
Under consideration for publication in Math. Struct. in Comp. Science

Coordination and Mobility in CoreLime

Bogdan Ca rbuna r1 Mar c o Tu l i o Va l e n t e2 and Jan V i t e k1†

1Dept. of Computer Sciences, Purdue University, USA.
2 Universidade Federal de Minas Gerais, Brazil.

Received March 9, 2002

The choice of suitable high level communication primitives for wide area network

programming languages remains an open problem. This paper is driven by the practical

consideration of providing an efficient and secure communication infrastructure for

mobile agent systems. This has led us to formalize the Lime coordination middleware

and propose a simplified model that we call CoreLime that addresses some of the main

shortcomings of Lime while retaining its distinguishing feature, namely transient sharing

of tuple spaces. We further discuss a prototype implementation along with security

extensions. Our contribution is thus an exploration of the language design space rather

than a theoretical investigation of properties of these models.

1. Introduction

Traditional computational models are based on the assumption that software and the

devices it runs on are deployed before being used, and that once deployed software

configurations remain static. Wireless and ad-hoc networks challenge this assumption

by suggesting computational models that exploit the dynamic nature of the physical and

logical infrastructure. This has motivated a line of research on languages in which mobility

is the central linguistic abstraction (Cardelli and Gordon, 1998; Vitek, 1999; Fournet and

Gonthier, 1996; Wojciechowski and Sewell, 2000). While these languages provide means

for applications to have some degree of control over locality, they typically fail to provide

expressive communication primitives.

In previous work, we developed a medium-sized application on top of a mobile agent

system (Morin, 1998; Bryce and Vitek, 1999). While the application software was faced

with many of the traditional challenges of distributed computing, surprisingly the ma-

jority of the code was devoted to the implementation of inter-agent communication pro-

tocols. These had to be built upon the channel abstraction provided by the agent in-

frastructure (Vitek, 1999). In retrospect the difficulties were predictable. The services

offered by the agent infrastructure were limited to local communication and naming.

The agent system had no provision for distributed communication and provided only the

simplest of communication mechanisms, namely synchronous named channels as in the

† This work was supported by NSF under grant CCR-0093282.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 2

π-calculus(Milner et al., 1992). Thus ad-hoc schemes had to be developed in our applica-

tion to support resource discovery, distributed naming, agent authentication, distributed

messaging. Even then, agent communication tended to be cumbersome. Of course there

are good reasons for choosing low-level primitives. The whole point of mobile languages

is to emphasize locality, and distributed channels as in the Join calculus (Fournet and

Gonthier, 1996) would defeat the purpose. The other justification is that from a theoret-

ical point of view, high-level communication mechanisms are not needed since they can

be encoded (Wojciechowski and Sewell, 2000).

In practice mobile systems do require high-level communication mechanisms. In our

experience interaction in mobile system has the following distinctive characteristics:

— Transient and Opportunistic: Communication patterns are shaped by the nature

of an environment in which hosts are intermittently connected and agents can mi-

grate at any time. Communication is opportunistic as applications take advantage of

resources that happen to be available at a given time without relying on their con-

tinued availability. Communication protocols must accommodate long latencies and

timeouts caused by the sudden departure of an interlocutor or disconnection of the

agent itself.

— Anonymous and Untrusted: Interactions are based on services offered rather than

on the identity of the entity providing those services. Agents do not need to know each

others names or locations, they simply require particular services. Anonymity’s corol-

lary is that agents are not necessarily trusted and require support for implementing

secure communication protocols.

The spatial and temporal uncoupling provided by tuple space-based languages (Gelernter,

1985) is well suited to the communication patterns of mobile systems. In (Bryce et al.,

1999), we investigated coordination languages as a replacement for the channels of our

agent infrastructure (Bryce and Vitek, 1999). In particular, we tried to add security to

a Linda-like model. But some of the solutions presented in that work we unsatisfactorily

as they did not account for agent mobility. This meant that unconsumed messages,

traditionally called tuples, would never be reclaimed. This issue was left as future work

as no semantically palatable solution could be found.

