Querying
	Parasite

	Main Results
	Overview
	Paper 1 - DejaVu: A Map of Code Duplicates on GitHub
	Author Contributions

	Paper 2 - On the Impact of Programming Languages on Code Quality: A Reproduction Study
	Author Contributions

	Paper 3 - CodeDJ: Reproducible Queries over Large-Scale Software Repositories
	Author Contributions

	Paper 4 - The Fault in Our Stars: How to Design Reproducible Large-scale Code Analysis Experiments
	Author Contributions

	Discussion
	Summary

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author

