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Most dynamic languages allow users to turn text into code using various functions, often named eval,
with language-dependent semantics. The widespread use of these reflective functions hinders static analysis
and prevents compilers from performing optimizations. This paper aims to provide a better sense of why
programmers use eval. Understanding why eval is used in practice is key to finding ways to mitigate its
negative impact. We have reasons to believe that reflective feature usage is language and application domain-
specific; we focus on data science code written in R and compare our results to previous work that analyzed
web programming in JavaScript. We analyze 49,296,059 calls to eval from 240,327 scripts extracted from
15,401 R packages. We find that eval is indeed in widespread use; R’s eval is more pervasive and arguably
dangerous than what was previously reported for JavaScript.
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1 INTRODUCTION

Most dynamic languages provide their users with a facility to transform unstructured text into
executable code and evaluate that code. We refer to this reflective facility as eval bowing to its
origins in LISP, all the way back in 1956. Eval has been much maligned over the years. In computing
lore, it is as close to a boogeyman as it gets. Yet, for McCarthy [1978], eval was simply the way
to write down the definition of LISP; he was surprised that someone coded it up and offered it
to end-users. Since then, reflective facilities have been used to parameterize programs over code
patterns that can be provided after the program is written. The presence of such a feature in a
language is a hallmark of dynamism; it is a form of delayed binding as the behavior of any particular
call to eval will only be known when the program is run, and that particular call site is evaluated.
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Trouble in Paradise. Reflective facilities hinder most attempts to reason about or apply meaning-
preserving transformations to the code using them. In practice, eval causes static analysis tech-
niques to lose so much precision as to become pointless. For compilers, anything but the most trivial,
local optimizations are unsound after the use of eval. Furthermore, the addition of arbitrary code
Ð code that could have been obtained from a network connection Ð as a program is running is a
security vulnerability waiting to happen. To illustrate these challenges, consider the interaction of a
static analysis tool with a dynamic language. A program analyzer computes an over-approximation
of the set of possible behaviors exhibited by the program under study, a reflective facility must be
represented by all behaviors that can be expressed in the target language. i.e., any legal sequence of
instructions can replace eval. As dynamic languages are permissive, the tool must assume that
all functions in scope were redefined, e.g., that ‘+‘ now opens a network connection. A single
occurrence of eval causes the static analyzer to lose all information about the program state
and meaning of identifiers. This loss of precision can sometimes be mitigated by analyzing the
string argument [Christensen et al. 2003], but if the string comes from outside the program, not
much can be done. A frustrated group of researchers argued giving up on soundness and, instead,
under-approximating dynamic features [Livshits et al. 2015]. In their words, ła practical analysis,
may pretend that eval does nothing unless it can precisely resolve its string argument at compile
time.ž Alas, assuming that eval does not have side-effects or that side-effects will not affect results
is unduly optimistic.

Is Past Prologue? Previous work investigated eval in web programming, specifically JavaScript
web pages [Richards et al. 2010]. In 2011, 82% of the 10,000 most accessed sites used eval [Richards
et al. 2011]. Yet, the strings passed to eval, and their behaviors, when executed, were far from
random; it was shown that when one could observe several calls, the łshapež of future calls could
be predicted with 97% accuracy [Meawad et al. 2012]. Overall, practical usage suggested that most
reflective calls were relatively harmless. While this backed up the soundiness squad’s approach,
does it generalize to other application domains and to other languages?

The Here and Now. In this study, we investigate the usage of eval in programs written in the
R language. R is a language designed by statisticians for applications in data science [R Core
Team 2017]. What makes looking at R after JavaScript interesting is that, while both languages are
dynamic, they are quite different. While one can program in an object-oriented style in R like in
JavaScript, R is mostly a lazy functional language. JavaScript was designed to run untrusted code
in a browser, while R is used for statistical computing on desktops. JavaScript is a general-purpose
language used by a vast community of programmers, while R is used for scientific computing by data
scientists and domain experts with, often, limited programming experience. One can distinguish
between library implementers who have programming experience and a working knowledge of R,
and end-users who are typically not expert programmers with a cursory knowledge of the language.
Our goal is to highlight the differences in usage between JavaScript and R and explain them in
terms of language features, application domain, and programmer experience. Hopefully, some of
our observations generalize to other languages.

The What and How. One benefit of R is that every package in the CRAN repository comes with
examples of typical usage. This gives us a codebase that we can analyze dynamically. To observe
eval, we built a two-level monitoring infrastructure: we monitor programs by instrumentation and
we also monitor the inner workings of the interpreter. Dynamic analysis is limited as it can only
observe behaviors triggered by the particular inputs passed to a program. Luckily, R libraries come
with many tests and use-cases. Our corpus is constructed to reflect the levels of sophistication of the
R community. We distinguish between CRAN packages (15,401 curated packages that pass quality
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checks and have tests and sample data) and Kaggle scripts (7,931 end-user written programs) It is
reasonable to expect eval usage to differ between these datasets, libraries are part of a lively and
growing ecosystem, while end-user code is often thrown together, run once, and never revisited.

Why do we Eval? The results of our study suggest that eval is widely used for the implementation
of the language, and in many libraries. End-user code makes less frequent and less sophisticated
use of eval. In many ways, eval in R is as bad as it gets: it’s varied, performs side-effects, and
reaches many environments. By large, the motivations for eval relate to various forms of language
extensions and meta-programming. Eval is used where other languages would provide macros.
But, the expressive power of eval is higher as it can reach arbitrarily far back in the call stack.

Our data and code are open-source and publicly available at:

https://doi.org/10.5281/zenodo.5415230

2 BACKGROUND AND PREVIOUS WORK

This section provides a short introduction to R and the reflective features of the language; then
looks at the semantics of eval in R and discusses design choices; lastly, this work is put in context.

2.1 R, Briefly

Morandat et al. [2012] give a programming language-centric overview of the R language. They
characterized it as a lazy, vectorized, functional language with a rich complement of dynamic
features expressive enough to layer several object systems on top of the core language. Most data
types are sequences of primitive values. For instance, c("Ha","bye") evaluates to a vector of two
strings. Constants such as 42 are vectors of length one. To enable equational reasoning, values
accessible through multiple aliases are copied when written to. Furthermore, values can be tagged
by attributes; these are key-value pairs. For instance, the attribute dim-c(2,2) can be attached to the
value bound to x by attr(x,"dim")← c(2,2). Adding this attribute turns x into a matrix. The class
attribute gives a value a ’class’ in the object-oriented sense. So, class(x)← "human" sets the class of x
to human; classes are used for method dispatch. Every linguistic construct is desugared to a function
call, even control flow statements, assignments, and bracketing. All functions can be shadowed and
redefined, making R at the same time remarkably flexible and exceedingly challenging to compile
as vividly detailed by Flückiger et al. [2019]. R uses a relaxed call-by-need convention for passing
arguments to functions, studied in depth by Goel and Vitek [2019]. Each argument is a thunk
composed of an expression, its environment, and a slot for the result; these are called promises. To
get the value of an argument, the corresponding promise must be forced. Once forced, the promise’s
result is cached for future use.

