
Chapter 1
Memory Safety for Safety Critical Java

Daniel Tang, Ales Plsek, Jan Vitek

Abstract Memory is a key resource in computer systems. Safety-critical sys-
tems often must operate for long periods of time with limited available memory.
Programmers must therefore take great care to use memory sparingly and avoid
programming errors. This chapter introduces the memory management API of the
Safety Critical Java specification and presents a static technique for ensuring mem-
ory safety.

1.1 Introduction

Memory is a key resource in any embedded system. Programmers must carefully
apportion storage space to the different tasks that require it and, when necessary,
repurpose memory locations that are currently not in use. This is traditionally done
by a combination of static allocation at program startup and manual management of
object pools. While static allocation is possible in Java, as shown by the Java Card
standard [?], it is at odds with object-oriented programming principles and best
practices. For this reason, the Real-time Specification for Java (RTSJ) [?] adopted a
memory management API that allows dynamic allocation of objects during program
execution but gives control to programmers over the time and cost of memory man-
agement. In Java, the memory management API is exceedingly simple. The new
keyword allocates data in the heap and, before running out of memory, a garbage
collection algorithm is invoked to reclaim objects that are unreferenced. Before re-
claiming data, finalize() methods are called to clean up external state. This
API together with other features in the Java programming language, such as array
bounds checking, provides a property referred to as memory safety. This property
ensures that a Java program will never access a memory location that it has not been
given access to and will never access a memory location after that location has been
freed. Thus, common software faults such as dangling pointers and buffer overflow
are guaranteed to never occur in Java programs. The RTSJ eschews garbage collec-
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tion in favor of a more complex API based on the notion of scoped memory areas,
regions of memory which are not subject to garbage collection and which provide a
pool of memory that can be used to allocate objects. A scoped memory area is ac-
tive while one or more threads are evaluating calls to the memory area’s enter()
method. Objects allocated with new by those threads remain alive until all threads
return from the enter() call. At this point in time, finalize() methods can be
called and memory used by the data can be reclaimed. A hierarchy of scopes can be
created at run-time allowing programmers to finely tune the lifetime of their data.
This form of memory management is reminiscent of stack allocation in languages
like C or C++. But, whereas stack allocation is inherently unsafe, the RTSJ man-
dates dynamic checks to ensure memory safety. This means that every assignment
statement to a reference variable will be checked for safety, and if the assignment
could possibly lead to the program following a dangling pointer, an exception will
be thrown.

Safety-critical applications must undergo a rigorous validation and certification
process. The proposed Safety Critical Java (SCJ) specification1 is being designed
to facilitate the certification of real-time Java applications under safety-critical stan-
dards such DO-178B in the US [?]. To ease the task of certification, SCJ reduces the
complexity of the RTSJ memory management interface by removing some methods
and classes and forbidding some usage patterns that may lead to errors. Further-
more, SCJ provides an optional set of Java metadata annotations which can be used
to check memory safety at compile-time. SCJ program must perform the same dy-
namic checks as with RTSJ, but a fully annotated program is guaranteed to never
throw a memory access exception, thus making it possible to optimize those checks
away. It is important to observe that memory safety does not imply the absence of
all memory errors such as, for instance, that the program will not run out of mem-
ory. This is a separate and orthogonal issue. We expect that other, independently
developed, tools will provide static memory usage checks [?].

The RTSJ memory management API has proven rather controversial. Over the
years, most vendors have offered real-time garbage collectors as a way to return
to the simple Java memory API while bounding pause times. Unfortunately, real-
time garbage collection slows down program execution and requires additional re-
sources that are not always available in small devices. The main drawback of RTSJ-
style memory management is that any reference assignment must be treated with
suspicion as it may lead to an IllegalAssignmentError being thrown. Re-
searchers have proposed disciplined uses of the API to reduce the likelihood of
error [?, ?, ?, ?]. However, users have continued to view scoped memory as hard to
use correctly. SCJ annotations are intended as a way to help programmers struc-
ture their program to simplify reasoning about allocation contexts. Memory safety
annotations are added to the Java source code to provide additional information to
both developers and the Java Virtual Machine. The SCJ specification also defines
metadata annotations that indicate behavioral characteristics of SCJ applications.

1 JCP JSR-302, http://www.jcp.org/en/jsr/detail?id=302
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For example, it is possible to specify that a method performs no allocation or self-
suspension. We refer the interested reader to the specification for more details.

This chapter introduces the SCJ memory management API and describes a set of
Java metadata annotations that has been proposed as a solution for ensuring static
memory safety of real-time Java programs written against the SCJ memory API.
We give examples of simple SCJ programming patterns and discuss how to validate
them statically.

1.2 Scoped Memory and Safety Critical Java

The memory management API exposed by SCJ is a simplification of that of the
RTSJ. A proper introduction to the RTSJ is outside of the scope of this chapter;
we refer interested readers to [?, ?]. Explaining the memory management API re-
quires some understanding of the main concepts of SCJ2; therefore we start with an
overview.

1.2.1 SCJ Overview

A SCJ compliant application consists of one or more missions, executed concur-
rently or in sequence. Every application is represented by an implementation of the
Safelet class which arranges for running the sequence of Missions that com-
prise the application. A mission consists of a bounded set of event handlers and
possibly some RTSJ threads, known collectively as schedulable objects. For each
mission, a dedicated block of memory is identified as the mission memory. Objects
created in mission memory persist until the mission is terminated. All classes are
loaded into a block of immortal memory when the system starts up. Conforming
implementations are not required to support dynamic class loading, so all the code
of a mission is expected to be loaded and initialized at startup. Each mission starts
in an initialization mode during which objects may be allocated in mission memory.
When a mission’s initialization has completed, execution mode is entered. During
execution mode, mutable objects residing in mission or immortal memory may be
modified as needed. All application processing for a mission occurs in one or more
schedulable objects. When a schedulable object is started, its initial memory area is
a private memory area that is entered when the schedulable object is released and
exited (and cleared) at the end of the release. By default, objects are allocated in this
private memory which is not shared with other schedulable objects. A mission can
be terminated. Once termination is requested, all schedulable objects in the mission
are notified to cease operating. Once they have all stopped, the mission can cleanup
before it terminates. This provides a clean restart or transition to a new mission.

2 This chapter is based on SCJ v0.71 from August 2010.
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The complexity of safety-critical software varies. At one end of the spectrum,
some applications support a single function with only simple timing constraints. At
the other end, there are complex, multi-modal systems. The cost of certification of
both the application and the infrastructure is sensitive to their complexity, so en-
abling the construction of simpler systems is highly desirable. SCJ defines three
compliance levels to which both implementations and applications may conform.
SCJ refers to them as Level 0, Level 1, and Level 2. Level 0 refers to the simplest
applications and Level 2 refers to the more complex applications. A Level 0 applica-
tion’s programming model is a familiar model often described as a timeline model,
a frame-based model, or a cyclic executive model. In this model, the mission can
be thought of as a set of computations, each of which is executed periodically in a
precise, clock-driven timeline, and processed repetitively throughout the mission. A
Level 0 application’s schedulable objects consist only of a set of periodic event han-
dlers (PEH). Each event handler has a period, priority, and start time relative to the
beginning of a major cycle. A schedule of all PEHs is constructed by the application
designer. A Level 1 application uses a programming model consisting of a single
mission with a set of concurrent computations, each with a priority, running under
control of a fixed-priority preemptive scheduler. The computation is performed in a
mix of periodic and aperiodic event handlers. A Level 1 application shares objects
in mission memory among its schedulable objects, using synchronized methods to
maintain the integrity of its shared objects. A Level 2 application starts with a sin-
gle mission, but may create and execute additional missions concurrently with the
initial mission. Computation in a Level 2 mission is performed in a combination of
event handlers and RTSJ threads. Each child mission has its own mission sequencer,
its own mission memory, and may also create and execute other child missions.

