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Abstract
Scripting languages enjoy great popularity due to their sup-
port for rapid and exploratory development. They typically
have lightweight syntax, weak data privacy, dynamic typing,
powerful aggregate data types, and allow execution of the
completed parts of incomplete programs. The price of these
features comes later in the software life cycle. Scripts are
hard to evolve and compose, and often slow. An additional
weakness of most scripting languages is lack of support for
concurrency—though concurrency is required for scalability
and interacting with remote services. This paper reports on
the design and implementation of Thorn, a novel program-
ming language targeting the JVM. Our principal contribu-
tions are a careful selection of features that support the evo-
lution of scripts into industrial grade programs—e.g., an ex-
pressive module system, an optional type annotation facility
for declarations, and support for concurrency based on mes-
sage passing between lightweight, isolated processes. On the
implementation side, Thorn has been designed to accommo-
date the evolution of the language itself through a compiler
plugin mechanism and target the Java virtual machine.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Concurrent, dis-
tributed, and parallel languages; Object-oriented languages;
D.3.3 [Programming Languages]: Language Constructs and
Features—Concurrent programming structures; Modules,
packages; Classes and objects; Data types and structures;
D.3.4 [Programming Languages]: Processors—Compilers
General Terms Design
Keywords Actors, Pattern matching, Scripting
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1. Introduction
Scripting languages are lightweight, dynamic programming
languages designed to maximize short-term programmer
productivity by offering lightweight syntax, weak data en-
capsulation, dynamic typing, powerful aggregate data types,
and the ability to execute the completed parts of incomplete
programs. Important modern scripting languages include
Perl, Python, PHP, JavaScript, and Ruby, plus languages
like Scheme that are not originally scripting languages but
have been adapted for it. Many of these languages were orig-
inally developed for specialized domains (e.g., web servers
or clients), but are increasingly being used more broadly.

The rising popularity of scripting languages can be at-
tributed to a number of key design choices. Scripting lan-
guages’ pragmatic view of a program allows execution of
completed sections of partially written programs. This fa-
cilitates an agile and iterative development style—“at every
step of the way a working piece of software” [9]. Execu-
tion of partial programs allows instant unit-testing, interac-
tive experimentation, and even demoing of software at all
times. Powerful and flexible aggregate data types and dy-
namic typing allow interim solutions that can be revisited
later, once the understanding of the system is deep enough
to make a more permanent choice. Scripting languages focus
on programmer productivity early in the software life cycle.
For example, studies show a factor 3–60 reduced effort and
2–50 reduced code for Tcl over Java, C and C++ [38, 39].
However, when the exploratory phase is over and require-
ments have stabilized, scripting languages become less ap-
pealing. The compromises made to optimize development
time make it harder to reason about correctness, harder to do
semantic-preserving refactorings, and in many cases harder
to optimize execution speed. Even though scripts are suc-
cinct, the lack of type information makes the code harder to
navigate. An additional shortcoming of most scripting lan-
guages is lack of first-class support for concurrency. Concur-
rency is no longer just the province of specialized software
such as high-performance scientific algorithms—it is ubiqui-
tous, whether driven by the need to exploit multicore archi-
tectures or the need to interact asynchronously with services
on the Internet. Current scripting languages, when they sup-



port concurrency at all, do so through complex and fragile
libraries and callback patterns [20], which combine browser-
and server-side scripts written in different languages and are
notoriously troublesome.

Currently, the weaknesses of scripting languages are
largely dealt with by rewriting scripts in either less brittle
or more efficient languages. This is costly and often error-
prone, due to semantic differences between the scripting lan-
guage and the new target language. Sometimes parts of the
program are reimplemented in C to optimize a particularly
intensive computation. Bridging from a high-level scripting
language to C introduces new opportunities for errors and in-
creases the number of languages a programmer must know
to maintain the system.

Design Principles. This paper reports on the design and
the implementation status of Thorn, a novel programming
language running on the Java Virtual Machine (JVM). Our
principal design contributions are a careful selection of fea-
tures that support the evolution of scripts into robust indus-
trial grade programs, along with support for a simple but
powerful concurrency model. By “robust”, we mean that
Thorn encourages certain good software engineering prac-
tices, by making them convenient. The most casual use of
classes will result in strong encapsulation of instance fields.
Pattern matching is convenient and pervasive—and provides
some of the type information which is lost in most dynami-
cally typed languages. Code can be encapsulated into mod-
ules. Components provide fault boundaries for distributed
and concurrent computing.

Thorn has been designed to strike a balance between
dynamicity and safety. It does not support the full range of
dynamic features commonly found in scripting languages,
though enough of them for rapid prototyping. It is static
enough to facilitate reasoning and static analyses. Thorn
runs on the JVM, allowing it to execute on a wide range of
operating systems and letting it use lower-level Java libraries
for the Thorn runtime and system services. Thorn has the
following key features:

Scripty: Thorn is dynamically-typed with lightweight syn-
tax and includes powerful aggregate data types and first-
class functions.

Object-oriented: Thorn includes a simple class-based
multiple inheritance object model that avoids the main
complexities by simple static restrictions.

Patterns: Thorn supports an expressive form of pattern
matching for both built-in types and objects.

Immutable data types: Thorn encourage the use of im-
mutable data, which typically eases code composition
and evolution.

Concurrency and distribution: Non-sequential program-
ming is done by lightweight, isolated, single-threaded
components that communicate by message passing.

Modules: An expressive module system makes it easy to
wrap scripts as reusable components.

Constraints: Optional constraint annotations on declara-
tions permit static or dynamic program checking, and fa-
cilitate optimizations.

Extensibility: An extensible compiler infrastructure writ-
ten in Thorn itself allows for language experimentation
and development of domain specific variants.

It is important to note what Thorn does not support. Threads:
There is no shared memory concurrency in Thorn, hence
data races are impossible and the usual problems associated
with locks and other forms of shared memory synchroniza-
tion are avoided. Dynamic loading: Thorn does not support
dynamic loading of code. This facilitates static optimization,
enhances security, and limits the propagation of failures.
However, Thorn does support dynamic creation of compo-
nents, which can be used in many applications that currently
require dynamic loading. Introspection: Unlike many script-
ing languages, Thorn does not support aggressively intro-
spective features. Unsafe methods: Thorn can access Java li-
braries through an interoperability API, but there is no access
to the bare machine through unsafe methods as in C# [22].
Java-style interfaces: Their function is subsumed by mul-
tiple inheritance. Java-style inner classes: These are com-
plex and difficult to understand, and are largely subsumed
by simpler constructs such as first-class functions. Implicit
coercions: Unlike some scripting languages, Thorn does not
support implicit coercions, e.g., interpreting a string "17" as
an integer 17 in contexts requiring an integer.

Targeted Domains. Thorn is aimed at domains includ-
ing client-server programming for mobile or web applica-
tions, embedded event-driven applications, and distributed
web services. The relevant characteristics include a need for
rapid prototyping, for concurrency and, as applications ma-
ture, for packaging scripts into modules for reuse, deploy-
ment, and static analysis. Thorn plugins provides language
support for specialized syntax and common patterns, e.g.,
web scripting or streaming. They make it possible to adapt
Thorn to specialized domains and allow more advanced op-
timizations and better error handling than with macros.

Implementation Status and Availability. Thorn is joint
project between IBM Research and Purdue.There are cur-
rently two implementations of Thorn on the JVM: a feature-
complete reference implementation in the form of an inter-
preter, and a slightly restricted bytecode compiler. We are
re-engineering the compiler to extend it to the full language.
The only features discussed in this paper that are not fully
supported in the interpreter (but available in the compiler)
are general type constraints and language plugins. All of
the examples in this paper have been tested on the refer-
ence implementation. More information is available from the
Thorn web site at http://www.thorn-lang.org. An open
source version of Thorn is expected in late 2009.



2. From Scripts to Programs
As an example of the succinctness that scripting requires,
here is a simple variant of the Unix grep program written
in Thorn. The call argv() returns the list of command-line
arguments.

for (l <- argv()(0).file().contents().split("\n"))
if (l.contains?(argv()(1))) println(l);

Subscripting uses parentheses and is 0-based, so argv()(0)
is the first argument. The file() method produces a file ob-
ject with the given name, and contents() gets the contents
of the file as a string, and split("\n") breaks it into a list of
lines. for iterates over the list, binding l to successive lines.
The if tests whether the second command-line argument is
in that line, and, if so, prints it.

2.1 Dining Philosophers
Figure 1 is a Thorn solution to the Dining Philosophers prob-
lem. We will cover of all of the Thorn constructs used in here
in detail in subsequent sections; here are a few highlights.

Forks and philosophers are represented as components,
analogous to threads or processes, which communicate by
sending messages back and forth, and do not share any state.
The Fork component describes a fork with two state vari-
ables, holder for the philosopher currently holding the fork,
and waiter for the one waiting for it. These variables can
be null if there is no such philosopher. The local function
taken() describes what to do when philosopher phil picks
up the fork: viz., change the holder variable, and send the
message "taken" to the philosopher. The main behavior of
a Fork is given in its body section which loops indefinitely,
waiting to receive one of three kinds of messages. Upon re-
ception of the string "die" it breaks from the while loop,
ending the body and thus the component. If a record with a
field labeled take is received from any philosopher phil, it
will respond appropriately to phil: either giving him the fork
or making him wait. Finally, it responds to "drop" by having
the holding philosopher put the fork down, and, if necessary,
the waiting one pick it up.

In Thorn, blocks are enclosed in braces, as in C-derived
languages. However, blocks begun with a keyword or iden-
tifier can optionally be closed by the same symbol immedi-
ately after the }, as in }Fork closing the component.

