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Abstract
Providing security guarantees for systems built out of un-
trusted components requires the ability to define and enforce
access control policies over untrusted code. In Web 2.0 ap-
plications, JavaScript code from different origins is often
combined on a single page, leading to well-known vulner-
abilities. We present a security infrastructure which allows
users and content providers to specify access control policies
over subsets of a JavaScript program by leveraging the con-
cept of delimited histories with revocation. We implement
our proposal in WebKit and evaluate it with three policies on
50 widely used websites with no changes to their JavaScript
code and report performance overheads and violations.

1. Introduction
Many popular Web applications mix content from different
sources, such as articles coming from a newspaper, a search
bar provided by a search engine, advertisements served by
a commercial partner, and included third-party libraries to
enrich the user experience. The behavior of such a web site
depends on all of its parts working, especially so if it is fi-
nanced by ads. Yet, not all parts are equally trusted. Typi-
cally, the main content provider is held to a higher standard
than the embedded third-party elements. A number of well
publicized attacks have shown that ads and third-party com-
ponents can introduce vulnerabilities in the overall applica-
tion. Readers of the New York Times online version were
subject to a scareware attack originating from code provided
by a previously trustworthy ad agency.1 Similarly, German
newspapers were attacked by malware from a legitimate ad-
vertisement service which delegated some ads to second-tier

1 www.nytimes.com/2009/09/15/technology/internet/15adco.html,
www.h-online.com/security/features/Tracking-down-malware-949079.
html.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, IN, USA.
Copyright c© 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509542

agencies. Other attacks leverage the extension facilities of
some popular web sites. Facebook, for example, encourages
third party extensions to be delivered as JavaScript plugins.
Taxonomies of these attacks are emerging [19]. Attacks such
as cross site scripting, cookie stealing, location hijacking,
clickjacking, history sniffing and behavior tracking are be-
ing catalogued, and the field is rich and varied.2 Barth et al.
even proposed a name for this threat model: the Gadget At-
tacker [2, 5].

What makes the JavaScript platform challenging is that
applications that run in a single client-side browser are com-
posed on the fly, their source code is assembled from dif-
ferent sources and run in the same environment with little
isolation. Moreover JavaScript is very dynamic; text can be
turned into code at any time and very few properties can
be statically guaranteed [30]. Our study of real-world Java-
Script behavior demonstrated that this dynamism is widely
used [31]. Web browsers offer two lines of defense for end-
users: The first is a sandbox that protects the operating sys-
tem from JavaScript code. The second is known as the same
origin policy (SOP); it segregates components into trust do-
mains based on their origin (a combination of host name,
port and protocol) and enforces access control restriction on
elements of the web page with a different origin. However,
the SOP is not uniformly applied to all resources (e.g. im-
ages may come from different origins, potentially leaking in-
formation in their URLs), and it is too coarse-grained. While
the SOP prevents scripts in one frame from accessing con-
tent in another, many web sites choose not to use frames as
this form of isolation is highly restrictive, and far from fool-
proof [5]. Thus much third-party code is simply included in
the body of the web page [26].

The majority of attempts to strengthen the security of
Web 2.0 applications rely on isolating trusted from un-
trusted code and limiting the dynamism of JavaScript, either
through static analysis techniques which reject programs
that do not meet certain static criteria or by defining a subset
of the language that is easier to verify [12, 13, 23–25]. These
approaches have been adopted by the industry as exemplified
by Facebook JavaScript, Yahoo’s AdSafe, or Google Caja.
However, these techniques can be circumvented [34] and can

2 www.webappsec.org/projects/threat,
www.owasp.org/index.php/Category:Attack.
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miss attacks due to peculiarities and leniencies of different
browsers’ JavaScript parsers, and they are so restrictive that
many valid legacy programs would be rejected.

This paper proposes a novel security infrastructure for
dealing with the Gadget Attacker threat model. We extend
JavaScript objects with dynamic ownership annotations and
break up a web site’s computation at ownership changes, that
is to say when code belonging to a different owner is exe-
cuted, into delimited histories. Subcomputations performed
on behalf of untrusted code are executed under a special
regime in which most operations are recorded into histo-
ries. Then, at the next ownership change, or at other well
defined points, these histories are made available to user-
configurable security policies which can, if the history vio-
lates some safety rule, issue a revocation request. Revocation
undoes all the computational effects of the history, reverting
the state of the heap to what it was before the computation.
Delimiting histories is crucial for our technique to scale to
real web sites. While JavaScript pages can generate millions
of events, histories are typically short, and fit well within the
computation model underlying Web 2.0 applications: once
the history of actions of an untrusted code fragment is vali-
dated, the history can be discarded. Histories allow policies
to reason about the impact of an operation within a scope by
giving policies a view on the outcome of a sequence of com-
putational steps. Consider storing a secret into an object’s
field. This could be safe if the modification was subsequently
overwritten and replaced by the field’s original value. Tradi-
tional access control policies would reject the first write, but
policies in our framework can postpone the decision and ob-
serve if this is indeed a leak. While policies of interest could
stretch all the way to dynamic information flow tracking, we
focus on access control in this paper.

Targeting Web applications means that we must deal with
the idiosyncrasies of modern web browsers and propose a
security model that could be deployed without disrupting
the ecosystem. Our main design constraint was thus back-
wards compatibility with the web. For this reason our design
carefully avoids extending the syntax of JavaScript and does
not require changes to code that is already well-behaved.
Our proposal can be integrated into a web browser with no
modifications of the implementation of existing web sites.
We leverage the existing SOP policy and use it as a build-
ing block in our infrastructure. Our secondary goal was to
demonstrate acceptable performance. While many of the
overheads of a proof-of-concept implementation can be op-
timized away, massive slowdown would make adoption un-
likely. We address this by an in-browser implementation and
a careful selection of the properties being recorded. This pa-
per makes the following contributions:

• A novel security infrastructure: Access control decisions
for untrusted code are based on delimited histories. Revo-
cation can restore the program to a consistent state. The

enforceable security policies are a superset of [33] as re-
vocation allows access decisions based on future events.

• Support of existing JavaScript browser security mecha-
nisms: All JavaScript objects are owned by a principal.
Ownership is integrated with the browser’s same origin
principle for backwards compatibility with Web 2.0 ap-
plications. Code owned by an untrusted principal is exe-
cuted in a controlled environment, but the code has full
access to the containing page. This ensures compatibility
with existing code.

• Browser integration: Our system was implemented in the
WebKit library. We instrument all means to create scripts
in the browser at runtime, so if untrusted code creates
another script we add its security principal to the new
script as well. Additionally, we treat the eval function as
untrusted and always monitor it.

• Flexible policies: Our security policies allow enforce-
ment of semantic properties based on the notion of secu-
rity principals attached to JavaScript objects, rather than
mere syntactic properties like method or variable names
that previous approaches generally rely on. Policies can
be combined, allowing for both provider-specified secu-
rity and user-defined security.

• Empirical Evaluation: We validated our approach on 50
real web sites and two representative policies. The results
suggest that our model is a good fit for securing web ad
content and third-party extensions, with less than 10% of
sites’ major functionality broken. Our policies have suc-
cessfully prevented dangerous operations performed by
third-party code. The observed performance overheads
were between 11% and 106% in the interpreter.

Our work builds on and combines ideas from the literature.
History-based access control [1] extends the stack inspec-
tion security model of Java to include a history of methods
called. Inline reference monitors [33, 37] dynamically en-
force a security policy by monitoring system execution with
security automata. We build on their insight and record a
wider selection of operations. The design of our policy lan-
guage is informed by Polymer [6]. While the notion of revo-
cation is inspired by research on transactional memory [16],
we avoid the transactional memory terminology because de-
limited histories depart from transactions in that they do not
guarantee isolation, they do not perform conflict detection,
they do not re-execute aborted histories, do not support nest-
ing of histories, and record different sets of operations.

2. JavaScript and Security
JavaScript is a prototype-based object-oriented language
which is extremely dynamic. Objects can be (and, as shown
in [31], are) modified in arbitrary ways after their creation.
Moreover, text can be turned into executable code by the
eval function (which is more frequently used than we would



like [30]). A JavaScript object is a set of properties, a mu-
table map from strings to values. A property that evaluates
to a closure and is called using the context of its parent ob-
ject plays the role of a method in Java. Each object has a
prototype, which refers to another object. As a result, it is
difficult to constrain the behavior of any given object, as
either it or any of its prototypes could be modified at any
time. A JavaScript program running in a browser executes
in an event-driven fashion. The browser fires events in re-
sponse to end-user interactions such as cursor movements
and clicks, timer events, networks replies, and other pre-
defined browser happenings. Each event may trigger the ex-
ecution of a JavaScript function. When the function returns,
the system is able to handle the next event. The timing and
order of events depend on the particular browser, network la-
tency, timer accuracy, and other environmental factors. The
JavaScript code interacts with the browser, the network, and
in a very limited way, persistent storage through native op-
erations.

