
Efficient Type Inclusion Tests

Jan Vitek R. Nigel Horspool Andreas Krall
Object Systems Group, CUI,

Université de Genève,
Geneva, Switzerland

Jan.Vitek@cui.unige.ch

Dept. of Computer Science,
University of Victoria,
Victoria, BC, Canada
nigelh@csr.uvic.ca

Institut für Computersprachen,
Technische Universität Wien,

Wien, Austria
andi@complang.tuwien.ac.at

ABSTRACT
A type inclusion test determines whether one type is a sub-
type of another. Efficient type testing techniques exist for
single subtyping, but not for languages with multiple sub-
typing. To date, the only fast constant-time technique relies
on a binary matrix encoding of the subtype relation with
quadratic space requirements. In this paper, we present
three new encodings of the subtype relation, the packed
encoding, the bit-packed encoding and the compact encod-
ing. These encodings have different characteristics. The
bit-packed encoding delivers the best compression rates: on
average 85% for real life programs. The packed encoding
performs type inclusion tests in only 4 machine instructions.
We present a fast algorithm for computing these encoding
which runs in less than 13 milliseconds for PE and BPE, and
23 milliseconds for CE on an Alpha processor. Finally, we
compare our results with other constant-time type inclusion
tests on a suite of 11 large benchmark hierarchies.

1. INTRODUCTION
Many modern programming languages, particularly object-
oriented ones, have been built around the notion of type
conformance to allow for a form of polymorphism and code
reuse. The idea is that, if a type A conforms to a type B,
then A can be used in any context where B is expected.
This notion is essential for the code inheritance advocated
by most object-oriented languages. Conformance is usually
summarized by a transitive, reflexive, anti-symmetric sub-
type relation (<:) between the types of a hierarchy.

A type inclusion test determines if a pair of types is in
the subtyping relation. Such tests are performed frequently
during compilation. Most object-oriented language imple-
mentations are also able to perform tests at runtime. In
Smalltalk the isKindOf: method tests whether an object’s
class is a subclass of the class given as argument, Oberon

provides type tests and type guards, Java instanceof, etc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Type tests need not always be explicitly requested by the
programmer, they may also be inserted by the compiler, ei-
ther as an optimization ([14]) or for safety. For example, in
the Java code fragment shown below, the assignment to the
local variable b is checked to ensure that the actual, runtime,
type of the argument to the method is effectively a subtype
of B:

class B extends A {

void foo(A a) {

B b = (B) a ;

}

}

Since the subtype relation is a partial order on the types of
the program, type inclusion testing is more than the mere
comparison of type tags. Depending on the implementation
of the type test algorithm and on the dynamic frequency of
tests, the cost of dynamic typechecking can strain the overall
system performance.

This paper discusses the implementation of type inclusion
tests in languages that allow multiple subtyping1. We present
and compare different encodings of the subtype relation, as
well as algorithms to compute these encodings and perform
the type inclusion test. Our exploration of the design space
of algorithms and encodings was driven by three require-
ments:

1. Runtime efficiency: Type tests should be fast. Our
original motivation for this research was to optimize
method dispatch ([15], [14]). To this end, the cost
of testing for type inclusion had to be comparable to
the cost of dispatch in statically typed languages (5
machine instructions, but see [8]). We also insist on
constant-time tests2 as we believe that the cost of lan-
guage primitives should be predictable.

2. Space efficiency: The runtime data structures that en-
code the subtype relation must be small. Furthermore,

1Note that we make a difference between subtyping and in-
heritance. Java is a single inheritance language with multi-
ple subtyping.
2In this context, constant means constant number of instruc-
tions, we did not explore cache behavior.

the code sequence emitted by the compiler for each
static occurrence of a subtype test must be short.

3. Incremental hierarchy modifications: Support for run-
time updates of the subtype relation. The concern here
is that the cost in space and time of recomputing the
encoding must not be prohibitive.

To the best of our knowledge no existing technique meets
our requirements. Algorithms based on dynamic data struc-
tures such as linked lists and hash tables are slow and exhibit
unpredictable behavior. Constant-time techniques either re-
quire large amounts of space, as for the bit matrix encoding,
or are quite complex to compute, as for the hierarchical en-
coding [2], [12].

In this paper, we present three new encodings of the sub-
type relation, the packed encoding, the bit-packed encoding
and the compact encoding. We describe how they are com-
puted and how they are used to implement constant-time
tests. The packed encoding extends to multiple subtyping
an algorithm first described by Cohen [3] and rediscovered
independently by Queinnec [13]. When multiple subtyping
is not used our solution is the same as Cohen’s. We im-
prove on the runtime performance of tests by removing a
bound check advocated by Cohen. The code sequence that
implements the type test is short enough to be inlined and
thus avoid the cost of an extra call. The computation of
the packed encoding is very fast and requires little memory.
Thus, it is well suited for on-the-fly updates of the hierarchy.
Furthermore, there are categories of updates that do not
require recomputing the encoding. The second new encod-
ing, called bit-packed encoding, reduces further the space
requirement of the packed encoding at the cost of slower
type inclusion tests. The last encoding, compact encoding,
adapts the compact dispatch table technique of Vitek and
Horspool [16]. It is designed for very large hierarchies. For
small and medium-sized ones, it is less efficient than the
packed encoding. We compare the new encodings and al-
gorithms to the bit matrix encoding and the near optimal
hierarchical encoding of [12] and conclude with guidelines
for choosing an encoding of the subtype relation.

The remainder of this paper is organized as follows. Section 2
introduces terminology, important definitions, and a run-
ning example. Section 3 briefly reviews previous work in the
field, including the binary matrix encoding, Cohen’s encod-
ing and the near optimal hierarchical encoding. Section 4
presents the packed encoding, the type inclusion test and
the encoding construction algorithm. Section 5 presents the
bit-packed encoding. Section 6 presents the compact en-
coding. Section 7 compares time and space requirements of
the techniques on a set of 11 benchmark programs. Finally,
section 8 presents our conclusions.

2. DEFINITIONS AND EXAMPLE HIERAR-
CHY

A type hierarchy H = 〈T , <:〉 is a set of types T and a
reflexive, transitive, anti-symmetric subtype relation <:. If
A <: B holds, then we say that A is a subtype of B and

B is a supertype of A. In class-based languages this hier-
archy is defined explicitly by the programmer through the
subclassing relationship between classes. In languages with
structural subtyping, the subtype relation is derived auto-
matically.

We also define an anti-reflexive, anti-symmetric direct sub-
type relation <:d

<:d ≡ {〈x ∈ T , y ∈ T 〉|x <: y ∧
(6 ∃z ∈ T |x 6= z ∧ y 6= z ∧ x <: z <: y)}

The subtype relation is represented by a directed acyclic
graph, shown in fig. 1, with vertices for types and edges for
the subtype relation. By convention, we draw supertypes
above their subtypes and draw only edges in <:d. We also
need the following definitions:

roots(T) ≡ {x ∈ T | 6 ∃y ∈ T : x <: y}
parents(x) ≡ {y ∈ T |x <:d y}
children(x) ≡ {y ∈ T |y <:d x}
ancestors(x) ≡ {y ∈ T |x <: y}
descendants(x) ≡ {y ∈ T |y <: x}
multis(T) ≡ {x ∈ T |card(parents(x)) > 1}

where card(S) is the cardinality of a set S. Roots is the set
of top level types. Parents and children are sets of direct
supertypes and subtypes, respectively. Ancestors and de-
scendants are sets of all subtypes and supertypes of a type.
Multis is the set of all types with more than a single direct
supertype.