Once the definition of Fork is complete, the program
spawns three instances of Fork, using a list comprehen-
sion expression forks=%[...|for i<-0..2]. The values in
the list are component handles, immutable references to the
components, which can be used to send messages to them.
The list is bound to a variable, forks, whose scope includes
the ensuing component declaration for Phil. One important
property of the Thorn component model is that, semanti-
cally, no state is shared between component instances. As
an optimization, the implementation may share immutable
state; but this is invisible to Thorn. When a global constant,
like forks, is used within a component definition, no state

component Fork(n) {
var holder := null;
var waiting := null;
fun taken(phil) {holder := phil; phil <<< "taken";}
body {
while (true) {
receive{
"die" => {break;}

| {: take:_ :} from phil => {

if (holder == null) taken(phil);
else waiting := phil;

}

| "drop" from phil => {

phil <<< "dropped";

if (waiting != null) {
taken(waiting);

waiting := null;
} else holder := null;

} } } }

}Fork;

forks = %[ spawn Fork(i) | for i <- 0 .. 2];

component Phil(name, ln, rn, iter) {
body {
left = forks(ln);

right = forks(rn);

for(i <- 1 .. iter) {
# THINK: I think, therefore I am.

left <<< {: take:name :}; receive{"taken" => {}};
right <<< {: take:name :}; receive{"taken" => {}};

# CRITICAL: I eat, therefore I am fed.

right <<< "drop"; receive{"dropped" => {}};
left <<< "drop"; receive{"dropped" => {}};

} }

}Phil;

phils = [

spawn Phil("Kant", 0, 1, 10),
spawn Phil("Hume", 1, 2, 12),
spawn Phil("Marx", 0, 2, 8)];
# A 3-way philosophical dinner now ensues.

Figure 1. Dining Philosophers in Thorn

is shared; forks is treated as a parameter to the component,
and, thus, passed by copy.

The Phil component has several parameters: philoso-
pher name, index of the left and right forks, and the num-
ber of times to think. A philosopher starts out by bind-
ing his left and right forks to two variables. The state-
ment left = forks(ln) introduces an immutable binding
to a fresh variable. Thorn distinguishes between mutable
(var) and immutable (val or =) variables. The statement
holder := phil, for example, assigns to an extant mutable
variable; it cannot be used on an immutable one. As shad-
owing of variable names is forbidden, it is all but impossible
to introduce a new variable when the intent was to update
an extant one, or vice-versa. Most scripting languages allow
the assignment operation to create new variables as well as
modify them. Thorn’s approach is nearly as convenient, and
safer.



The philosopher iterates iter times, thinking and eating.
After thinking, it picks up its left fork. This is done in
two parts: left <<< {: take:name :}, which constructs a
record with one field take bound to the philosopher’s name,
and sends it to the left fork. Then it waits for the fork to reply.
The reply needs to be the string "taken"; other incoming
messages (of which this example has none) are ignored. No
particular action needs to be done when the message shows
up, hence the empty block in the receive. The philosopher
repeats the same send and receive with the right fork. After
the critical section, the philosopher drops the forks in the
opposite order, using the same mechanisms to communicate.

The example concludes with the spawning of three fa-
mous philosophers. Each is provided with its proper forks;
Marx’s forks are reversed to break the symmetry and al-
low the usual Dining Philosophers solution to work. When
a philosopher is spawned, it starts executing its body clause,
picking up forks and so on. The system runs philosophically
from this point on.

2.2 A Server in Thorn

We now turn to a more complex example: a matchmaking
application. The heart of the service is a date service com-
ponent that interacts with a client components acting on be-
half of customers seeking dates. The service advertises it-
self through a central registry, here presented for brevity in
a minimalist form only capable of registering a single dating
service. The code shown here could run within a single JVM
as the previous example, but we have chosen to distribute it.

module dating {
fun registry() = site("thorn://localhost:5555");

fun sum([]) = 0;
| sum([x,y...]) = x + sum(y);

class Profile(interests, limit) : pure {
def compatible?(other) =
other != null &&
this.compat?(other) && other.compat?(this);

def likes?(topic) =
%exists(t==topic | for {: topic:t :} <- interests);

def compat?(other : Profile) {
matches = %[ weight |

for {:topic, weight:} <- interests,
if other.likes?(topic)];

sum(matches) > limit;

}

}

}dating

spawn Registry {
var datesvc;
sync dateServicePlz() = datesvc;
sync registerDateSvc(datesvc’) { datesvc := datesvc’; }

body { while (true) serve; }
};

Figure 2. Dating module and registry in Thorn.

Every component (marked by the keyword spawn) runs in a
different JVM. Component handles contains sufficient infor-
mation to identify the node and port on which the component
runs.

Thorn allows shared code to be organized in modules:
bindings of names to components, classes, values, functions,
and so on. Figure 2 defines the dating module, which ex-
ports the definition of the registry and sum functions, and
the Profile class: the data structure that explains what a
client of the dating service is looking for. Methods in classes
are declared using the def keyword. Functions and methods
always return a value, which is the last expression computed
within the function body. Profile defines three methods; by
convention method names ending in ? return Boolean values.
The pure annotation on Profile indicates that the class can-
not refer to mutable or component-local state, and thus, its
instances are suitable for transmission between components.

The DateService and SampleClient components, shown
in Figure 3, both import the definitions in the module
dating. In particular they share the Profile class. The key-
word spawn is used here to create a singleton instance of the
component definition that follows it, the component name is
optional.

The Registry component is intentionally simplified. All
it does is hold a component handle, the DateService com-
ponent in this case, and provides an interface for accessing
that handle.

Thorn enjoys two communication models. The Dining
Philosophers used the send/receive model, which is suit-
able for intricate communication patterns. The dating ser-
vice uses the serve model, more suitable for client/server
and RPC-style coordination. Thorn components can have
communication declarations which define code to be exe-
cuted upon receipt of certain messages. The DateService
component defines three. The sync communications (here
register and makeMeAMatch) return a value to the sender,
and, thus, are blocking. The async communications (here,
stop) return nothing and are not blocking. An expression of
the form datesvc <-> register("Whale", whale) sends a
message to a component then awaits a reply (in this case, a
string). Alternatively, a message can be sent asynchronously,
as in datesvc <-- stop(), in which case the sender contin-
ues on without waiting for a reply. The difference between
c <<< v and c <-- m(s) is that former tosses the value v
into c’s mailbox with no further semantics implied, while
the latter evaluates the body of c’s async named m.

Thorn’s built-in types include lists, records, and a power-
ful associative table type. The expression {: source:sender,
name, profile, picked:[name] :} in the registermethod
is a record constructor. It yields a record with four fields
(source, name, profile, picked). For convenience, an iden-
tifier occurring alone in a record constructor serves as both
field name and value, so name abbreviates name:name. The
expression [name] constructs a list with a single element.



spawn DateService {
import dating.*;

var done := false;
val customers = table(name) {

val source, profile; var picked;
};

async stop() { done := true; }

sync register(name, profile) from sender {
if (customers(name)==null)
customers(name) :=

{: source:sender, name, profile, picked:[name] :};

null;
}

sync makeMeAMatch(name) {
if (customers(name) ∼ +r) findMatchFor(r);
else {: failed: "Please register first!" :};

}

fun findMatchFor({: profile:pr, name:nm, picked :}) {
first(for {: profile:pr’, name:nm’ :} <∼ customers,

if pr.compatible?(pr’) && !(nm’ in picked)) {
customers(nm).picked := nm’ :: picked;

return {: date: nm’ :};

}

else return {: failed: "No match":};
}findMatchFor

body {
registry() <-> registerDateSvc(thisComp());

while (!done) serve;
}

}DateService;

spawn SampleClient {
import dating.*;

body {
datesvc = registry() <-> dateServicePlz();

porpoise = Profile([

{: topic: "swimming", weight: 15:},

{: topic: "moon", weight: 7:},

{: topic: "watersports", weight: 10:}], 10);

whale = Profile([

{: topic: "swimming", weight: 15:},

{: topic: "singing", weight: 10:},

{: topic: "watersports", weight: 3:}], 5);

# Register some clients...

datesvc <-> register("Porpoise", porpoise);

datesvc <-> register("Whale", whale);

# Exercise the dating service.

date = datesvc <-> makeMeAMatch("Porpoise");

#...a whale

noDate = datesvc <-> makeMeAMatch("Porpoise");

#...failure

}

}SampleClient;

Figure 3. Dating Service program in Thorn.

Conceptually, a table such as customers in DateService
is simply a collection of records, or rows, defined over a
common set of field names, or columns. The subscripting
expression customers(name) retrieves the row whose key
equals name, or null if there is no such row. A table is cre-
ated with an expression such as table(name){val source,
profile; var picked;} which yields a new table mapping
names to three values. Thorn has a rich collection of query
expressions, e.g., first which seeks a suitable set of values
and binds them to variables if they exist, or executes an else
clause if they do not.

The serve statement in the body of DateService and
registry explicitly waits for a single incoming message:
one of the component’s syncs or asyncs. Incoming messages
to a component are queued and their corresponding com-
munication bodies are executed serially. Each component
has only a single thread of control. Data races are impos-
sible. They are replaced by message races, which are gener-
ally more benign: programmer error may result in operations
happening in the wrong order, but not happening simultane-
ously.