2.1 Threat Model
Web browsers have standardized on the same origin policy
to isolate content from different providers. Figure 1 illus-
trates the situation where a single web page is built out of
a mixture of trusted and untrusted components kept at bay
by the browser’s SOP. Web pages are served by a provider.
Each party has its goals. The host provider’s interests are to
retain the user’s trust and to maximize ad revenues. Users
want access to the content while restricting, as much as pos-
sible, the behavior of ads and other untrusted elements. For
the purposes of this paper, we focus on threats originating
from third party scripts such as ads and widgets that are em-
bedded in an otherwise trusted page. While there are plugins
that block undesired content, this practice hurts web pages’
funding, and it is also based on syntactic properties (a black-
list of resources not be loaded) instead of a semantic security
policy.

A typical attack is easy to construct. Imagine a host which
uses a third-party ad service. The ads are loaded by includ-

Third
Party

Providers

trust Host
Provider

Figure 1: Web applications are made up of components of multiple
origins. End-users typically trust the main provider, but do not have
a relationship with ad providers. The browser’s same origin policy
attempts to isolate the different components of a web page.

ing a dynamically-created script into the host page. If the
ad service is malicious or has been corrupted then it may do
much more than simply display ads. For instance, in this sce-
nario there is no built-in security mechanism in the browser
which prevents the script from installing a handler for key-
press events and silently intercepting and logging everything
the user types, such as login credentials for the host site.
Although the same origin policy is intended to prevent the
script from then communicating this data to an untrusted
host, there are ways to work around it, such as encoding
the logged data into a source URL for an image tag. Sec-
tion 5 reports on some real-world attacks. For concreteness,
consider Figure 2. The host, mysite.com, uses a third-party
ad-supported login service, happylogins.com, with ads from
evilads.com. The login service is loaded in an iframe in hopes
of isolating it from the host. mysite.com also stores private in-
formation of the user, in a variable secret. The ad is able to
leak the secret by taking advantage of subtle flaws:

1 <script>
2 var secret = "supersecret";
3 document.addEventListener("message",
4 function(e) {
5 var resp = eval(e.data);
6 // handle the response
7 }, false);
8 </script>
9 Please log in:

10 <iframe src="http://happylogins.com/login">
11 </iframe>

(a) http://mysite.com/

1 <script src="http://evilads.com/ad.js">
2 </script>
3 <script>
4 var okMsg = "({loginOK: true})";
5 function login(u) {
6 if (loginOK(u))
7 window.parent.postMessage(okMsg, "∗");
8 }
9 </script>

10 <input type="text" id="name">
11 <button onclick="login(this.value);">
12 Log In</button>

(b) http://happylogins.com/login

1 window.addEventListener("load", function() {
2 okMsg = "new Image().src = " +
3 "’http://evilads.com/evil?p=’" +
4 "+secret;";
5 }, false);

(c) http://evilads.com/ad.js

Figure 2: okMsg is a vulnerability; it allows any component
loaded on the login service’s page to run code on the host page.



• The host trusts the login service to provide JSON.
• The login service trusts the ad not to corrupt its heap.
• The ad is not loaded in a frame, and as such is not subject

to the SOP.

The host code adds an event listener for “message” events,
which are triggered by the postMessage command. This is
the only means of communication between frames of differ-
ent origins, and messages can only be strings. In this case,
the message is expected to be an object serialized in JSON.
A widely used mechanism for deserializing JSON is eval,
which the host assumes is safe because the message can be
verified to have originated from the login service’s origin.
The login function checks whether the login information is
correct, and sends back a canned message that will set the
property loginOK to true. With these two pieces of code in
isolation, the communication is secure. The ad code, how-
ever, is able to create an event that fires when the frame fully
loads, which replaces the canned JSON login OK message
with a string of JavaScript code which will, when executed,
send the secret variable in the host to evilads.com. Although
the secret could not be sent via an asynchronous web re-
quest, images are allowed to come from any source, and so
the request is allowed.

2.2 Out-of-scope Threats
We do not consider covert channels, as we believe that users
would not adopt a technology that would be overly restric-
tive. We do not consider flaws in the browser; attacks that
trigger buffer overflows or heap-spraying attacks are not
covered by our infrastructure. They are orthogonal to the
ideas we are exploring. Attacks based on other browser tech-
nologies, the browser’s layout engine, plugins, social engi-
neering etc. are not in the scope of this work. We assume
that the host page is trustworthy and do not prevent poten-
tially malicious behavior stemming from the host, including
most forms of cross site scripting. Other research has tar-
geted these issues.

3. Delimited Histories with Revocation
The security infrastructure we propose applies security poli-
cies to portions of a program’s execution. We start with a
high-level description; we will discuss later how this inte-
grates in a JavaScript engine.

DEFINITION 1. The execution state of web application con-
sists of the state of a JavaScript engine P and an environ-
ment E. A step of execution is captured by a transition rela-
tion P |E α−→ P ′|E′ where α is a label.

A label denotes either an action αE initiated by the environ-
ment or an action αP performed by the JavaScript engine.

αE EVT n External event of type n
REP v Return value v from a native call

αP APP f v Call function f with arguments v
RET v Return value v from a call
GET v w p v1 Member v.p found in w holds v1
SET v p v1 v2 Update v.p from v1 to v2
NEW f v Create an object with constructor f
INV f v Invoke native operation f

The latter set comprises function calls (including calls to
eval) and returns, properties reads and writes, object alloca-
tion, and calls to native functions. The former set comprises
external events (for some set of events ranged by n) and re-
turns from calls to native functions.

DEFINITION 2 (Trace). A trace T = α1 :: · · · :: αn corre-
sponds to an execution P |E α1−→ . . .

αn−→ P ′|E′. We write
P |E ` T, P ′|E′ when execution of a configuration P |E
yields trace T and configuration P ′|E′.

Security policies are applied at decision points and suspen-
sion points. Decision points represent the end of an un-
trusted subcomputation, suspension points denote calls to
native functions (e.g. XMLHttpRequest.send). Native func-
tions potentially have irreversible side effects: suspension
points enable policies to catch these early, preventing infor-
mation leaks before they become irrevocable.

Programs are run with a pair of policies (PS ,PD) such
that PS is applied at suspension points and PD is applied
at decision points. Policy decisions are based on the state of
the computation P and a subset of trace T which we call a
delimited history, denoted [[T ]]. We represent the outcome of
applying a policy as a label αS in the set {OK, REV}.

DEFINITION 3 (Policy application). Given a policy P =
(PS ,PD) and a computation P |E ` T, P ′|E′ with a de-
limited history [[T ]], applying the policy can yield either the
trace P |E ` T :: OK, P ′ |E′ if P(P ′, [[T ]]) = OK, or the
trace P |E ` T :: REV, P |E′ if P(P ′, [[T ]]) = REV.

If the policy returns REV, we say that the delimited history
[[T ]] has been revoked. This has the side effect of reverting
the JavaScript state of the computation P ′ to its original state
P , the state before the call was made. None of the changes to
the memory and internal state of the JavaScript program are
retained. On the other hand, the environment E′ is not rolled
back (as there is no practical way to undo network traffic).
As mentioned above, a policy may use suspension points to
prevent external effects from happening at the cost of having
to make access control decisions early.

We tie the start of a delimited history and the associated
decision point to the principal on whose behalf a script is
run. The SOP policy defines a notion of principal based on
three components of a web page – the application layer pro-
tocol, the domain name, and the TCP port of the URL the
file originated from. Since any call to eval may, potentially,



take as an argument an untrusted string and be subject to dis-
tinguished policies, we extend the definition of ownership to
include the string passed to eval; for normal code execution
this field is empty and our ownership coincides with the def-
inition of principal of SOP.

DEFINITION 4 (Ownership). Every JavaScript object is as-
sociated with an ownership record o, which is a quadruple
(protocol, domain, port, eval).

We call host page the web page obtained from the URL in
the location bar of the browser. In JavaScript, functions and
scopes are objects, thus they are naturally tagged with an
ownership record. The default ownership record is that of
the host page. It would be reasonable to start a delimited
history whenever code originating from any page other than
the host page is executed. One could simply start recording
when the browser encounters a <script> tag from a different
origin and place a decision point at the matching end tag.
Unfortunately many ads install callbacks (via setTimeout or
an event handler) or install functions in the global object
which can be called by the host page’s code. Calls to eval
must also be taken into account. This justifies the following
definition.

DEFINITION 5 (Recording). For a page with ownership
o = (p, d, r, ε), recording of a history [[T ]] starts at a call
APP f v or NEW f v if no recording is in progress and any
of the following holds: (i) the owner o′ of function f is not o,
(ii) the previous label was a EVT script o′ and o′ 6= o, or (iii)
the function f is eval, and o′ = (p, d, r, v). The history is said
to be owned by o′. A decision point occurs at the matching
return unless the history was revoked at a suspension. Every
object created during recording is tagged with the owner of
the history, o′.

A delimited history thus starts at either a script tag, the
invocation of function object (either directly or through an
event handler), or a call to eval. The owner of the function
is used to tag all objects created while the history is active.
Ownership is invariant during the course of execution, so
calling into another function with a different owner does not
affect the tag associated by objects that the function creates.

The history [[T ]] contains the following: last([[T ]]) is the
last label in the trace which, in case of a suspension point,
is of the form INV f v. rd([[T ]]) is the sequence of all prop-
erty accesses GET v w p v1 to all locations (v,p). fwr([[T ]])
is the sequence of writes SET v p v1 v’2 derived from the
first write SET v p v1 v2 and last write SET v p v’1 v’2 to
any (v,p) pair. Only the original value and most recently
written value are necessary for updates; in practice, the last
value may simply be read from the live heap and need not be
recorded. Observe that GET and SET are used for both prop-
erty accesses on objects and variable access within scopes.
These notions are conflated in JavaScript: the global scope is
also an object, window, there thus is little distinction between
the two.