The Safelet interface is shown in Fig. 1.1. The @SCJAllowed annotation
indicates that this interface is available at all compliance levels. Safelet methods
are invoked by the infrastructure (i.e. the virtual machine) and can not be called from
user-defined code; such methods are annotated with @SCJAllowed(SUPPORT).
The infrastructure invokes in sequence setUp() to perform any required initial-
ization actions, followed by getSequencer() to return an object which will
create the missions that comprise the application. The missions are run in an in-
dependent thread while the safelet waits for that thread to terminate its execu-
tion. Upon termination, the infrastructure invokes tearDown(). The Mission
class, shown in Fig. 1.2, is abstract; it is up to subclasses to implement the
initialize() method, which performs all initialization operations for the mis-
sion. The initialize() method is called by the infrastructure after memory has
been allocated for the mission. The main responsibility of initialize() is to
create and register the schedulable objects that will implement the behavior of the
mission. The cleanUp() method is called by the infrastructure after all schedu-
lable objects associated with this mission have terminated, but before the mission
memory is reclaimed. The infrastructure arranges to begin executing the registered
schedulable objects associated with a particular Mission upon return from the
initialize() method. The CyclicExecutive class, shown in Fig. 1.3, is
used in Level 0 to combine the functionality of Safelet and Mission. Finally,
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we have the abstract class PeriodicEventHandler in Fig. 1.4, which extends
ManagedEventHandler, which implements the Schedulable interface. In-
stances of this class are created in the initialize() method of Mission;
the method register() is called to add them to the current mission. The in-
frastructure will call the handleAsyncEvent() method periodically follow-
ing the PeriodicParameters passed in as argument. Users must subclass
PeriodicEventHandler to provide an implementation for handleAsync-
Event().

@SCJAllowed public interface Safelet

@SCJAllowed(SUPPORT) @SCJRestricted(phase=INITIALIZATION)
MissionSequencer getSequencer()

@SCJAllowed(SUPPORT) @SCJRestricted(phase=INITIALIZATION)
void setUp()

@SCJAllowed(SUPPORT) @SCJRestricted(phase=CLEANUP)
void tearDown()

Fig. 1.1 Interface javax.safetycritical.Safelet.

@SCJAllowed public abstract class Mission

@SCJAllowed(SUPPORT)
protected abstract void initialize()

@SCJAllowed
public static Mission getCurrentMission()

@SCJAllowed
public final void requestTermination()

@SCJAllowed(SUPPORT)
protected void cleanUp()

Fig. 1.2 Class javax.safetycritical.Mission.

@SCJAllowed public class CyclicExecutive extends Mission implements Safelet

@SCJAllowed
public CyclicExecutive(PriorityParameters p, StorageParameters s)

Fig. 1.3 Class javax.safetycritical.CyclicExecutive.

@SCJAllowed
public abstract class PeriodicEventHandler extends ManagedEventHandler

@SCJAllowed @SCJRestricted(phase=INITIALIZATION)
public PeriodicEventHandler(PriorityParameters pp,

PeriodicParameters r, StorageParameters sp)

@SCJAllowed @SCJRestricted(phase=INITIALIZATION)
public final void register()

@SCJAllowed(SUPPORT)
public abstract void handleAsyncEvent()

@SCJAllowed(SUPPORT) @SCJRestricted(phase=CLEANUP)
public void cleanUp()

Fig. 1.4 Abstract Class javax.safetycritical.PeriodicEventHandler.
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1.2.2 Memory Management Interface

SCJ segments memory into a number of scoped memory areas, or scopes. Each
scope is represented by an object, an instance of one of the subclasses of Memory-
Area and a backing store, a contiguous block of memory that can be used for
allocation. Scopes are related by a parenting relation that reflects their order of
creation and the lifetime of the objects allocated within them. Child scopes always
have a strictly shorter lifetime than their parent scope. A distinguished scope, called
immortal memory, is the parent of all scopes, represented by a singleton instance of
the ImmortalMemory class. Each mission has a scope called the mission memory,
which stores objects that are need for the whole mission; this is represented by an
instance of MissionMemory allocated in its own backing store. Each schedulable
object has its own private memory represented by an instance of PrivateMemory.
SCJ supports nested missions as well as nested private memories. Private memories
are the default allocation context for the logic of the schedulable object to which
they belong. As the name suggests, private memories are inaccessible to anything
outside of the schedulable object that owns them. This is unlike RTSJ scopes, which
may be accessed by multiple threads simultaneously.

Fig. 1.5 shows the subset of the RTSJ MemoryArea class which is allowed
in SCJ. This class is the root of the memory area class hierarchy and it defines
much of the memory management interface. The executeInArea() method
accepts a Runnable and executes it in a memory area represented by the re-
ceiver object. The getMemoryArea() method returns the scope in which the
argument was allocated. The newInstance() and newArray() methods allo-
cate objects and arrays in the memory area represented by the receiver object. The
newArrayInArea() allocate arrays in the memory area referenced by the object
passed as the first argument. memoryConsumed() and size() return the num-
ber of bytes currently allocated in the backing store and the total size of the backing
store of the receiver. Fig. 1.6 presents the ImmortalMemory class which has a
single static method instance() to return the singleton instance of the class. The
size of the immortal memory is given at startup as an argument to the JVM. Fig. 1.7
lists the methods of the ManagedMemory class which extends LTMemory (it is
an RTSJ class that extends MemoryArea and guarantees linear time allocation; not
shown here). The class introduces getCurrentManagedMemory() to return
the instance of ManagedMemory used to allocate objects at the point of call, and
enterPrivateMemory() to create a nested PrivateMemory area and exe-
cute the run() method of the Runnable argument in that memory area. Fig. 1.8
lists the methods of MissionMemory which extends ManagedMemory. The
class has two methods, getPortal() and setPortal(), that provide means
of passing information between Schedulable objects in a memory area, thus im-
plementing a concept of a shared object. Fig. 1.9 shows PrivateMemory, the
other subclass of ManagedMemory, which introduces no new methods. Neither
of these classes can be created directly from user-defined code. Fig. 1.10 shows the
StorageParameters interface which is used to reserve memory for the back-
ing stores. It is passed as a parameter to the constructor of mission sequencers and
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schedulable objects. The class can be used to tune vendor specific features such as
the native and Java call stack sizes, and the number of bytes dedicated to message
associated with exceptions and backtraces.

@SCJAllowed public abstract class MemoryArea implements AllocationContext

@SCJAllowed
public void executeInArea(Runnable logic) throws InaccessibleAreaException

@SCJAllowed
public static MemoryArea getMemoryArea(Object object)

@SCJAllowed
public Object newInstance(Class type)
throws InstantiationException, InaccessibleAreaException

@SCJAllowed
public Object newArray(Class type, int size)

@SCJAllowed
public static Object newArrayInArea(Object object, Class type, int size)

@SCJAllowed
public abstract long memoryConsumed()

@SCJAllowed
public abstract long size()

Fig. 1.5 Abstract Class javax.realtime.MemoryArea.