3. Related Work
Designing Thorn, we carefully examined a variety of pro-
gramming languages: Java, Scala, Perl, Python, Smalltalk,
Lua, Ruby, JavaScript, Haskell, ML, Scheme, Lisp, Er-
lang, and others. Thorn takes some aspects of these lan-
guages and extends them with novel variations. The syn-
tax of Thorn is influenced primarily by Scala [37] and
Python [57]. Thorn supports a class-based object model,
described in Section 4.1, similar to Java’s or Scala’s, but
simpler to program. Thorn supports multiple inheritance
with restrictions to avoid the diamond problem. Other re-
cent languages [50, 42, 37, 3, 31] distinguish between dif-
ferent modes of inheritance for different kinds of entities
(e.g., interfaces, traits, mixins) to avoid these problems. Like
Kava [7] and X10 [41], Thorn provides pure classes, which
encourage a functional programming style while preserving
the extensibility and flexibility of object-orientation. Thorn
provides pattern matching features influenced by ML data
types [29, 33], Scala extractors [17], active patterns [53],
views [58], and more directly from our previous on Match-
ete [23].

Thorn includes associative data types and queries which
are inspired by the design of SETL [43], SQL [13], LINQ [32],
Haskell’s list comprehensions [24], and CLU iterators [30].

Thorn’s module system is based upon the Java Module
System [51, 52]. Most scripting and concurrency-oriented
programming languages have poor support for modularity,
often lacking even weak hierarchical visibility (selective ex-
porting combined with optional re-exporting) and support
for versioning. For example, Ruby [54] only focuses on
code reuse with its mixins [11]. Erlang’s modules [1] sup-
port selective importing and exporting of functions, where



imported names are automatically merged into the local
namespace, which leads to fragile module definitions. In
Python [2], each source file creates its own namespace,
which depends on its location in the file system. While se-
lective importing is supported, the imported names can eas-
ily be merged with the local namespace, again leading to
fragility. PLT Scheme [18] is a rare exception, defining an
expressive module system that supports both weak hierarchi-
cal visibility, versioning, selective importing, and renaming.
But, as with Python, each source file defines a module, and
imported names are merged into the local namespace.

Inspired by Erlang [1], actors [6, 37, 47], and lan-
guages like Concurrent ML [40], Thorn supports concurrent
and distributed programming through lightweight single-
threaded components that communicate asynchronously
through message passing. Thorn components are logically
separate. This style of distributed programming improves
system robustness by isolating failures. Clojure [15] sup-
ports asynchronous message passing through agents. Agents
react to messages and can update a single memory lo-
cation associated with the agent. Recent languages for
high-performance computing such as X10 [41, 14] and
Chapel [12] support partitioned global address spaces; these
languages permit references to remote data, and hence do
not readily support failure isolation.

A central idea in Thorn is that it supports the evolution
of scripts into programs through optional annotations and
compiler plugins. Pluggable and optional type systems were
proposed by Bracha [10]. Compiler plugins use the type
annotations to reject programs statically that might other-
wise have dynamic type errors. By contrast, Thorn plugins
can perform arbitrary transformations of the program. Java
5 [50] annotations adapt the pluggable type system idea to
Java, which retains its original type system and run-time
typing semantics. JavaCOP [5] is a pluggable type system
framework for Java annotations in which annotations are de-
fined in a meta language that allows type-checking rules to
be specified declaratively. Thorn provides a richer annota-
tion language than Java’s, permitting arbitrary syntactic ex-
tensions that enable more natural domain-specific annota-
tions rather than requiring that annotations fit into a nar-
row annotation sub-language. An instance of optional an-
notations in Thorn is its gradual typing system. This type
system builds on recent work on gradual typing in dynamic
languages [4, 44, 21, 45, 56, 55].

The Thorn compiler is built on an extensible compiler in-
frastructure, providing a compiler plugin model similar to
X10’s [35]. Plugins support both code analysis and code
transformations. The design of the compiler itself is based
on the design of the extensible compiler framework Poly-
glot [34]. The meta-programming features and syntax ex-
tension features of Thorn were influenced by Lisp [48] and
Scheme macros [46].

Thorn is one of many dynamic languages and scripting
languages implemented on the JVM [27, 25, 8, 15, 28]. We
examined the implementation of several of these languages
when designing Thorn to avoid some of the performance pit-
falls. For example, the decision to disallow dynamic exten-
sion of objects was motivated by the requirement that objects
be implemented efficiently. Unlike Groovy [8], for instance,
we do not use reflection to implement method dispatch.

4. Thorn for Scripts
Thorn data can be classified into the categories listed in Fig-
ure 4. Every datum in Thorn, including atomic values such
as integers, is an instance of a primitive object. Conceptually,
a primitive object is a bundle containing some state (perhaps
mutable) and a collection of methods (possibly empty). We
will use the term object exclusively for referring to instances
of classes, and data created using the object construct. Class
and component definitions are not data in Thorn, though
class and component handles are.

atomic value boolean, numerics, immutable string
record immutable set of named values
list immutable vector of values
table mutable associative aggregate
ord mutable ordered collection
object anonymous or class instance
closure anonymous or named function
component handle lightweight process reference

Figure 4. Thorn data categories.

4.1 Classes
Some scripting languages have a very slippery (or, if you
prefer, flexible) concept of “class”. Lua, and to some extent
JavaScript, lets programmers define their own concept alto-
gether. Ruby and Python are not quite this extreme, but ob-
ject structure is determined at runtime. In such languages,
it would be perfectly normal to have a class Person, one
instance of Person that has a name field, and another that
does not. If programmers take advantage of this feature, their
code is likely to be difficult to understand or maintain. Thorn
has a more concrete concept, hearkening to the statically-
structured world of Java and C++. A class statically deter-
mines the structure of its instances: their fields, methods,
superclasses, and so on. The syntax for classes is relatively
lightweight.

Formal Class Parameters. Inspired by Scala, Thorn classes
can be defined with formal parameters, which induce fields,
constructors, and the extractors introduced in Section 4.2.
For example,

class Point(x,y) {}



abbreviates the more Java-like

class Point {
val x; val y;
new Point(x’,y’) { x = x’; y = y’; }

}

Class formals passed as arguments to parent classes do not
induce variables. So, the following declaration produces a
subclass of Point with one new field t.

class TastyPoint(x,y,t) extends Point(x,y) {}

Methods. Methods are introduced by the keyword def and
are called by the traditional r.m(x,y) syntax.1 As in Scala,
single-expression methods can be introduced with a compact
syntax, and methods whose bodies are larger can use {}-
blocks.

class Rectangle(xl, yl, xh, yh) {
def well_formed?() = xl < xh && yl < yh;
def area() {
if (this.well_formed?()) {(xh-xl) * (yh-yl);}
else throw "Degenerate rectangle";
}

}

Instance Variables. The treatment of instance variables is
a sweetened version of Smalltalk’s. An object’s instance
variables are visible inside its definition; no other object’s
are. Thorn provides default getters and setters for all in-
stance variables, unless the user has provided different ones.
From outside, all access to fields is done by method call.
The syntax x.f is simply an abbreviation for the nullary
method call x.f(), and x.f:=g; is sugar for x.‘f:=‘(g);.2

The class A below, from outside, seems to have var fields
including b, c, and e, and val field d. a.b:=a.b+1 will incre-
ment the b field of A a. a.c:=3 will work, but a.c:=4 will
not, as assignment to the c field is specialized to only work
for primes. There is no instance variable named e, but A’s be-
have from the outside as if there were one: a.e:=a.e+1; does
just what one would expect. Attempts to access the repre-
sentation variable secret from outside the class will always
throw exceptions.

class A {
var b; # implied getter: def b() = b;

# implied setter: def ‘b:=‘(b2){b:= b2;}

var c; # implied getter: def c() = c;

def ‘c:=‘(v) { if (v.prime?) c:=v; }
val d=1; # implied getter: def d() = d;
var secret;

1 Unlike Java, the receiver r is required, even when it is this. Otherwise
it would not be possible to distinguish between a call to a function f and a
call to a method named f, or, more confusingly, a method named f that the
class itself does not define but some subclass does.
2 Nearly any string can be used as an identifier, by surrounding it in back-
quotes. This is used for methods with symbols as names, such as ‘f:=‘
(field assignment) and + (addition operation).

def e() = secret;
def ‘e:=‘(v) { secret := v; }
def secret() {throw "Please don’t";}
def ‘secret:=‘(x) {throw "Please don’t";}

}

Many scripting languages have all fields actually public,
which is delightfully convenient in the short term, but in-
hibits good software engineering practices like data hid-
ing and enforcement of representation invariants in the long
term. Our approach retains the convenience—by default all
fields appear public—but, since the actual representation is
always defended by an abstraction barrier, allows good prac-
tices as well.

Constructors. Constructor invocations look like function
calls: A() creates a new instance of the class A. Constructors
are defined with the new keyword. Within the constructor
body (and only there), new may be called with arguments
to evaluate the code of another constructor, rather the way
that this can be called with arguments in Java. A cons cell
class could be defined:

class Pair {
val fst; val snd;
new Pair(f,s) { fst = f; snd = s; }
new Pair(f) { new(f,null); }

}

New pairs can be created by calls like Pair(1,2), or, where
snd is to be null, Pair(3). The class Pair has two immutable
val fields, which must be bound exactly once inside the
constructor and cannot be rebound thereafter.

A pernicious source of errors in many languages is the
ability of a constructor to leak references to the object be-
ing constructed before it is fully initialized, exposing state
changes in immutable fields. Thorn disallows the use of
this inside constructors, avoiding this problem. There are,
of course, situations where one needs to refer to a newly-
constructed object; e.g., it is sometimes desirable to put ev-
ery Person object into a list. Such bookkeeping can be put
into the distinguished init() method, that, if present, is
called after the constructor body but before the constructor
returns, and, like any method, can refer to this.