As is customary with JavaScript, there are subtleties.
When reading a property, such as x.foo, lookup starts with
the object referenced by x, but may potentially traverse the
prototype chain. In a label GET v w p v1, v is the target of the
property lookup, and w is the object where the property was
found. The object NONE is used when the property was not
found. For writes SET v p v1 v2, JavaScript semantics does
not specify prototype traversal3, i.e. the only object that may
change due to a SET is v. There are three cases to consider:
(a) the property p is found in v and its old value v1 is updated
to v2, (b) the property did not exist in v, the property will be
added to the object (this case is denoted by v1 = NONE),
(c) the property was deleted from v by the JavaScript delete
operation (v2 = NONE). With this information, revocation
of a history entails going through fwr to revert properties
to their original values and, in the process, create and delete
properties as appropriate.

Suspension points must also be added to property ac-
cesses which may be rerouted to a native getter or setter
method. For example, setting the src property of an image
tag in the DOM will trigger the download of the image at
that URL. For pragmatic reasons the implementation main-
tains a whitelist of functions that are deemed safe and do not
introduce a suspension point. Any other native function is a
suspension point.

In both the SOP and our delimited history model, each
frame is considered an independent entity, and so code run-
ning within it is owned by the frame’s origin, and not the
original page’s origin.

3.1 Example
To make this design more clear, reconsider Figure 2. We
will step through this example assuming an empty policy
that always yields OK. When mysite.com loads, its script tag
(lines 2-7) will be executed. Since the source comes from the
same origin as the site itself, no recording of history needs
to be started. The owner of the callback function it produces
will therefore also have the same owner. The iframe tag will
cause happylogins to load, but in an isolated environment
protected by the browsers SOP. As such, the host owner for
that code is happylogins, not mysite. Its first script tag refers
to evilads, so history recording starts.

The file ad.js has only one statement, and it will result in a
GET window addEventListener f1, followed by NEW Function
f2, the second argument to addEventListener. Because the
function is created while within a history owned by evilads,
its owner will be evilads. Then a APP f1 event is produced
with the provided arguments which installs f2 as a callback
function. The execution continues with the second script tag
on happylogins. As its owner is the host of the iframe, it is not
recorded, and the function login is owned by the happylogins.

When happylogins has finished loading, it will fire a load
event. In this case, evilads has registered a load event listener,

3 Setter functions are represented as a GET followed by an APP.



secret

mysite.com

happylogins.com

evilads.com

load

load

XSS

okMsg

Log In

postMessage

eval

evilads.com

Figure 3: Data flow through the web site detailed in Figure 2.

f2. Because f2 is owned by evilads, its execution will be
recorded in a history. Its execution consists of a single event
(line 2), SET window okMsg v v’ with the previous string v’
(set by happylogins) and its new string v, containing a cross-
site scripting attack.

When a user clicks the “Log In” button, the login function
set by happylogins will be executed. Since its owner is the
host origin of that frame, it will not be recorded. Assuming
the login is OK, the message it sends, okMsg, will be the one
set by evilads. Until this point, the primary host, mysite, has
been idle. Having been sent a message from the login frame,
its message handler (lines 4-7) will be executed, with the
message as an argument (in e.data). Because the message
handler’s owner is mysite, it will not be recorded. It will
retrieve the attack string that evilads produced, and use it as
an argument for eval. eval’d strings are always recorded. In
this case, the code yields the following behavior:

• NEW Image ()

• SET v1 src undefined with the new URL, where v1 is the
image produced previously.

• As setting src calls a native function and performs I/O,
the execution suspends for policy checking.

Since an empty policy was applied in this example, the secret
will in fact be leaked. This attack could have been stopped
in several points, which will be discussed in Section 4.

4. Security Policies
We now turn to the policies that can be expressed in our
infrastructure. Policies are written in C++, the implemen-
tation language of WebKit. A library of policies is linked
dynamically to the instrumented browser at startup. Using

C++ gives policy developers the opportunity to write low-
level code that will have predictable performance. A clear
demarcation line between the policy language and JavaScript
makes it somewhat easier to ensure that policies will not be
tempered with. We considered expressing policies in Java-
Script but were discouraged by concerns of efficiency and
the challenges of enforcing isolation. To improve readabil-
ity, we present policies in idealized pseudo-code.

4.1 Policy API
Our infrastructure includes a number of simple data struc-
tures used by security policies. Pseudo-code for these can be
found in Figure 4. The class Owner encodes the ownership
information required by our variant of the SOP. The enu-
meration Suggestion contains three values: IGNORE to de-
note cases where a history is irrelevant to a policy, OK if
a history abides by a policy, and REVOKE for policy viola-
tion which should be revoked. The abstract class Op has sub-
classes for all operations recorded in a history, these include
GetOp, SetOp, CallOp, and DownloadOp among others. A de-
limited history is an instance of the History class which holds
a suggestion (by default IGNORE) and has methods to return
the last operation in the history, an array of read operations,
an array of writes, and method originalValue(op) which, for a
Get or Set operation, will return the value of the field at the
start of the history.

A security policy is represented at runtime by an instance
of a subclass of Policy created at page load time and re-

1 class Owner {
2 var port : number, domain : string,
3 protocol : string, evalstr : string;
4 }
5 enum Suggestion {
6 IGNORE, OK, REVOKE
7 }
8 class History {
9 var suggestion : Suggestion;

10 fun last() : Op;
11 fun reads() : Op[];
12 fun writes() : Op[];
13 fun ops() : Op[];
14 fun originalValue(op : Op) : any;
15 }
16 class Policy {
17 var owner : string;
18 Policy(args : string[]) {}
19 fun setOwner(o : string) : void {owner=o;}
20 fun querySuspend : History (history : History, op : Op) {
21 return queryEnd(history);
22 }
23 fun queryEnd(history : History) : History { return history;}
24 fun cleanup(history : History) : void {}
25 }

Figure 4: Pseudo-code for the Policy APIs. Class Policy must be
extended to define security policies. Class History is the delimited
history recorded while executing an untrusted script.



claimed when the page is destroyed. Every policy has a ref-
erence to the immutable Owner record describing the ori-
gin of the code being executed. Policy classes have meth-
ods: querySuspend() is called at each suspension point and
is passed a history and the reason for suspension. It must
reply by returning a history with a suggestion. queryEnd()
is called when the end of a history is reached. cleanup() is
called with the final history and suggestion to request that the
policy clean up any state variables it may have used, unless
the suggestion was IGNORE. cleanup() is merely a simplifi-
cation; querySuspend() could clean up whenever it returned
REJECT, and queryEnd() could clean up universally. Policies
are composed by building policy combinator objects with
sub-policies embedded within them. We will now proceed
with some examples of policies that have been implemented
for our experiments.

4.1.1 Controlling changes to the Global Object
In JavaScript, the global object is a dumping ground for vari-
ables defined at the top level and serves as a communica-
tion channel between scripts. We show a policy that lets un-
trusted scripts extend the global object, but not change ex-
isting values or objects of a different owner. While this does
not prevent breaking the host page, it does prevent subvert-
ing the host’s functionality. The ad could install a new func-
tion tricking the host into executing it. However, the function
would be run in a delimited history due to its ownership. The
policy in Figure 5 extends the base policy class by defining a
queryEnd() method which iterates over the operations in the
write set of the history (line 3). For each of the write opera-
tions it tests if the owner of the object differs from the owner
of the history (line 4). If the write updates an existing prop-
erty in the global object (lines 5-6), then the suggestion is set
to REVOKE. The querySuspend function is not distinct from
queryEnd, as the writes need to be checked in the same way.

4.1.2 Hygienic Policy
One might want to adjust the add-only policy above to allow
writes as long the original value is restored before the de-
cision point. The policy in Figure 6 checks if all properties
of objects that are not owned by the history’s owner are re-
stored to their original values by the end of the history. This

1 class AddOnly : Policy {
2 fun queryEnd(history) {
3 foreach op in history.writes()
4 if (differentOwner(op) &&
5 op.target.isGlobalObject() &&
6 history.originalValue(op) != NONE))
7 history.suggestion = REVOKE;
8 return history;
9 }

10 }

Figure 5: Restricting global object property updates.

policy is an example that semantically looks into the future
to assess whether an event needs to be prevented.

1 class SameValue : Policy {
2 fun querySuspend(history, op) {}
3 fun queryEnd(history) {
4 foreach op in history.writes()
5 if (differentOwner(op) &&
6 op.value() != history.originalValue(op))
7 history.suggestion = REVOKE;
8 return history;
9 }

10 }

Figure 6: Ensuring that values of objects belonging to other own-
ers are returned to their original state.

4.1.3 Script blocking
One possible use of our infrastructure would be to define a
trivial policy that blocks either all scripts or those from a
selected group. The policy of Figure 7 is created with a user
supplied argument that lists disallowed sites, any query will
check the history’s owner against the list.