The Lime middleware infrastructure of Murphy et al. (Picco et al., 1999) provides

a partial answer. Lime is an elegant combination of Linda with reactive programming

designed to provide a simple communication model for mobile environments. Lime intro-

duces the notion of transiently shared tuple spaces: each mobile entity is equipped with

its own individual tuple space which moves whenever that entity moves. These individ-

ual tuple spaces are silently merged as soon as several agents are located on the same

host, thus creating temporary sharing patterns that change as agents enter and leave the

host. Furthermore ad hoc federations of hosts can be created dynamically. In this case,

Lime merges the tuple spaces of each host into a single seamless federated tuple space.

Transient sharing solves several problems. At the local level, it introduces a notion of

ownership for tuples that is beneficial for resource accounting purposes. Furthermore, tu-

ple space migration allows mobile entities to suspend an ongoing interaction and resume

Coordination and Mobility in CoreLime 3

it whenever both agents happen to be co-located again. At the federated level, transient

sharing provides a model of a distributed space in the face of mobility.

Our original goal was simply to extend Lime with the access control mechanisms

needed to implement secure interaction between untrusted parties (Bryce et al., 1999)

and use that model in the implementation of a new mobile agent system for limited

capacity connected devices. Along the way we realized that the Lime specification was

somewhat complex and difficult to implement and that the model appeared to have some

ingrained inefficiencies. These suspicions were confirmed by preliminary experiments with

a prototype implementation. This paper documents our attempts to understand Lime and

to provide a scalable and secure implementation of its key ideas. Section 2 gives a brief

informal overview of Lime. In Section 3 we provide a formalization of the core concepts

of Lime as a process calculus. The semantics gives a well understood starting point

for reasoning about Lime programs and, more importantly for our needs, was meant to

serve as a specification for our implementation. This process revealed some rather serious

shortcomings of the model which are outlined in Section 4. Faced with these issues we

decided to simplify the model at the cost of some expressiveness, and defined CoreLime,

an even simpler calculus, which does not have the inherent inefficiencies of Lime. The

semantics of CoreLime is given in Section 5. Finally we describe security extensions that

we are adding to our implementation of CoreLime.

2. Middleware for Mobile Environments

The Lime middleware is a communication infrastructure for mobile environments written

in the Java programming language introduced in (Picco et al., 1999), large parts of

the model were formalized in Mobile Unity notation in (Murphy, 2000). In this section

we present an overview of the main concepts of Lime. When necessary we differentiate

between the implementation (denoted Limeimp) and its specification (denoted Limespec).

Basics. Lime programs are composed of agents equipped with possibly many tuple

spaces. Agents run on hosts with active tuple space managers. The basic tuple space

operations available in Lime are familiar from Linda systems. Agents can deposit a da-

tum in a tuple space with a non-blocking out operation, remove a datum with a blocking

in or a non-blocking inp. They can further obtain a copy of a tuple with rd and rdp.

The last two operations do not modify the tuple space. Figure 1 demonstrates the Lime

implementation of a producer/consumer protocol with two agents exchanging data over

a common space. The producer thread repeatedly creates a tuple containing two actuals,

the first of which is a string and the other an integer value, using the Lime addActual

operation (lines 2 and 5). The producer proceeds to output the tuple to the tuple space

ts (line 6). The consumer extracts the tuples from the same space using the in primitive

(line 13). The input operation takes a query tuple which, in this case, consists of two

values, an actual that matches the string used by the producer and a formal that restricts

the query to tuples with an integer as second value (lines 9–11). The tuples are retrieved

non-deterministically depending on the interleaving of the threads.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 4

producer

01. tuple = new Tuple();

02. tuple.addActual("key");

03. for (int i = 0; i < 10 ; i++) {

04. val = tuple.copy();

05. val.addActual(new Integer(i));

06. ts.out(val);

07. }

consumer

08. tuple = new Tuple();

09. tuple.addActual("key");

10. templ = tuple.copy();

11. templ.addFormal(Integer.class);

12. for (int i = 0; i < 10 ; i++)

13. tuples[i] = ts.in(templ);

Fig. 1. Producer/Consumer in Lime.