2.2 On the Expressive Power of Eval

While a data-to-code facility is available in many languages, some design choices affect its expressive
power. The key choices are the input format, the environment in which generated code evaluates,
and the reflective operations available to that code. Table 1 summarizes a few designs.

The input to eval can be in any format convertible to code. JavaScript allows arbitrary strings;
Julia and R are more restrictive as they require expressions (or abstract syntax trees). Finally, Java
is the most restrictive as its classloader only accepts complete classes in bytecode format. These
differences mostly affect users who seem more comfortable crafting strings.
The choice of the environment of eval is essential as it determines how much of a program

eval can observe as well as the reach of potential side-effects performed by its execution. The
most restrictive semantics is that of Java, where newly loaded code evaluates in the environment
consisting of the classes visible from the current classloader. Julia limits eval to the symbols visible
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Table 1. Design space of eval

Language Input Scope Reflective operations

Julia [Bezanson et al. 2012] expression toplevel data
Java [Liang and Bracha 1998] bytecode classloader data

JavaScript [Richards et al. 2011] text current, toplevel data
R [Ihaka and Gentleman 1996] expression programmatic data, stack, environment

in the global environment, so does JavaScript’s strict mode. Finally, R is the most flexible as any
accessible environment can be selected and passed to eval. The choice of the environment is fully
under the programmer’s control.
The last degree of freedom is the expressive power of the code executed by eval. The main

difference between languages lies in how much of the state of a program is accessible through
reflective operations. Julia, Java and, JavaScript allow some form of introspection on the data that
is visible in the environment in which eval executes. R is more flexible as it lets eval inspect the
program’s call stack as well as the code of any function. Thus, any environment and any binding in
contains can be inspected and modified.

Given the above, the claim that R is amongst the languages with the most powerful eval seems
plausible. The rationale for R’s design seems to have been to expose as much of the language and
its internals as possible in order to maximize expressivity. In R, eval is a key tool to extend the
language and implement DSLs; it is also a replacement for macros. By contrast, the designers of
Julia chose to limit eval. In Julia, only global variables can be side-effected, and environments
cannot be readily manipulated. This is designed to shield optimized code from some of the most
pernicious uses of the facility [Bezanson et al. 2018]. Furthermore, Julia provides a versioning
mechanism to ensure that any method defined within an eval only becomes visible at well-defined
points and thus that optimized code does not have to be invalidated [Belyakova et al. 2020].

2.3 Eval in R

The eval function in R takes three parameters: an expression to evaluate (e), an environment where
to evaluate (env), and an enclosure (encl) that is used to look up objects not found in env.1

eval ← function(e, env = parent.frame(),

encl = if(is.list(env)) parent.frame() else baseenv()) ...

The expression passed to eval can be thought of as an abstract syntax tree. Listings 1 and 2 show
some of the ways of creating expressions: parsing from a string, manually, or via reflection. The call
to substitute(x) extracts the unevaluated expression from the promise x. The call to match.call()

returns an expression representing the current call which can then be further modified.
R is permissive in terms of what is considered an environment. Besides environments, it accepts

lists, data frames (using element names or column names for variable resolution), or an integer n (in
which case it would use the n. call frame). The default is the environment where the call to eval

was made. Environments nest, each has a parent. A new environment created with new.env has
the current environment as parent. Parent chains can be traversed with parent.env, until emptyenv
is reached. The top-level environment is .GlobalEnv, its parents are the packages that have been

1R offers three other variants of eval: evalq automatically quotes passed expressionÐshorthand for eval(quote(...)),
eval.parent(e,n) specifies the evaluating environment in terms of number of call frames (n) to go backÐshorthand for
eval(e,parent.frame(n)), and local evaluates e in a fresh environmentÐshorthand for evalq(e,new.env()).
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parse(text="a+b")

quote(a+b)

call("+", quote(a), quote(b))

# reflect promise

f ← function(x) substitute(x)

f(a+b)

Listing 1. Examples of calls producing expression a+b

f ← function(x, y) {

mc ← match.call() # reflect curr. call

mc[[1]] ← as.name("g")

mc[["x"]] ← 3

mc

}

f(1,2) # returns an expr g(x=3,y=2)

Listing 2. Example of a call reflection

loaded. Environments are used as hash maps as they have reference semantics and a built-in string
lookup. One can also directly read, modify or create new bindings, given any environment:

# reading

envir$v

get("v", envir=envir)

# writing

envir$v ← 2

assign("v", 2, envir=envir)

2.4 Previous Work

Richards et al. [2011] provided the first study at scale of the behavior of eval in JavaScript. A corpus
of 10,000 popular websites was analyzed with an instrumented web browser to gather execution
traces. Of those sites, 82% used eval for purposes such as on-demand code loading, deserialization
of JSON data, or lightweight meta-programming to customize web pages. While many uses were
legitimate, just as many were unnecessary and could be replaced with equivalent and safer code.
The authors categorized inputs to eval. For inputs in which all named variables refer to the global
scope, many patterns could be replaced by more disciplined code [Jensen et al. 2012; Meawad et al.
2012]. The work did not measure code coverage, so the numbers presented are a lower bound on
possible behaviors. Furthermore, JavaScript usage in 2011 is likely different from today, e.g., Node.js
was not covered. More details about the dynamic analysis of JavaScript can be found in [Gong
2018].
Wang et al. [2015] analyzed the use of dynamic features in 18 Python programs to find if they

affect file change-proneness. Files with dynamic features are significantly more likely to be the
subject of changes than other files. Chen et al. looked at the correlation between code changes and
dynamic features, including eval, in 17 Python programs [Chen et al. 2018]. They did not observe
many uses of eval. Callaú et al. [2013] performed an empirical study of the usage of dynamic
features in 1,000 Smalltalk projects. While eval itself is not present, Smalltalk has a rich reflective
interface. The authors found that reflective methods are used in less than 2% of methods. The
most common reflective method is perform:; it send a message that is specified by a string. These
features are primarily used in the core libraries.

Bodden et al. [2011] looked at the usage of reflection in the Java DaCapo benchmark suite. They
found that dynamic loading was triggered by the benchmark harness. The harness then executes
methods via reflection. This caused static analysis tools to generate an incorrect call graph for the
programs in DaCapo.
Arceri and Mastroeni [2021] studied eval in JavaScript from a software security point of view.