@SCJAllowed public final class ImmortalMemory extends MemoryArea

@SCJAllowed
public static ImmortalMemory instance()

Fig. 1.6 Class javax.realtime.ImmortalMemory.

@SCJAllowed public abstract class ManagedMemory extends LTMemory

@SCJAllowed
public static ManagedMemory getCurrentManagedMemory()

@SCJAllowed
public void enterPrivateMemory(long size, Runnable logic)

@SCJAllowed
public static boolean allocatedInParent(Object c, Object p)

@SCJAllowed
public static boolean allocatedInSame(Object c, Object p)

Fig. 1.7 Abstract Class javax.safetycritical.ManagedMemory.

@SCJAllowed public class MissionMemory extends ManagedMemory

@SCJAllowed
public synchronized Object getPortal()

@SCJAllowed
public synchronized void setPortal(Object value)

Fig. 1.8 Class javax.safetycritical.MissionMemory.
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@SCJAllowed public class PrivateMemory extends ManagedMemory

Fig. 1.9 Class javax.safetycritical.PrivateMemory.

@SCJAllowed public class StorageParameters

@SCJAllowed
public StorageParameters(long totalBackingStore, long nativeStackSize,

long javaStackSize)

@SCJAllowed
public StorageParameters(long totalBackingStore, long nativeStackSize,

long javaStackSize, int messageLength, int stackTraceLength)

Fig. 1.10 Class javax.safetycritical.StorageParameter.

1.2.3 Semantics of Memory Management API

Any statement of a SCJ application has an allocation context which can be either one
of immortal, mission or private memory. Immortal memory is used for allocation of
classes and static variables, and is the allocation context of the Safelet.setup()
method. Mission memory is the allocation context of the Mission.initialize()
method. Private memory is the allocation context of the handleAsyncEvent()
method of the PeriodicEventHandler class. By extension, we also refer to
the scope in which an object was allocated as the allocation context of this object.

The parenting relation is a transitive, non-reflexive, relation between scopes that
is defined such that ImmortalMemory is the parent of any MissionMemory
of a top-level Mission (nested missions are parented to their enclosing Mis-
sionMemory). MissionMemory is the parent of any PrivateMemory asso-
ciated to a schedulable object registered to the corresponding Mission. A nested
PrivateMemory is parented to its directly enclosing PrivateMemory. In SCJ,
a reference assignment x.f = y is valid if ax is the scope of x (obtained by
MemoryArea.getMemoryArea(x) and ay is the scope of y, and either ax ==
ay or ay is a parent of ax. If a SCJ program attempts to perform an assignment that
is not valid, an IllegalAssignmentError will be thrown. Assignments to lo-
cal variables and parameters, as well as assignments to primitive types, are always
valid. There are no checks for reference reads.

The SCJ memory API is designed to ensure that a PrivateMemory is accessi-
ble to only one schedulable object. This is not the case for MissionMemory and
ImmortalMemory, both of which can be accessed by multiple threads. Some of
the complexity of the RTSJ memory management goes away because creation of
scopes is not under programmer control and the RTSJ’s enter() can not be used
by user code. In particular, the RTSJ has ScopeCycleException to cover the
case where multiple threads enter the same scope from different allocation contexts.
This can not occur by construction of the SCJ API.

Objects allocated within a MissionMemory are reclaimed when the mission
is terminated, all registered schedulable objects are inactive and the mission’s
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Fig. 1.11 Memory model. The figure on the left depicts the layout in memory of the objects and
the figure on the right is the logical representation of the scopes with their parenting relation.

cleanUp() has returned. Objects allocated within a PrivateMemory are re-
claimed with the enterPrivateMemory() returns, or, if this is a top-level
PrivateMemory, when the handleAsyncEvent() method returns.

The method executeInArea(runnable) can be used to change temporar-
ily the allocation context to another scope and execute the run() method of the
runnable argument in that context. The target of the call can be an instance
of ImmortalMemory, MissionMemory or PrivateMemory and must be
a parent. However, after invoking executeInArea(), it is not possible to use
enterPrivateMemory().

The backing store for a scoped memory is taken from the backing store reserva-
tion of its schedulable object. The backing store is managed via reservations for use
by schedulable objects, where the initial schedulable object partitions portions of
its backing store reservation to pass on to schedulable objects created in its thread
of control. Backing store size reservation is managed via StorageParameters
objects.

The Mission.initialize()method call can enterPrivateMemory()
on the mission memory and use the backing store that is reserved for its schedula-
ble objects for temporary allocation. Once initialize() returns, the backing
stores for all registered schedulable objects are created. Calling enterPrivate-
Memory() if the receiver is not the current allocation context will result in an
IllegalStateException. Calling enterPrivateMemory() on a Mis-
sionMemory object after the corresponding mission’s initialize() method
has returned will result in an IllegalStateException. Calling newIn-
stance(), newArray() or executeInArea() on a scope that is not on the
current schedulable object’s call stack is a programming error that results in an ex-
ception. Every schedulable object has ImmortalMemory and, once the mission is
running, MissionMemory on its call stack by construction.
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Fig. 1.11 provides an illustration of the memory representation of a SCJ applica-
tion. The figure shows a mission consisting of two schedulable objects, one with a
nested private memory area. The figure also shows the arrangement of the backing
stores and highlights that schedulable objects use the backing store of their mission,
and nested private memories use the backing store of their schedulable object. The
parenting relation is depicted graphically as well.

1.2.4 Differences with the RTSJ

There are a number of simplifications in the SCJ memory API that lead to a re-
duction in possible errors. One of the most significant differences is that the RTSJ
has a garbage collected heap. The RTSJ further makes the difference between
RealtimeThreads and NoHeapRealtimeThreads (NHRTs). NHRTs are
designed to not have to block for the garbage collector. In SCJ, all threads are
NHRTs and there is no heap. We list some of the benefits of the design:

• In the RTSJ, any field access x.f or method invocation x.m() must be checked
for validity. An attempt to follow a heap reference from a NHRT will result in an
exception. This can not occur in SCJ as there is no heap.

• In the RTSJ, all scopes can be accessed by multiple threads. Finalizers must be
run before a scope can be reused. If the thread running the finalizers is a NHRT,
it may throw an exception if the finalizers manipulate heap data; if it is not, then
finalization may have to wait for the garbage collection to complete, preventing
other NHRTs from using the scope. This can not occur in SCJ: finalization is not
supported, the last thread to leave a scope is always well defined, and there is no
garbage collection.

• In the RTSJ, the parenting relation is established as a result of calling enter()
on an unparented scope. Multiple threads may call enter() on the same scope
from different allocation contexts, which is illegal. To prevent this, an exception
is thrown if a scope that already has a parent is entered from a different allocation
context. In SCJ, this can not occur for MissionMemory instances as they are
created and entered by the infrastructure. For PrivateMemory instances, a
runtime check is needed.