Location-aware Computing. Lime lets agents perform operations on tuple spaces of other

agents by the means of location parameters. Location parameters restrict the scope of

tuple space operations. For the out operation, a location parameter can be used to specify

the destination agent of a tuple. Its semantics is that Lime will deliver the tuple to the

destination as soon as the destination agent becomes reachable. While the destination

agent is not reachable tuples remain under the ownership of their creator. One way to

represent this ownership information is to think of each tuple as having two additional

fields current and final such that current denotes the current owner of the tuple

and final its destination. So, an out operation can be thought of as taking two steps.

Assuming that an agent bob outputs a tuple destined for another agent alice, the first

step will be to emit the tuple with a destination of alice and owner of bob, then in a

second step, if alice is reachable, ownership of the tuple can be transfered to alice:

bob: ts.out(alice, tuple) → 〈bob, alice, tuple〉 → 〈alice, alice, tuple〉

A tuple for which current 6= final is in transit (also called misplaced in Lime). Lime

implementations need not maintain these fields explicitly, but they are useful for the

exposition. Input operations have two location parameters corresponding to the above

mentioned fields. Thus an input operation with the following query template (current,

final, template) means that the Lime implementation will search for tuples matching

template in the space of agent current and which have agent final as destination.

Lime allows either parameter to be unspecified in order to broaden the scope of the

query. Finally Limeimp allows to specify host identifiers as current location.

Coordination and Mobility in CoreLime 5

Reactive programming. On top of the standard Linda primitives, Lime supports reac-

tions. A reaction can be viewed as a triple (t, s, p) consisting of a tuple space reference

t, a template s and a code fragment p. The semantics of a reaction is that whenever a

tuple matching s is deposited in t, the code fragment p should be run. The main dif-

ference between blocking rd and reactions is that all reactions are guaranteed to be run

when a matching tuple is found. Furthermore, Lime specifies that reactions are atomic;

in other words while p executes, no other tuple space operation may be processed. Atom-

icity ensures that reactions always execute in a consistent state. The code of a reaction

is allowed to perform tuple space operations and may thus trigger other reactions. Lime

executes reactions until no more reactions are enabled. To avoid deadlocks, reactions

are not allowed to issue blocking tuple space operations such as in or rd. By default,

reactions are fired once, but it is also possible to specify that a reaction be fired once

per tuple. Continuing the producer/consumer example of Figure 1, another thread may

register a reaction that prints a message on the console each time a tuple bearing string

example is inserted in the space. In this example, we create a query template templ that

will match the appropriate tuples (line 1-3). The code of the reaction is encapsulated in

an anonymous class (line 4-9). The variable count is used to keep track of the triggered

reactions. The reaction is then created with a once per tuple modality that ensures that

it will fire for each tuple deposited in the tuple space ts by the producer thread (line

10-14).

01. templ = new Tuple();

02. templ.addActual("example");

03. templ.addFormal(Integer.class);

04. listener = new ReactionListener {

05. int count;

06. public void reactsTo(ReactionEvent e) {

07. System.out.println("reaction " +

08. ++count + " fired");

09. }};

10. reactions[0] = new LocalizedReaction(

11. currentHost,

12. thisAgent,

13. templ,

14. listener,

14. Reaction.ONCEPERTUPLE);

15. ts.addStrongReaction(reactions);

Fig. 2. Reactions example following Figure 1

Transiently Shared Spaces. By default, the tuple spaces of different agents are disjoint.

The key innovation in Lime is to support a flexible form of tuple space sharing referred

to as transient sharing. An agent can declare that some of its tuple spaces are shared.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 6

The Lime infrastructure will then look for other spaces, belonging to other agents, that

have the same name and silently merge them into a single apparently seamless space.

The sharing remains in effect as long as the agents are co-located. The assumption is that

agents can leave a host at any time. When this occurs, Lime will break up the tuple space

and extract all tuples which have the departing agent in their current field. Consider the

example of Figure 3 in which two agents own a tuple space ts. This tuple space becomes

transiently shared if one of the agents migrates to the same host as the other. When

this occurs, the tuple output by the first agent (line 03) can be read by the second (line

06). Transient sharing simplifies the coding of application communication protocols as

explicit location parameters can often be omitted. Thus in the above example, the second

agent could have emitted a simple tuple = ts.in(templ) to retrieve the same tuple.

Of course omitting location parameters implies tuples emitted by other agents become

eligible for input operations.