The authors reported that 53% of the malware they studied used eval as a means to obfuscate attack
code or mount attacks. They proposed an abstract interpretation-based approach to analyzing
dynamic languages. One must construct a static approximation of the argument to eval and then
analyze possible behaviors of the interpreter when evaluating the generated code.
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Morandat et al. [2012] in their evaluation of the design of the R language, briefly looked at the
use of eval in their corpus (1763 packages). They found 8500 eval call sites and recorded 2M eval

calls. Because they included the base libraries, their results were dominated by a few functions with
match.arg2 being responsible for over half of the recorded eval calls. They discussed two use cases.
The first one is the evaluation of an expression extracted from a promise using the substitute call
in a new environment. The other is the invocation of a function with dynamically computed names
and arguments.

In this work, we significantly expand that study. First, our corpus covers 15,401 packages (about
the whole of CRAN at the time of writing) with 17,613 eval call sites, and 49.3M eval calls. Next,
we track a lot more information such as the shapes of expressions passed to eval, their provenance,
complexity, and side effects. This enables us to have an accurate and detailed picture of the use of
eval in the R ecosystem. We use this to provide both quantitative and qualitative views on eval,
including several use cases to demonstrate the popularity, diversity and powerfulness of eval in R.

3 METHODOLOGY

This section describes how the corpus of R program was selected and the analysis infrastructure.

3.1 Corpus

We distinguish three sources for calls to eval, those originating from Base libraries bundled with R,
packages hosted on CRAN, and end-user scripts from Kaggle:

− Base. The 13 base libraries provide arithmetics, statistics, and operating system functionalities.
Base has 200 functions with 342 calls to eval. These functions perform key tasks such as package
loading, there is thus hardly any R program that does not invoke them. We consider base libraries
as part of the language implementation and do not include them in our analysis.

− CRAN. Packages hosted on the Comprehensive R Archive Network (cran.r-project.org, aka CRAN)
have three sources of runnable code: unit tests for individual functions, code examples embedded
in the documentation, and use-cases called vignettes. All runnable snippets can be extracted into
independent files. We download 15,401 packages and extract 240,327 scripts with 4,599,196 lines
of code (1.5M in examples, 507.6K in vignettes and 2.6M in tests). CRAN packages contain 20
years of contribution from thousands of authors, often experienced R developers.

− Kaggle. Kaggle (kaggle.com) is an online platform that allows users to submit and compete to
solve problems. We download 7,931 unique scripts and notebooks with their input files (2,339
duplicates were removed using SHA-1 hashes); 665K lines of R code making only 74 calls eval.
The authors of these scripts have highly variable levels of expertise.

Discussion. When we started this project, our goal was to contrast the usage of eval by package
developers and end-users, but the Kaggle dataset has so few calls to eval that there is little that
can be said about those. The remainder of the paper focuses on CRAN with a few observations
about the other sources when relevant.

3.2 Pipeline

We implemented an automated pipeline that acquires packages, extracts scripts, executes them,
traces their behavior, and summarizes observations. Figure 1 shows the main steps along with their
running time, data size, and the number of elements manipulated. The pipeline steps are:

2A base function that matches an argument against a set of candidate values, it uses eval to get the candidate values.
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Download

15K packages
8K Kaggle kernels
219 Kaggle datasets

12 hours

Extract

240K package programs
74 Kaggle kernels

2 hours

Trace

49M eval calls
14M side-effects

36 hours

Analyze

2.8M unique eval calls
22% packages use eval

2 hours

Fig. 1. Pipeline

(1) Download. Packages are downloaded from CRAN, for Kaggle a web crawler retrieves code,
and a command-line tool gets data. Installation is complicated by native dependencies which
sometimes have to be resolved manually.

(2) Extract. The genthat tool extracts all runnable code snippets and turns each of these into a self-
standing program [Krikava and Vitek 2018], knitr extracts code from notebooks. Each extracted
script is instrumented with calls to our dynamic analyzer in a way that avoids recording calls
to eval originating from our execution harness.

(3) Trace. Scripts are run with a modified R interpreter to capture calls to eval in CRAN packages.
Each script is run in its own process with the GNU R compiler turned off to avoid recording its
execution.

(4) Analyze. Analysis outputs are merged, cleaned, and summarized. RMarkdown [Allaire et al.
2021] notebooks process the summarized data to generate all graphs (using ggplot2 [Wickham
2016]) and numbers (exported as LATEX macros) appearing in the paper.

The pipeline runs in parallel [Tange 2018] orchestrated by a Makefile. Servers have identical
environments thanks to a docker image with all dependencies installed.

3.3 Dynamic Analysis

The tracer that performs dynamic analysis of R scripts is built on top of R-dyntrace, an extended
R 4.0.2 virtual machine that exposes callbacks for various runtime events [Goel and Vitek 2019].
The tracer registers callbacks to all variants of eval and a few additional functions to locate the
origin of eval arguments. It captures dynamic code loading, as well as variable definition and
assignment, allowing us to record side effects that happen in environments while evaluating code in
eval. A challenge was the lack of source code references for expressions that are not within a block
surrounded by braces. This is unfortunately not easily fixed. We extend our dynamic analysis tool
to attach synthetic source code references to all eval call sites, but the approach fails in some edge
cases. For performance reasons, the tracer is an R package written in C++ (3.2K LOC) and R (1.3K
LOC). While in theory, the implementation should be straightforward, it is not so in practice. Lazy
evaluation requires delaying the processing of arguments until (and if) they are forced. Accounting
for side-effects performed in an eval is complicated by the fact that R is implemented in a mixture
of R and C, and that the language implementation can (and does) call eval. Lastly, large codebases
exercise many edge cases of the highly underspecified R behavior.

Limitations. Even with the extension described above, there are 42.1K eval calls without source
information (0.09% of all eval calls). This happens when eval is an argument to a higher-order
function or when it is called from native code. Another limitation is that we do not record calls to
the native eval. Neither of these limitations should invalidate our conclusions.
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4 MEASURING EVAL

This section reports on the frequency of eval in CRAN. We use site to refer to an occurrence of a
call site to the eval function in the source code and call to denote an observed invocation of the
eval function.
There are 38,619 eval sites in 3,488 packages; 22.6% packages use eval. Over half of these

packages have fewer than 3 sites, and with the exception VGAM which has 2,376 sites, all packages
contain fewer than 800 sites. Fig 2 shows a histogram of sites per package. Sites appear in 15,532
functions; 2.5% of all functions use eval.