4.1.4 Send After Read Restriction
The lifetime of a policy is tied to that of the page, encom-
passing possibly multiple invocations of untrusted opera-
tions. The policy can retain some security state across mul-
tiple suspension points and across multiple histories. This
is needed to prevent leakage of confidential information via
HTTP requests. Pseudocode of this policy appears in Fig-
ure 8. It disallows events which transmit data over the In-
ternet after read events have been performed on data owned
by another principal. It also prevents transmission after en-
abling event listeners, as knowing when events fire is a
leak of potentially-private information. The policy maintains
some internal security state. The variable pos tracks how
much of the history has already been checked, which is up-
dated at every query. The default behavior of querySuspend()
is to call queryEnd(). The pos variable is reset by cleanup(),
which is only called if one of the queries returned something
other than IGNORE. The hasread variable is a bit of security
state that is retained across different histories. This prevents
a two stage attack where one script (running with one his-
tory) reads information and the second script (running in an-
other history) performs a HTTP request leaking that value.
By retaining state across histories we can ensure that the pol-
icy will remember that some script has read protected data
and prevent the send.

4.2 Composing and Selecting Policies
Policies can be composed by combinators, objects that in-
voke query and cleanup methods of sub-policies. As com-
binators are policies themselves, they have access to his-
tories and can, for example, filter histories to hide some



1 class Blocker : Policy {
2 var blacklist;
3 Blocker(args){super(args); blacklist=args;}
4 fun queryEnd(history) {
5 if (blacklist.contains(owner))
6 history.suggestion = REVOKE;
7 return history;
8 }
9 }

Figure 7: Blocking scripts from specified servers.

1 class SendAfterRead : Policy {
2 var hasread = false;
3 var violation = false
4 var pos = 0;
5 fun queryEnd(history) {
6 foreach op in truncate(history.ops(), pos) {
7 if (op.isGetOp()) {
8 hasread |= differentOwner(op);
9 } else if (op.isCallOp()) {

10 if (op.isNative() &&
11 op.name.is("addEventListener"))
12 hasread = true;
13 } else if (op.isDownloadOp()) {
14 violation |= hasread;
15 }
16 }
17 pos = history.ops().length();
18 if (violation) history.suggestion=REVOKE;
19 else history.suggestion=OK;
20 return history;
21 }
22 fun cleanup(history){violation=false; pos=0;}}

Figure 8: Preventing send after read.

events deemed safe. Combinators can also override policies
to, for instance, take into account user preferences over site-
specified policies. Figure 9 illustrates a binary combinator
which takes the conjunction of two policies. Policies are
specified by name and created by makePolicy.

4.3 Policy Combinators: White Listing
Many sites use secondary servers for storing static content,
including JavaScript. For instance, youtube.com’s JavaScript
is hosted on ytimg.com. For these sites, the same origin pol-
icy is too stringent, as it would treat the secondary server as
untrusted. The Whitelist class is a combinator which modi-
fies the owner of subpolicies so as to give the same owner to
all scripts coming from secondary servers. Figure 10 shows a
simplified version of the whitelist combinator. The setOwner
method is overridden to tag an object with the main host-
name instead of the name of a secondary server. The list of
secondary servers is passed to the constructor in the parame-
ter list. findPrimary returns the name of the primary server if
the current host is in the list of secondary servers.

1 class Conjunction : Policy {
2 var p1, p2;
3 var s1, s2;
4 Conjunction(name1, args1, name2, args2) {
5 p1=makePolicy(name1,args1);
6 p2=makePolicy(name2,args2);
7 }
8 fun setOwner(o) {
9 p1.setOwner(o);

10 p2.setOwner(o);
11 }
12 fun join(s1,s2) {
13 if (s1 < s2) return s2;
14 else return s1;
15 }
16 fun queryEnd(history) {
17 h1 = p1.queryEnd(history);
18 s1 = join(s1,h1.suggestion);
19 h2 = p2.queryEnd(history);
20 s2 = join(s2,h2.suggestion);
21 h2.suggestion = join(s1,s2);
22 return h2;
23 }
24 fun cleanup(history){
25 if (s1 != IGNORE) p1.cleanup(history);
26 if (s2 != IGNORE) p2.cleanup(history);
27 }
28 }

Figure 9: A simple Policy combinator.

1 class Whitelist : Policy {
2 var p, list;
3 Whitelist(name, args, list) {
4 p=makePolicy(name,args);
5 this.list=list;}
6 fun setOwner(o) {
7 var o2=findPrimary(o)
8 super.setOwner(o2);
9 p.setOwner(o2);}

10 fun queryEnd(h) {return p.queryEnd(h);}
11 fun querySuspend(h) { return p.querySuspend(h);}
12 fun cleanup(h){ p.cleanup(h);}
13 }

Figure 10: A simple Whitelist combinator.

4.4 Breadth of Security Policies
A survey of policies found in the research literature appeared
in the ConScript paper [25]. We discuss whether these poli-
cies fit into our framework. Their first policy disallows all
scripts. The related policy that disallows inline scripts (i.e.
scripts embedded in attributes of html tags) does not fit our
SOP-based model, as inline scripts would have the same
owner as the host code and thus are not monitored. We could
of course change our notion of principal but this would likely
cause more mismatches with legacy code; we believe these
first two policies are over-restrictive. Most of the policies
collected in [25] are syntactic. For example, all policies that
restrict access to potentially hazardous methods (maybe in-



volving some form of black- or whitelisting) can be triv-
ially implemented as a policy in our framework. At suspen-
sion points the policy needs to check whether the method
to be called matches a given signature, whether the argu-
ments have certain properties like a given type, and whether
the signature and/or arguments are valid according some
black- or whitelist. For methods which do not trigger sus-
pension points, blacklisting can be implemented by checking
the history at a decision point. A strength of our approach
is that while we can handle syntactic properties (modulo
dead code), we also can reason about the side-effects that
untrusted scripts may induce and their potential for putting
the trusted host code’s security at risk. Therefore, the poli-
cies presented in this section have a different quality than
those summarized in [25]. As the next section will elabo-
rate, many real attacks can be prevented with a handful of
simple policies.

4.5 Rectifying Errors
Ideally, policies would never incorrectly revoke the behav-
ior of non-malicious code, but in practice, policies may be
overly restrictive, preventing valid code from proceeding.
Consider as a possible example ads on a social networking
site such as Facebook. Facebook stores information on the
user, and much of it may be accessible in JavaScript objects.
With no policy in place, an ad may look into that object, and
it may be considered non-malicious for the ad to use non-
specific information such as the user’s postal code and sex,
which the ad could then use to target the user more specif-
ically. If Facebook added a policy which prevented access
to all objects with user information, this ad would cease to
function.

The ad cannot detect programmatically whether such a
policy is in place, and even if it could, it could not anticipate
all possible policies, so it is not possible to generally write
third-party code to account for such changes in policy.

Because our technique is based on recording histories, it
is possible to determine quite specifically what the offending
code has done wrong when its behavior is revoked4. This
could be as easily detected by the ad agency as by Face-
book, or indeed any Facebook user. With the specific of-
fense known, the ad could be modified to avoid violating
the policy, or the policy could be modified to support the ad.
For instance, in the example given, Facebook could modify
their policy to disallow all access to user information except
for sex and postal code, or even more generally to, for in-
stance, allow ads to read user information so long as they
don’t then send any data, or allow ads to read no more than
a particular number of sensitive fields. We imagine that the
precise changes to be made would be negotiated between the
ad agency and the site in question.

4 Being an academic prototype, the current version of the software does not
present this information adequately, but it is available.

5. Empirical Evaluation
We evaluate our proposed security infrastructure along sev-
eral dimensions. Based on an implementation in a produc-
tion browser, we start by considering real attacks, then we
run sample policies on real web sites and lastly we measure
performance and scalability.

5.1 Implementation
We implemented our system in the open source rendering
engine WebKit, which is used in the Safari browser. To that
end, we modified 29 files: 20 in the JavaScriptCore pack-
age, which implements the core JavaScript interpreter and is
independent of the actual browser integration, and 9 in We-
bCore, which accounts for the browser-specific JavaScript
like the DOM. We added 588 lines of code to these 29 files.
Apart from that, new classes added 4697 LOC. The biggest
change was in the Interpreter class, which we instrumented
to intercept all relevant events. In particular, we instrumented
all opcodes where object properties are accessed (read, store
and delete), or objects are created. We also intercept the be-
ginning and ending of script execution, calls, returns, and
abrupt termination due to exceptions. The call stack is the
basis for determining the policy’s decision points. An event
is forwarded to a filter class that decides whether history
needs to recorded based on the call stack and the owners
of involved functions. In case we are recording a delimited
history, events are relayed to a bookkeeping class that han-
dles all policy-independent tasks. Newly created objects are
tagged with the owner of the current history (whereas the
owner of objects created outside a history defaults to the
owner of the host page). The owner of the current history
and the associated global object are recorded for that pur-
pose. Furthermore, the bookkeeping class records operations
including the read and write sets and maintains a list of poli-
cies to be checked. For each call to a function, the bookkeep-
ing class determines whether this function has a native im-
plementation, and if so, whether that function is contained in
a whitelist of side-effect free functions. If not, a suspension
point is triggered and we iterate over all installed polices to
query if the call is allowed or needs to be prevented. In the
latter case, a flag is returned to the interpreter to not call the
native function and abort execution of the script. For get-
ter and setter methods invoked as a result of property access
we adopt a different strategy5. When calling into a setter or
getter function results in reaching native code where a side-
effect like network access or database storage is about to take
place, we generate a synthetic download or storage event and
pass that to the filter before triggering the side-effect. If we
are currently in a delimited history these events are suspen-
sion points that will be passed along to the policy, which
then decides whether the side-effect is permitted or not. In

5 In WebKit, a native getter or setter may be called for optimization pur-
poses, but in the majority of the cases a standard interpreter function is
called, which makes it impossible to distinguish the external code.



the latter case the native code will basically throw an excep-
tion instead of executing the side-effect that is subsequently
caught at the invocation point of the setter or getter.