Agent1

01. tuple = new Tuple();

02. tuple.addActual(new Integer(1));

03. ts.out(Agent2, tuple);

// deposit 〈Agent1, Agent2, tuple〉 in ts

Agent2

04. templ = new Tuple();

05. templ.addActual(new Integer(1));

06. tuple = ts.in(Agent2, Agent2, templ);

// block (line 06)

// ... move to Agent1.host

// deliver 〈Agent2, Agent2, tuple〉 and unblock (line 06)

Fig. 3. Transiently shared spaces.

Federated Spaces. The last and most ambitious part of Lime is the support for federated

spaces. A federated space is a transiently shared tuple space that spans several hosts.

Federations arise as a result of hosts issuing the engage command. Hosts can leave a

federation by issuing an explicit disengage command. The semantics of Lime operations

is not affected by federations, it is up to the implementation to provide the same guar-

antees as in the single host case. This complicates the implementation and imposes some

constraints on the use of Lime primitives. In particular, Limeimp introduces weak reac-

tions and limits (strong) reactions to a single host. A weak reaction may be scoped over

multiple hosts, but it adds an asynchronous step between the identification of the tuple

and execution of the reaction code. Tuples that may trigger weak reactions are first set

aside, and then the user reactions are executed atomically. In Limeimp, a weak reaction

is implemented by registering one strong reaction on every node of the federation.

Coordination and Mobility in CoreLime 7

Summary. This concludes our overview of Lime. Interested readers are referred to (Mur-

phy et al., 2001) for a detailed presentation. We now turn to a formal presentation of the

key features of Lime.

3. The Lime Calculus

Syntactically Lime could be construed as an extension of Linda with move and react

operations. The meaning of Lime’s primitives is however quite different. To understand

these differences we turn to a formal description. As Murphy’s formalization of Lime

based on Chandy and Misra’s UNITY necessitates numerous extraneous definitions and

is rather complex, we decided to present the operational semantics of Lime as a process

calculus modeled after the asynchronous π-calculus. The main difference between our

formalism and the π-calculus is the use of generative communication operations instead

of channel-based primitives. The idea of embedding a Linda-like language in a process

calculus has been explored in depth in previous work (Busi et al., 1998; DeNicola and

Pugliese, 1996). The advantages of this approach is that the semantics is self-contained,

simple and enjoys broad acceptance.

Table 1 presents the syntax of the Lime calculus. We assume a set of names N ranged

over by meta-variables, a, s, h, x, y. Values, ranged over by v, consist of names, processes,

and tuples. Tuples are ordered sequences of values 〈v1 . . . vn〉. We use the symbol ? to

denote the distinguished unspecified value. As usual this value is used to broaden the

scope of matching operations. A configuration A N is defined as the parallel composition

of a set of agents and an environment N consisting of a multiset of tuples NT , and a set

of names NX , it also written NTNX . An agent ah[P] has a unique name a, runs on a

host h and its behavior is described by the process P . Processes are the engines that drive

agents. They are ranged over by metavariables P and Q. The first four process kinds are

borrowed from the asynchronous π-calculus. The inert process 0 exhibits no behavior.

Parallel composition of processes P | Q denotes two processes executing in parallel.

Replication of processes !P denotes an unbounded number of copies of P executing in

parallel. The restriction operator (ν x)P generates a fresh name x lexically scoped in

process P . Restriction operators are applicable within an agent only. To communicate

names between agents these names must be added to the global environment using the

Prog ::= A N

A ::= ε | ah[P] | A

P ::= 0 | P | Q | !P | (ν x)P |

out v | in v, x.P | rd v, x.P | react v, x.P | move h.P

v ::= N | names

P | processes

〈v1 . . . vn〉 tuples

Table 1. Lime calculus syntax.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 8

following equivalence on configurations

ah[(ν x)P] | A NTNX ≡ ah[P] | A NTNX ¹ x

under the assumption that x 6∈ NX ∪ fn(A). The remaining process kinds are primitive

operations. The out v operation takes a tuple 〈v a s〉, v is the value to be inserted in

tuple space s of the destination agent a. In the sample configuration

ah[out 〈x a′ s〉] | a′h[P] N

the output tuple will be sent to tuple space s of agent a′ with x as payload. We im-

pose a well-formedness constraint on output expressions, they are not allowed to contain

occurrences of the unspecified value ?. The operation has no continuation as output is

asynchronous in Lime. Operations in v, x.P and rd v, x.P take three arguments a tuple

v, a name x to bind the result of the operation as arguments, and a continuation process