0

250

500

750

0.0%

2.0%

4.0%

6.0%

1 3 7 13 20+

Fig. 2. eval call sites

Our pipeline runs 240,327 scripts extracted
from 15,401 packages. Any run that does not
call eval is discarded, leaving us with 98,656
runs. In these runs, 49,296,059 eval calls were
recorded originating from 17,613 sites. The
runs exercised 52.9% of sites, a ratio similar
to the package code coverage metric which
is 51.7%. The reasons some sites are not exer-
cised can be chalked down to incomplete tests
and analysis failures (3% of the runs crashed
or timed out). Fig. 3 plots exercised sites with
respect to all sites for each program; as can be
seen, coverage is unequal. Table 2 summarizes
the frequency of calls, call counts on the left,
and number of packages on the right. There
are 1,540 packages with fewer than 100 calls,
and 420 packages with more than 1,000 calls.
ggplot2 calls eval 24,485,531 times and thus
accounts for over half of our observations.

Table 2. Call frequency

#calls #pck #calls #pck

1 ś 10 744 10K ś 100K 117
11 ś 100 796 100K ś 1M 29
101 ś 1K 522 1M ś 10M 5
1K ś 10K 268 10M ś 100M 1

Table 3. Variants

eval evalq eval local
.parent

Static sites 36,241 207 1,673 250
Exercised sites 16,412 8 1,064 129

Invocations 48.7M 1.1K 569.9K 39.5K

Table 4. Normalized calls

#calls #sites #calls #sites

0 ś 50 16,274 501 ś 1000 115
51 ś 100 429 1001 ś 1500 65
101 ś 250 369 1501 ś 2000 29
251 ś 500 181 2001 ś 3000 38

Table 3 summarizes the use of variants, the first row has
sites (static), the second has sites encountered during analysis
(exercised) and the last gives calls (invocations). Most sites
and calls go to eval itself, eval.parent is rare, and both evalq

and local are barely used at all.
Table 4 shows the average count of calls from a given

site and given run and how many sites fall in that range.
For instance, 38 sites are called over 2,000 times per run.
Larger call counts suggest the presence of loops or recursive
functions, but given the data, this seems to be the exception;
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Fig. 3. eval call sites coverage of the 3,488 packages.

16,274 sites are called fewer than 50 times, most sites are invoked once and half as many are invoked
twice.
Eval accepts any value as an argument, but if the value is not an expression, eval returns it

unchanged. Expressions account for 90.2% of arguments. More specifically, 53.2% are symbols
(variables such as x), 26.6% are language objects (expressions representing function calls), and 10.4%
are expression objects (lists of expressions). Further inspection reveals that _inherit accounts for
93.1% of symbols and comes from one site in ggplot2.3
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Fig. 4. Loaded code

To estimate how much executable code is injected
through eval, we measure the size of the argu-
ments in terms of the number of nodes. For example,
expression(x+1) has a size of 3. The large number of
symbols skew the median to 1 but the average size is
4.5 nodes. The largest eval input we observed was
an expression of 63,265 nodes, a significant chunk
of code. Fig. 4 shows the distribution of sizes for ar-
guments of fewer than 25 nodes. Sizes drop rapidly,
there are few observations larger than 15 nodes. The
long tail is omitted for legibility. As an alternative to
counting nodes, we tried measuring string lengths of
expressions after calling a function to convert values
back to strings, but these measurements were dom-
inated by massive data objects which could range in
the MBs.
To assess how much computational work is per-

formed in evals, we count the instructions executed
by the interpreter. Most calls do relatively little, with
89.8% of calls executing fewer than 50 instructions. The violin plot of Fig. 5(a) shows the distribution

3This field is used to model inheritance in ggproto, an object-oriented system used by ggplot2.
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of short running evals; the data is dominated by evals that simply perform symbol lookup. Fig. 5(b)
shows the distribution of work-intensive evals which go all the way to 2.1G instructions.
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Fig. 5. Instructions per call

Discussion. Eval is widely used in CRAN packages. Nearly every fourth package contains at
least one eval call site. However, most packages use eval modestly. Packages that rely heavily
on eval are mostly ones that provide statistical modeling and simulation functions. At runtime,
over a third of our scripts triggered calls to eval. Note that all scripts call eval originating from
the base package but these are disregarded here. Half of the calls come from a single site, for the
rest, most packages have low call frequency. The data is consistent with the usage of eval for
configuration and meta-programming, not in performance-sensitive contexts such as loops. While
most arguments to eval are small, often just a variable name, and do little work, we have also
observed large arguments and arguments that perform massive amounts of work.

5 A TAXONOMY OF EVAL

The previous section gave a quantitative view of eval usage; we now try to elucidate what it does.

5.1 The Expression in Eval

The expressions passed to eval vary widely. We categorize expressions using a minimization
function which abstracts some of the incidental details of expressions and returns a łshapež that can
be used to group similar evals. The function𝑚𝑖𝑛(𝑒), for a given expression 𝑒 , returns a normal form.
Normal forms use V to stand in for values occurring in expression, X stands in for variables, and F

stands for functions. The function performs constant folding of arithmetic and string expressions

Table 5. Minimized expressions

𝑚𝑖𝑛(𝑒) #sites %sites #packages #ops %envir example

X 4,701 27% 1,012 5 48% y+1

F(F(X)) 3,627 21% 831 81 79% gbov(mean(x), a-1)

V 2,791 16% 786 2 71% c(42,21,0)

F(X) 2,181 12% 768 16 68% seq_len(iters)

$ 1,708 10% 514 8 79% DF$B

model.frame 1,261 7% 508 1.9K 46% model.frame(formula = Z~U)

F() 1,184 7% 486 95 77% rgamma(3, 2, n = 10L)

FUN 1,126 6% 129 10 96% function(x)x+1

← 858 5% 274 60 78% x[1, 2:3, 2:3] ← value

BLOCK 731 4% 150 5K 84% {write(iris,tf);file.size(tf)}
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over base operators; for instance,𝑚𝑖𝑛(1 + 1) simplifies to V, on the ground that addition of values
likely returns a value. Value simplification takes 𝑚𝑖𝑛(c(1, 2, 3 + 2)) to V, as a complex vector
containing values is a value. Variable absorption has𝑚𝑖𝑛(x + y) become X; this is motivated by
the fact that addition is not an łinterestingž operation and that X stands in for any number of
variable lookups. Function absorption simplifies nested functions to keep an abstraction of the
nesting𝑚𝑖𝑛(g(f (x), h(z))) = F(F(X)). There are other simplifications; the full list can be found
in our artifact. It is worth mentioning that these simplifications are heuristics; in R, 1+1 is not
necessary 2. The addition operator can be redefined, but it typically isn’t, or at least not in a way
that would invalidate arithmetic.
Table 5 gives the ten most frequent shapes with the number and ratio of sites that received

arguments of that shape. Operations (ops) is the median count of instructions performed by
the interpreter when evaluating an argument of the given shape. Envir is the ratio of sites that
evaluate in a function environment. The last column has a sample expression that normalizes to
the corresponding shape. We detail these shapes and discuss their implication for the behavior of
eval.