A single subtyping type hierarchy restricts the number of di-
rect parents to one, card(parents(x)) ≤ 1. We assume single
rooted hierarchies, i.e. card(roots(T)) = 1. In practice, we
fix hierarchies that do not fulfill this assumption by adding
an extra root type R so that children(R) = roots(T). The
hierarchy of figure 1 is a multiple subtyping hierarchy, with
roots(T) = {A}, multis(T) = {D, F}, parents(F) = {E, G}
and ancestors(F) = {A, E, G}.

We define the level of a type in a hierarchy as the length of

A

B C E G

D F

Figure 1: A small type hierarchy.

class Object rep {
Type rep type rep

...

}

Figure 2: Object runtime representation.

its longest path to the root:

level(x) ≡

0 if parents(x) = {}
max(L) + 1 otherwise
where

L ≡ {level(y)|y ∈ parents(x)}

For the runtime representation of objects, we assume they
are implemented by data structures with, as a common pre-
fix, a reference to a type information data structure, the
Type rep field of fig. 2. In many implementations this field
can be merged with the dispatch data structure (e.g. the
vtbl of C++).

Unless explicitly stated, the type test instruction sequences
check subtyping against a type known at compile-time. This
corresponds to a test of the form

obj instanceof A

where A is a type constant. This is the most frequent use
of a subtype test. We assume that the compiler or linker
uses this information to fill in the values of the appropriate
constants once the program is complete.

As a convention, we prefix compile- and link-time constants
with a #.

3. PREVIOUS WORK
3.1 Hierarchy Traversal Algorithms
Type inclusion tests for single subtyping are trivially im-
plemented by traversing a linked list of types, as proposed
by Wirth [17]. The linked list encoding requires little space
and may be updated incrementally. Unfortunately, tests
are slow, running in time proportional to the distance be-
tween the two types in <:d. This led Wirth to switch to a
constant-time scheme for Oberon [18]. Linked data struc-
tures for multiple subtyping only increase the cost of type
tests. We have experimented with linked representations
as well as with other non-constant-time schemes based on
hashing while working on this paper. Non-constant-time
techniques are much slower than the algorithms discussed
in the remainder of the paper. We decided to concentrate
on constant-time solutions.

3.2 Constant-time Algorithms
3.2.1 Binary Matrix (BM)
Type inclusion tests can be performed in constant-time if
the subtype relation is encoded as a binary matrix. If N =

card(T), and γ : T → [1 . . . N] is a one-to-one mapping from
types to indices, we build a N ×N binary matrix MBM such
that:

MBM [γ(x), γ(y)] ≡

1 if x <: y
0 otherwise

The binary matrix encoding for the hierarchy of fig. 1 is
shown in fig. 3(a).

The runtime representation of types decomposes the matrix
into rows corresponding to a type and stores each row into
a Type rep data structure, fig. 3(b). Every type representa-
tion has the same layout. This data structure has two fields:
a position, pos, and a sequence of (N + 31) mod 32 words,
row. The position field encodes γ and is used during type
inclusion testing to compute a word index and a bit index.
If we assume 32 bit words, the word index is pos >> 5 and
the bit index is pos & 31.

With BM, a type inclusion test is simply an array access,
a bit shift and a comparison. Figure 3(c) tests whether the
type of an object obj is a subtype of a type with known
word pos and bit pos. The machine instruction sequence
for this test is given in the appendix.

A 0
B 1
C 2
D 3
E 4
F 5
G 6

γ

A 1 0 0 0 0 0 0
B 1 1 0 0 0 0 0
C 1 0 1 0 0 0 0
D 1 0 1 1 1 0 0
E 1 0 0 0 1 0 0
F 1 1 0 0 0 1 1
G 1 0 0 0 0 0 1

γ 0 1 2 3 4 5 6

MBM

(a) The encoding of figure 1.

class Type rep {
int32 pos

array [1...N] of int32 row

}

(a) Runtime data structures.

Type rep type := obj.type rep

int32 word := type.row[#word pos]

if (bit extract(word, #bit pos) = 1)

(c) Type inclusion test.

Figure 3: Binary Matrix (BM).

This encoding is trivial to compute. Its main drawback is
that it has quadratic space requirements. For large pro-
grams, half megabyte matrices are easily conceivable. Nev-
ertheless, the simplicity of the binary matrix has motivated
its use in practice [11], [4].

The other constant-time algorithms presented in this paper
use encodings which can be viewed as compressed forms of
the binary matrix. The constraint on the compression is
that very fast random access to elements must be guaran-
teed. In this view, the works on parse table optimization
and dispatch table optimization are closely related, as, in
both cases, their aim is to compress sparsely populated ma-
trices. The parse table compression techniques discussed by
Dencker, Dürre and Heuft [5] have influenced works in the
field of dispatch table compression [7], [15]. The compact
encoding is in fact a straightforward adaptation of compact
dispatch tables of [15].

3.2.2 Cohen’s Algorithm
Cohen proposed the first practical algorithm for performing
subtype tests in constant-time [3]. Cohen’s idea is a varia-
tion of Dijkstra’s “displays” [6]. Each type is identified by a
unique type identifier, tid, which is simply a number. The
runtime type information data structure also records each
type’s complete path to the root as a sequence of type iden-
tifiers. The key trick is to build, for each type x, an array of
card(ancestors(x)) type identifiers so that for each ancestor
y, the tid of y is stored at an offset equal to level(y) in the
array. The Cohen encoding for sample hierarchy of fig. 4(a)
is given in fig. 4(b).

With this encoding, type inclusion tests reduce to a bound-
checked array access and a comparison operation. The bound
check is necessary as array sizes are not uniform. The run-
time data structure, shown in fig. 4(c), consists of a level
field, level and a sequence of L type identifiers, row, where
L is equal to the value of the current type’s level. Note that
the type identifier of a type x is stored at x.row[x.level].
The code sequence that tests whether an object’s type is a
subtype of some known type is shown in fig. 4(d).

The advantages of Cohen’s algorithm are that it is both easy
to understand and easy to implement, it performs tests in
constant-time and requires little space. The packed algo-
rithm of section 4 extends the algorithm to multiple subtyp-
ing and proposes a type inclusion test that is faster than the
one outlined above.

3.2.3 Hierarchical Encodings (NHE)
Hierarchical encoding represents each type with a set of in-
tegers. This set must be chosen so that

x <: y ⇔ γ(x) ⊆ γ(y)

where γ(x) maps type x to its set representation. Thus, the
set of a subtype has to be a superset of the set representing
its parent. The sets have a natural representation as bit
vectors; an example is shown in fig. 5(a). In the bit vector
representation the test function becomes

x <: y ⇔ γ(x) ∨ γ(y) = γ(x)

or alternatively

x <: y ⇔ γ(x) ∧ γ(y) = γ(y)

A simple, but inefficient way to construct the bit vectors
is to map each type into the corresponding row of the bi-
nary matrix of section 3.2.1. The resulting bit vectors are

extremely sparse as the number of ancestors of a type is usu-
ally much smaller than the total number of types. Better
techniques have been proposed in the literature, in particu-
lar the modulation method3 of Aı̈t-Kaci et al. [1] and the
gene encoding technique of Caseau [2], which try to minimize
the range of integers used to construct the sets, thus short-
ening the corresponding bit vectors. It is well known that
finding an optimal bit vector encoding for partial ordered
sets is NP-hard [10] and that there exist classes of partial
ordered sets (distributive and simplicial lattices) where an
optimal encoding is as large as the number of types with only
one supertype [10]. Fortunately, type hierarchies can be en-
coded much more compactly than distributive lattices. In a

3The modulation method is an efficient encoding of lattices
which is used to perform lattice operations such as finding
the least upper bound or greatest lower bound, as well as rel-
ative complementation. Type hierarchies are not necessarily
lattices.