P . The tuple v has the shape 〈v′ a a′ s〉 where v′ is the query template describing the

shape of the tuple to match, a and a′ are the current owner and final destination agents

of the desired tuple, and s is the name of the target tuple space. Unspecified values may

be used to broaden the scope of inputs, e.g. if both current and destination fields are left

unspecified, the entire space will be searched as shown in the following configuration

ah[out 〈x a′ s〉] | a′h[in 〈x ? ? s〉, y] N

where the entire tuple space s is searched for tuples carrying x. The move primitive

allows agents to change the host on which they are executing. When Lime processes a

move request, tuples belonging to the migrating agent are atomically removed from the

source host and inserted into the destination’s tuple spaces. In the following configuration

ah[moveh′] {〈v a a s〉}NX

moving agent a will cause its location to be changed to h′ and its single tuple to be

moved to h′. As tuple locations are implicit in the semantics, the environment needs

not be modified during the move. The react operation allows an agent to register its

interest in events. Three arguments are expected: the template to match the event, similar

to in ’s first argument, x which will be bound to the actual event, and P which is the

event handler. The reaction operation in the following configuration will be triggered

whenever a one-element tuple is inserted to space s

ah[react 〈〈?〉 ? ? s〉, x .out 〈x, a′, s′〉] N

The behavior of the reaction is to output a copy of the tuple in the space s′ of agent

a′. Agents may access tuple spaces by name, thus names act as capabilities. In our

formalization tuple spaces are represented by disjoint subsets of the global tuple multiset.

Every tuple output by a process is stored in NT as

〈v a a′ s〉

where v is a tuple containing the payload of the communication, and a, a′ and s encode

routing and location information: s is the tuple space name, a is the name of the agent

currently hosting the tuple and a′ is the name of its intended destination agent. Consider

Coordination and Mobility in CoreLime 9

the following configuration

ah[out 〈x a s〉 | out 〈x′ a′ s〉] | a′h′ [out 〈y a s〉 | moveh] {}NX

Assuming that the output operations are scheduled before the move, the environment

would be extended to {〈x a a s〉, 〈x′ a a′ s〉, 〈y a′ a s〉}NX . After the move, all tuples will

be delivered and the environment will be {〈x a a s〉, 〈x′ a′ a′ s〉, 〈y a a s〉}NX .

For simplicity we have omitted operations for extracting values out of tuples, these

can be defined in the obvious way (Bryce et al., 1999).

3.1. Semantics of Lime

Table 2 presents the operational semantics of Lime as a reduction semantics. Our seman-

tics can be viewed, in some sense, as an ideal semantics because operations are allowed

to affect the entire federated tuple space and strong atomicity guarantees are enforced

throughout.

For readability we use the notation EJP K as a shorthand for ah[P] | A. Furthermore,

S ¹ x is a shorthand for S ∪ {x}, and P is a shorthand for P.0. We work up to alpha

conversion of bound names throughout, writing the free name function, defined in Table

3, as fn . Finally we define (fold f op z){a0, . . . , an} = (f a0) op . . . op (f an) op z. To

simplify the presentation the operational semantics is split into three sets of reduction

rule that we present next.

Primitive operations. The rewrite rules for the basic operations have the form A N →

A ′N ′. Each step of reduction represents the effect on the program and tuple space of

executing one Lime primitive operation. The first two rules (T1-T2) model the behavior

of in and rd operations. They succeed if there is a tuple matching the argument template,

in which case every free occurrence of x in the continuation is replaced by the matched

tuple. The in rule is

EJin v, x.P | P ′K NTNX → EJP{v′/x} | P ′K N ′
TNX

where N ′
T is NT without the matched tuple. If multiple tuples match the template,

one is randomly chosen. The definition of pattern matching, written v ≤ v′, allows for

recursive tuple matching as in 〈〈?〉 ?〉 ≤ 〈〈x〉 〈x〉〉.