𝑚𝑖𝑛(𝑒) = X

Variable lookups are the most common shape, 50% are simple variable names, e.g. x. The shapes subsume V
and built-in arithmetic operations, so a mixture of arithmetics and variables normalize to X. A lookup is
one step of execution; if a promise is returned, an arbitrary number of additional steps may be needed.
The median number of steps is 5, suggesting that most variable reads do little work. Variables are often
evaluated in environments that have been constructed programmatically; 48% of expressions are evaluated
in a function environment.

𝑚𝑖𝑛(𝑒) = F(X) 𝑚𝑖𝑛(𝑒) = F(F(X))

This shape corresponds to function calls whose arguments may include variable references and nested
calls. Together they represent the most frequent shape and perform over 16 steps. They are frequently
evaluated in function environments.

𝑚𝑖𝑛(𝑒) = V

Values occur in 16% of sites, 74% of those are constants such as integers, the remainder evaluate to a value
(1,436 of sites only ever see a value). Eval is needed when the expression denoting the values is constructed
programmatically. Cases when a value is directly given to eval, and eval returns it unchanged, often
occur when a computation has a default path and another, more interesting, path that requires evaluation.
This shape usually runs in few interpreter steps.

𝑚𝑖𝑛(𝑒) = $

This shape extends X to include lookup with the dollar operator, e.g., x$f, and vector indexing, e.g., x[42]
and x[[24]]. This takes a few more steps of evaluation on average and is typically used in a function
environment.

𝑚𝑖𝑛(𝑒) = model.frame

The model.frame function returns a data frame resulting from fitting the model described in a formula.
This shape subsumes F(F(X)), FUN, and assignments. It is the single most popular function invoked from
eval. Each call does a median of 2K instructions.
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𝑚𝑖𝑛(𝑒) = F()

This shape represents function calls without variable lookups or assignment. A variable is allowed in the
function position; looking up functions does not trigger computation unless the function’s name is bound
to a promise. This shape typically does not perform much work.

𝑚𝑖𝑛(𝑒) = FUN

This shape represents function definitions without any computation, e.g., function(x)x+1. In addition to
FUN, 10% sites have function definitions nested in other expressions.

𝑚𝑖𝑛(𝑒) =←

This includes both direct assignment <- and parent environment assignment <<- as well as the assign
function. It subsumes $. Assignments represent the most obvious source of side effects in eval. Most cases
originate from trivial code generation where the assign expression is assembled using parse or substitute,
often in a loop.

𝑚𝑖𝑛(𝑒) = BLOCK

These are multi-statement code blocks; as they can be large, we do not try to normalize their contents.
They execute in a median 5K steps, usually in function environments. Essentially, the block denotes a
fragment of a program to be evaluated in a particular way and a particular environment. The latter is what
makes it different from a zero-argument closure. There are several use cases: unit testing frameworks (e.g.,
testthat, testit), code benchmarking (e.g., rbenchmark, microbenchmark), running code in parallel
(e.g., foreach, doParallel), or deferring code execution (e.g., withr).

Discussion. The number of different shapes that any given eval site sees is an indication of the
versatility of that site. 87.6% of sites only see a single expression shape. It would be encouraging if
one could, given a small training set, predict the shape of evals to come. In our corpus, only a few
sites are highly polymorphic with more than eight shapes. An example of those is the pipe operator
of the magrittr package which is used to compose functions, e.g., instead of f(g(h(x),y),z) one
can write h(x) %>% g(y)%>% f(z). As there are many different patterns of use, there are also many
different shapes. In comparison with R, JavaScript’s eval usage was more straightforward and
more predictable, as reported by Meawad et al. [2012], with 98% of sites with only one shape. On
the other hand, there are 7,217 sites that only receive one of the simple shapes (i.e., X, V, $ or← ),
and 601 sites get multiple simple shapes. Among these sites, there are many cases where eval
could be possibly replaced by simpler constructs such as get to lookup a name in an environment,
assign to set a value to a name in an environment, or do.call to call a function reflectively.

5.2 The Environments of Eval

Contrary to JavaScript, in R, the environment of eval can be specified by its env argument. This
gives users control over what is visible to the computation started by eval and the potential reach
of its side-effects. We distinguish the following kinds of environments:

Ð Function: environments for the local variables of some function currently active on the call stack.
Obtained by calling parent.frame() or sys.frame().

Ð Synthetic: environments built from data structures such as lists, data.frames, or constructed
explicitly with new.env, list2env, or as.environment or the empty environment.

Ð Global: environments in which scripts or interactive commands are evaluated.
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Ð Package: environments of libraries.

Table 6 shows that most calls evaluate in the scope of a function; global is a distant second.
This means that most reads and writes act on local variables. But of which function? Table 7 gives
the offset of that function on the call stack: 0 is the function that called eval, 1 is that function’s
caller, and so on. In 81% of cases, eval uses its caller’s environment ś the variables of the function
where the call to eval textually occurs are read and written. About 1.5% of sites evaluate their
argument three frames up the call stack or above. Modular reasoning is thus impossible in R. Since
the actions of eval happen at a distance, understanding any given code snippet requires knowing
which functions may be called transitively from that snippet. In 91% of the sites, only one kind of
environment is observed.

Table 6. Kinds per site

Kind #sites %sites

Function 12,842 72.9%
Synthetic 3,506 19.9%

Global 3,015 17.1%
Package 77 0.4%

Table 7. Function offsets

Offset #sites %sites

0 10.3K 81.5%
1 2K 15.5%
2 249 2%
≥ 3 193 1.5%

Table 8. Wrapper envs.

Parent #sites %sites

Function 2,497 71.2%
Package 1,362 38.8%
Global 378 10.8%
Empty 100 2.9%

Table 9. Multiplicities

#kinds #sites %sites

1 16K 91%
2 1.3K 7.6%
3 229 1.3%
4 11 0.06%

Each synthetic environment has a parent that is specified when calling new.env. When envir is a
list or a data frame, eval uses its third argument (enclos). The parent is used to search for variables
not found in its child (side-effects stay in the child). Table 8 shows parent kinds for synthetic
environments. Most of them are functions.
Global evals split between intentional and accidental one. Direct references to the top-level,

using globalenv() or .GlobalEnv, are rare; they occur in only 25 sites. Thus we suspect most uses
of global are accidental. They arise from the fact that our corpus consists of many code snippets
that are run at the top-level; global is thus the caller of eval. This is noteworthy because writes
to global variables are visible to all functions and are not reclaimed by the garbage collector. So
accidental uses may pollute that namespace. Table 9 gives the number of kinds seen at a given call
site.