Revocation is a rather tricky business as there are two sep-
arate call stacks maintained by the interpreter, and both need
to be popped to the point where history recording started.
First, the interpreter maintains a stack modeling the Java-
Script call stack which needs to be reverted to the level when
the history started, before restoring the program counter and
resuming execution from there. However, some native calls
like eval alter the underlying C++ call stack in addition to the
JavaScript call stack. Therefore, when a call frame contains
WebKit’s HostCallFrameFlag, which signifies the invocation
of the interpreter loop function, we need to return from that
C++ function and resume unrolling of the JavaScript call
stack of the interpreter loop of the previous C++ call frame.
The unwinding of call stacks does not trigger execution of
finally blocks.

Once the system determines that a script is going to ter-
minate, be it normally or due to an exception or violation
of a security policy, it triggers the decision point check in
the bookkeeping class. This iterates over all policies check-
ing whether a violation has happened in the recorded his-
tory. If a policy signals a violation, all writes in the write
set are rolled-back according to JavaScript semantics, any
thrown exception is caught and the undefined value is re-
turned. While the completion value will be ignored for his-
tories started by a script tag, eval expressions might use the
return value for further computations, which must be pre-
vented for aborted scripts.

5.2 Attack Vectors
5.2.1 Samy worm
The Samy worm6 is a Cross Site Scripting/Cross-site request
forgery (CSRF) worm developed to propagate through the
MySpace social networking site. While MySpace filtered
the HTML that users add to their sites, the worm exploited
holes in the filtering process to inject code into the profile of
each person that viewed an infected page. The main hole in
the filtering was that some browsers allow JavaScript within
CSS tags. MySpace tried to prevent this but failed due the
rather lenient JavaScript parsers found in many browsers.
For instance, splitting a keyword (such as javascript) across
line boundaries as shown in the following code snippet was
enough to defeat MySpace’s filters:

<div id=mycode style="background:url(’java
script:eval(document.all.mycode.expr)’)"...>

The injection mechanism relies on eval since both single and
double quotes are already taken. Writing any meaningful
JavaScript code inside the style tag is difficult. But it suffices
to add the text of the attack to a property of the div tag, called
expr, and access this property in the eval expression. The at-

6 http://namb.la/popular/tech.html

tack itself consists of reading several pieces of information
from e.g. the document’s location and the document itself
and using them as parameters to subsequent AJAX requests
that inject the malicious code into the profile of a viewer.
The key steps involved: (1) eval(’document.body.inne’ +
’rHTML’) to access the content of the website in a way
that circumvented the filter mechanism; (2) redirect from
profile.myspace.com to www.myspace.com, as the SOP would
block AJAX calls; (3) html.indexOf(’Mytoken’) to access
the random hash from a pre-POST page for the subsequent
AJAX request; and (4) sending an AJAX request.

While our approach does not primarily target code injec-
tion attacks, it can prevent this CSRF attack. We are sand-
boxing JavaScript code originating from an eval expression
and any other means to dynamically create code. Thus the
SendAfterRead policy prevents reading private data on the
page (like Mytoken) and subsequently sending the AJAX re-
quest. Blocking the AJAX request prohibits CSRF attacks as
they rely on the requests being sent out with the user’s cre-
dentials. We validated this claim experimentally by embed-
ding the Samy worm in a test page and running it with the
SendAfterRead policy. When running in an uninstrumented
Safari browser, the page containing the Samy worm sends
out all AJAX requests necessary to infect the viewer of the
profile. With our system, this AJAX request is prevented as
the script had read the document location. This read is con-
sidered private data, so the policy prevents subsequent Inter-
net requests.

5.2.2 Clickjacking
A clickjacking attack lures the user into clicking on a link
of an invisible element. The attacker needs to have access
to the current page to create the invisible element, which is
usually an iframe, and move that element over a legitimate
link on the page. The attack may have a different origin than
the host page, and, as the user authorizes the operation with
a click, it will be executed with all the user’s credentials. For
example, if the user is logged into Facebook, the attacker
can add an application to the user’s Facebook account. The
click will send any authorization data (e.g. a cookie) along
with the request. Even worse, when automatic password fill-
in is turned on in the browser, the user might be tricked
into logging in, and a subsequent click will execute the
malicious operation without the user even noticing an attack
has occurred.

Our approach does not prevent mouse clicks on a link, but
as the attack requires addition of an event handler, that script
will be monitored. Consider the following as an example:

function updatebox(evt) {
var mouseX=evt.clientX;
var mouseY=evt.clientY;
var f = document.getElementById(’open’);
f.style.left=mouseX−10;
f.style.top=mouseY−25;
}

http://namb.la/popular/tech.html


If third-party code wanted to inject a clickjacking attack
into a host, a policy that prevents updates to objects from a
different owner, such as the SameValue policy would prevent
this attack, as the callback function will have the third-party
owner, such that the updates performed to f.style are revoked
by the policy.

5.2.3 History Sniffing
It took more than 10 years7 until an attack known as history
sniffing was addressed by browser manufacturers. History
sniffing infers the browser’s history through the style of
links (visited links are displayed in a different color). While
newer browsers are immune to the basic form of history
sniffing (including the CSS-only variant), this attack is being
used in practice [19] and it has been shown that it can be
abused very effectively, detecting as many as 30,000 links
per second [18]. The SendAfterRead policy would prevent
most sniffing attacks. We will return to this with an in depth
example in Section 5.3

5.2.4 Key-logging
If third party scripts run unmonitored they may even install
key- or mouse-loggers threatening user security. For exam-
ple, a keylogger might attempt to intercept login credentials
or other sensitive data provided to the host page. Figure 11
shows an example keylogger that sends out the log period-
ically via its reportLog function. The SendAfterRead policy
prevents these kinds of attacks, as installing an event han-
dler is considered by the policy to be another reason to reject
send events. This is because knowing when events fire is a
leak of potentially-private information.

1 window.addEventListener("keypress",
2 function(event) {
3 log.push(event.which);
4 if (log.length >= 1024) reportLog(log);},
5 false);

Figure 11: Attack by keylogger in untrusted code.

5.2.5 Storage
Recently, a new attack against user privacy has been pro-
posed based on replicating user tracking data in a set of stor-
age mechanisms other than traditional cookies. In particu-
lar, HTML5 proposes three more storage containers apart
from cookies: Session and local storage and database stor-
age. Session storage is accessible to any page from the same
site opened in that window, while local storage spans mul-
tiple windows and lasts beyond the current session. Both
of these mechanisms provide a key/value storage interface
to JavaScript. Even more powerful is the database storage
mechanism that provides an SQL interface persisting mul-
tiple sessions. All these storage mechanisms represent side-

7 https://bugzilla.mozilla.org/show_bug.cgi?id=57351

effects that potentially threaten security, as data stored in one
session can be accessed and e.g. sent out over the Internet
at a later time, which would invalidate policies like NoRe-
adSend. An extension of the SendAfterRead policy in Fig-
ure 8 where StorageEvents trigger a violation after reading
(in analogy to DownloadEvents) prevents third-party code
from changing storage of the host page, as well as reading
that storage and sending out information later on.

5.3 Case Study: Sniffles
We present a real attack found on zaycev.net, a file and news
sharing site in Russia (#1390 on the Alexa list). The host
page loads advertisements from a third-party ad server, but
included along with the ads is a history-sniffing attack which
determines how many of a list of sites the user has visited
in the past. It works by setting CSS styles for visited links,
then checking if they are active on links that the attacker is
interested in. The code reads data it should not have access
to (the style of links) and sends the information to a foreign
web server. Figure 12 is a reduced version of the attack seen
on the site.

1 function ucv(c, d) {
2 var a = document.createElement("a");
3 a.href = c; d.appendChild(d);
4 return (a.style.color == "#ff0000");
5 }
6 var d = document.createElement("div"), seen = [];
7 addStyle(d, "a:visited { color: #ff0000 }");
8 if (ucv("qwe.ru", d)) seen.push("qwe.ru");
9 //... same for other servers

10 seen = seen.join(",");
11 // send seen to the ad server

Figure 12: Excerpt of a history-sniffing attack

Although the SendAfterRead policy could prevent a history-
sniffing attack, we devised an extension to the add-only pol-
icy which furthermore restricts what the foreign ad is al-
lowed to read, and what functions it is allowed to call. The
functions it is allowed to call are those which add to the
page, instead of reading data from the page (e.g. the data
that must be read to sniff history), which is consistent with
the add-only policy.