A

B

D

C

(a) A small single subtyping hierarchy.

tid lvl
A 1 0
B 2 1
C 3 1
D 4 2

A 1

B 1 2

C 1 3

D 1 2 4

(b) The encoding of figure 4(a).

class Type rep {
int16 level

array [0...L] of int16 row

}

(c) Runtime data structures.

Type rep type := obj.type rep

if (type.level ≤ #level

&& type.row[#level] = #tid)

(d) Type inclusion test.

Figure 4: Cohen’s encoding.

previous paper, we have developed a new and improved ver-
sion of the Caseau approach [2] which we call Near Optimal
Hierarchical Encoding (NHE) [12]. This version general-
izes Caseau’s algorithm by expressing it as a graph coloring
problem. It is able to encode arbitrary partially ordered
sets rather than just lattices [2]. Our algorithm generates
the sets faster and generates much smaller sets (about 50%
percent smaller than our implementation of [2]), thus mak-
ing type inclusion tests more efficient.

A complete description of the algorithm can be found in [12],
we will summarize it briefly here. A simple version of the
technique would assign a set element (i.e. a position of a bit
in the bit vector) to each node in the type hierarchy graph.
This element distinguishes the node from other nodes. This
distinguishing element is called a gene by Caseau. The set
representation for a type is formed as the union of all its
ancestor’s sets of genes plus its own gene. However, if the
set of ancestors of a type x with more than one immediate
parent is not a subset of another ancestor set, then x does
not need a gene. We can construct a conflict graph where
the nodes represent types and the edges connect types which
are not allowed to use the same gene. Graph coloring is then
used to assign different genes to conflicting nodes. A crucial
part of the technique, performed prior to computing the
conflict graph, is inserting extra nodes into the hierarchy
in order to balance the graph – the aim is to reduce the
maximum number of children possessed by any node and
that will tend to reduce the number of nodes that require
distinct genes. Fig. 5(a) shows the NHE encoding of the
example hierarchy (fig. 1). The algorithm uses only four
genes as D and F are able to reuse the genes of their parents,
the root A does not need a gene as it encodes the empty
set. This technique yields the optimal encoding for single
subtyping and near optimal encoding for multiple subtyping
hierarchies.

The bit vector is of fixed size and can be stored at any fixed
position inside the class object. The runtime data structure
is shown in fig. 5(b), row is a sequence of H integers, H is
the length of the bit string in words. The comparison part of
the test function has to be replicated for each machine word
used in the bit vector. This leads to the problem that with
increasing code length both execution time and instruction
space increase. The number of unrollings is only known
at link time when the entire hierarchy is at hand, so the
algorithm is constant-time at run-time but not constant-
time at compile-time4. The implementation of the run-time
test against a known bit vector (#row) is shown in fig. 5(c).

This implementation will be referred to as inline near op-
timal hierarchical encoding, INHE. It has three drawbacks:

4This use of “constant” is a slight abuse of language. In
our set of benchmark programs the maximal number of un-
rollings is 3 as the longest bit vector length is 96, [12]. The
longest test takes 18 machine instructions. The shortest
test is performed in 8 machine instructions. Note also that
the number of instructions is solely determined by the su-
pertype. So, if the supertype is known at link-time (this
accounts for the overwhelming majority of type tests in real
programs) the number of instructions needed is also known
statically.

A 0000

B 1000

C 0100

D 0110

E 0010

F 0011

G 0001

(a) The encoding fig. 1.

class Type rep {
array [1. . . H] of int32 row

}

(b) Runtime data structures.

Type rep type := obj.type rep

if ((type.row[i] & #rowi) = #rowi)

// repeated for i from 1 to H

(c) Type inclusion test.

Figure 5: Near Optimal Hierarchical Encoding
(NHE).

first it requires varying numbers of instructions, second, even
in the best case, the instruction sequence is longer than for
the other algorithms. This causes code bloat as discussed in
sect. 7.3. A slightly slower alternative is to wrap the test in
a function, we refer to this solution as the generic near opti-
mal hierarchical encoding, or GNHE. GNHE is implemented
by coding a number of similar type test functions, one for
each unrolling factor. Then, depending on the length of the
bit vector, the appropriate test function will be called. The
third drawback of the method is that it is computationally
intensive and that the full encoding must be regenerated
after any change to the type hierarchy.

3.3 Relative Numbering
We mention briefly one last encoding of the subtype relation
based on relative numbering of trees. In a tree it is possible
to find out if a node is a child of another node as follows.
For each node store two numbers, left and right. Traverse
the tree in order, for each new node increment a counter
c. When a node is first encountered, store c in left. When
the traversal leaves the node store the current value of c in
right. A node n1 is a child of a node n2 if

n2.left ≤ n1.left ∧ n1.left ≤ n2.right

A single subtyping hierarchy is a tree; relative numbering is
therefore a very compact and elegant representation of the
single subtyping relation. This scheme is used in the DEC
SRC Modula-3 system. Unfortunately, there is no obvious
way to extend the technique to multiple subtyping.

4. PACKED ENCODING (PE)
Experience with binary matrices shows that they are al-
ways sparse. It is therefore not surprising that they can be
compressed. We propose a technique which works well in
practice and manages to reduce the size of encodings of real
type hierarchies.

In the binary matrix encoding, γ is a one-to-one mapping
from types to matrix indices. Each type has a column and
a row of the matrix. In the packed encoding, we propose to
reuse columns for unrelated types. This reuse of columns is
similar in spirit to the reuse of genes in hierarchical encoding
and to the levels of Cohen’s algorithm.

4.1 The encoding
For the packed encoding of a hierarchy 〈T , <:〉 with N types,
we construct a N × P bucket matrix MPE

MPE : T × [1 . . . P] → tid

so that

x <: y ⇔ MPE [x, γ(y)] = MPE [y, γ(y)]

where γ : T → [1 . . . P] maps types to columns indices (N.B.
we call columns of MPE , buckets), and τ : T → tid maps
types to identifiers, which are simply small numbers. The
number of columns P is computed by the bucket assignment
algorithm of sec. 4.3. For an example of packed encoding,
consider fig. 6 which encodes the hierarchy of fig. 1.

The type inclusion test to determine whether A is a subtype
of B proceeds as follows:

A <: B ≡ MPE [A, γ(B)] = MPE [B, γ(B)]
MPE [A, 1] = MPE [B, 1]

1 = 1
true

Buckets partition the set of types according to a simple rule:
no two types in the same bucket may have common descen-
dants. Thus a valid packed encoding must abide by the
following bucket assignment rule.

Rule 1. Bucket assignment. Types in the same bucket can
not have common subtypes.

γ(x) = γ(y) ⇒ descendants(x) ∩ descendants(y) = {}

A 1
B 2
C 2
D 3
E 4
F 3
G 2

γ

A 1
B 1
C 2
D 1
E 1
F 2
G 3

τ

A 1 0 0 0
B 1 1 0 0
C 1 2 0 0
D 1 2 1 0
E 1 0 0 1
F 1 3 2 1
G 1 3 0 0

γ 1 2 3 4

MPE

Figure 6: Packed encoding of fig. 1.

where x ∈ T ∧ y ∈ T ∧ x 6= y.