1.3 Programming with SCJ

We now illustrate how the SCJ memory API can be used for common tasks. We
start with simple design patterns for pre-allocated memory and then show that per-
release memory is easy to use; then we show how to fine tune the lifetime of data
by choosing the right allocation context for every object. Finally, we illustrate on
concrete examples errors caused by a wrong use of the SCJ memory API.
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1.3.1 Static Allocation

Very conservative safety-critical systems may require pre-allocation of all of the
data in advance. In SCJ, this can be achieved by allocating all data in static initial-
izers and setting the backing stores of the mission to the minimal amount of mem-
ory (enough to hold the infrastructure-created objects like the Mission instance).
Assume an application needs to measure release jitter in a periodic task for 1000
iterations. A first step towards this goal would be to have an event handler record
the time of every periodic release. Fig. 1.12 shows such a class, MyPEH, which has
a handleAsyncEvent() method that records timestamps in a statically allo-
cated array data structure. All data manipulated by this class is allocated in static
variables and no allocation will be performed in the handleAsyncEvent()
method. To ensure prompt termination in case a developer was to accidentally allo-
cate at run time, the StorageParameters request only 50 bytes as the size of
the PrivateMemory used for MyPEH.

Fig. 1.12 and Fig. 1.13, which adds set up code necessary to create and start
the event handler, constitute a complete Level 0 application. The class MyApp ex-
tends the Level 0 CyclicExecutive class, which merges the functionality of
Mission and Safelet. Most supporting data is created in immortal memory, but
the SCJ API mandates that the event handler be created in the initialize()
method as the event handler’s register() method (called during construction)
must add the newly created handler to a mission. The getSchedule() method
must also allocate because its argument holds a reference to the MyPEH instance,
which is stored in mission memory. In the implementation used for this example,
the size of mission memory can be limited to 500 bytes.

@SCJAllowed(members=true) class MyPEH extends PeriodicEventHandler {

static int pos;
static long[] times = new long[1000];
static StorageParameters sp = new StorageParameters(50L,1000L,1000L);

MyPEH() { super(null, null, sp); }

void handleAsyncEvent() {
times[pos++] = Clock.getRealtimeClock().getTime().getMilliseconds();
if (pos == 1000) Mission.getCurrentMission().requestTermination();

}
}

Fig. 1.12 Static allocation example.

A variant of static allocation is to have all the data needed by each mission reside
in MissionMemory. This has the advantage that once a Mission is reclaimed,
the space used for its objects can be safely reused for the next mission. Fig. 1.14
shows that little changes are needed to support static allocation in mission memory.
Instead of using static fields, the data manipulated by the MyPEH2 event handler
resides in mission memory. To initialize the data, the allocation context of the con-
structor of MyPEH2 is mission memory and therefore the array of long can be cre-
ated in the constructor. For simplicity, we can reuse the set up code of Fig. 1.13 and
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@SCJAllowed(members=true) class MyApp extends CyclicExecutive {

static PriorityParameters p = new PriorityParameters(18);
static StorageParameters s = new StorageParameters(500L, 1000L, 1000L);
static RelativeTime t = new RelativeTime(5,0);

MyApp() { super(p,s); }

CyclicSchedule getSchedule(PeriodicEventHandler[] handlers) {
return new CyclicSchedule(

new CyclicSchedule.Frame[]{new CyclicSchedule.Frame(t, handlers)});
}

void initialize() { new MyPEH().register(); }
}

Fig. 1.13 Static allocation example, setup code.

@SCJAllowed(members=true) class MyPEH2 extends PeriodicEventHandler {

MyPEH2() {
super(null, null, new StorageParameters(1000L, 1000L, 1000L));
times = new long[1000]);

}

int pos;
long times[];
void handleAsyncEvent() {
times[pos++] = Clock.getRealtimeClock().getTime().getMilliseconds();
if (pos == 1000) Mission.getCurrentMission().requestSequenceTermination();

}
}

Fig. 1.14 Mission memory allocation example.

extend it with a new initialize() method that instantiates the MyPEH2 event
handler.

1.3.2 Per-release Allocation

Applications often have need of temporary storage to compute a result. In SCJ,
any data allocated in the handleAsyncEvent() method of any event handler is
temporary by default, lasting only until handleAsyncEvent() returns. Thus, no
special programming idiom is required. Fig. 1.15 allocates an array for the duration
of the release. The size of the scope is specified as an argument when the event
handler is created. The application can allocate freely as long as allocated data does
not overflow the backing store.

void handleAsyncEvent() {
long times[] = new long[1000];

}

Fig. 1.15 Per-release allocation example.
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long median;

void handleAsyncEvent() {
final long times[] = new long[1000];
Runnable r = new SCJRunnable(){
void run() {
long[] copy = new long[1000];
for(int i=0;i<1000;i++) copy[i]=times[i];
Arrays.sort(copy);
median = copy[500];

}
};
ManagedMemory m = ManagedMemory.getCurrentManagedMemory();
m.enterPrivateMemory(8000,r);

}

Fig. 1.16 Per-release allocation with nested scopes.

@SCJAllowed(members=true) class MyPEH4 extends PeriodicEventHandler {

Tick tock;
void handleAsyncEvent() {

ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);
Tick time = (Tick) m.newInstance(Tick.class);

m.executeInArea(new SCJRunnable() { void run() {
MyPEH4.this.tock = new Tick();}});

}
}

Fig. 1.17 Allocation context change in SCJ.

It is possible to have finer control over the lifetime of temporary data. Fig. 1.16
continues the previous example by creating a copy of the times array. That copy
is allocated in a nested scope which is reclaimed when the run() method returns.

The SCJ memory API further provides support for flexible allocation patterns
that allow users to implement different allocation strategies. The newInstan-
ce() creates an object in any scope that has been entered by the current thread,
while executeInArea() allows the user to change the allocation context to a
previously entered scope. Fig. 1.17 illustrates the two ways for programmers to al-
locate longer-lived objects. The allocation context of the handleAsyncEvent()
method is an instance of PrivateMemory, but the PeriodicEventHandler
(referenced by the this variable) is allocated in MissionMemory. The code
snippet shows two ways to allocate an object in MissionMemory. The first way is
to obtain a reference to MissionMemory from this and to call newInstan-
ce(). The second way is call executeInArea() with a SCJRunnable argu-
ment. In both cases an object will be allocated in MissionMemory. The assign-
ment to this.tock is valid only because we have changed allocation context.
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1.3.3 Memory Management Errors

This section illustrates the pitfalls of the SCJ memory management API with
concrete examples. SCJ has two exceptions specific to memory related errors,
IllegalAssignmentError and IllegalStateException. An assign-
ment error can be thrown by any reference assignment. The challenge for devel-
opers is that inspection of the code of a single method is often insufficient to rule
out errors. Consider the following code fragment.

void setTail(List from, List to) { from.tail = to; }

As there is no information in the program text as to where the arguments to the
method were allocated, it is impossible to rule out the possibility that the assignment
will throw an IllegalAssignmentError.

Consider the class declaration in Fig. 1.18. The instance of List referenced by
field a is allocated in MissionMemory, whereas the instance referenced by vari-
able b is allocated in the allocation context of handleAsyncEvent(), namely
PrivateMemory. The first call to setTail() is valid as it will set a reference
from an object allocated in a child scope (@3) to an object allocated in a parent scope
(@2). The second call will throw an exception as the direction of the reference is re-
versed. The assignment this.a=b is also invalid. The this variable refers to the
event handler (@1) allocated in MissionMemory.

class Err extends PeriodicEventHandler {
List a = new List();
...
void handleAsyncEvent() {
List b = new List();
setTail(b, a);
setTail(a, b);
this.a = b;

}
} @3

MissionMemory

PrivateMemory

@1 @2

this   =@1
this.a=@2
b      =@3

Fig. 1.18 IllegalAssignment error.