The ad is allowed to read from the global state and even
from the DOM, but not from the CSS style or from text
nodes in the DOM. For certain targets it is only allowed to
call certain functions: for document: write, getElementById,
createElement, getElementsByTagName; for window: setTimeout,
parseInt, open, encodeURIComponent, escape; for other DOM
elements: setAttribute, appendChild; all functions are ok for
Date; none for all other targets. These functions are suffi-
cient for a conventionally-written ad script to add its adver-
tisement to the page, and in fact the history-sniffing ad in
question conforms to this policy if the history-sniffing at-
tack itself is removed. Because none of these functions read
information from a page, only adding information, they are

https://bugzilla.mozilla.org/show_bug.cgi?id=57351


1 class Sniffles : Policy {
2 fun queryEnd(history) {
3 foreach op in history.writes()
4 if (differentOwner(op) &&
5 (!op.target.isGlobalObject() ||
6 history.originalValue(op) != NONE)))
7 history.suggestion = REVOKE;
8 foreach op in history.reads()
9 if (differentOwner(op) &&

10 (!op.target.isGlobalObject()) &&
11 (!op.target.isHTMLDOMObject()))
12 history.suggestion = REVOKE;
13 foreach op in history.calls()
14 if (differentOwner(op) &&
15 (!isWhitelistedFunction(op.target, op.func)))
16 history.suggestion = REVOKE;
17 return history;}}

Figure 13: Restricting reads and calls.

a reasonably privacy-preserving subset of the DOM API.
Using document.write is fine in our system as scripts that
are thus created will be monitored by the security policy,
as well. Further restrictions, like allowing access to a DOM
node only if that was intended by the host [22] are possible.
This is important for targeted ads that are allowed to process
public parts of the page but not the sensitive information.

5.4 Real-Site Behavior
We applied security policies to unmodified web sites to eval-
uate how restrictive the policies are for legacy code, code
that was not specifically designed to abide by a particular
policy. Figure 14 shows the results of applying three poli-
cies to the top 50 web sites (as displayed on alexa.com on
20-Mar-2013). We report the count of untrusted scripts ex-
ecuted, and thus the number of histories created by our in-
frastructure and of decision points where policies are eval-
uated. The number ranges between 0 and 417. One web-
site, wikipedia, did not load any untrusted code. In detail,
we recorded how many times the same behavior occurred
(Count), the owner of the page or iframe (Host Origin), the
owner the code (Script Origin), the reason why a history is
being recorded (Cause) which can be one of eval, source,
and function with different owner, the number of suspension
points (Suspend), the total number of revocations (Revoke),
the size of the read and write set in the history (R/W). For
space reason we do not list the entire ownership informa-
tion but rather part of the URL. Note that for a given site the
host for frames may differ from that site’s URL and that host
would still be a trusted host, as frames are protected by the
SOP in the browser.

It is striking to observe the size of the scripts. None are
small, ranging from 192KB to 2.8MB of JavaScript code
executed during our short runs. On average, 84 delimited
histories were recorded per site, but that number and the
behavior of the actual histories varies considerably between
these sites.

Inspection of the code revealed that Google does not load
any third-party code, but twenty-one eval statements were
executed. None was suspended or revoked. Manual inspec-
tion suggests that Google uses eval to deserialize JSON ob-
jects. Facebook uses some alternate domains to store static
content, which we had to whitelist. While it ran no third-
party code, delimited histories were created due to eval, one
of which was revoked. Most of this code do not explicitly
read or write properties; three of the evals create and define
objects via JSON and pass them back to the host. Since none
of the objects owned by the host are changed in that process,
all of these are allowed, as well. Youtube needs whitelisting
of a static content domain s.ytimg.com. With that in place,
the page looks and feels like the original even though some
advertisement services and third-party functionality are re-
jected. For example, we found that a script from 2mdn.net
tries to install a global function isValid, however a function
with that name had already been defined by the host code in
the global scope. Therefore, allowing the untrusted code to
install the function may put the functionality of the host in
jeopardy; in the worst case a malicious script may subvert
the security of the host code. Our policy rejects that script
and reverts its side-effects. Yahoo structures its services into
several subdomains and maintains a number of hosts for
static content, which we whitelisted. We found frames dis-
playing ads from different hosts. Some scripts were revoked
due to updates to a field owned by the host. In a realistic set-
ting the frame content provider would specify the hosts to be
whitelisted so that their scripts would work as expected. Ya-
hoo also loads scripts from Facebook. These scripts change
the href property of a link not owned by the third-party script,
which means that its side-effect are revoked at the next sus-
pension point.

We categorized subjectively the behavior of the site with
security enabled and report on the results in Figure 15. We
first applied, as a sanity check, the Empty policy which

Policy Empty SendAfterRead AddOnly
Functional 50 22 12
No auto-complete 0 8 15
Ads blocked 0 7 8
Partial 0 9 10
Broken 0 4 5

Figure 15: Categorization of 50 benchmarks. Functional: The site
worked in its entirety. No auto-complete: Form auto-completion
functionality was broken, but otherwise the site was fully func-
tional. This is a common failure case due to how auto-completion
is frequently implemented. Ads blocked: The site worked, but its
ads did not. Although acceptable to clients, this is not acceptable
to servers, since ads are a revenue source. Partial: The important
or vital features of the site worked, but minor or secondary features
other than auto-completion or ads did not work. Broken: The site
is mostly nonfunctional.



Count Suspend R/W
Host / Script Origin Cause Revoke
google (16 files, 272KB)

1 google / google s 0 0 2/0
21 google / google e 1 0 5172/572
1 google / ssl.gstatic s 7 0 2745/293
11 google / clients1.google s 1 0 14476/1708
55 google / clients1.google f 0 0 14928/1477
1 google / clients1.google f 1 0 8/2
2 google / ssl.gstatic s 1 0 2/0

facebook (48 files, 2.8MB)
33 facebook / facebook e 1 0 15101/1778
30 facebook / facebook f 0 0 11858/1336
2 facebook / facebook s 0 0 10/2
2 facebook / facebook s 1 1 20/4

youtube (16 files, 1.1MB)
5 youtube / youtube e 1 0 22/4
17 ad-g.doubleclick / youtube s 0 0 7574/945
1 ad-g.doubleclick / youtube s 15 0 0/0
1 ad-g.doubleclick / youtube s 2 0 0/0
1 ad-g.doubleclick / youtube s 1 1 2745/293
1 ad-g.doubleclick / youtube s 3 1 10/2
1 ad-g.doubleclick / s0.2mdn s 17 0 10/2
1 ad-g.doubleclick / youtube s 4 1 10/2
1 ad-g.doubleclick / s0.2mdn s 19 0 10/2
3 ad-g.doubleclick / s0.2mdn s 0 0 2352/262
4 youtube / s0.2mdn s 3 0 38/8
1 youtube / s0.2mdn s 18 0 10/2
2 youtube / s0.2mdn s 2 0 2326/260
1 youtube / s0.2mdn s 4 0 10/2
7 youtube / s0.2mdn s 0 0 2418/271
6 youtube / s0.2mdn s 1 0 2354/268
1 youtube / s0.2mdn s 5 1 2313/258

qq (44 files, 1.1MB)
4 qq / qq s 0 0 26/6
1 qq / pingjs.qq s 0 0 0/0
1 qq / pingjs.qq f 4 1 0/0
1 qq / adsrich.qq s 8 0 0/0
1 qq / mat1.gtimg s 2 0 0/0
2 qq / mat1.gtimg f 1 1 2745/293
3 qq / mat1.gtimg f 0 0 2818/408
1 qq / mat1.gtimg f 5 1 0/0
1 qq / adsrich.qq s 1 1 10/2
27 qq / s 0 0 9561/1079
1 qq / s 2 0 2331/259
3 qq / adsrich.qq s 0 0 30/6
1 qq / s 1 1 10/2
1 qq / qq s 1 1 2313/258
1 qq / qq s 0 0 10/2
1 soso / soso.qstatic s 0 0 10/2
1 soso / soso s 0 0 10/2
1 soso / adsrich.qq s 0 0 2308/258

yahoo (23 files, 928KB)
2 yahoo / yahoo s 1 1 2/0
1 yahoo / ucs.query.yahoo s 0 0 0/0
1 yahoo / sugg.us.search.yahoo s 2 1 0/0