Clearly, this rule implies that in pathological cases the packed
encoding may degenerate into a binary matrix. This occurs
for a flat hierarchy with a bottom element that is a sub-
type of every other type. Fortunately, such a hierarchy is
unlikely as it implies that some type has all the operations
and attributes of all other types in the program.

Identifiers are assigned so as to ensure that two types in
the same bucket will not have the same identifier. A valid
encoding must abide by the following identifier assignment
rule.

Rule 2. Identifier assignment rule. Types in the same bucket
have different identifiers.

γ(x) = γ(y) ⇒ τ(x) 6= τ(y)

where x ∈ T ∧ y ∈ T ∧ x 6= y.

4.2 Implementing type inclusion tests
The runtime representation of a type assumed by the packed
encoding is shown in fig. 7(a). It is composed of a short
integer bucket which represents the bucket to which the
type was assigned, i.e. the value of γ, and an array of bytes,
row, which contains the identifiers of all ancestors of the
type—each array is a row of MPE . The type identifier (i.e.
the value of τ) does not need to be stored explicitly as it
can be fetched from row. Furthermore, type identifiers can
be small numbers as the assignment rule (rule 2) does not
require them to be globally unique. Identifiers need only
be unique within a bucket. In our set of benchmarks, only
a few buckets contain more than 255 types. So, we chose
to limit identifiers to a byte and create additional buckets
when necessary.

The type inclusion test for checking whether an object obj is
a subtype of a type with identifier #tid and bucket #bucket
is shown in fig. 7(b). The type test is faster than Cohen’s
encoding; it is not necessary to perform a bound check since
all row arrays have the same length. The machine instruc-
tion sequence, shown in the appendix, is four instructions
long. This is shorter than any known multiple inheritance
dispatch sequence5 and probably short enough to be inlined.

4.3 Computing the packed encoding
The bucket assignment rule can be turned into an algorithm
without too much effort. It suffices to associate with every
type the set of its descendants, and to maintain, for every
bucket, a set that is the union of the descendant sets of all
of the types it contains. The algorithm is then to build a
list of types sorted by their level, to guarantee that we visit
parents before children. Then, for each type in the list, the
algorithm must find a bucket for which the intersection be-
tween the bucket’s set of descendants and the type’s set of

5Single inheritance dispatch in a statically typed language
can be done in three instructions [8]. Note also, that multi-
ple subtyping dispatch in Java can be done in 3 instructions
[11].

class Type rep {
int8 bucket

array [1 ...P] of int8 row

}

(a) Runtime data structures.

Type rep type := obj.type rep

if (type.row[#bucket] = #tid)

(b) Type inclusion test.

Figure 7: Implementing the Packed Encoding (PE).

descendants is empty. If no such bucket can be found, a new
bucket is added. This is what we did in an earlier version of
this paper. Unfortunately, the result is an extremely inef-
ficient algorithm which spends most of its time performing
intersections and unions of large sets—the sets are arbitrary
subsets of T .

We present a more sophisticated algorithm which is an or-
der of magnitude faster and yet remains simple and easy to
implement. The crucial idea is to separate the single sub-
typing portion of the hierarchy from the multiple subtyping
portion and to use this to refine the bucket assignment rule.
We start by defining three disjoint subsets of T . The first
subset is the set of join types. A join type is a type with
multiple parents (i.e. direct supertypes) which has only sin-
gle subtyping descendants.

join(T) ≡ {x ∈ multis(T)| 6 ∃y ∈ multis(T) : y <: x}

The second subset is the set of spine types. Any ancestor of
a join type belongs to this set.

spine(T) ≡ {x ∈ ancestors(y)|y ∈ join(T)}

The last subset is the set of plain types, these are types
which are neither in spine nor in join. A plain type is a
type that has a single parent, and whose descendants are
also plain types.

plain(T) ≡ T − (spine(T) ∪ join(T))

We will also use two list building functions level order and
rev level order. Each of them returns a list of types sorted
by their level.

level order(S) ≡ [x1, . . . , xN]
where N ≡ card(S),
and level(xi) ≤ level(xi+1)

rev level order(S) ≡ [x1, . . . , xN]
where N ≡ card(S),
and level(xi) ≥ level(xi+1)

Rule 3. Bucket assignment (plain and join). Plain and join
types may be assigned the same bucket only if they are not

related by <:.

γ(x) = γ(y) ⇒ x 6∈ ancestors(y) (a)

γ(x) = γ(y) ⇒ y 6∈ ancestors(x) (b)

where x ∈ join(T)∪plain(T) ∧ y ∈ join(T)∪plain(T)∧x 6=
y.

This rule is trivial since, for single subtyping, the only way
for two types to have a common descendant is that either
x <: y or y <: x.

Rule 4. Bucket assignment (spine). Two spine types may
be assigned the same bucket only if they have no join type in
common.

γ(x) = γ(y) ⇒ joins(x) ∩ joins(y) = {}

where x ∈ spine(T) ∧ y ∈ spine(T) ∧ x 6= y ∧
joins(z) ≡ descendants(z) ∩ join(T).

This rule is equivalent to rule 1. By construction, every
spine type has one or more join nodes in its descendants
list. If x <: y then joins(x) ∩ joins(y) = joins(x) 6= {}. If
y <: x then joins(x) ∩ joins(y) = joins(y) 6= {}. If x 6<: y
and y : 6> y then if the types have common descendants at
least one of them must be in spine(T).

The bucket assignment algorithm, shown in fig. 8 starts by
assigning buckets to spine types, as the other types depend
on them. Spine types are visited in reverse topological order
as the lower types are less likely to conflict with each other.
A spine type is added to a bucket if the bucket is not full
(fewer than 255 types) and if adding the type to the bucket
does not violate rule 4. Checking the validity of the rule
requires types and buckets to have a set of join types. The
set of join types of the bucket is updated each time a type
is added. Note that the size of these sets is limited by the
number of join nodes in the hierarchy. If there is no bucket
where to put the type, a new bucket must be created. An-
other reason for visiting join types in reverse level order is
that we can build the join sets while assigning buckets. Af-
ter assigning a bucket to a type, the join sets of the parents
of the type are updated with the joins of the current type.
The second part of the algorithm deals with non-spine types.
These types are visited in level order to ensure that buckets
are assigned to parents before children. All that needs to be
done is to compute for every type, the set of buckets that
have already been used by its ancestors. Any bucket not in
this set can be used for the type. This implements rule 3.

Building the runtime data structures once the buckets have
been assigned is merely a matter of traversing the bucket set
in any order and creating Type rep objects. We maintain a
counter n that indicate the column index of the bucket, this
is used for setting bucket (γ) and an intra bucket counter c
which is used for type identifiers (τ). The size of the rows,
P , is the cardinality of the set of buckets. The last stage of
the algorithm is to traverse the hierarchy in level order and
set the row fields of all types to their correct values.