The IllegalStateException can be thrown if a schedulable object at-
tempts to use a memory area that it has not entered for one of newInstan-
ce(), executeInArea() or enterPrivateMemory(). The SCJ specifi-
cation makes this kind of error rather unlikely, but still possible. The program of
Fig. 1.19 shows the steps needed for the error to occur. Handler P1 stores a ref-
erence to its own PrivateMemory (@1) into a field of the mission M1.pri.
Another handler, P2, tries to either allocate from P1’s memory or enter it. In both
cases an exception will be thrown.
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class M1 extends Mission {
void initialize() { new P1().register(); new P2().register(); }
PrivateMemory priv;

}

class P1 extends PeriodicEventHandler {
void handleAsyncEvent() {
M1 m1 = (M1) Mission.getCurrentMission();
m1.priv = (PrivateMemory)

MemoryArea.getMemoryArea(new int[0]);
}

}

class P2 extends PeriodicEventHandler {
void handleAsyncEvent() {
M1 m1 = (M1) Mission.getCurrentMission();
m1.priv.newInstance(List.class);
m1.priv.enterPrivateMemory(500,

new Runnable(){void run(){}});
}

}

@2

@1 @3

@4

@5

MissionMemory

PrivateMemory

@6

P1          =@2
P2          =@3
priv        =@2
int[0]     =@5
Runnable=@6

Fig. 1.19 IllegalState exceptions.

1.4 Static Memory Safety with Metadata Annotations

The SCJ specification ensures memory safety through dynamic checks. While all
assignments that may lead to a dangling pointer will be caught, they are only caught
at runtime and can be hard to detect through testing alone. The problem for verifi-
cation of SCJ code is that the information needed to check an assignment statement
is not explicit in the program text. Consider an assignment statement such as:

x.f = y

@8

@4

@1

@2x = @8
y = @4

The steps that the infrastructure must take to ascertain that the assignment is valid
are: (i) obtain the scope in which the object referenced by x is allocated (the scope
@2 here), (ii) obtain the scope in which the object referenced by y (scope @1) is
allocated, and (iii) check that @1 is a parent of @2. To do this at compile time, one
either needs to perform a whole-program points to analysis to discover the sets of
potential objects referenced by x and y and their scopes, or ask for more information
to be provided by the developer. A checker needs these three pieces of information:
the respective scopes of the source and target of each assignment statement and the
parenting relation between the scopes. Of course, it would be rather impractical if
the developer had to provide memory addresses of scopes, as this would hard-wire
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the program to exactly that pair of scopes. A better solution is to provide symbolic,
compile-time, names for scopes and guarantee through a set of rules that the vari-
ables will refer to objects that are allocated in those named scopes. We present an
annotation system that lets developer express the relationship between scopes and
specify where the objects referenced by program variables are allocated. Thus, in
the above example, the metadata would express the following information:

x.f = y

@8

@4

@1

@2

DefineScope("A", "Immortal")

DefineScope("B","A")

x  in  Scope("B")

y  in  Scope("A")

It would specify that the program has at least two scopes, with symbolic names A
and B, that B is a child of A, that the object referenced by variable x is allocated
in scope B and that the object referenced by y is allocated in A. Equipped with
this information, a checker can validate the assignment at compile time. The chal-
lenge for the design of memory safety annotations is to balance three requirements.
The annotations should be expressive, letting developers write the code they want
naturally. The annotations should be non-intrusive, requiring as few annotations as
possible. The annotations must be sound; an annotated program must not be allowed
to experience a memory error. We purposefully chose to emphasize soundness and
non-intrusiveness with a very lightweight set of annotations. The core of this sys-
tem is a set of annotations on classes and methods. These are very lightweight but
somewhat restrictive. To recover expressiveness, the system also supports dynamic
guards and variable annotations.

The system differentiates between user code and infrastructure code. User code
follows the restrictions outlined in this chapter and is verified by a dedicated checker
tool implementing this annotation system. Infrastructure code is verified by the ven-
dor. Infrastructure code includes the java and javax packages as well as vendor
specific libraries. The infrastructure code is assumed to be correct and will not be
verified by the checker.

1.4.1 Annotations Overview

The SCJ specification introduces three Java metadata annotations, listed in Ta-
ble 1.1, that guarantee the absence of memory errors. This guarantee requires that
all classes are successfully checked together.

The annotation checker requires the following information. Given a statement,
such as this.x=y.n(), occurring in the body of some method m(T y), the
checker must know in which scope the method will be called (the current allocation
context), the scope of the receiver (the allocation context of the object referenced
by the this variable), the scope of variable y, the scope in which the method n()
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Annotation Where Arguments Description
@DefineScope Any Name Define a new scope.

@Scope

Class Name Instances are in named scope.
CALLER Can be instantiated anywhere.

Field
Name Object allocated in named scope.

UNKNOWN Allocated in unknown scope.
THIS Allocated enclosing class’ scope.

Method

Name Returns object in named scoped.
UNKNOWN Returns object in unknown scope.

CALLER Returns object in caller’s scope.
THIS Returns object in receiver’s scope.

Variable

Name Object allocated in named scope.
UNKNOWN Object in an unknown scope.

CALLER Object in caller’s scope.
THIS Object in receiver’s scope.

@RunsIn Method
Name Method runs in named scope.

CALLER Runs in caller’s scope.
THIS Runs in receiver’s scope.

Table 1.1 Annotation summary. Default values in bold.

expects to execute, and the scope in which its result will be allocated. The situation
is illustrated in Fig. 1.20.

m( T y ) {

      this . x = y . n();m RunsIn S1

this Scope S2 y Scope S3

n RunsIn S4
returns S5

Fig. 1.20 A statement and associated scope information.

The @DefineScope Annotation. The first step is to define a static scope tree. The
static scope tree is the compile-time representation of the run-time parenting re-
lation. For this, we introduce the @DefineScope annotation with two arguments,
the symbolic name of the new scope and of its parent scope. The checker will en-
sure that the annotations define a well formed tree rooted at IMMORTAL, the distin-
guished parent of all scopes. Scopes are introduced by mission (MissionMemory)
and schedulable objects (PrivateMemory). Thus we require that each declara-
tion of a class that has an associated scope (for instance, subclasses of the Mis-
sionSequencer class which define missions, and subclasses of the Periodic-
EventHandler class which hold task logic) must be annotated with a scope def-
inition annotation. Furthermore, nested PrivateMemory scopes are created by
invocation of the enterPrivateMemory() method. As Java does not allow an-
notation on expression, we require that the argument of the method, an instance of
a subclass of SCJRunnable be annotated with a scope definition.

The @Scope Annotation. The key requirement for being able to verify a program
is to have a compile-time mapping of every object reference to some node in the
static scope tree. With that information, verification is simply a matter of checking
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that the right hand side of any assignment is mapped to a parent (or same) scope of
the target object. This mapping is established by the @Scope annotation which takes
a scope name as argument. Scope annotations can be attached to class declarations
to constrain the scope in which all instances of that class are allocated. Annotating
a field, local or argument declaration constrains the object referenced by that field
to be in a particular scope. Lastly, annotating a method declaration constrains the
value returned by that method.

Scope CALLER, THIS, and UNKNOWN. While a general form of parametric
polymorphism for scopes such as full-fledged Java generics [?] was felt to be too
complex by the SCJ expert group, we introduced a limited form of polymorphism
that seems to capture many common use cases. Polymorphism is obtained by adding
the following scope variables: CALLER, THIS and UNKNOWN. These can be used in
@Scope annotations to increase code reuse. A reference that is annotated CALLER

is allocated in the same scope as the “current” or calling allocation context. Refer-
ences annotated THIS point to objects allocated in the same scope as the receiver
(i.e. the value of this) of the current method. Lastly, UNKNOWN is used to denote
unconstrained references for which no static information is available. Classes may
be annotated CALLER to denote that instances of the class may be allocated in any
scope.