Count Suspend R/W
Host / Script Origin Cause Revoke
wikipedia (14 files, 800KB)

live (24 files, 1.6MB)
1 login.live / login.live s 2 1 2/0

baidu (19 files, 192KB)
2 baidu / s1.bdstatic s 1 1 2/0
2 baidu / s1.bdstatic s 0 1 0/0
7 baidu / baidu e 1 0 5563/701
2 baidu / s1.bdstatic s 0 0 20/4

amazon (34 files, 616KB)
1 amazon / ad.doubleclick s 1 1 2/0
7 amazon / amazon s 1 0 4965/511
1 amazon / amazon e 1 0 0/0
3 amazon / ad.doubleclick s 0 0 20/7
52 s3l3lkinz3f56t.cloudfront / amazon s 0 0 17949/2265
5 s3l3lkinz3f56t.cloudfront / amazon s 1 1 38/8
132 s3l3lkinz3f56t.cloudfront / amazon s 1 0 64837/7210
1 s3l3lkinz3f56t.cloudfront / amazon s 5 1 10/2
9 s3l3lkinz3f56t.cloudfront / amazon s 3 0 2388/274
1 s3l3lkinz3f56t.cloudfront / amazon s 17 0 8/2
7 s3l3lkinz3f56t.cloudfront / amazon s 2 0 2281/261
7 s3l3lkinz3f56t.cloudfront / amazon s 3 1 575/261
1 amazon / amazon f 1 0 0/1
1 amazon / amazon f 0 0 0/1
1 amazon / amazon f 6 0 0/1
1 amazon / amazon f 20 0 3/2
1 amazon / amazon f 5 0 841/74
1 amazon / amazon f 10 1 29/1
59 view.atdmt / amazon s 0 0 9820/7661
1 view.atdmt / b.voicefive s 4 1 179/25
5 view.atdmt / amazon s 1 1 0/472
2 view.atdmt / amazon s 3 0 3054/298
93 view.atdmt / amazon s 1 0 21661/6189
5 view.atdmt / amazon s 2 0 745/324
3 view.atdmt / amazon s 3 1 0/9
1 view.atdmt / amazon s 0 0 3/2
1 view.atdmt / amazon s 7 0 20/0
13 view.atdmt / amazon s 6 0 7375/2184
2 view.atdmt / b.voicefive s 0 0 487/95

taobao (48 files, 804KB)
1 taobao / a.tbcdn.cn s 2 0 2/0
12 taobao / a.tbcdn.cn f 2 1 7954/972
1 taobao / z.alimama s 1 0 0/0
1 taobao / a.tbcdn.cn f 2 0 0/0
4 taobao / a.tbcdn.cn f 0 0 10/2
4 taobao / a.tbcdn.cn s 2 1 2348/264
80 taobao / a.tbcdn.cn s 0 0 32609/3524
4 taobao / p.tanx s 0 0 4677/520
4 taobao / p.tanx s 1 1 40/8
1 taobao / s 1 1 8/2
1 taobao / taobao s 2 1 0/0
24 s.taobao / a.tbcdn.cn s 0 0 7193/817
3 s.taobao / a.tbcdn.cn f 0 0 2352/262
1 s.taobao / a.tbcdn.cn s 1 1 10/2
1 s.taobao / a.tbcdn.cn s 2 1 10/2

Figure 14: Dynamic characteristics of untrusted code for each of the top 10 site.



places no constraints on the code. Not surprisingly, no degra-
dation of behavior could be observed. In our tests, we ob-
served one very common failure case, the elimination of
auto-completion features from form fields. In most cases,
this was due to auto-completion being loaded either through
eval or from a separate domain, and either whitelisting or a
more finessed policy could have retained that behavior. For
the remainder of this description, we consider that particu-
lar failure case as inconsequential. The SendAfterRead pol-
icy performed admirably, with 60% of web pages fully func-
tional or with only auto-completion failing, and 14% of web
pages functioning but with ads blocked, terminating the ex-
ecution of the ad without affecting the site. In 18% of the
pages the site broadly worked with minor features missing.
The AddOnly policy is slightly more restrictive. Only 54%
of sites were fully functional or only had auto-completion
failures, with 20% having other missing features and 16%
have some ads blocked. This shows that even with generic
policies and unmodified code, our infrastructure is able to
provide an acceptable user experience in 70% of the top 50
sites. In a realistic deployment one can expect customized
policies and modification in the JavaScript code to yield sig-
nificantly smaller false positive rates. For all runs we used
a policy combinator to add the Whitelist policy to treat sec-
ondary servers as trusted.

Figure 16 is a poster child for global namespace pollu-
tion: it uses a variable i as a counter, but since the code ex-
ecutes in global scope, the variable is global. We reject the
script as variable i was already defined by the host code.

1 var links = document.getElementsByTagName(’a’);
2 for (var i = 0; i < links.length; i++) {
3 links[i].onclick = function() {
4 if (document.images) {
5 var href = unescape(this.href).split(’/article.aspx?’);
6 var pic =new Image(1, 1);
7 pic.src =’http://www.af.com/Af.PartnerSite/’
8 + ’Tracker.aspx?event=ararequest&purl=’
9 + this.href + ’&’ + href[href.length−1];

10 } }; }

Figure 16: ARAtracker.js at flickr.com.

5.5 Performance
To evaluate overheads, we arranged for our browser to load
three web sites and to fire a deterministic sequence of events
on each of these. We measured the execution time, both with
and without our instrumentation. The sites were cached in
a proxy to avoid inconsistency between runs. Our system is
currently limited to WebKit’s interpreter, so the JIT was not
used. Five runs of each site for each mode were performed.
The measurements were performed with the empty policy, as
it has all of the instrumentation overhead needed to record
policies but is semantically identical to running uninstru-
mented. The machine had a 3GHz six-core AMD Phenom

1075T processor and 16GB 667MHz DDR3 RAM. Our in-
strumentation is based on WebKit revision 92569, and the
same revision was used for the uninstrumented runs. The
three measured sites span the spectrum of history usage:
MSNBC (www.msnbc.msn.com) runs nearly all of its code
through eval, and so 98.41% of the traceable events were run
in a history, YouTube (www.youtube.com) substantially less
so (only 0.62%), and Google Maps (maps.google.com) has
no histories at all.

Figure 17 shows the results. MSNBC which is a worst
case scenario with most of the execution being recorded,
has an overhead slightly of 115%. The execution records
17 histories accounting for 424 suspensions, 117,328 read
events and 22,924 write events. In most sites we expect
the amount of controlled code to be much less than the
amount of host code as Figure 14 suggests. YouTube and
GMaps are more typical with 13% to 15% overheads. Our
YouTube benchmark ran 22 transactions accounting for 28
suspensions, 705 read events and 773 write events, and our
Google Maps benchmark ran 48 transactions accounting for
3 suspensions, 33 read events and 122 write events.

Instrumented Uninstrumented Over-
Site Avg. Std. dev. Avg. Std. dev. head

MSNBC 275.8 7.29 128.2 3.77 115.1%
YouTube 155.2 1.30 137.8 1.64 12.6%

GMaps 224.2 4.32 195.4 1.14 14.7%

Figure 17: Runtimes (ms) with and without instrumentation.

Although the interpreter overhead running the empty pol-
icy is sufficient to gauge the overheads of our system, in
Figure 18 we additionally provide measurements using the
JIT (with no instrumentation, as we have not implemented
instrumentation on the JIT) and with our two standard poli-
cies, AddOnly and SendAfterRead. Due to an early revo-
cation on MSNBC in both policies, the runtime is actually
considerably less with the realistic policies than the empty
one; on the other sites, the runtime is not greatly affected by
the choice of policy.

JIT AddOnly SendAfterRead
Site Avg. Std. dev. Avg. Std. dev. Avg. Std. dev.

MSNBC 27.0 4.24 47.4 0.55 50.0 1.22
YouTube 15.6 0.54 156.4 1.14 154.8 0.84

GMaps 35.2 1.30 199.4 3.65 215.4 1.67

Figure 18: Runtimes (ms) with JIT, AddOnly, SendAfterRead.

6. Related Work
Improving the security of JavaScript programs on modern
web browsers has attracted much interest. Many problems
come from the pervasive sharing of data and code in Java-
Script. While a browser could be viewed as an operating



system for web applications, unlike a traditional OS it is
quite common to execute components with little or no iso-
lation. This leads to, amongst others, Confused Deputy at-
tacks [4], where a trusted program unknowingly exercises its
authority to perform an action on the behest of an adversary.
Many authors have proposed to draw stronger boundaries
between components [12, 17, 29]. Library-based approaches
tried to limit the interface between components [10]. Intru-
sion detection techniques were proposed to detecting mis-
behavior [14, 15, 35]. Considerable effort was invested in
restricting the behavior of JavaScript programs. The highly
dynamic nature of the language steered research towards
a combination of filtering and rewriting [23]. Static analy-
sis can filter programs before execution, while rewriting is
used to inline reference monitors [25, 27, 28, 36]. Browser-
Shield [28] underlines the difficulty of detecting malicious
scripts. Differences between JavaScript parsers led to false
positives or missed attacks. Carefully crafted subsets of
JavaScript [23, 24] allow the separation of programs into
statically verifiable components and others that must be
checked at run-time. This was refined into the staged in-
formation flow verifier of [8] which reduced the false posi-
tive rate down to 33%. Defining two subsets of JavaScript,
a trivially statically analyzable one and a run-time checked
subset, reduced the false positive rate to 22% [13]. As de-
tecting malicious scripts remains tricky, some authors have
advocated extending browsers. Security policies can, for in-
stance, by embedded in web pages [20] with a 15% slow-
down for a native implementation, and 10x slowdowns for
a purely JavaScript implementation. However, it was shown
that neither white- or blacklisting approaches are impervious
to attacks [3]. Off-loading the execution of untrusted code
to another JavaScript engine is another alternative to impose
isolation. This has been show to have 69% overhead [22]
with the drawback of preventing many of valid interactions
present in legacy code.