4.4 Discussion
The bucket construction algorithm is quite fast (see sec. 7.2),
but does not guarantee an optimal bucket assignment. In
some cases it may allocate too many buckets. Consider the
type hierarchy of fig. 10, The optimal assignment is

Bucket 1 2 3 4

Types A B, D C, E F, G, H

T := load hierarchy()
Buckets := {}

foreach(x ∈ T)
x.joins := {}
x.used := {}

foreach(x ∈ join(T))
foreach(y ∈ parents(x))

y.joins := y.joins ∪ {x}

foreach(x ∈ rev level order(spine(T)))
found := false
foreach(b ∈ Buckets)

if(card(b.elements) ≤ 255
∧ x.joins ∩ b.joins = {})
found := true
b.elements := b.elements ∪ {x}
b.joins := b.joins ∪ x.joins
break

if(found = false)
b := newBucket
Buckets := Buckets ∪ {b}
b.elements := b.elements ∪ {x}
b.joins := x.joins

foreach(y ∈ parents(x))
y.joins := y.joins ∪ x.joins

foreach(x ∈ level order(plain(T) ∪ join(T)))
found := false
foreach(b ∈ Buckets)

if(card(b.elements) < 255 ∧ b 6∈ x.used)
found := true
b.elements := b.elements ∪ {x}
x.used := x.used ∪ {b}
break

if(found = false)
b := newBucket
Buckets := Buckets ∪ {b}
b.elements := b.elements ∪ {x}
x.used := x.used ∪ {b}

foreach(y ∈ children(x))
y.used := y.used ∪ x.used

Figure 8: Bucket assignment algorithm.

P = card(Buckets)
n := 0
foreach(b ∈ Buckets)

c := 0
n := n + 1
foreach(x ∈ b.elements)

c := c + 1
x .type := newType rep
x .type.bucket := n
x .type.row :=

newArray [1 . . . P] of int8
foreach(i ∈ [1 . . . P])

x .type.row [i] := 0
x .type.row [x .type.γ] := c

foreach(x ∈ level order(T))
foreach(y ∈ children(x))

foreach(i ∈ [1 . . . P])
y .type.row [i] :=

y .type.row [i] | x .type.row [i]
// | is the logical-or operator

Figure 9: Building the PE type representation.

A

B C D E

F G H

Figure 10: Type hierarchy.

Depending on the order in which level–1 types are visited
the algorithm may return the following bucket assignment:

Bucket 1 2 3 4 5

Types A B, E C, H D, F G

This assignment requires one extra bucket. Because B and
E were put in the same bucket, C and D had to be placed
in different buckets.

The obvious approach for finding the optimal assignment
would require graph coloring, which we wanted to avoid, as
one of the strong points of this algorithm is its speed. But,
before looking for more complex solutions, it is a good idea
to evaluate what there is to gain. One way to do this is to
compute an approximation of the lower bound on the num-

ber of buckets needed in our set of benchmark programs and
compare that with the number of buckets generated by the
bucket assignment algorithm. A very simple lower bound
is the largest value of ancestors(x) for each hierarchy. It
is guaranteed by the bucket assignment rules that the op-
timal encoding will have at least that many buckets. We
have done that for our benchmark programs. The results
are summarized in table 1. The only three programs where
we actually lose are GEO, EDE and LOV; all three are the
output of a code generator which makes extensive use of
multiple subtyping—see 7.1 for a description of the bench-
mark suite. The difference in the case of GEO is one bucket
and, for LOV and EDE, three buckets. Such small num-
bers do not warrant complicating the algorithm. We also
believe that these examples are atypical in their heavy use
of multiple subtyping.

5. BIT-PACKED ENCODING (BPE)
The choice of an uniform bucket length for the packed en-
coding was motivated by an emphasis on speed of type in-
clusion tests. If data size is the issue, the encoding can be
compressed further by allowing variable bucket lengths. A
length of 8 bits is used for PE which allows 255 types to share
the same bucket. In practice, the number of types that ac-
tually share a bucket is much lower. In fact, for the multiple
subtyping hierarchies of our benchmark suites, 33% of the
buckets contain a single type. These buckets actually need
a single bit. The bit-packed encoding (BPE) uses variable
sized representations for buckets. With this simple change
it improves the compression rate of all multiple subtyping
examples of the benchmark suite (see section 7.3).

The BPE encoding is generated by an algorithm which is run
after PE generation and which simply packs as many buckets
as possible in a single word. Fig. 11(a) shows the result for
the hierarchy of fig. 1. The value of γ is the offset in the
bit string, τ is the type identifier bit string. For practical
purposes, the BPE algorithm will not split type identifiers
across word boundaries. Thus words may be padded to 32
bits if needed. In fig. 11(a), the identifier of type A requires
single bit while those of all the other type require 2 bits.

The main differences between PE and BPE are their run-
time data structures and type inclusion tests. With the
bit-packed encoding, each Type rep contains an array of B
32 bit words, row, where B is obtained by packing the PE
encoding. Type identifiers are represented by numbers no
larger than 8 bits at an arbitrary offset in a word. To be
able to extract a type identifier, it is thus necessary to know

Hierarchy VW2 DG3 NXT ET+ UNI SLF

max ancestors 15 14 8 9 10 41
comp. buckets 15 14 8 9 10 41

Hierarchy GEO LOV EDE LAU JAV

max ancestors 50 24 23 16 7
comp. buckets 51 27 26 16 7

Table 1: Assessing the quality of bucket assign-
ments.

its word, its position in a word and its length. Thus, a
Type rep contains a bucket word field, a bucket pos field
and a bucket mask. The last field is used to mask irrelevant
bits out of a byte. The runtime data structure is shown
in fig. 11(b). The type inclusion test, shown in fig. 11(c),
extracts the type identifier by shifting by bucket pos and
masking with bucket mask.

We refer to the machine instruction sequence for the BPE
test of fig. 11(c) as inline bit-packed encoding (IBPE). The
IBPE type test takes 6 machine instructions. Similarly to
the INHE, long instruction sequences may lead to code bloat.
This can be avoided by performing most of the type test out
of line, in a separate procedure. This variant of BPE is called
generic bit-packed encoding (GBPE). It reduces the per test
site overhead to 3 instructions. The GBPE type test is given
in the appendix.

The BPE has another advantage over PE. For the worst
case scenario of a flat hierarchy described in section 4.1, the
space needed for BPE is exactly the same as for the binary
matrix. With PE’s uniform bucket lengths, the encoding is
8 times as large.

A 1
B 2
C 2
D 4
E 6
F 4
G 2

γ

A 1
B 01
C 10
D 01
E 01
F 10
G 11

τ

A 100000
B 101000
C 110000
D 110010
E 100001
F 111101
G 111000

γ 123456

MBPE

(a) Encoding of fig. 1.

class Type rep {
int8 bucket word

int5 bucket pos

int8 bucket mask

array [1 ...B] of int32 row

}

(b) Runtime data structures.

Type rep type := obj.type rep

int32 word := type.row[#bucket word]

word := word >> #bucket pos

word := word & #bucket mask

if (word = #tid)

(c) Type inclusion test.

Figure 11: Bit-Packed Encoding (BPE).

6. COMPACT ENCODING (CE)
A notable characteristic of all constant-time encodings is
redundancy. In Cohen’s encoding, a row differs from its
parent in only one position. With multiple subtyping, more
than one position may differ as each type may have more
than one parent. Yet, in general, rows remain fairly constant
from one generation to the next.