Discussion. The data presented here is not surprising. The main use of eval is to provide a
customizable extension mechanism for the behavior of functions. They are a way to parameterize
the function with any behavior that can be expressed in R. The behavior of evalwithin its enclosing
function is to read and write variables, mostly read, and very rarely, delete variables. There are also
some cases where new variables are injected in a function. Usually, this is in the direct caller, but it
can sometimes take effect several frames up the call stack. There is something brittle about code
relying on the position of a caller: a lot of refactoring may break code that does that.
One bit of information that we lack is how the environment was obtained. Our expectation is

that the expression was extracted from a promise using substitute, perhaps modified, and then
evaluated with the environment coming from the same promise. We believe the case where eval is
provided with the results of programmatically selecting some call stack to be less frequent.

Synthetic environments are relatively frequent. Common uses-cases include the evaluation of an
expression in a sandbox or using a data structure as environment. For example, one could evaluate
a method of an object and use an environment to hold the object’s fields.

We have already explained the popularity of global environments. As for package environments,
they are used in only 77 sites. This is probably for the best as mutating the bindings of a loaded
package is frowned upon, and R tries to discourage it.
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5.3 The Origins of Eval

Where does the expression passed to eval come from? There are various means of creating an
expression; often these means correlate with a particular use case. Our analysis records the values
returned by some functions of interest as well as their arguments. We build a direct acyclic graph
that tracks the origin of the values that are given to eval. Fig 6 shows an example of the origin
graph for the expression e. The origin of e includes both parse and quote, the starting nodes. We
pick one origin by traversing the graph from the terminal leaf, i.e., from the eval node, following
the left-hand side member of assignments until reaching a starting node. It represents the origin
that is further modified to yield the expression passed to eval. In this example, that origin is parse.

> e ← parse(text = "a;b")

> e[[2]] ← quote(c) # e is a;c

> eval(e)

eval(e)

e[[2]] ← quote(c)

quote(c)e ← parse(text = "a;b")

parse(text = "a;b")

Fig. 6. Example of an origin graph

To have a high-level view of provenance, we classify functions into the following five categories:

Ð Reflection: use of match.call to reflectively capture the expression that invoked this function.
Function arguments are promises, and substitute is used to retrieve their source.

Ð String: created from strings by invoking parse, str2lang, or str2expression.
Ð Constructed: invoked quote or expression, or by building with call or as.call.
Ð Environment: created with as.name or as.symbol, typically to read a non-local environment.
Ð External: call to a C function.

Table 10 summarizes origins. It shows frequencies by function and by category. For technical
reasons, we misclassify a small number of sites. Manual inspection of numerous examples suggests
that errors are rare. Some sites are counted multiple times as they are invoked with different origins.

Table 10. Origins

Provenance #sites %sites

parse 4,006 22.9%
substitute 3,916 22.4%
match.call 2,058 11.8%
expression 597 3.4%
quote 557 3.2%
as.name 482 2.8%
call 475 2.7%
as.call 450 2.6%
.External 251 1.4%
formals 112 0.6%

Origin #sites %sites

Reflection 7,857 44.9%
String 4,107 23.5%

Constructed 3,086 17.7%
Environment 1,200 6.9%

External 278 1.6%
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Strings correlate with dynamic code loading as done by source and sys.source. Few calls (11 in
total) consume the result of calling parse on a file. Most build strings programmatically.

Discussion. The main use cases for eval involve using match.call, or substitute to access and
transform arguments of a function. Constructing expressions from strings is also a common use
case. The constructed category shows that most evals come from existing code that was modified
by the programmer before invoking eval. Both constructed and reflection categories roughly
correspond to meta-programming. Some uses could be replaced by macros if the R designers could
be convinced to overcome their distaste for those.

5.4 The Effects of Eval

Evalmay perform side-effects. We care about effects that are visible after a call finishes, i.e., variable
definitions, updates, and removals. Knowing the environments in which these side-effects happen
can help determine the impact of eval on our ability to reason about the code. Our analysis records
information about every environment. From the recorded data, we discard side-effects coming from
unit testing frameworks as they use eval to run all their tests and thus dominate the side-effect
data.4

We record 14.4M side-effects from 2.9M calls and 3,091 sites. The challenge is to remove accidental
side-effects caused by the R virtual machine implementation and not user code. For example, the
.Random.seed variable is saved and restored from and to the global environment every time a
statistical routine is called. Filtering out accidental side-effects leaves us with 7.9M writes from
2.5M calls (in 2,418 sites and 1,524 functions). In this set, 43 functions are responsible for 90%
of side effects. Half of those come from just three functions: plyr::allocate_column (allocates
space for a new data frame column), withr::execute_handlers (executes deferred expressions), and
foreach::doSEQ (executes an expression on each element in a collection, possibly in parallel). Most
of the sites (58.9%) update the environment specified by the env parameter.

Table 11. Target environments for side-effects

Environments #sites %sites #funs. %funs.

Local 945 39% 269 25%
Synthetic 394 16% 248 23%
Object 240 10% 136 12%
Function 153 6% 62 6%
Global 106 4% 47 4%
Package 5 0.2% 0 0%
multiple 575 24% 332 30%

Table 11 shows environment kinds where side-effects happen. Function environments distinguish
between local, the caller environment (offset 0), and function (offset > 0). Synthetic represents
constructed environments. Object is used to denote the environments attached to objects and
classes in the S4 and R6 object systems. Multiple denotes cases where side-effects to more than
one kind originate from one site. The table gives the number of call sites of eval (and the ratio)
performing side-effects in a particular environment kind. The table also gives the number of
functions in which these sites occur (and ratio).

4The corpus has RUnit, testthat, tinytest and unitizer testing frameworks.
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Most sites, 76.2%, do all their side-effects consistently in one kind of environment. The same
happens at the function level. Almost half of the sites (over a third of the functions) do side effects
in either Local or Object environments.
Table 12 shows recorded effects. There are over 5M updates. In terms of calls, we primarily see

assignments, followed by definitions. This is expected. A subsequent eval call will turn a definition
into an update. The most dangerous side effect is variable removal, as it means that after a call to
eval some binding in some environments will disappear. While rare, this happens, but the vast
majority comes from a single site (withr::execute_handlers). This makes sense as it is used to
defer evaluation of an expression to after the function exit and thus used for clean up. It is used
almost exclusively by the tidyselect package for removing the reference to the current quosure
environment while interpreting a data frame column selectors.5

Looking closely at the value types in variable updates, we observe that the majority of eval
sites involve basic R vectors (53.8%) and lists (31%). From the perspective of a compiler, we would
like to know how many sites change function bindings. In our corpus, this happens in only 62 sites;
75.8% of them do that in the local environment. We manually inspected a few of these sites; except
for manual injection of parameters into a model.frame execution environment, we did not find a
common use case.