The @RunsIn Annotation. To determine the scope in which an allocation expres-
sion new C() is executed we need to associate methods with nodes in our static
scope tree. The @RunsIn annotation does this. It takes as an argument the symbolic
name of the scope in which the method will be executed. An argument of CALLER
indicates that the method is scope polymorphic and that it can be invoked from any
scope. In this case, the arguments, local variables, and return value are by default
assumed to be CALLER. If the method arguments or returned value are of a type that
has a scope annotation, then this information is used by the Checker to verify the
method. If a variable is labeled @Scope(UNKNOWN), the only methods that may be
invoked on it are methods that are labeled @RunsIn(CALLER).

An overriding method must preserve and restate any @RunsIn annotation inher-
ited from the parent. @RunsIn(THIS) denotes a method which runs in the same
scope as the receiver.

Default Annotation Values. To reduce the annotation burden for programmers, an-
notations that have default values can be omitted from the program source. For class
declarations, the default value is CALLER. This is also the annotation on Object.
This means that when annotations are omitted classes can be allocated in any context
(and thus are not tied to a particular scope). Local variables and arguments default to
CALLER as well. For fields, we assume by default that they infer to the same scope as
the object that holds them, i.e. their default is THIS. Instance methods have a default
@RunsIn(THIS) annotation.
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Static Fields and Methods. This paragraph describes the rules for static fields and
methods, we talk about methods/fields on other places but we assume that they are
not static by default. The allocation context of static constructors and static fields
is IMMORTAL. Thus, static variables follow the same rules as if they were explicitly
annotated with IMMORTAL. Static methods are treated as being annotated CALLER.

Strings constants are statically allocated objects and thus should be implicitly
IMMORTAL. However, this prevents users from assigning a string literal to a local
variable even though the string literal is immutable. Therefore, we chose to treat
these strings as CALLER so they may be safely assigned to local variables.

Dynamic Guards. Dynamic guards are our equivalent of dynamic type checks.
They are used to recover the static scope information lost when a variable is cast
to UNKNOWN, but they are also a way to side step the static annotation checks when
these prove too constraining. We have found that having an escape hatch is often
crucial in practice. A dynamic guard is a conditional statement that tests the value
of one of two pre-defined methods, allocatedInSame() or allocatedIn-
Parent() or, to test the scopes of a pair of references. If the test succeeds, the
check assumes that the relationship between the variables holds. The parameters
to a dynamic guard are local variables which must be final to prevent an assign-
ment violating the assumption. The following example illustrates the use of dynamic
guards.

void method(@Scope(UNKNOWN) final List unk, final List cur) {
if (ManagedMemory.allocatedInSame(unk, cur)) {
cur.tail = unk;

}
}

The method takes two arguments, one List allocated in an unknown scope, and
the other allocated in the current scope. Without the guard the assignment statement
would not be valid, since the relation between the objects’ allocation contexts can
not be validated statically. The guard allows the checker to assume that the objects
are allocated in the same scope and thus the method is deemed valid. Note that the
parameters to allocatedInSame() and allocatedInParent() must be
final, so that the variables cannot be modified to violate the assumption.

Arrays. Arrays are another feature that requires special treatment. By default, the
allocation context of an array T[] is the same as that of its element class, T. Primi-
tive arrays are considered to be labeled THIS. The default can be overriden by adding
a @Scope annotation to an array variable declaration.

1.4.1.1 Scope Inference

The value of polymorphic annotations such as THIS and CALLER can be inferred
from the context in certain cases. A concretization function (or scope inference)
translates THIS or CALLER to a named scope. For instance a variable annotated THIS
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takes the scope of the enclosing class (which can be CALLER or a named scope).
An object returned from a method annotated CALLER is concretized to the value
of the calling method’s @RunsIn which, if it is THIS, can be concretized to the
enclosing class’ scope. We say that two scopes are the same if they are identical
after concretization.

The concretization is used to determine the allocation context for an expression.
In an ideal situation, where every class is annotated with @Scope, it is easy to de-
termine the scope of an expression simply by examining the @Scope annotation
for the type of the expression. However, unannotated types and @Scope-annotated
variables complicate the situation. For example, suppose a method declares a new
Integer object:

Integer myInt = new Integer();

It must be possible to know in which scope myInt resides. In the general case,
it can be assumed to be @Scope(THIS), since use of the new operator is, by def-
inition, in the current allocation context; however, if the method has a @RunsIn

annotation which names a specific scope "a", then it is more precise to state that
myInt is @Scope("a").

It is important to infer a scope for every expression to ensure that an assignment
is valid. Since a field may only refer to an object in the same scope or a parent scope,
statically knowing the scope of every expression that is assigned to the field makes
it possible to determine whether or not the assignment is actually legal.

Local variables, unlike fields and parameters, may have no particular scope as-
sociated with them when they are declared and are of a type that is unannotated.
Scope inference is also used to bind the variable to the scope of the right-hand side
expression of the first assignment. In the above example, if the containing method
is @RunsIn(CALLER), myInt is bound to @Scope(CALLER) while the variable
itself is still in lexical scope. In other words, it is as if myInt had an explicit
@Scope(CALLER) annotation on its declaration. It would be illegal to have the fol-
lowing assignment later in the method body:

myInt = Integer.MAX_INT;

It is intuitive to derive the scope of other, more complex expressions as well.
Method calls that have a @Scope annotation or are of an annotated type take on the
specific scope name of the annotation. If there is no @Scope annotation, then the
method is assumed to return a newly allocated object in the current scope.

The scope of a field access expression may depend on the scope of the object
itself. For example, if we have a field access exp.f, if the type of f and the decla-
ration of f have no @Scope annotation, then the scope of exp.f is the same as the
scope of exp. Note that exp can represent any expression, not just a variable.

1.4.1.2 Memory Safety Rules

We will now review the constraints imposed by the checker.
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Overriding Annotations. Subclasses must preserve annotations. A subclass of a
class annotated with a named scope must retain the exact same scope name. A sub-
class of a class annotated CALLER may override this with a named scope. Method
annotations must be retained in subclasses to avoid upcasting an object to the super-
type and executing the method in a different scope.

A method invocation z=x.m(...,y,...) is valid (1) if its @RunsIn is the
same as the current scope or it is annotated @RunsIn(CALLER), (2) if the scope of
every argument y is the same as the corresponding argument declaration or if argu-
ment is UNKNOWN, (3) if the scope of the return value is the same as z.

An assignment expression x.f=y is valid if one of the following holds: (1) x.f
and y have the same scope and are not UNKNOWN or THIS, (2) x.f has scope THIS and
x and y has the same, non-UNKNOWN scope, or (3) x.f is THIS, f is UNKNOWN and the
expression is protected by a dynamic guard.

A cast expression (C) exp may refine the scope of an expression from an object
annotated with CALLER, THIS, or UNKNOWN to a named scope. For example, casting
a variable declared @Scope(UNKNOWN) Object to C entails that the scope of ex-
pression will be that of C. Casts are restricted so that no scope information is lost.

An allocation expression new C() is valid if the current allocation context is
the same as that of the class C. A variable or field declaration, C x, is valid if
the current allocation context is the same or a child of the allocation context of C.
Consequently, classes with no explicit @Scope annotation cannot reference classes
which are bound to named scopes, since THIS may represent a parent scope.