The compact encoding is a straightforward adaption of the
compact dispatch table technique of Vitek and Horspool
[15]. It reduces repetition by introducing sharing between
rows of a type matrix. The idea is simple, start with a N×M
matrix (either a binary matrix or the packed encoding, in

A γ1 1
B γ2 1
C γ2 1
D γ3 2
E γ2 1
F γ3 2
G γ2 1

γi

A 1
B 1
C 2
D 1
E 1
F 2
G 3

τ

A, B, C, D, E, F, G 1

γ1 1

M1CE

A, E 0
B 1

C, D 2
F, G 3

γ2 1

M2CE

A, B, C, G 0 0
D 1 0
E 0 1
F 2 1

γ3 1 2

M3CE

(a) The encoding of fig. 1.

class Type rep {
short chunk

short bucket

array [1...M] of Row row

}
class Row {

array [1...mi] of int8 elem

}

(b) Runtime data structures.

Type rep type := obj.type rep

Row row := type.row[#chunk]

if (row.elem[#bucket] = #tid)

(c) Type inclusion test.

Figure 12: Compact Encoding (CE).

the following we take the packed encoding) and break it into
a number, m, of chunks. Each chunk is composed of N rows
and Mi columns. Then, for each chunk, compare all rows
and merge equal rows. This yields a set of smaller, Ni ×Mi,
matrices where Ni ≤ N and Mi ≤ M for each of the chunks.
The choice of the chunk size and of the column in which to
put in a chunk relies on heuristics as discussed in [15].

The compact encoding for the small type hierarchy of fig. 1
is shown in fig. 12(a). In this encoding the packed matrix
(7× 5) is split into three chunks. So, with m = 3, the three
chunks have dimensions 1 × 1, 4 × 1, and 4 × 2.

The runtime data structure for each Type rep consists of a
short integer chunk which indicates which γi to use, a second
short integer bucket which is the value of γ and an array
of rows, row. An element in this array of rows is a chunk,
a portion of one of the rows of the original matrix. The
actual Row objects are shared by multiple Type rep objects.
Fig. 12(b) shows these data structures. As before, the type
identifier may be recovered from the type, so the identifier of
type x is stored at x.row[x.chunk].elem[x.bucket]. The
type inclusion test against a type with chunk #chunk, bucket
#bucket and identifier #tid is shown in fig. 12(c).

7. EVALUATION
This last section evaluates the different constant-time type
inclusion test techniques according to four criteria: the run-
time characteristics of the type test algorithms, space re-
quirements of the associated encoding, generation time of
the encoding and suitability for incremental hierarchy mod-
ifications.

We compare five algorithms: the binary matrix (BM) of
section 3.2.1, the near optimal hierarchical encodings (NHE)
of section 3.2.3, the packed encoding (PE) of section 4, the
bit-packed encoding (BPE) of section 5, and the compact
encoding (CE) of section 6. Type tests with NHE and BPE
can be either performed inline (INHE and IBPE) or in a
separate function (GNHE and GBPE). We refer to the al-
gorithms by the above mentioned acronyms.

7.1 Benchmark data sets
Choosing data sets to compare encodings is a tricky task.
While it is fairly easy to generate arbitrary directed acyclic
graphs, they seldom resemble those of real programs. For
example, the degree of multiple subtyping that humans seem
to be comfortable with is usually quite low; the average
number of direct supertypes is very close to 1 in all large
programs we have been able to study. The encodings that
we want to compare have been designed to be space effi-
cient representation of type hierarchies, we thus feel that it
is necessary to compare them on real-life data sets.

Another consideration is whether to include single subtyp-
ing hierarchies. Since single subtyping is a special case of
multiple subtyping, and it is fairly common to find single
subtyping hierarchies in languages with multiple subtyping
(e.g. ET++, see below), we must include single subtyping in
this evaluation. Furthermore, as the packed encoding (PE)
reduces to Cohen’s encoding in the single subtyping case, it

Library Lang. Types Level Parent Ancestor
num. max. (max./avg.) (max./avg.)

VW2 Smalltalk 1956 15 1 / 1 15 / 6.40
DG3 Smalltalk 1357 14 1 / 1 14 / 6.40
NXT Obj.-C 311 8 1 / 1 8 / 3.94
ET+ C++ 371 9 1 / 1 9 / 4.30
UNI C++ 614 10 2 / 1.01 10 / 4.02
SLF Self 1802 18 9 / 1.05 41 / 30.88
GEO Eiffel 1319 14 16 / 1.89 50 / 14
EDE Eiffel 434 11 7 / 1.66 23 / 7.99
LOV Eiffel 436 10 10 / 1.71 24 / 8.50
LAU Laure 295 12 3 / 1.07 16 / 8.13
JAV Java 225 7 3 / 1.04 7 / 3.43

Table 2: Benchmark type hierarchies.

is interesting to compare its space requirements with those
of the hierarchical encoding.

We use a collection of 11 medium to large type hierarchies
to evaluate encodings6 [9].

Some descriptive data about the hierarchies is given in table 2.
Level indicates the depth of each hierarchy, parent gives both
the largest and average number of direct supertypes, and,
finally, ancestors gives largest and average number of super-
types for each hiearchy.

VW2 and DG3 are both large Smalltalk-80 class libraries,
respectively VisualWork2 and Digitalk3. Each class corre-
sponds to a type, the subtype relation is the inheritance
relationship between classes. VW2 is our largest hierarchy
with almost 2000 types. VW2 is also quite deep with 15
levels. NXT contains types extracted from the NeXTStep
class library. ET+ is the ET++ graphical user interface
library. UNI is the Unidraw C++ toolkit. SLF contains
data extracted from the Self system7. This is our largest
multiple subtyping example, it is also the deepest hierarchy
(18 levels). Notice that the maximum number of parents is
9 which is rather high. The largest number of ancestors 41
and the average number of ancestors is more than 30. Both
values are much larger than in class-based languages. GEO,
EDE and LOV are Eiffel applications produced by a code
generator. They exhibit very large amounts of multiple sub-
typing, up to 16 parents for GEO. Their average number of
parents is also way higher than that of the other hierarchies.
LAU is the Laure language of Caseau. Finally, JAV is the
Java JDK 1.02 library. We refer to the data sets by their
acronyms.

We consider these hierarchies to be fairly large, but expect to
see much larger hierarchies for big systems. Another source
of large hierarchies is the growing number of code generators
that use object-oriented languages (Java for example) as
their target. Generated code may use multiple subtyping

6We thank Yves Caseau (LAU) and Karel Driesen (VW2,
DG3, ET+, UNI, SLF). The benchmark data set is available
from
http://www.cs.ucsb.edu/oocsb/classhierarchies/.
7In Self shared behavior is implemented by maps, for our
purpose each map represents a type.

more extensively as automatic tools are better at keeping
track of complex hierarchies than human programmers.

7.2 Runtime behavior of type tests
Based on the machine code sequences given in the appendix,
the different algorithms are compared with respect to their
speed, instruction count and register usage. The comparison
is based on a generic RISC architecture which executes one
instruction every cycle with a load latency of 2 cycles and
no penalty for correctly predicted branches. The variable
H for INHE and GNHE is a factor of the length of the bit
string encoding the hierarchy. If the word size is 32 bits and
the encoding is n bits, H = (n + 31) mod 32. In our set
of programs the largest H was 3. For GNHE, we count the
number of instructions at the call site only. All algorithms
under consideration guarantee constant-time type tests. In
the case of the INHE and GNHE, the time is determined at
link-time when the entire hierarchy is known. The, perhaps
surprising, result of table 3 is that type tests with PE are as
efficient as type tests that use a binary matrix. The other
techniques are slower, require more registers and have higher
instruction counts.