Multiple Inheritance. Multiple inheritance, in its full gen-
erality, is extremely powerful but sometimes extremely con-
fusing. Thorn supports a restricted form of multiple inheri-
tance, designed to be reasonably straightforward to under-
stand and to give most of the advantages of fuller forms
of multiple inheritance with only a modest amount of ex-
tra work. The following is the defines a class TastyPoint as
the composition of two classes, Point and Flavor.

class Flavor(fl) {}
class TastyPoint(x,y,fl)
extends Point(x,y), Flavor(fl) {}

The first knot that Thorn cuts is method precedence. If Point
and Flavor were expanded to provide a predicate nice?(),



but TastyPointwere not, what would tp.nice?() do? Some
languages have elaborate precedence rules to control this
situation. Thorn simply forbids it. If two parents of a class
both have a method with the same name and arity, then the
class must override that method. Often the code for this
definition will involve a supercall to one or the other parent’s
method, using the super syntax to say which to call:

def nice?() =
super@Point.nice?() && super@Flavor.nice?();

The second knot that Thorn cuts is multiple inheritance of
mutable state. If class A has a single var field a, and B and C
both extend A, and D extends B and C, then how many fields
do instances of D have? In some cases, it is desirable for the
a inherited from B to be the same as that from C; in other
cases, they should be different. If they are the same, which
constructor gets to initialize it? C++ has a subtle answer
to these questions. Thorn has a simpler answer: multiple
inheritance of mutable state is forbidden altogether. Similar
restrictions forbid inheritance of immutable fields that could
be fixed at different values depending on which inheritance
path is taken.

Anonymous Objects. It is sometimes convenient to have
anonymous objects: that is, to construct an object without
bothering to code a whole class for it. Java uses anonymous
objects extensively for callbacks, comparators, and other bits
of code packaged to be first-class. They are less important in
Thorn, since Thorn has closures and is not as fussy about
types. Nonetheless, they can be convenient. They are built
thus:

fun makeCounter() {
var n := 0;
object { def inc() {n += 1;} }

}

Each call to makeCounter() produces a separate counter
object. Making n a field of the object, or returning a closure,
would be more idiomatic Thorn.

Operator Overloading. Just like in Smalltalk, operators
are implemented through method calls: 1+2 is syntactic
sugar for 1.‘+‘(2). The usual flora of operators are al-
lowed to be called without the dot syntax. Like in Ruby
but unlike Smalltalk, operator expressions have their tradi-
tional precedence hierarchy. So, 1+3*2 is correctly treated as
1.‘+‘(3.‘*‘(2)) rather than Smalltalk’s (1.‘+‘(3)).‘*‘(2).
Since Thorn is untyped, operations on all objects (e.g., user-
defined Complex numbers) have the same precedence hierar-
chy.

4.2 Pattern Matching
Thorn provides a powerful set of facilities for matching pat-
terns and extracting data from objects and built-in data struc-
tures. Patterns provide a good way to specify the expected
structure of values, and to disassemble them and use their

parts. This mitigates some of the disadvantages of having
an untyped language. Indeed, it provides expressive power
beyond most type systems: pattern matching can be used to
check that “this list contains three elements” just as easily as
“this list contains only integers”. It also provides a degree of
convenience that programmers will appreciate. Several con-
structs in Thorn do pattern matching; for this section we only
use exp∼ pat which returns true if exp’s value matches pat,
and false otherwise.

Most built-in types provide patterns that parallel their
constructors. For example, as an expression, 1 is an inte-
ger; as a pattern, 1 matches precisely the integer 1. As an
expression [h, t...] produces a list whose head is h and
whose tail is t, a synonym for h @ t. As a pattern, it matches
such a list; e.g., it would match the list [1,2,3,4] binding
h to 1 and t to [2,3,4]. Some built-in pattern constructs
do not correspond to Thorn types: +p matches a non-null
value that matches p. $(e) matches the value of the expres-
sion e, and (e)? matches if the boolean expression e eval-
uates to true. Type tests are available in patterns as well:
[x:int, p:Person] matches a two-element list containing
an integer followed by a Person.

The conjunctive pattern p && q matches a value that
matches both p and q. For example,

r && {: source:$(sender) :}

matches a record whose source field is equal to sender—it
may have an arbitrary set of other fields as well—and binds
that record to r, thus behaving like ML’s as. However, && is
more powerful than as. The pattern

[_..., 1, _...] && [_..., 2, _...]

matches a list containing both 1 and 2 in either order.
x && (x>0)? matches a positive number and binds it to x.
This trick eliminates the need for side conditions in pat-
tern expressions, and allows finer control of when pattern
matching is stopped than side conditions do: the match
lst∼[x:int && (x != 0)?, $(32 div x)] is true on [4,8]
and false (rather than dividing by zero) on [0,0].

Thorn also has disjunctive and negative patterns. p||q
succeeds if either p or q succeeds, and !p succeeds iff p fails.
For example, [(3||!(_:int))...] matches lists whose in-
tegral elements are all 3, such as [3, true]. Note that this
could not be expressed as nicely as a Boolean combination of
non-Boolean patterns. These patterns produce no externally-
visible bindings.

It is often desirable to look for something, and return it
if it was found, or a note that it was not found otherwise.
Thorn’s idiom for this uses the +e operation, and its inverse
the +p pattern. +e (pronounced “positively e”) packages the
value of expression e in a way guaranteed to be non-null.
+p matches a subject that is non-null, and, when + is in-
verted, matches p. E.g., +1∼+x is true and binds x to 1, and
+null∼+y is true and binds y to null, but null∼+z is false.
This pair of operations gives a convenient idiom for func-



tions that search for something and return what they find.
For instance, assoc(x,lst) searches a list of 2-element lists
lst for a list whose first element is x, and returns the second
element—packaged with + to distinguish the case where the
second element is null from the case where xwas not found.

fun assoc(x, []) = null;
| assoc(x, [[$(x), y], _...]) = +y;

| assoc(x, [_, tail...]) = assoc(x,tail);

Then, assoc(a,b)∼+c will succeed and bind the value b
associates with a to c, or fail if a is not found.

The functionality of +e could be achieved by boxing e,
and having +p unbox it. However, this operation is quite
common in Thorn, and we do not want to pay for all the
boxes. So, Thorn avoids constructing new data structures in
nearly all cases. +x == x for nearly all Thorn values. Obvi-
ously, +null cannot be null, so it is an otherwise undistin-
guished constant not used for anything else—as are ++null
and so on, though they rarely arise in programs.

Patterns may be nested arbitrarily. Bindings produced
by matching are available to the right of the binding site:
[x,!$(x)...]matches a list of size two or more, whose later
elements are not equal to the first element. Quite intricate
structures can be described quite succinctly in this way, and,
if one is careful, they can even be understood with sufficient
study.

The formal parameters of classes define extractors, in-
verse to their default constructors. So, for the class defini-
tion class Point(x,y){}, we can use Point as an extractor.
Matching Point(1,2) against pattern Point(1,z) succeeds
and binds z to 2.

Matching Control Structures. Matching is used in a num-
ber of contexts. The match construct matches a subject
against a sequence of patterns, evaluating a clause for the
first that matches. One way to write the function to sum a
list is:

fun sum(lst) {
match (lst) {
[] => { 0; }

| [h,t...] => { h + sum(t); }

} }

Functions and methods can match on their arguments. An-
other way to write sum is:

fun sum([]) = 0;

| sum([h,t...]) = h + sum(t);

The binding operation = allows patterns, not just simple
variables, on the left. For example, [h,t...]=lst binds h
and t in the following code if lst is a nonempty list, and
throws an exception if lst is anything else. This is use-
ful for destructuring in the Lisp sense: when one is cer-
tain what some structure is, and wishes to take it apart and
use the pieces. Iteration over a list includes destructuring.
So, to loop over a list of two-element pairs, one might use
for([fst, snd]<-pairs).

When one is less certain, the ∼ operation is used. s∼p
matches subject s against pattern p, returning true or false.
It also introduces the bindings inspired by p into code that
the match guards, i.e., that is obviously evaluated iff the
match succeeds. A conjunction of patterns in the test of an
if introduce bindings into the then-clause. The function zip,
turning two lists into a list of pairs (zip([1,2,3],[11,22])
=[ [1,11], [2,22] ]) can be written:

fun zip(a, b) {
if (a ∼ [ha, ta...] && b ∼ [hb, tb...]) {
# ha, ta, hb, tb are bound here

[ [ha, hb], zip(ta,tb)... ];

} else {
[]; # They’re not bound here.

}

}

This behavior combined with + gives the Thorn searching
idiom. To do something with the value associated with a in
B, as in the previous section:

if ( assoc(a,B) ∼ +c ) doSomething(c);
else dealWithMissing(a);

Similarly, matches in while loops produce bindings in the
loop body.

p = Person(); thingsHappen(p);

while (p.spouse ∼ +q) {
# ’q’ is bound to p’s spouse here

otherThingsHappen(p,q);

}

# Now ’p’ is not married and ’q’ is unbound.

Dually, until loops can produce bindings after the loop. The
plot of many romance novels can be formalized as:

p = Person();

do { seekSpouse(p) } until (p.spouse ∼ +q);
# ’q’ is bound to p’s spouse here.

4.3 Built-in Data Types
Thorn enjoys a selection of built-in data types, with their
constructors, pattern matches, and methods. Strings are ordi-
nary immutable Unicode strings. As in some other scripting
languages, the $ character interpolates values into strings:
x = "John"; "Dear $x" evaluates to "Dear John".