1.4.1.3 Additional Rules and Restrictions of the Annotation System

The SCJ memory safety annotation system further dictates a following set of rules
specific to SCJ API methods.

MissionSequencer and Missions. The MissionSequencer must be annotated
with @DefineScope, its getNextMission() method has a @RunsIn annota-
tion corresponding to this newly defined scope. Every Mission associated with a
particular MissionSequencer is instantiated in this scope and they must have a
@Scope annotation corresponding to that scope.

Schedulables. Each Schedulable must be annotated with a @DefineScope and
@Scope annotation. There can be only one instance of a Schedulable class per
Mission.

MemoryArea Object Annotation. The annotation system requires every object
representing a memory area to be annotated with @DefineScope and @Scope an-
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notations. The annotations allow the checker to statically determine the scope name
of the memory area represented by the object. This information is needed when-
ever the object is used to invoke MemoryArea and ManagedMemory API meth-
ods, such as newInstance() or executeInArea() and enterPrivate-
Memory(). The example in Fig. 1.21 demonstrates a correct annotation of a
ManagedMemory object m.

@Scope("M") @DefineScope(name="H", parent="M")
class Handler extends PeriodicEventHandler {

@RunsIn("H") @SCJAllowed(SUPPORT)
void handleAsyncEvent() {

@Scope(IMMORTAL)
@DefineScope(name="M", parent=IMMORTAL)
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);
...

}
}

Fig. 1.21 Annotating ManagedMemory object example.

The example shows a periodic event handler instantiated in memory M that runs in
memory H. Inside the handleAsyncEvent() method we retrieve a Managed-
Memory object representing the scope M. As we can see, the variable declaration
is annotated with @Scope annotation, expressing in which scope the memory area
object is allocated – in this case it is the IMMORTAL memory. Further, the @Define-

Scope annotation is used to declare which scope is represented by this instance.

executeInArea(). Calls to a scope’s executeInArea() method can only be
made if the scoped memory is a parent of the current allocation context. In addi-
tion, the SCJRunnable object passed to the method must have a @RunsIn anno-
tation that matches the name of the scoped memory. This is a purposeful limitation
of what SCJ allows, since the system does not know what the scope stack is at any
given point in the program.

enterPrivateMemory(). Calls to a scope memory’s enterPrivateMemory(size, run-
nable) method are only valid if the runnable variable definition is annotated with
@DefineScope(name="x",parent="y") where x is the memory area be-
ing entered and y is a the current allocation context. The @RunsIn annotation of
the runnable’s run() method must be the name of the scope being defined by
@DefineScope.

newInstance(). Certain methods in the MemoryArea class encapsulate common
allocation idioms. The newArray(), newArrayInArea(), and newInstance()
methods may be used to allocate arrays and objects in a different allocation context
than the current one. In these cases, invocations of these methods must be treated
specially. Calls to a scope’s newInstance() or newArray() methods are only
valid if the class or element type of the array are annotated to be allocated in target
scope or not annotated at all. Similarly, calls to newArrayInArea() are only
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legal if the element type is annotated to be in the same scope as the first parameter
or not annotated at all. The expression
ImmortalMemory.instance().newArray(byte.class, 10)

should therefore have the scope IMMORTAL. An invocation MemoryArea.newArrayIn-
Area(o, byte.class, 10) is equivalent to calling MemoryArea.getMemoryArea(o).newAr-
ray(byte.class, 10). In this case, we derive the scope of the expression from the scope
of o.

getCurrent*() methods. The getCurrent* methods are static methods provided
by SCJ API that allow applications to access objects specific to the SCJ infras-
tructure. The getCurrent*()methods are ManagedMemory.getCurrent-
ManagedMemory(), RealtimeThread.getCurrentMemoryArea(), Me-
moryArea.getMemoryArea(), Mission.getCurrentMission(), Mis-
sionManager.getCurrentMissionManager(), and Scheduler.get-
CurrentScheduler(). Typically, an object returned by such a call is allocated
in some upper scope; however, there is no annotation present on the type of the ob-
ject. To explicitly express that the allocation scope of returned object is unknown,
the getCurrent*() methods are annotated with @RunsIn(CALLER) and the re-
turned type of such a method call is @Scope(UNKNOWN).

1.4.2 Impact on Standard Library Classes

The presented system was designed in part to minimize changes to the standard li-
braries. However, there are some patterns that the system cannot capture with full
precision when using library classes across different scopes. This occurs for ex-
ample when a method returns objects that live in different scopes, as illustrated in
Fig. 1.22.

class BigInteger {

static BigInteger ZERO = new BigInteger(0);
BigInteger add(BigInteger o) {
if (this == ZERO) return o;
if (o == ZERO) return this;
return slowAdd(this, o);

}
}

ZERO.add(ZERO);
ZERO.add(new BigInteger(3));

Fig. 1.22 A library class BigInteger with a method returning objects in two different scopes.

The BigInteger class attempts to prevent unnecessary allocation when adding
two objects together. If either operand is zero, the result will be the same as the
other operand; since BigInteger objects are immutable, it is acceptable to simply
return the other operand. However, with respect to SCJ, this means that add() can
return objects in several different scopes. On the first use of add(), an object living
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in the immortal memory is returned. However, the second addition returns the newly
created object representing the value 3, which is allocated in the current allocation
context that may or may not be immortal memory.

There are a few solutions to this problem. First, add() could be annotated to
return an object in the UNKNOWN scope. This means that, in order to minimize the
number of dynamic checks to call BigInteger methods, most of the methods
must be labeled @RunsIn(CALLER). This is safe to do because BigInteger ob-
jects are treated as value types and are therefore never mutated after construction,
but litters the standard library class with annotations.

Another solution is to make add() always return a fresh object, so that the
method can be implied as @Scope(CALLER). This has the advantage of not requir-
ing explicit annotations. However, the lack of @RunsIn(CALLER) annotations limits
BigInteger operands and operators to living in the same scope. This both sim-
plifies and limits how the standard library may be used.

Even though the system requires annotation of standard Java libraries, we believe
that this one-time cost paid by JVM vendors is negligible in comparison to the costs
of sanitizing those libraries to qualify them for safety certification and then actually
gathering all of the required safety certification evidence.

1.5 Collision Detector Example

In this section we present the Collision Detector (CDx)3 [?] example and illustrate
the use of the memory safety annotations. The classes are written with a minimum
number of annotations, though the figures hides much of the logic which has no
annotations at all.

The CDx benchmark consists of a periodic task that takes air traffic radar frames
as input and predicts potential collisions. The main computation is executed in a pri-
vate memory area, as the CDx algorithm is executed periodically; data is recorded
in a mission memory area. However, since the CDx algorithm relies on positions in
the current and previous frame for each iteration, a dedicated data structure, imple-
mented in the Table class, must be used to keep track of the previous positions
of each airplane so that the periodic task may reference it. Each aircraft is uniquely
represented by its Sign and the Table maintains a mapping between a Sign and
a V3d object that represents current position of the aircraft. Since the state table is
needed during the lifetime of the mission, placing it inside the persistent memory is
the ideal solution.