Resources BM INHE GNHE

Cycles 6 3 + 6H 5 + 6H
Instructions 4 3 + 5H 4
Registers 1 4 5

Resources PE IBPE GBPE CE

Cycles 6 8 11 8
Instructions 4 6 3 5
Registers 1 1 3 1

Table 3: Comparing runtime characteristics.

7.3 Space requirements
Table 4 summarizes space requirements of the different en-
codings relative to the binary matrix encoding. Compression
rates are computed as 1 − (sizeX/sizeBM). These mea-
surements assume 32 bit pointers and 32 bit alignment of
the data and do not include the size of the machine code
sequences.

The space requirements of the naive approach (BM) can
come close to 0.5MB and these get compressed down to 16
KB with NHE and 30 KB with PE and BPE. The size of
BM depends on the number of types, we get equally large hi-
erarchies with single (VW2) and multiple subtyping (SLF).
NHE has consistently better compression rates. It performs
slightly worse on inputs containing multiple inheritance like
EDE, LOV and JAV, but interestingly enough performs very
well on SLF and GEO. PE demonstrates good compression
rates for single subtyping and only adequate compression
rates multiple subtyping. BPE improves on PE for all mul-
tiple subtyping hierarchies. For instance for SLF, the encod-
ing size drops from 77 KB to 28 KB. CE fails to improve on
the PE, except for LOV and EDE where it performs slightly
better. The reason for this poor performance is that gains
due to sharing parts of bit vectors are offset by the cost of
the additional pointers in each type data structure. These

numbers suggest that CE needs larger hierarchies to become
profitable.

Lib. BM NHE PE BPE CE

VW2 485.3 16.0 30.5 30.5 39.3
(96.7%) (93.7%) (93.7%) (91.9%)

DG3 233.4 10.9 21.2 15.9 24.0
(95.3%) (90.9%) (93.2%) (89.7%)

NXT 12.4 1.2 2.4 2.4 3.7
(90.3%) (80.6%) (80.6%) (70.2%)

ET+ 17.8 1.4 4.3 2.8 4.8
(92.1%) (75.8%) (84.3%) (73.0%)

UNI 49.1 2.4 7.2 4.8 8.5
(95.1%) (85.3%) (90.2%) (82.7%)

SLF 410.8 14.7 77.4 28.1 85.0
(96.4%) (81.2%) (93.2%) (79.3%)

GEO 221.5 15.9 66.9 25.7 67.1
(92.8%) (69.8%) (88.4%) (69.7%)

EDE 24.3 3.4 11.9 5.1 10.5
(86.0%) (51.0%) (79.0%) (56.8%)

LOV 24.4 3.4 11.9 5.1 10.8
(86.1%) (51.2%) (79.1%) (55.7%)

LAU 11.8 1.1 4.6 2.3 6.2
(90.7%) (61.0%) (80.5%) (47.5%)

JAV 7.2 0.9 1.8 0.9 2.7
(87.5%) (75.0%) (87.5%) (62.5%)

Table 4: Space requirements (KB/compression
rate).

7.3.1 Considering instruction space
We were able to obtain the number of static type check calls
(3861) for the Java library (JDK 1.0.2). If the space re-
quirements for both the table and the instructions are con-
sidered, the rankings of the algorithms are completely re-
versed. The results are presented in table 5. The generic
algorithms (GPBE and GNHE) win as they require fewer
instructions per test site. The size of the tables actually
is irrelevant, code space dominates the size requirements.
Nevertheless, the code size measures should be taken with
caution: (1) it is not clear how representative this data is,
(2) many of these type tests will be inlined away by an opti-
mizing compiler, and (3) the JDK1.0.2 hierarchy was quite
small. These numbers should be considered as upper bounds
on size requirements.

Space BM INHE GNHEE

code only 60.3 123.4 60.3
data + code 67.6 124.3 61.2

Space PE IBPE GBPE CE

code only 60.3 90.5 45.2 77.1
data + code 62.1 91.4 46.1 79.6

Table 5: Space requirements with instructions (KB).

7.4 Encoding generation
The time needed to generate the encoding can not be ne-
glected as it will lengthen the overall compile and link cycle
time or even play a role at runtime in the case of incremental
hiearchy updates.

We have measured the speed of all four algorithms on a 500
MHz 21164 Alpha processor. The running times in millisec-
onds are shown in table 6. These times were obtained by
computing the encoding 100 times for each hierarchy.

The difference between BM, PE, BPE and CE is quite small,
all three algorithms run fast. The worst time for BM is 10
msecs for VW2 which is the largest hierarchy. PE and CE
take 13 and 23 msecs, respectively, for GEO which is large
and features heavy multiple inheritance. NHE is slower, yet
it still generates encodings in less than 2 seconds.

7.5 Incremental hierarchy updates
Dealing with changes in the subtyping relation is difficult.
As for most table compression algorithms small changes in
the input can result in widely different compressed outputs.
Thus it is not always possible to avoid recomputing the en-
tire encoding.

There are two kinds of changes to the subtype relation: de-
structive changes, changes that modify the type graph either
by adding or removing edges between existing vertices, and
additive changes, changes that only add new vertices and
new edges to a type graph. The first kind is usually re-
stricted to programming environments during software de-
velopment. The second kind may actually occur at runtime
when new software components are dynamically linked. In
class-based languages, such as Java, new classes and in-
terfaces can be loaded at arbitrary points during program
execution. The new types thus created are always subtypes
of already existing types. In languages with structural sub-
typing, new types may also be supertypes of existing types.

Supporting dynamic changes to the subtype relation implies
that the information dependent on a particular encoding
must be localized to some well defined portion of the pro-

BM (B)PE CE NHE

VW2 10 12 13 890
DG3 6 8 9 426
NXT 1 2 2 30
ET+ 1 2 2 39
UNI 2 3 4 93
SLF 9 11 14 1367
GEO 8 13 23 1902
EDE 2 4 5 136
LOV 1 4 5 168
LAU 1 2 2 21
JAV 1 1 2 19

Table 6: Encoding generation times (msecs).

gram and easy to change or update to reflect the new situ-
ation. This comes at a cost in efficiency. For one, compile-
or link-time constants can not be updated. In general that
would prove too costly. Thus type inclusion tests must be
wrapped in function calls to a generic test function that
expects two Type rep objects and is able to extract the nec-
essary information for a type test out of their fields.

Another trick to speed up recomputation of the encodings
is not to recompute them. Or, at least, to wait until the
last possible time before doing so. The motivation is that
changes often come in batches. As it is economical to re-
compute for as many types as possible, we must try to wait
until all the types in the batch have been added before start-
ing the update. What is the latest time? It is either the
first subtype test, or, if we want to be more precise, the
first subtype test that involves a new type. So, we can ei-
ther modify—by overwriting code—the type test function
to trigger recomputation, or add extra information to type
representations to indicate whether they have been initial-
ized and add an extra check to each type test to verify that
both types already have been installed.

In any case, the next question is what to do when recom-
puting is necessary. Assume that we have batched a group
of updates. If the batch contains destructive updates the
encoding will have to be recomputed. If the batch contains
no destructive updates, the binary matrix does not have
to be updated. For a new type, each row has to be ex-
tended by an entry and a new row must be added. The cost
of extension can be reduced by pre-allocating longer rows
with some unused entries. In the case of the hierarchical
encoding, recomputing can not be avoided easily. For the
packed and compact encodings, adding new subtypes does
not necessarily mean recomputing the encoding. Recomput-
ing is only necessary if we add new join types of previously
existing types. Otherwise the update can be performed by
extending rows. For the bit-packed encoding, the same com-
ments as for PE apply, except that the encoding must also
be recomputed if the number of bits required to represent a
bucket changes.