Ranges are finite lists of consecutive integers: 1..4 has
elements 1,2,3,4. Ranges are, of course, implemented effi-
ciently. Ranges are a useful utility class: e.g., for(i<-1..4)
is an ordinary loop over integers; lst(1..4) is a slice of the
list lst; and n mod 2..5 is the number between 2 and 5 con-
gruent to n mod 4.

Lists are immutable ordered collections. The term [a,b,c]
constructs or matches a fixed-size list. A postfix ellipsis ...
in a list expression indicates a sublist to be appended or
matched. So, the standard map function could be defined as:

fun lstmap(f, []) = [];
| lstmap(f, [x, y...]) = [f(x), lstmap(f,y)...];



Lists can be subscripted: lst(0) gets the first element,
lst(-1) the last element, and lst(1,-1) is the tail of lst.

Records are finite collections of immutable named fields.
The syntax {: a:1, b:2 :} is used for record constructors
and patterns. A lone identifier a abbreviates a:a in a record.
The selector r.a gets single fields from records; pattern
matching can get several fields out at once. Both field se-
lector and record pattern notation get fields out of objects as
well, albeit mediated by methods. This allows script-writers
to start out using records, and, if more exotic behavior is nec-
essary, upgrade to objects, and the record-based code will
generally continue to work.

4.4 Tables
The table type is a generalized map, or variation on a theme
of a database table. Here’s the customers table from Fig-
ure 3, which stores, for each customer, a name, profile, and
other information:

customers = table(name) {
val source, profile; var picked;

}

Tables have a statically-determined set of columns describ-
ing the information they hold (name, source, etc.), and a
dynamically-determined set of rows expressing the informa-
tion currently in the table. The columns are named by Thorn
identifiers; the table can be regarded as a set of records
whose fields are the columns of the table.

One or more columns, the key(s), look like formal param-
eters to the table. The vector of keys determines a unique row
of the table, and can be used as a subscript to get a row of
the table as a record. So customers(n) looks up the customer
whose key (name field) has value n. The following destruc-
turing assignment lets us get the corresponding profile and
picked fields (note that the pattern matching semantics of
destructuring assignment allows us to pick out just a subset
of the row fields if we wish):

{: profile, picked :} = customers(n);

Rows can be inserted by a method call:

customers.ins({: name, profile, source, picked:[] :});

or, using the key:

customers(name):={: profile, source, picked:[] :};

or deleted by key.

customers("Whale") := null;

This is semantically sound because the row of values being
inserted with the previous operation is never null. In a table,
var fields can be updated without requiring the whole row to
be replaced:

customers(n1).picked := y.n2 :: picked;

Tables work nicely when one wishes to associate several
pieces of information with one or more keys. The common

case of maps or dictionaries, associating one datum to a
single key, appears in many scripting languages. Thorn has
syntactic sugar to let tables serve as maps. Programs using
maps instead of tables frequently evolve to have several
parallel maps, having in effect a poor man’s table structure.
So, Thorn maps are also tables; upgrading from one column
to several neither requires introducing extra data structures
nor breaks extant code using it as a map. A single non-key
column of a table may be singled out by the map keyword.

m = table(k){map var v; val a; };

Subscripting such a table with brackets gets the map field.
The usual subscripting with parentheses still works, and still
gets the whole row:

m(1) := {: v:2, a:3 :}; #(*)

# m[1] == 2

# m(1) == {: k:1, v:2, a:3 :} (*)

m[1] := 22;

# m(1) == {: k:1, v:22, a:3 :} (*)

Adding a new column b to m would require just the code
which inherently mentions all columns, (*)’ed above. The
other lines, which work with just the map field, would not
need to be changed.

The construct map() constructs a table with key k and a
map var field v. (k and v are hardwired into this construct.)
This, plus the subscripting-with-[] syntax, provides the fa-
miliar maps and dictionaries of many scripting languages as
a special case of a more powerful table construct. Further-
more, at need, map() can be expanded into a table declara-
tion with more columns.

4.5 Ords
Thorn lists are immutable, which is the right behavior for
most situations. However, it is sometimes useful to have mu-
table ordered structures. Thorn provides the ord, short for
“ordered table”. Like tables, ords have many fields, one of
which can be designated by map to be of particular interest.
Like tables, ord() produces an ord of a fixed simple struc-
ture, which is often a good place to start.

primes = ord();
for (i <- 2 .. 12)
if (i.prime?) primes @= i; #add a value to end

primes @= i adds a new row to the ord, with the map field
set to i and all other fields (if any) null. As with tables,
adding a new field to an ord is straightforward, and obviates
the need for constructing parallel lists of related data. A row
can be added as follows:

emails = ord{ var name, address };
for ( {: name, email :} <- dataset)
emails.add( {: address:email, name :} );

Ords allow integer subscripts, and can be mutated via them:

emails(0) := null; # delete first entry
emails(2).name := "Kim"; # modify field of second



4.6 Queries
Thorn has a constellation of queries, which encapsulate a
variety of common patterns of iteration, decision, selection,
and grouping over collections. They are inspired by list com-
prehensions, higher-order libraries, and database queries.
All of these could be done by the loops and conditionals
you have written ten thousand times. Encapsulating them as
queries makes them more convenient and less error-prone,
and may introduce optimization opportunities.

The queries all use the same set of controls, which de-
termine how iteration will proceed and what values are
bound to what. Controls inspire iteration (for), or filter it
(if, while), or manipulate bound values (var, val). We
start with list comprehensions. To compute the list of squares
of primes up to 100:

%[ n*n | for n <- 1..100, if prime?(n)]

The % symbol is used to distinguish queries; operations with
[] produce lists, {} tables, and () arbitrary data. The while
query control stops iteration altogether when a test becomes
false, and val allows simple bindings. A crude primality test
can be defined as:

fun prime?(n) = %some( n mod k == 0 |
for k <- 2 .. n-1, while k*k <= n)

The %sort query returns a list sorted on some keys. %< keys
are sorted in ascending order; %> in descending. To sort some
people by last name, and, for those sharing a last name, by
first name:

%sort[ p %< p.lastname %< p.firstname
| for p <- some_people]

The var query control allows pseudo-imperative accumu-
lation of partial results, like reduce in Common Lisp or
fold_left in ML. var sum:=0 %then sum+nmeans that sum
is zero before the first iteration, and sum+n on each succes-
sive iteration. The %after query returns a value from after
the last iteration. (Iteration-bound variables like n are not
available in the result, but var variables are.) The sum of
a list can be computed as:

%after( sum | for n <- L, var sum := 0 %then sum+n )

Some operations do not make sense without at least one
iteration; e.g., computing the maximum of a list. %then1
handles this case; on the first iteration, m is bound to the first
value of n, and on later ones, to max(m,n):

%after(m | for n <- L, var m := n %then1 max(m,n))

Dually, the %first query returns a value from the first itera-
tion. This is useful in searching, and so it can also be written
%find. It throws an exception if no value is found, or, with
an additional clause, can be given a value to return instead.
To find the first record in custs whose src field is snd, one
can use:

row = %find(r | for r <- custs, if r.src == snd);

This query has a statement form, written first or find:

find(for r <- custs, if r.src == snd) {
println("Found $r");

}

else { println("Not found"); }

This kind of search happens quite frequently, and it would
be a shame if we had a powerful pattern matching idiom
but couldn’t search a list for an element matching a pattern.
for has two alternatives. The form we have seen before is
for [fst,snd]<-pairs, which will throw an exception if
any element of the list doesn’t match the pattern [fst,snd].
The searching form uses <∼ rather than <-, and simply skips
non-matching elements. So finding the first record in custs
with src field equal to snd can be written:

row = %find(r | for r && {:src:$(snd):} <∼ custs);

Boolean quantifiers %every, %some and integer quantifier
%count can detect whether a predicate is always true, some-
times true, or count how often it is true. To tell how many
friendships there are between A and B:

%count(a.likes?(b) | for a <- A, for b <- B)

To produce a table giving several pieces of information
about each of several things, use %table. The syntax echoes
table, except that all fields must be initialized. The follow-
ing produces a table of elementary arithmetic operations:

%table(x = x, y = y){
sum = x+y; prod = x*y; diff = x-y;

| for x <- 1 .. 100, for y <- 1 ... 100}

As database programmers discovered long ago, it is often
useful to aggregate information: GROUP BY in SQL; %group
in Thorn. A characteristic use of this is to split a list based on
whether or not the elements satisfy a predicate. The follow-
ing code computes the lists of primes and composites up to
1000 in a single pass, and their number and their root-mean-
square, declaratively. The common special cases %count and
%list X evaluate to the number of items in the group and
the list of values that X takes. %first F %then T %after A
allows a fairly general accumulation of values, F for the first
one, and T for later ones, and then uses A (if supplied) to pro-
vide the final result. In this case, rms is used as an accumu-
lator to calculate the sum of squares in the %first and %then
clauses, and converted to the actual RMS by the %after.

prime_or_not = %group(prime=n.prime?()) {
map numbers = %list n;
number = %count;
rms = %first n*n %then rms+n*n

%after sqrt(rms / n);
| for n <- 1 .. 1000;};

primes = prime_or_not[true];
rmsComposites = prime_or_not(false).rms;



4.7 Equality and Identity
The intent of equality is that a==b means that a and b have
the same state at the moment. The == operator is provided
automatically for built-in data types and for pure classes
(see Section 5.4) to check structural equality, and is sim-
ply not defined by default on other classes (but can be pro-
vided by users). Object identity is a different matter, and,
unlike Java, for example, Thorn tries to avoid confusing
identity and equality. Objects can get a VM-local identity
by extending the system class Identity. Identity defines
a unique identity for all objects that extend it. The value of
the identity field is unspecified. However, Identity imple-
ments the method a.same?(b) that returns true iff a and b
are the same object. For distributed applications, the class
GlobalIdentity gives an object a globally unique identifier.
The reasons for splitting global and local identity into sepa-
rate concerns are purely pragmatical. Guaranteeing globally
unique ids is tricky and may degrade performance. Most ob-
jects will only need local identity, and the refactoring step
for a class that needs to evolve into a distributed system is a
simple one.