Dhawan et al. [11] look at the use of Software Transc-
tional Memory for similar purposes as our delimited histo-
ries. In [11], the authors offered an implementation in the
Mozilla Firefox JavaScript engine. While the two proposals
share the idea of using histories for access control decisions,
we will argue for our proposal. Dhawan’s work does not ex-
tend objects with ownership, and thus it can not leverage
changes of ownership to determine decision points. Instead
a new keyword is added to the language and web applica-
tion programers must change their code to add transaction
boundaries. Security, in their approach, crucially depends
on programmers adding transactions at all points where un-
trusted code can run. This is done by encapsulating untrusted
code in transaction {...}, the ellipsis stands for the code to
run transactionally. Then the user must write code to run and
check the results of the transaction. This means that to adopt
the approach on legacy websites would require refactoring
them. Also, their approach may capture trusted code in a

transaction which would lead to a policy being applied to
code that actually is allowed to perform sensitive operations.
Their approach also requires conflict detection for the heap.
Performance overhead of their approach is between 1.6x and
6.5x on tiny applications and up to 26x on microbenchmarks.
No results are reported on real web sites. This makes the
systems hard to compare, and since both proposal are im-
plemented in JavaScript interpreters (and not JITs), perhaps
comparing performance is premature. Dhawan’s work sup-
port transactions on DOM objects, in our work we view
these as external operations. The advantage of being able to
undo DOM operation is that security policies need not worry
about suspension points at DOM operations.

Other uses of similar ideas include: Birgisson et al. [7]
base enforcement of authorization policies in concurrent
programs on ideas from transaction memory to eliminate
race conditions related to security checks. Rudys and Wal-
lach [32] proposed transactional rollback as a way to im-
plement safe termination of misbehaving codelets in Java.
Speculative execution [21] takes a similar approach (specu-
lation and rollback) but is built on top of a binary rewriting
tool and reports slowdowns of up to 3000×.

De Groef et al. propose FlowFox, a version of Firefox
that enforce security based on information flow control [9].
Their approach is based on secure multi-execution: the idea
that the program is executed once for each security level with
values that do not belong to that security level stubbed out.
We considered dynamic information flow tracking but even-
tually discarded the idea because of the fundamental limi-
tations of information flow tracking. Basically, information
flow tries to detect causal dependencies between actions exe-
cuted at different security levels. Consider the following ex-
ample of two instructions in a sequence:

1 H.foo.bar = 1; // secret
2 L.fum = 1; // public

The first line assigns 1 to field of a secret variable, the
second line stores 1 in the field of a public variable. One
would expect that there is no information leak in this trivial
program. Yet, if H.foo is undefined then an exception will be
thrown and the second line will not be executed. A sound
information flow policy would have to reject this program.
Information flow control is still a research topic and it is
possible that better solutions will be found.

Our policies are closely related to inline reference mon-
itors (IRMs) [33, 37]. IRMs oversee system execution with
security automata. IRMs typically apply a security policy P
before the execution of each event and terminate the program
if the policy is violated. Decisions cannot depend on future
events. In contrast, revocation lets us base access control de-
cisions on events that are yet to happen: having seen only
a prefix T of the execution, whose last event α might vio-
late security, we do not need to decide at that point whether
the prefix T is benign or malign. Instead, we speculatively
execute to the next decision point. Only then do we need to



check the policy, and revocation ensures that no side-effects
of α are visible if a policy violation is detected. Decision and
suspension points give well defined point in the computation
where access control decision are made.

7. Conclusions
This paper presented a security mechanism for monitoring
untrusted code in JavaScript based on delimited histories
with revocation. When security policies can reflect upon se-
quences of operations performed by a computation, it is pos-
sible to support semantic properties rather than the more
limited syntactic checks of traditional rewriting or wrapping
approaches. Most prominently, it is possible to write poli-
cies to detect side-effects that jeopardize confidentiality or
integrity, like sending out private data to untrusted servers
or updating sensitive data structures. By extending the same
origin policy and tagging objects as well as code with own-
ers we obtain a robust notion of principal which can leverage
to add our new security mechanism in a non-intrusive man-
ner. Whenever control is transferred across an ownership
boundary, security policies are activated. For that reason,
trust boundaries become implicit and we can apply policies
to unmodified JavaScript code and have significant success
with legacy code. Our evaluation in the WebKit JavaScript
engine demonstrates its effectiveness in preventing realistic
attack vectors like internet worms, as well as applicability
and scalability to realistic web sites exemplified by the 50
most popular pages.

We see promising direction for future work. Performance
can be improved by integrating the monitoring mechanism
with a trace-based just-in-time compiler and specializing
the code generated to the policy. A better treatment of eval
will greatly reduce the size of histories, especially in the
case of pathological web sites that run entirely in eval. A
second strand of work will investigate a mixture of static
and dynamic checking to target information flow policies.
In particular, we are interested in seeing if we can get a
handle of quantitative flows by reflecting on histories. Lastly,
we intend to investigate high-level declarative languages for
specifying polices to allow for policy-carrying web pages.
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A. Availability
The prototype implementation described in this paper has
been reviewed by the OOPSLA Artifact Evaluation Com-
mittee and found to “meet expectations”. The software is re-
leased in open source and is available at:
http://dumbo.cs.purdue.edu/webkit-ifc-5f893ccea10c.
tar.bz2

B. Implementation of SendAfterRead
We report below the complete C++ implementation of the
SendAfterRead policy; the correspondence between the
pseudo-code of Figure 8 and the actual implementation is
obvious. We point out that while the pseudo-code relies
on the standard implementation of querySuspend which in-
cludes a call to queryEnd, the C++ implementation provides
optimized code for querySuspend, which does not traverse
the whole delimited history but only checks the last event.
It is also worth observing that reads to certain classes, in
this case, HTMLDocument, Navigator and Location, are not
considered as potentially harmful: Checking for members
of document and navigator is a common technique to de-
termine what features the browser or its JavaScript engine
offers, and reading the current web page’s URL is generally
considered acceptable for analytics or targeting purposes.
Note that these checks are shallow, so, for example, allow-
ing reads to document does not allow arbitrary reads within
document.body or other sensitive portions of the DOM.

1 /∗
2 ∗ SendAfterReadPolicy.cpp
3 ∗/
4 #include "config.h"
5 #include "SendAfterReadPolicy.h"
6 #include "Threading.h"
7 #include "InstrEvent.h"
8 #include "AccessSet.h"
9 #include "EventGenerator.h"

10 #include "JSObject.h"
11 #include "JSFunction.h"
12

13 namespace JSC {
14 SendAfterReadPolicy::SendAfterReadPolicy() {
15 hasread = false;
16 }
17

18 SendAfterReadPolicy::~SendAfterReadPolicy() {}
19

20 bool SendAfterReadPolicy::queryEnd(History& history) {
21 if (history.ops().isEmpty()) return false;
22 Vector<Event∗>::const_iterator end = history.ops().end();
23 history.addSuggestion(OK);
24 bool violation = false;

http://dumbo.cs.purdue.edu/webkit-ifc-5f893ccea10c.tar.bz2
http://dumbo.cs.purdue.edu/webkit-ifc-5f893ccea10c.tar.bz2


25 ExecState∗ exec = history.execState();
26 for (Vector<Event∗>::const_iterator it = history.ops().begin();
27 it != end; ++it) {
28 Event∗ ev = ∗it;
29 if (ev−>type() == Event::Read) {
30 violation |= readEvent(static_cast<ReadEvent∗>(ev));
31 } else if (ev−>type() == Event::Call) {
32 violation |= callEvent(static_cast<CallEvent∗>(ev), exec);
33 } else if (ev−>type() == Event::Download) {
34 violation |= downloadEvent(static_cast<DownloadEvent∗>(ev));
35 }
36 }
37 if (!violation) return false;
38 history.addSuggestion(REVOKE); // violation
39 return true;
40 }
41

42 bool SendAfterReadPolicy::querySuspend(Event ∗ev, History& history) {
43 history.addSuggestion(OK);
44 bool violation = queryEnd(history);
45 if (ev−>type() == Event::Read) {
46 violation |= readEvent(static_cast<ReadEvent∗>(ev));
47 } else if (ev−>type() == Event::Call) {
48 violation |= callEvent(static_cast<CallEvent∗>(ev),
49 history.execState());
50 } else if (ev−>type() == Event::Download) {
51 violation |= downloadEvent(static_cast<DownloadEvent∗>(ev));
52 }
53 if (!violation) return false;
54 history.addSuggestion(REVOKE); // violation
55 return true;
56 }
57

58 bool SendAfterReadPolicy::readEvent(ReadEvent∗ event) {
59 if (!event−>getObject().isCell()) return false;
60 Owner owner = event−>getObject().asCell()−>getOwner();
61 bool read = false;
62 if (owner == Owner()) {
63 if (event−>getObject().isObject()) {
64 JSObject∗ obj = asObject(event−>getObject());
65 read = obj−>className() == "HTMLDocument" ||
66 obj−>className() == "Location" ||
67 obj−>className() == "Navigator";
68 }
69 } else {
70 read = m_owner != owner;
71 }
72 if (read) hasread = true; //got field of a different owner
73 return false;
74 }
75

76 bool SendAfterReadPolicy::callEvent(CallEvent∗ event, ExecState∗ exec) {
77 if (! event−>isNative()) return false;
78 InternalFunction ∗iff = asInternalFunction(event−>getFunction());
79 if (iff−>name(exec) == "addEventListener")
80 hasread = true; // callback has access to DOM object
81 return false;
82 }
83

84 bool SendAfterReadPolicy::downloadEvent(DownloadEvent∗ event) {
85 UNUSED_PARAM(event);
86 return hasread;
87 }
88 }
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