When the encoding has to be recomputed, generation time
and memory requirements become important. BM, PE and
BPE have the fastest generation times. CE follows close
behind PE. Finally, NHE is most computationally intensive
algorithm and thus less suited to frequent encoding genera-
tion.

8. CONCLUSIONS
In this paper we have looked at the problem of testing
for type inclusion in object-oriented programming languages
with multiple subtyping. We evaluated five main techniques
for computing type inclusion with different trade-offs. Which
is the best type test method? If run-time speed is the pri-
mary concern, the Packed Encoding is a clear winner. It
ties with the Binary Matrix as achieving the fastest type
test times, it is almost as fast to compute, yet it requires
much less storage for tables. The packed encoding is thus
suited for statically compiled programming languages as well
as to environments that permits dynamic addition of new

types (as with Smalltalk and Java). If space and speed of
tests are equal concerns, the Bit-Packed Encoding is the best
choice as it is consistently more compact than the Packed
Encoding, yet it is fast to compute and guarantees constant
time type inclusion tests. If space is the major concern,
our generic Near Optimal Hierarchical Encoding method will
give the best results. Finally, we believe that the Compact
Encoding may compress some very large hierarchies better
than the other encodings but we were not able to substan-
tiate this hypothesis with the data at our disposal.

Acknowledgments
The authors wish to thank Ole Agesen, Laurent Dami, Karel
Driesen and Manuel Serrano for thoughtful comments on
earlier versions of this paper; Christian Queinnec for inter-
esting discussions of alternative techniques and uses of type
inclusion tests; and the OOPSLA reviewers as their techni-
cal comments helped us improve this paper.

9. REFERENCES
[1] H. Aı̈t-Kaci, R. Boyer, P. Lincoln, and R. Nasr.

Efficient implementation of lattice operations. ACM
Transactions on Programming Languages and
Systems, 11(1):115–146, 1989.

[2] Y. Caseau. Efficient handling of multiple inheritance
hierarchies. In Proc. Conference on Object Oriented
Programming Systems, Languages & Applications,
OOPSLA’93, Published as SIGPLAN Notices 28(10),
pages 271–287. ACM Press, September 1993.

[3] N. H. Cohen. Type-extension type tests can be
performed in constant time. ACM Transactions on
Programming Languages and Systems, 13(4):626–629,
1991.

[4] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and
C. Chambers. Vortex: An optimizing compiler for
object-oriented languages. In Proc. Conference on
Object Oriented Programming Systems, Languages &
Applications, OOPSLA’96. ACM Press, October 1996.

[5] P. Dencker, K. Dürre, and J. Heuft. Optimization of
parser tables for portable compilers. ACM Transaction
on Programming Languages and Systems,
6(4):546–572, October 1984.

[6] E. W. Dijkstra. Recursive programming. Numer.
Programming, (2):312–318, 1960.

[7] K. Driesen. Selector table indexing and sparse arrays.
In Proc. Conference on Object Oriented Programming
Systems, Languages & Applications, OOPSLA’93,
Published as SIGPLAN Notices 28(10), pages
259–270. ACM Press, September 1993.

[8] K. Driesen, U. Hölzle, and J. Vitek. Message dispatch
on pipelined processors. In Proc. European Conference
on Object-Oriented Programming, ECOOP’95, Lecture
Notes in Computer Science. Springer-Verlag, 1995.

[9] K. Driesen, U. Hölzle, and J. Vitek. The OOCSB class
heterarchy benchmark suite. Technical Report
TRCS97-09, Dept. of Computer Science, University of
California, Santa Barbara, July 1997.

[10] M. Habib and L. Nourine. Tree structure for
distributive lattices and its applications. Theoretical
Computer Science, 165:391–405, 1996.

[11] A. Krall and R. Grafl. CACAO – a 64 bit JavaVM
just-in-time compiler. In G. C. Fox and W. Li, editors,
PPoPP’97 Workshop on Java for Science and
Engineering Computation, Las Vegas, June 1997.
ACM.

[12] A. Krall, J. Vitek, and R. N. Horspool. Near optimal
hierarchical encoding of types. In Proc. European
Conference on Object-Oriented Programming,
ECOOP’97, Lecture Notes in Computer Science.
Springer-Verlag, June 1997.

[13] C. Queinnec. Designing MEROON v3. In C. Rathke,
J. Kopp, H. Hohl, and H. Bretthauer, editors,
Object-Oriented Programming in Lisp: Languages and
Applications. A report on the ECOOP’93 Workshop,
September 1993.

[14] C. Queinnec. Fast and compact dispatching for
dynamic object-oriented languages. Information
Processing Letters (accepted for publication), 1997.

[15] J. Vitek. Compact dispatch tables for
dynamically-typed object-oriented languages. M.sc.
thesis, University of Victoria, April 1995.

[16] J. Vitek and R. N. Horspool. Taming message passing:
Efficient method look-up for dynamically-typed
languages. In Proc. European Conference on Object
Oriented Programming, ECOOP’94, Lecture Notes in
Computer Science. Springer-Verlag, 1994.

[17] N. Wirth. Type extensions. ACM Transactions on
Programming Languages and Systems, 10(2):204–214,
1988.

[18] N. Wirth. Reply to “type-extension type tests can be
performed in constant time”. ACM Transactions on
Programming Languages and Systems, 13(4):630, 1991.

Appendix: Implementations in Generic
RISC Assembly Code
In all four code sequences below, control transfers to the
label FAIL if the type inclusion test fails and drops through
to the following instruction if it succeeds.

Binary Matrix

load [object + #type_rep], type_rep

load [type_rep + #word_pos], bit

lshift bit, 31 - #bit_pos, bit

bgez bit, #FAIL

Packed Encoding

load [object + #type_rep], type_rep

load [type_rep + #bucket], tid

cmp tid, #tid

bne #FAIL

Inline Bit-Packed Encoding

load [object + #type_rep], type_rep

load [type_rep + #bucket_word], tid

rshift tid, #bucket_pos, tid

and tid, #bucket_mask, tid

cmp tid, #tid

bne #FAIL

Generic Bit-Packed Encoding

load [object + #type_rep], type_rep

add #0, #par_tid, par_tid

call check_n

check_n:

load [type_rep + #bucket_word], tid

rshift tid, #bucket_pos, tid

and tid, #bucket_mask, tid

cmp tid, par_tid

bne #FAIL

ret

Compact Encoding

load [object + #type_rep], type_rep

load [type_rep + #chunk], chunk

load [chunk + #bucket], tid

cmp tid, #tid

bne #FAIL

Inline Near Optimal

Hierarchical Encoding

load [object + #type_rep], type_rep

sethi high(#parent_type), parent

setlo low(#parent_type), parent

// repeated H times:

load [type_rep], this_tid

load [parent], parent_tid

and this_tid, parent_tid, this_tid

cmp this_tid, parent_tid

bne #FAIL

Generic Near Optimal

Hierarchical Encoding

load [object + #type_rep], type_rep

sethi high(#parent_type), parent

setlo low(#parent_type), parent

call GNHE_H

GNHE_H:

// comparison of one machine word

load [type_rep], this_tid

load [parent], parent_tid

and this_tid, parent_tid, this_tid

cmp this_tid, parent_tid

bne #FAIL

// repeated H times:

ret