5. Concurrency in Thorn

Scripting languages are heavily used for running web sites
and similar Internet programs. Quite large businesses and
organizations implement massive amounts of web function-
ality in Ruby, Python, or Perl, none of which was designed
with web programming as a primary initial goal. Thorn fo-
cuses on distributed and concurrent computing.

In the distributed setting in particular, entities running at
the same time are, potentially, physically and logically quite
separate. They can, potentially, fail independently: it is quite
normal for two processes to have a conversation and one of
them to fall silent for seconds, or for eternity.

5.1 Components
Conceptually, each Thorn process—called a component to
avoid confusion with, say, Java threads or operating system
processes—has a single strand of control, and a private data
store isolated from all others. Objects are not shared, which
eliminates the need for locking locally and cache-updating
algorithms globally. Processes communicate exclusively by
passing messages. The values communicated must be im-
mutable; they can be, e.g., strings, lists, records, and objects
of certain classes which are immutable by construction.

If objects of user-defined class are transmitted, the re-
ceiver must have that class available. Values constructed en-
tirely from built-in types (records, lists, tables, strings) are
universal, and will be understood by any Thorn component.
Indeed, they can often be understood outside of Thorn. They
correspond roughly to the values that can be transmitted via
the JSON protocol [26], and should, provide a convenient
way to communicate with any JSON-compliant program,
Thorn or not.

The component construct defines a kind of component,
rather the way class defines a kind of object. Components
can have local var or val data, as well as functions (fun)
and communication operations (sync and async). They have
a body section, giving code that they are to run when started.
For example, a parallel Life program with many worker
threads could have the general structure:

component LifeWorker {
var region;
async workOn(r) {region := r;}
sync boundary(direction, cells) {...}
body { ... } # code to run Conway’s Life here.

}

A component can be spawned, alarmingly enough, by the
spawn command:

regions = /* compute regions */;

for (r <- regions) {
c = spawn(LifeWorker);
c <-- workOn(r);

}

spawn returns a handle to the component, which can be used
to communicate with it. Since many components are one-
offs, spawn can take a component body as well, and indeed
this is how it is most often used:

c = spawn {
var region;
async workOn(r) {region := r;}
...# as above

};

5.2 High-level Communication
Thorn provides two communication models. The high-
level model provides named communication, which may re-
quire an answer (synchronous, keyword sync) or not (asyn-
chronous, keyword async). The syntax for high-level com-
munication parallels that of methods, as shown in Figure 5.

spawn {
sync findIt(aKey) {
logger <-- someoneSought(sender, aKey);

# ... code to look it up ...

return theAnswer;
}

body { while (true) serve; }
}

logger = spawn {
var log := [];
async someoneSought(who, what) {
# do not answer, just cons onto log.

log ::= {: who, what :};

}

body { while (true) serve; }
}

Figure 5. High-level Communications.



However, communication differs from method calls in sev-
eral important respects—the first one being that sending a
message can in general have higher latency than perform-
ing a method call, and, indeed, may never return at all even
when it ought to—so the syntax makes it very clear which
one you are doing. Asyncs use comp <-- m(x), and syncs
use comp <-> m(x), or, if they are to tolerate the failure of
the peer to answer quickly,

comp <-> m(x) timeout(n) { dealWithIt(); }

The arrows are intended to suggest both the duration and
direction of the communication.

The receiver has control over when it accepts commu-
nication. The serve statement causes a component to wait
for a single high-level communication event. serve has an
optional timeout(n){...} clause in cases where waiting in-
definitely for a message to come in is undesirable. A typi-
cal reactive component will have a skeleton of the following
form:

spawn {
var done := false;
async quit() prio 100 { done := true; }
sync do_something_real() { ... }
body { while (!done) serve; }

}

The high-priority quit() allows the outside to stop the com-
ponent any time it is between doing real things. It is not an
interrupt. serve simply looks for high-priority communica-
tions before lower-priority ones.

Often it is desirable for a client to send a synchronous
request to a server (response=server<->command()), and for
the server to call upon a worker component to actually do the
computation. With the model as presented so far, this does
not work properly: the server would need to have code:

sync command() {
srvResponse = worker <-> subcommand();

srvResponse;

}

and, by that code, the server would need to wait for the
worker to respond. Thorn thus allows split sync, allowing the
server thread to pass responsibility for answering the request
to the worker. The server code is written:

sync command() envelope e {
worker <-- subcommand(e);

throw splitSync();
}

where splitSync() is a library function understood by the
server’s serve command as an instruction not to send a
response to command. The envelope e clause captures the
message together with its metadata in variable e; the worker
will need the entire envelope to respond.

The worker’s part of the split sync is:

async subcommand(e) {
workerResponse = ... # compute it

syncReply(e, workerResponse);

}

syncReply is a library function that sends workerResponse
as reply to the message with envelope e. This is transpar-
ent to the client. The client uses the same synchronous
call, server<->command(), regardless of whether the server’s
evaluation of command is ordinary or split.

5.3 Low-level Communication
The low-level communication model allows sending un-
adorned values from component to component. The state-
ment c<<<v sends value v to component c. The value simply
goes into c’s mailbox, a list in c’s underlying data struc-
tures holding messages which c’s code has not yet actively
seen. A component can retrieve values from its mailbox by
the receive statement, a variation on Erlang’s, which scans
through the mailbox, looking for the highest priority mes-
sage that matches one of a set of patterns. When it finds
one, it executes the corresponding code block, much like a
match. For example, the following looks for an emergency
stop message anywhere in the mailbox, and stops if it finds
one. If there is none, it looks for a message asking it to post
some data, or scan for data with some parameter p; their
priorities default to zero. If none of those three is present,
and none arrives within ten seconds, it marks itself bored
instead.

receive {
{: stop_right_now: _ :} prio 1 => {return;}

| {: please: "post", data: x :} => {do_post(x);}

| {: please: "scan", want: p :} => {do_scan(p);}

| timeout(10000) => {bored := true;}
}

5.4 Pure Values and Messages
Allowing the communication of complex values between
components and computers raises some troublesome issues.
Consider the following Thorn fragment:

var x := 0;
class Counter { def incr() { x++; } }
c <<< Counter();

This code is problematic, since the class Counter has a
reference to mutable sender-local state, which is inaccessible
on the receiving end. It could be cloned, but that introduces
a number of complexities. Cloning is not sensible for all
objects, arguably including Counter: if the intent of a single
Counter is to maintain a universal count, a clone will not
suffice. Even when cloning is sensible, there are subtleties:
e.g., sending a single Counter to c twice should, arguably,
result in c getting two references to a single clone. The
situation is not much better in the following case:



module M {
n = 10000.rand();

class RandRef { def mn() = n; }
}

c <<< RandHolder();

While M.n is immutable, the sender’s and receiver’s values
will likely differ. One can make a good case that r.mn()
should return either the sender’s or the receiver’s value.

Thorn avoids all such troublesome issues, in the same
way that it avoids subtleties of multiple inheritance. We
restrict communication to pure values, which cannot exhibit
them. Atomic constant data types (e.g., numbers and strings)
are pure. Lists and records whose fields are all pure are pure.
Tables are never pure; they are inherently mutable. Classes
may be annotated as pure, which makes their instances pure.
Dynamic and static checks ensure that instances of pure
classes cannot refer to external variables or anything impure,
and cannot have mutable state.

Pure classes have constant data. However, they can be
given mutable data to operate on, and they can use local
variables. They can thus formalize a wide variety of com-
putations, albeit with the mutability supplied by the outside
or localized within a method call. The following bit of highly
imperative code adds up many values of f(i); when it is ap-
plied, it inserts all the values of i to the ord accum, as well as
returning the sum of their squares.

class C: pure {
def sum3np1(f, n) {
var sum := 0; var i := n;
while (i != 1) {
sum += f(i);

if (i mod 2 == 0) i := i div 2;
else i := 3*i+1;

}

sum;

}

}C

# ...

accum = ord();
fun fAdd(i) { accum @= i; i*i; }
c = C();

someone <<< c;

c.sum3np1(fAdd, 100);

In addition to checking the purity of data that are to be sent
as messages, any variable or field references within a com-
ponent body and which are defined outside its scope must be
checked for purity before the component is spawned. Like
message data, all such captured references must be (effec-
tively) copied after the component is spawned to ensure iso-
lation from the spawning component.

6. Thorn for Programs
Thorn is intended to support writing large programs, initially
as untyped prototype scripts which can then be packaged

into reusable modules or incrementally hardened by addi-
tion of annotations. Thorn’s syntax supports adding arbitrary
constraint annotations to declarations. As with Java annota-
tions, these are intended to be used by compilers and tools to
facilitate static analysis and optimization. We have explored
a similar system in previous work [36], and plan to add it to
Thorn in the future.