Table 12. Types of eval side-effects

Side effect #events %events #calls %calls #sites %sites

update 5,155,985 66% 2,674,085 61% 1,372 43%
definition 2,458,727 31% 1,455,335 33% 1,700 54%
removal 243,260 3% 237,711 5% 104 3%

Out of the minimized expressions, it is BLOCK,← and F(F(X)) that contribute to the vast majority
of side effects. Concretely, 92% of BLOCK, 87% of← , and 15% of F(F(X)) expressions do side effects.
In the case of BLOCK, most of them happen in the environment passed to the eval call (default is
the parent environment). For← it is 15%. This form is dominated by the plyr::allocate_column

function that side-effects in the environment containing the data frame to which it allocates a
new column. Without this call,← is similarly predictable with 96% of side effects happening in
the passed environment. For F(F(X)), it is less clear as 58% of side effects happen in a different
environment to the one that was passed to eval.

Discussion. In JavaScript, assignments in eval can happen in either local scope or less often,
when called through an alias, in the global scope. In R, given the support for first-class environments,
it can happen anywhere, making evalmore dangerous than it already is. However, the data suggest
that first, side-effects from eval are not as widespread as in the case of JavaScript,6 and that over
half of them happen in a predictable environment. This gives a ray of hope for a hypothetical R
compiler. Even though eval can do anything anywhere, the data suggests most effects are sane.

6 USAGE OF EVAL

The R language was intended to be extensible. The combination of lazy evaluation, substitute, and
eval are some of the tools given to developers to this end. To understand why developers use eval,
we manually inspected the top 117 sites, which contribute to 90% of the calls in the corpus. We

5cf. https://tidyselect.r-lib.org/
6[Richards et al. 2011] shows that in the Interactive scenario, eval in Javascript performs, store events can reach up to 40%
of the events, and 7% to 8% of the eval do side effects in the global scope.
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present examples from nine classes from this batch. This classification is not exhaustive since there
are 38,619 eval call sites in our corpus, and many uses of eval do not fit in a specific category. We
further categorize the nine classes into two groups: those that improve the interface for users and
those that simplify the implementation for developers.

6.1 Better Interface

This group contains eval uses that enable the development of interfaces for quick interactive data
exploration.

Non-standard Scoping. Eval allows functions to resolve symbols in different environments than
the current one. For example, the data.table package redefines the subsetting operator, [7, to
enable compact queries on data frames. The example below shows the use of this operator on
the flights data frame to compute the average departure delays of Delta flights in 2014 by the
origin airport. The symbols carrier, year, dep_delay, and origin are not looked up in the current
environment but in the flights data frame.

> flights[carrier=="DL" & year == 2014, mean(dep_delay), by=origin]

# origin V1

# 1: LGA 11.35083

# 2: EWR 14.96171

data.table::[

At its core, the [ operator uses substitute to capture its operand expressions, transforms them,
and evaluates them using eval in the given data frame. We omit the implementation as it spans
over 1700 lines at the time of this writing.8

Non-standard scoping is an important use case of eval in R. It enables the design of functions
that require less typing and syntactic noise at the cost of some ambiguity. Since R is used primarily
interactively, this trade-off is justifiable.

Domain-Specific Language. A domain-specific language leverages R’s grammar but redefines its
semantics in a suitable way. The example below illustrates string interpolation. The glue function
from the glue package extracts snippets of code enclosed between braces, evaluates them using
eval, and splices their results to construct the result.

> greeting ← "Hello"

> glue("{greeting} World!")

# Hello World!

glue::glue

The glue package contains a variant of glue function that leverages non-standard scoping for
interpolation in a custom environment. For example, the following snippet pipes the subsetted data
frame into the glue_data function used to resolve the symbols for string interpolation.

> flights[carrier=="DL" & year == 2014, mean(dep_delay), by=origin] |>

glue_data("{origin} has average delay of {round(V1)} min")

# LGA has average delay of 11 min

# EWR has average delay of 15 min

glue::glue_data

7Defined as a triplet [i, j, k], where expression j is used to calculate a subset of rows from i grouped by k.
8Its implementation can be found at: https://github.com/Rdatatable/data.table/blob/master/R/data.table.R
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Behavioral Extension. Sometimes it is convenient to allow users to extend the behavior of a
library function. Eval allows clients to provide a simple text string that is executed in the context of
the function. The example here allows users to provide formulas as strings, such as "exp(-x^2/2)",
the contract being that the text can refer to some variable x the called function will set up.9

function(n,formula) {

p ← function(x) eval(parse(text=formula))

...

}

AdapSamp::rARS

Extracting Varargs. Eval is used to obtain the source code of the arguments passed to a vararg
parameter (...). In the example below, substitute(alist(...)) yields an expression representing a
call to alist with the ... expanded to the arguments supplied to the function. Passing this to eval
returns a list of the unevaluated argument expressions. This pattern is needed to avoid premature
evaluation of vararg arguments.

function(...) {

for (e in eval(substitute(alist(...)))) {

statnet.common::NVL

Controlled Evaluation. Eval can be used to control when and if expressions are evaluated. For
example, assertthat allows users to make assertions and, if they fail, produce legible error messages.
The assertthat::see_if function accepts a vararg with a list of expressions. It extracts these
expressions using the extracting varargs pattern and evaluates them sequentially in the caller’s
environment using eval. If an expression does not hold, an error is generated.

function(..., env=parent.frame(), msg=NULL) {

asserts ← eval(substitute(alist(...)))

for (assertion in asserts) {

res ← tryCatch({

eval(assertion, env)

}, assertError=function(e) { structure(FALSE, msg=e$message) })

...

}

assertthat::see_if

Shadowing. First-class environments and eval enable R users to implement variations of core
language functionality. For example, the igraph package provides the do_call function shown
below. do_call calls a function (f) in the specified environment (env) with the arguments supplied
to ..., and args. This is a variant of the built-in do.call function with two differences: it resolves
the function name differently, and it also allows arguments to be passed as varargs.

function(f,...,args=list(),env=parent.frame())

eval(make_call(substitute(f),...,args), env)

igraph::do_call

9The function is used to generate a sequence of random numbers using the adaptive rejection sampling algorithm and the
string formula is used to describe the target density.
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6.2 Implementation Simplification

This group contains eval uses that simplify implementation for package developers.