First, a code snippet implementing the Collision Detector mission is presented in
Fig. 1.23. The CDMission class is allocated in a scope named similarly and im-
plicitly runs in the same scope. A substantial portion of the class’ implementation is
dedicated to the initialize() method, which creates the mission’s handler and
then shows how the enterPrivateMemory() method is used to perform some

3 The CDx open-source distributions is at www.ovmj.net/cdx (Version miniCDj).
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@DefineScope(name="M", parent=IMMORTAL)
@Scope("M") class CDMission extends Mission {

void initialize() {
new Handler().register();
MIRun run = new MIRun();
@Scope(IMMORTAL)
@DefineScope(name="M", parent=IMMORTAL)
ManagedMemory m = (ManagedMemory) ManagedMemory.getMemoryArea(this);
m.enterPrivateMemory(2000, run);

}
}

@Scope("M")
@DefineScope(name="MI", parent="M")
class MIRun implements SCJRunnable {
@RunsIn("MI") void run() {...}

}

Fig. 1.23 CDx mission implementation.

initialization tasks in a sub-scope using the MIRun class. The ManagedMemory
variable m is annotated with @DefineScope and @Scope to correctly define which
scope is represented by this object. Further, notice the use of @DefineScope to
define a new MI scope that will be used as a private memory for the runnable.

The Handler class, presented in Fig. 1.24, implements functionality that will
be periodically executed throughout the mission in the handleAsyncEvent()
method. The class is allocated in the M memory, defined by the @Scope annotation.
The allocation context of its execution is the "H" scope, as the @RunsIn annotations
upon the Handler’s methods suggest.

@DefineScope(name="H", parent="M")
@Scope("M") class Handler extends PeriodicEventHandler {

Table st;

@RunsIn("H") void handleAsyncEvent() {
Sign s = ... ;
@Scope("M") V3d old_pos = st.get(s);
if (old_pos == null) {
@Scope("M") Sign n_s = mkSign(s);
st.put(n_s);

} else ...
}

@RunsIn("H") @Scope("M") Sign mkSign(@Scope("M") Sign s) {
@Scope(IMMORTAL) @DefineScope(name="M",parent="IMMORTAL")
ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(s);

@Scope("M") Sign n_s = ManagedMemory.newInstance(Sign.class);
n_s.b = (byte[]) MemoryArea.newArrayInArea(s, byte.class, s.length);
for (int i : s.b.length) n_s.b[i] = s.b[i];
return n_s

}
}

Fig. 1.24 CDx Handler implementation.

Consider the handleAsyncEvent() method, which implements a communi-
cation with the Table object allocated in the scope M, thus crossing scope bound-
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aries. The Tablemethods are annotated as @RunsIn(CALLER) and @Scope(THIS)

to enable this cross-scope communication. Consequently, the V3d object returned
from a @RunsIn(CALLER) get() method is inferred to reside in @Scope("M").
For a newly detected aircraft, the Sign object is allocated in the M memory and
inserted into the Table. This is implemented by the mkSign() method that re-
trieves an object representing the scope M and uses the newInstance() and
newArrayInArea() methods to instantiate and initialize a new Sing object.

@Scope("M") class Table {

final HashMap map;
V3d vectors [];
int counter = 0;
final VRun r = new VRun();

@RunsIn(CALLER) @Scope(THIS)
V3d get(Sign s) {
return (V3d) map.get(s);

}

@RunsIn(CALLER) void put(
final @Scope(UNKNOWN) Sign s) {

if (ManagedMemory.allocatedInSame(r,s))
r.s = s;

@Scope(IMMORTAL)
@DefineScope(name="M",parent=IMMORTAL)
ManagedMemory m = (ManagedMemory)
MemoryArea.getMemoryArea(this);

m.executeInArea(r);
}

}

@Scope("M") class VRun
implements SCJRunnable {

Sign s;

@RunsIn("M") void run() {
if (map.get(s) != null) return;
V3d v = vectors[counter++];
map.put(s,v);

}
}

@1

ImmortalMemory

MissionMemory

PrivateMemory

@6@4

@3 @9

@5 @7

@10 @8

@2

ImmortalMemory   = @1
MissionMemory    = @2
PrivateMemory    = @3
CDMission        = @4
Handler          = @5
Table t          = @6
HashMap map      = @7
VRun r           = @8
V3d old_pos      = @9
Sign n_s         = @10
Sign s           = @11                  

@11

Fig. 1.25 CDx Table implementation.

The implementation of the Table is presented in Fig. 1.25. The figure further
shows a graphical representation of memory areas in the system together with ob-
jects allocated in each of the areas. The immortal memory contains only an object
representing an instance of the MissionMemory. The mission memory area con-
tains the two schedulable objects of the application – Mission and Handler, an
instance representing PrivateMemory, and objects allocated by the application
itself – the Table, a hashmap holding V3d and Sign instances, and runnable ob-
jects used to switch allocation context between memory areas. The private memory
holds temporary allocated Sign objects.

The Table class, presented in Fig. 1.25 on the left side, implements sev-
eral @RunsIn(CALLER) methods that are called from the Handler. The put()
method was modified to meet the restrictions of the annotation system, the argument



1 Memory Safety for Safety Critical Java 27

is UNKNOWN because themethod can potentially be called from any subscope. In the
method, a dynamic guard is used to guarantee that the Sign object being passed as
an argument is allocated in the same scope as the Table. After passing the dynamic
guard, the Sign can be stored into a field of the VectorRunnable object. This
runnable is consequently used to change allocation context by being passed to the
executeInArea(). Inside the runnable, the Sign is then stored into the map
that is managed by the Table class. After calling executeInArea(), the exe-
cution context is changed to M and the object s can be stored into the map. Finally,
a proper HashMap implementation annotated with @RunsIn(CALLER) annotations
is necessary to complement the Table implementation.

1.6 Related Work

The Aonix PERC Pico virtual machine introduces stack-allocated scopes, an anno-
tation system, and an integrated static analysis system to verify scope safety and
analyze memory requirements. The PERC type system [?] introduces annotations
indicating the scope area in which a given object is allocated. A byte-code verifier
interpreting the annotations proves the absence of scoped memory protocol errors.
The PERC Pico annotations do not introduce absolute scopes identifiers. Instead,
they emphasize scope relationships (e.g. argument A resides in a scope that encloses
the scope of argument B). This allows more generic reuse of classes and methods
in many different scopes, rather than requiring duplication of classes for each dis-
tinct scope context at the cost of a higher annotation burden. The PERC annotations
address sizing requirements which are not considered here.

The authors of [?] proposed a type system for Real-Time Java. Although the
work is applied to a more general scenario of RTSJ-based applications, it shows
that a type system makes it possible to eliminate runtime checks. In comparison to
the approach in this chapter, the proposed type system provides a richer but a more
complex solution.

Scoped Types [?,?] introduce a type system for RTSJ which ensures that no run-
time errors due to memory access checks will occur. Furthermore, Scoped Types
capture the runtime hierarchy of scopes and subscopes in the program text by the
static hierarchy of Java packages and by two dedicated Java annotations. The au-
thors demonstrates that it is possible to statically maintain the invariants that the
RTSJ checks dynamically, yet syntactic overhead upon programmers is small. The
solution presented by the authors is a direct ancestor of the system described by this
chapter.
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1.7 Conclusion

This chapter has presented the SCJ memory management API which provides in-
creased safety by simplifying the memory model it inherited from the RTSJ. Fur-
thermore, we have presented a set of metadata annotations which can be used to
statically prove that SCJ compliant programs are free of memory errors caused by
illegal assignments. This greatly increases the reliability of safety critical applica-
tions and reduce the cost of certification.
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