6.1 Types and Like Types
Dynamic typing, sometimes called duck-typing, is flexible
and allows code to operate on objects as long as the neces-
sary behavior is implemented and returns compatible results.
In Thorn, the type dyn (for dynamic) is assumed as default
(and never written explicitly). At the other extreme, Thorn
supports concrete types, as used in statically typed program-
ming languages. A variable of a concrete type T is guaran-
teed to refer to a value of that type (or a subtype). Concrete
types in Thorn use nominal subtyping. When the program-
mer declares a variable as int, the Thorn compiler can use a
32-bit word and integer JVM bytecodes rather than a boxed
integer and method calls, and similarly for other primitive
types. While concrete types help with performance and cor-
rectness, they introduce restrictions on how software can be
used and make rapid development more difficult; scripting
languages do not favor them.

As an intermediate step between the two, we propose like
types, getting some of the safety of concrete types while
retaining the flexibility of dynamic types. Concrete types
for var x:T or fun f(x:T) are used in two main places.
At a method call x.m(), a static type check ensures that
x actually has an m method. At a binding or assignment,
like x := y; or f(y), a static type check can ensure that
y’s value makes sense to assign to x, can reject it entirely,
or can inspire a dynamic check. Like types, var x: like T
or fun f(x:like T), give the expressive power of concrete
type checks on method calls, but do not constrain binding or
assignment. They do require runtime checks and thus may
cause programs to fail with runtime type errors: sometimes
fewer and never more than dynamic types do.

Like types provide three specific advantages over dy-
namic types.

1. Documentation: fun f(p: like Point) explains to hu-
mans how its argument can be used.

2. Code Understanding: Inside f, a programming environ-
ment could provide code completion on p’s methods.

3. Error Detection: Some errors can be detected at compile
time. E.g., typing p.mvoe(q) rather than p.move(q) will
be caught, if Point has a move but not a mvoe method.

Like types provide nearly all the advantages, and nearly all
the other flaws, of dynamic types.

A variable declared to be of type like T is constrained
by the compiler to have methods invoked on it according to
the interface of T, but at runtime may refer to any value. For



example, assuming a class Point with x(), y() and move(),
like types allow us to type the parameter to the move()
method thus:

class Point(var x, var y) {
def x() : int = x;
def y() : int = y;
def move(p: like Point) {
x := p.x();

y := p.y();

# p.hog(); would raise compile time error

}

}

Declaring variable p to be like a Point makes the compiler
check all method calls on that variable against the interface
of Point. Thus, p.hog() would be statically rejected since
there is no method hog in Point.

As assignments and bindings to like-typed variables are
unconstrained, Thorn must check at runtime that the meth-
ods called are actually present. p.move(true); would pass
the static check—because there is no static check on bind-
ing of like types, even the binding of actuals to formals in a
method call. The call p.x() would fail for p==true, though
our error message could be somewhat more detailed than
simply “method not understood”.

Like-typed formals, like dynamically-typed formals, are
only constrained to have the methods that are actually used.
Consider the following Thorn singleton object:

origin = object {
def x(): int = 0;
def y(): int = 0;

}

origin has no move() method. It implements the relevant
parts of Point’s protocol for move() to run successfully—
x() and y(). So p.move(origin) works fine, just as with
dynamic typing. It would not pass the static type check if
move() had used concrete rather than like types.

The method move() even works with an untyped Pair

class Pair(x,y) {
def x() = x;
def y() = y;

}

In this case, the run-time return value of x() and y() would
be type-tested against their explicit concrete type int, so
p.move(Pair(1,2))works, but not p.move(Pair("f", "b")).
If x() and y() in Point were typed like int, checking the
return type would not be necessary as assigning to a like
type always succeeds.

An important difference between like types and gradual
typing systems like that of [44], is that code completely
annotated with like types can go wrong due to a run-time
type error. On the other hand, a code completely annotated
with concrete types will not go wrong.

6.2 Modules
A language should provide some form of information hiding,
to encapsulate the design decisions that are likely to change.
This minimizes redundancy, and maximizes opportunities
for reuse. Unfortunately, most object-oriented languages use
classes as their main encapsulation mechanism, which does
not scale well. Thorn’s module system, on the other hand,
provides a way to encapsulate, package, distribute, deploy,
and link large bodies of code. The core of the Thorn’s mod-
ule system is inspired by the upcoming Java Module Sys-
tem [51, 52]. In line with our previous work [49], we: (i) use
a more intuitive and expressive name resolution, where mod-
ules become robust against interface evolution of the mod-
ules they import; and (ii) allow users to control the sharing
and isolation of module instances.

Namespace control & robustness. To promote rapid pro-
totyping, all module members are exported by default. Mem-
bers can be hidden by declaring them private, and members
imported from other modules can be re-exported by declar-
ing them public. This localizes the influence of a single
module, which is essential for scalability. Figure 6 shows
a module M, which imports modules N under its own name N,
and O under the name S. M also defines a class A and a value
n, both of which are exported by default, and a variable x,
which is hidden from module’s clients. M also re-exports S.C,
but cannot re-export N.A.

The names and aliases of members must be distinct
from each other, as must exported and re-exported names;
therefore, re-exporting N.A from M would clash with M.A.
These two conditions guarantee that any non-fully-qualified
name can be disambiguated, and that a fully-qualified name
(e.g., N.A) is never ambiguous.

The name resolution algorithm first checks within the
module’s own namespace, and only then in the exported
namespaces of imported modules. For example, in Figure 6,
A resolves to a local definition, even though N exports A.
Suppose that M defines B; then, if N and/or S started exporting
B, Bwould still resolve to the local definition—this is a useful
form of robustness. Now suppose that M does not define B,
and that B is only exported by N; then, if S starts exporting
B, too, a compile-time ambiguity error occurs—a way to

module M { # this module is named M

import N; # shared instance of N

import own S = O; # own instance of O as S

class A extends B {} # B must come from M xor N xor S

val n = A(); # A is M.A

var x: private = N.A(); # x not exported

public S.C; # re-exported as M.C

#public N.A; # ERROR: M.A already exported

}

Figure 6. Thorn Modules: A simple example.



protect against such breakage is to use fully-qualified names
(or their aliases) for names that resolve within imports.

Sharing vs. isolation. In a single Thorn runtime, we can
have multiple module instances of a single module defi-
nition. There can be a single shared module instance for
each component, and as many non-shared instances as re-
quired. (Nothing, of course, is shared between components.)
The statement import N; imports the component-wide in-
stance of N, while import own O; creates a non-shared in-
stance. This approach allows the developer to share module
instances when required, and to have multiple clients that
rely on conflicting invariants of a single module definition
coexisting within a component [49].

In the following example, A and B refer to the shared
instance of NN, and thus A.n and B.n are the same variable.
C and D are distinct non-shared instances, and hence C.n and
D.n are different variables from each other and from A.n:

module NN { var n := 0; }
import A = NN; # shared instance

import B = NN; # shared instance

import own C = NN; # non-shared #1
import own D = NN; # non-shared #2
A.n := 1;

B.n := 2;

C.n := 3;

D.n := 4;

# A.n == B.n == 2

# C.n == 3 && D.n == 4

Module instance state. Thorn classes cannot define static
state. However, Thorn modules can define their own state,
e.g., M.n and M.x in Figure 6. Classes within M can use
module-level variables in the ways that Java classes use
static state. Each module instance has its own state; this is
the main differentiator between module instances. Classes
from different modules instances are incompatible because
their invariants rely on different state.

7. Extensibility
A key design goal of the Thorn compiler is to support lan-
guage evolution by allowing the syntax and semantics to
be extended through plugins into the runtime system. The
architecture facilitates construction of domain-specific lan-
guages based on Thorn. Unlike Java annotations, syntactic
extension in Thorn is not limited to annotations on class
or method declarations; arbitrary syntactic extension is per-
mitted. This allows developers the freedom to support natu-
ral domain-specific extensions of the core language without
having to wedge these extensions into a restricted syntax.
Plugins provide a semantics for new syntax by translation
into the core language. Semantic extensions can support ad-
ditional static analyses (e.g., taint checking) or code trans-
formations.

7.1 Plugins
The runtime system provides a number of hooks for exten-
sion. Plugins may add new abstract syntax tree (AST) nodes
and new passes over the AST. Plugins may also extend the
parser and other passes over the AST to support new syntax
or new semantics. Passes added by the plugin may perform
static analysis or code transformations, including translating
extended abstract syntax into the base Thorn language be-
fore evaluation. When the Thorn runtime starts up the initial
component, it loads the bootstrap class, which can loads one
or more plugins. Plugins can be installed by initializing the
runtime with an overridden version of the bootstrap class.
The loaded plugins are composed and then applied to the
code in the component. Other components may be spawned
with different sets of plugins. After plugins are loaded for a
given component, parser extensions are composed into a sin-
gle parser for Thorn code loaded into the component. Once
an (extended) AST is constructed, plugins run their analysis
and transformation passes on the AST, ending with a base
language AST. Plugins add new passes to the compiler by
registering a set of goals with the compiler’s pass scheduler.
A goal specifies prerequisite goals and a pass to run to satisfy
the goal. The scheduler ensures that a goal’s prerequisites are
satisfied before the goal’s pass is run. Plugins also hook into
the existing passes such as name resolution. This core lan-
guage AST is compiled to Java bytecode and evaluated or
compiled to disk for future execution.

7.2 Syntax extensions
The base Thorn compiler provides a parser that plugins can
extend to implement syntax extensions. Parser extensions
are specified using a domain-specific extension of Thorn,
itself implemented as a plugin, that supports parsing expres-
sion grammars (PEG). Parsing is performed by a packrat
parser [19]. Plugins export productions and semantic actions
for constructing ASTs. When the plugin is loaded, these new
productions are composed with the current parser to create
a new extended parser. The parser plugin translates the PEG
grammar specification into a Thorn class that implements
the parser. Since packrat parsers are scannerless, plugins can
define their own tokens. Thorn’s packrat parser supports left
recursive rules using Warth et al.’s algorithm [59], overcom-
ing one of the limitations of PEG grammars and simplify-
ing development of parser extensions. Plugins may freely
define new AST node classes and have the parser generate
them. AST classes implement a visitor interface to interop-
erate with compiler passes. Plugins currently cannot extend
the compiler itself to support new AST nodes; rather, these
are translated into core language nodes for the compiler sub-
sequently to evaluate or are compiled to disk.