Code Generation. Eval can be used to generate code that would either be tedious to write by
hand or that is only known after deployment. The following code snippet from the Rcpp package
uses eval to automatically generate R bindings to C++ methods.

function(methods, env) {

for(what in cppMethods)

methods[[what]] ←

eval(substitute(function(...)CppObject$what(...)), env)

...

}

Rcpp::.makeCppMethods

Boilerplate Removal. A variant of code generation is to let users write compact code that is
expended via eval and match.call. The example uses match.call to access the expression with
which the function is called. The following three lines construct a call to stats::model.frame

with argument text of parameters 'formula', 'data', and 'weights'. Then, the call expression is
evaluated in the parent environment. The use of match.call avoids repeated use of substitute for
extracting the argument expressions. It is extensible as new parameter names can be easily added.
This example illustrates one of the most recurring uses of eval by packages that do statistical
modeling. It is a typical example of the model.frame shape in Table 5.

function(formula, data, weights, ...) {

Call ← match.call()

indx ← match(c("formula", "data", "weights"), names(Call), nomatch=0)

temp ← Call[c(1, indx)]

temp[[1L]] ← quote(stats::model.frame)

mf ← eval.parent(temp)

...

}

survival::survfit.formula

Wrapping functions in R is somewhat harder than in other languages because of default argu-
ments, varargs, and missing arguments. The combination of match.call and eval can be used to
forward the current call’s arguments to another function without listing all the argument names.
This pattern eases the maintenance of wrappers. For example, the base::write.csv function passes
most of its arguments unchanged to the more general base::write.table function.

function (...) {

Call ← match.call(expand.dots = TRUE)

Call$sep ← ","

Call$dec ← "."

Call$qmethod ← "double"

Call[[1L]] ← as.name("write.table")

eval.parent(Call)

}

base::write.csv
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Obfuscation. A few packages use eval to bypass the restrictions imposed by the R CMD CHECK

tool. This tool enforces some well-formedness rules on a submitted package before accepting it for
inclusion in CRAN. Some static checks ensure that the package code does not use certain restricted
functions. Package authors use eval to obfuscate their code to get around this limitation. The
example below mutates the variable s in the package environment. However, it is locked by default,
and unlocking it requires unlockBinding which is a restricted function. To work around this, the
call to unlockBinding is done through eval.

function() {

env ← parent.env(environment())

eval(parse(text=paste0('unlockBinding("s", env)')))

assign("s", s, envir=env)

lockBinding("s", env)

...

}

aibd::scalaEnsure

7 DISCUSSION

In R, eval is used chiefly for meta-programming and accessing remote environments. Unlike
JavaScript, which according to Richards et al. [2011] had a small set of well-defined patterns that
could be rewritten without eval, our results suggest that eval is an integral part of programming in
R. However, there are cases in which eval is not needed, and other, more stylized functions can be
used. There are also alternatives to eval that provide a more principled way for meta-programming
and dealing with lazy evaluation. In this section, we briefly discuss these issues.

Unnecessary use of eval. The cases where eval appears to be an overkill include simple expression
shapes such as X, V, $,← , and FUN. Variable lookup in a remote environment can be performed by
the built-in get function. A similar case can be made for assignment and the assign function. There
is a dedicated do.call function to perform function calls. However, unnecessary uses of eval are
not easy to find and often can only be uncovered by manual analysis. Dynamic analysis is limited
due to coverage issues, and static analysis of R remains an open problem.

function (d="norm", dp, ...) {

q.f ← eval(parse(text=paste0("q", d)))

z ← NULL

eval(parse(text=paste0("z← q.f(", dp, ", ...)")))

...

}

Listing 3. Unnecessary use of eval (PerformanceAnalytics::chart.QQPlot)

In the example in Listing 3, the function uses eval to lookup a target function name from a
constructed string. Then it constructs a call with the arguments that are passed to the current
function. Eval is overkill in this case: a semantically equivalent function body can use get to
perform the lookup and then call the resulting function directly.

q.f ← get(paste0("q", d))

z ← q.f(dp, ...)
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Eval alternatives. Alternative implementations of eval are also available from R packages. The
lazyeval package provides lazy and lazy_eval as safer variants for the built-in substitute and
eval functions, respectively. These variants differ from their counterparts in that they capture
both the argument expressions and their environments, and they follow promises across function
invocations. This helps to avoid scoping bugs, as shown in the example below.

filter ← function(df, cond) {

conf ← substitute(cond)

r ← eval(cond, df, parent.frame())

df[r, ]

}

f ← function(...) {

x ← 1

filter(flights, ...)

}

x ← 2020

f(year > x) # incorrectly uses 1 for x

Use of R eval

filter ← function(df, cond) {

cond ← lazy(cond)

r ← lazy_eval(cond, df)

df[r, ]

}

f ← function(...) {

x ← 1

filter(flights, ...)

}

x ← 2020

f(year > x) # correctly uses 2020 for x

Use of lazyeval

The filter function selects rows from df that match a given condition passed to cond. The
implementation using the built-in eval suffers from a scoping bug since it always evaluates cond
in the caller’s environment irrespective of where it is passed from.10 The lazyeval version avoids
this problem since it correctly captures the environment associated with cond.

The tidyverse libraries11 include their own implementation of eval called eval_tidy [Wickham
et al. 2019] from the rlang package. This function which departs from the built-in eval in two
ways. First, it supports the evaluation of quosures, custom objects used for metaprogramming
that bundle expressions with an environment. Second, the eval_tidy function accepts a data
mask argument, a set of bindings such as a data frame or list, which takes precedence over the
environment. Consequently, effects such as assignments happen in the data mask, and expressions
such as return() do not work since the data mask does not correspond to a frame on the call stack.

8 CONCLUSION

The eval function is used widely, and in varied ways in R. The function is an essential tool for
language implementers. Our analysis observed that the base libraries heavily depend on eval, and
any R program will end up calling it through the core of the language. Independently developed
libraries often use eval in subtle ways, mostly to perform macro-programming tasks. Our review
of code written by less experienced users suggests that eval is exceedingly rarely used. So, it is fair
to conclude that most R programmers never have to write a call to eval, but the code they write
would not run without it.

Eval is thus a challenge for automated program understanding. Program analysis and transfor-
mation tools or compilers must assume the worst when faced with code that calls this function. We
have observed all sorts of side-effects with various degrees of visibility.
While our results are not encouraging in general, we have observed many cases where eval is

used in disciplined and predictable ways. While in the general case eval is hell, there are many

10This is a simplified version of the built-in subset function which suffers from this exact problem.
11An opinionated collection of R packages designed for data science. It consists of some of the most popular packages.
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cases where it is just a function. It does not appear that a general-purpose replacement for eval is
possible; in future work, we hope to focus on special cases and propose tools that target particular
subsets of call sites with some common properties.
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