7.3 The Assert Plugin
Figure 7 shows the complete code for a plugin that adds
an assert construct to Thorn. The plugin is implemented



object AssertPlugin extends Plugin {
def parser(_next) = AssertGrammar(_next);

class Assert(e,m) extends Exp { }

class AssertGrammar(next) extends
Delegate(next), thorn.grammar.GrammarUtil {

rule Exp = ‘assert‘ Exp ‘:‘ String
{ Assert(Exp, String) }

/ ‘assert‘ Exp { Assert(Exp) }

/ next.Exp;

rule ‘assert‘ = "assert" Spacing? { "assert" };
rule Keywords = "assert" / next.Keywords;

}

def goals(unit) = [AssertGoal(unit)];

class AssertGoal(unit) extends
Goal("Assert"), plugin.DesugaringGoal {

def prereqs() = [];
def run() =
unit.setAst(unit.ast().accept(AssertDesugarer()));

}

class AssertDesugarer() extends Visitor {
def visit(n) {
match (n.rewriteChildren(this)) {

Assert(e,m) => @‘(unless(@,(e)) throw m)
| m => m

}

}

}

} # end of object AssertPlugin

Figure 7. An assert plugin. It adds the statements assert <exp> and assert <exp> : "Message" to Thorn.

as a singleton object called AssertPlugin, extending the
Plugin class. The plugin’s functionality is provided by sev-
eral nested classes. The AssertGrammar class defines the
syntax of the new construct. The parser method of the
Plugin class is overridden to return the new grammar def-
inition. The new grammar will be composed with the exist-
ing grammar. By overriding the rules of the existing gram-
mar the plugin can redefine the syntax, much like ordinary
overriding of methods when subclassing. Normally an over-
riding rule will add a delegation call to the overridden rule
next.Exp as its last case, which calls the Exp rule of the pre-
ceding plugin. The plugin also overrides the Keywords rule to
add the assert keyword. The Assert class implements the
new AST node that is returned from the semantic actions.
The AST node inherits methods for interacting with visitors.

A plugin extends the compilation process by defining
goals that, in turn, run passes over the AST. The goal may
have prerequisite goals required to be met before processing
the plugin’s goal. In this example the plugin has no opinion
on the order and just returns an empty list from its prereqs
method. The AssertGoal class creates an AssertDesugarer
visitor and applies the visitor to the AST. The desugarer
pattern matches on the method argument. If the argument is
an Assert then the assertion expression e and the associated
message m are extracted and used to construct a semantically
equivalent unless expression. The new expression throws an
exception, carrying the message, if e does not hold. The @‘
and @, expressions are meta-operators (also implemented by
a plugin) used to generate the AST for the unless, a feature
influenced by Scheme.

8. JVM Implementation
Thorn’s interpreter, like many interpreters written in Java,
is not particularly fast. The performance of the compiler is
closer to what we would expect from a production language.
This section describes some of our choices in implementing
the compiler.

Method Dispatch. Thorn sports several features that, at
face value, are incompatible with the Java object model and
the JVM. The most striking difference between Java and
Thorn is that Thorn is dynamically typed while the JVM re-
quires type information to do method lookup and dispatch.
We use the same solution as JRuby [25] and Jython [27],
generating a dispatch interface for each method that is im-
plemented by all classes that has a method with a matching
signature. For example the method def foo(x)will generate
an interface Ifoo_1 declaring a method IObject foo(IObject).
At the call site it is determined, with an instanceof instruc-
tion, that the receiver actually implements the called method
before calling the method with an invokeinterface instruc-
tion. The instanceof is used for error reports when a mes-
sage is not understood by the receiver.

Multiple Inheritance. Thorn’s multiple inheritance con-
flicts with Java’s model of single inheritance plus inter-
faces. As a consequence, Thorn inheritance cannot be imple-
mented as Java inheritance and Thorn method calls cannot
simply be implemented as JVM method calls; the JVM has
the wrong notion of supercall, and does not know which of
several parent JVM classes contains the code of an inherited
method. Instead, every Thorn method in every Thorn class
gives rise to an instance method in every Thorn class that
inherits it, and a static method in the defining class in the
JVM. The instance method simply calls the static method
and returns the result. The static method contains the actual
compiled body of the Thorn method. (We use a single static
method and an extra method call to avoid massive duplica-
tion of code, and to enable separate compilation.) As men-
tioned earlier, Thorn forbids dispatch ambiguities, so there
is no need to search for the right method at runtime.

Field Access. Field access is done via Java method call.
Fields inherited from Thorn superclasses are redeclared in
the implementations of child classes (which do not inherit
from the implementations of superclasses). Furthermore,



due to dynamic typing we cannot statically reject programs
that reassign val fields. Our simple solution is to have the
setters of val fields throw an exception.

Static analysis. Thorn employs a simple local type infer-
ence to optimize the bytecode instructions generated for op-
erations on primitive data types. Operations on variables of
primitive data types, and arrays of integers and floats, are
translated into primitive operations on unboxed primitives
for speed. Such optimization is only possible locally.

Components. The Thorn compiler provides process isola-
tion by providing separate copies of global values for each
component. The scheduler is written in Java and uses a pool
of worker threads that calls the run method of each com-
ponent with the next message in the message queue. The
spawn keyword creates a new component and registers the
component with a worker thread in the scheduler. Compo-
nents will currently not be preempted, although we have dis-
cussed merging Thorn with a tool such as Kilim [47] that
rewrites bytecode into CPS to allow preempting a compo-
nent schedule another in the same thread. To minimize con-
text switching, a component lives inside a specific worker-
thread. The scheduler however implements a work-stealing
algorithm which may cause components to be moved from
an overloaded worker thread to an idle thread. Consequently,
unless components go into infinite loops, a Thorn program
can spawn a very large number of concurrent components
without undue overhead.

Java Integration. Compiled Thorn programs can create
and use Java objects and invoke Java methods. This function-
ality is vital for interacting with the system. Java objects and
classes are exposed to Thorn through the wrapper classes
JavaObject and JavaClass. Thorn objects passed to and
from Java code are automatically wrapped and unwrapped.
Java’s strings and primitive types are mapped to their Thorn
counterparts rather than being wrapped. Fields are accessed
through get and setmethods of JavaObject, which take the
name of the field. Methods are accessed through the invoke
method of JavaObject. There are two versions of invoke.
The first version takes the method name as a string, a list
of actual arguments and a list of types, represented by in-
stances of JavaClass. The type list is used to resolve which
method to invoke if the method is overloaded. An exception
is thrown if the method cannot be resolved. The other version
of invoke elides the type list and instead uses the run-time
types of the actual arguments to disambiguate the method.

Performance. Although the prototype Thorn bytecode
compiler was not designed with performance as a primary
goal, its performance is comparable to Python and, with the
aid of optional type information, runs several times faster.
We translated several benchmarks from The Computer Lan-
guage Benchmark Game [16] into Thorn and timed their
runtime and compared the result existing benchmarks run-
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Figure 8. Performance of Thorn (bytecode compiler) in
relation to Python 2.5.1.

ning on Python 2.5.1 and Ruby 1.8.6. The result is shown in
Figure 8.

Several conclusions can be drawn from this experiment.
Thorn’s support for the basic features of object-orientation
(such as fast method dispatch), which are heavily stressed
by the implementation of the binary-trees and chameneos-
redux benchmarks, is quite efficient. With several bench-
marks, including Regex-dna, the speed of underlying li-
braries (here, Java’s built-in regular expression facilities)
not written in the host language is the dominant influence
on running time, rather than the actual language implemen-
tation’s. For primitive data types, wrapping of integers etc.
in objects degrade performance, especially in long-running
computation-intensive benchmarks like Fannkuch, unless
a modicum of type information is added, which causes a
significant speed-up: Typed Thorn runs spectral-norm, man-
delbrot and fannkuch between 2x and 4x faster than Python
and about 3x and 6x faster than dynamic Thorn. The Ruby
implementation is the slowest by far and is outperformed by
a factor 7x to 12x by Typed Thorn.

9. Conclusions
We have presented the design and implementation of Thorn,
a new object-oriented language that supports the evolution
of scripts into concurrent applications by striking a balance
between flexibility and robustness. We have also shown that
even without extensive optimizations, a prototype compiler
for a significant subset of the language, built using an exten-
sible plugin architecture, achieves competitive performance
on a Java Virtual Machine. The dynamically-typed core of
Thorn is designed to enable rapid and exploratory program-
ming by dint of its succinct syntax and the presence of flex-
ible aggregate data types such as tables. On the other hand,



classes, an optional type system, and an expressive module
system provide the support needed for programming in the
large. While Thorn is an imperative language, we encourage
side-effect free programming to decrease program fragility
by including immutable built-in types and value classes. Fur-
ther, by isolating components, the Thorn concurrency model
avoids problems generally associated with shared memory
and lock-based synchronization. Few of Thorn’s features are
wholly novel in isolation. Our principal contribution is to
combine these features in a balanced way to allow program-
mers to prototype applications using simple scripts, then
modularize and annotate these scripts so that they can be
composed into reliable applications.
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Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, Lex Spoon, and Matthias Zenger. An overview of
the Scala programming language, second edition. Technical
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