The out rule (T3) inserts a tuple in an agent’s tuple space.

EJout v′ | P K NTNX → EJP K N ′
TNX

The tuple space N ′
T extends NT with a tuple generated by the function mkt , defined in

Table 3, such that the output value 〈v a′ s〉 is transformed into a tuple 〈v x a′ s〉, where

x is either a, the current agent known as the owner, or a′, the destination agent. If the

destination is in the configuration the tuple is delivered and its owner is set to a′. If the

destination agent is not present, the tuple is misplaced and a retains ownership.

The react reduction modifies the global tuple space by adding a reaction tuple

〈v 〈a h〉 in v, x.P 〉. The fields of the tuple are the template v that triggers the reaction,

the name a of the agent that registered it and its current location h, and the reaction

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 10

EJin v, x.P | P ′K N → EJP{v′/x} | P ′K N ′ (T1)

EJrd v, x.P | P ′K N → EJP{v′/x} | P ′K N (T2)

EJout v′ | P K N → EJP K N ′ (T3)

EJreact v, x . P | P ′K N → EJP ′K N ′ (T4)

ah[move h′ . P | P ′] |A N → ah′ [P | P ′] |A N ′ (T5)

ah[P{v′/x}] N ′ ⇒∗ ah[0] N ′′ N ′′
;v ∪S N

′′′

N ;v ∪S N
′′′ (R1)

N ;S N
′

N ;v ∪S N
′ (R2) N ;{} N

(R3)

N ′
;S N

′′ A N → A′ N ′

A N ⇒ A′ N ′′ (G1)
A N ≡ A′ N ′ A′ N ′ ⇒ A′′ N ′′

A N ⇒ A′′ N ′′ (G2)

The rules are subject to the following side conditions:

(T1-2) N = N ′
T ¹ v′N ′

X ∧ v ≤ v′

(T3) N ′ = NT ¹ vNX ∧ v = mkt v′ ahA

(T4) N ′ = NT ¹ rNX ∧ r = 〈v 〈a h〉 〈x P 〉〉

(T5) N ′ = (mvt ah′NT)NX

(R1) N ′
X = NX ¹ a ∧ a /∈ NX ∧ NT = N ′

T ¹ 〈v
′ 〈a′ h〉 in v′, x.P 〉 ∧ v′ ≤ v

(R2) 6 ∃v′, 〈v′ 〈a h〉 P 〉 ∈ NT ∧ v′ ≤ v

(G1) S = N ′
T −NT

Structural Congruence Rules

P | Q ≡ Q | P (SC1)

!P ≡ P | !P (SC2)

(P | Q) | R ≡ P | (Q | R) (SC3)

P | 0 ≡ P (SC4)

(ν x) (ν y)P ≡ (ν y) (ν x)P (SC5)

P ≡ Q ⇒ (ν x)P ≡ (ν x)Q (SC6)

(ν x) (P | Q) ≡ P | (ν x)Q (SC7)

ah[P] |A N ≡ A | ah[P] N (SC8)

ah[(ν x)P] |A N ≡ ah[P] |A N ′ (SC9)

P ≡ Q ⇒ EJP K N ≡ EJQK N (SC10)

The congruence rules are subjected to the following side conditions:

(SC7) x /∈ fn Q

(SC9) x /∈ fn A ∧ x /∈ NX ∧ N ′ = NX ¹ xNT

Pattern Matching Rules

x ≤ x ? ≤ x
v1 ≤ v′1 . . . vn ≤ v′n

〈v1 . . . vn〉 ≤ 〈v
′
1 . . . v′n〉

Table 2. Lime calculus operational semantics.

Coordination and Mobility in CoreLime 11

Functions

mkt 〈v a′ s〉 a hA = 〈v a′ a′ s〉, if A ≡ a′h′ [P] | A′

mkt 〈v a′ s〉 a hA = 〈v a a′ s〉, otherwise

mvt ah = (fold (mvt ′ ah) ∪ {})
mvt ′ ah 〈v 〈a h′〉 k〉 = 〈v 〈a h〉 k〉
mvt ′ ah v = v, otherwise

fn x = {x} fn 〈〉 = {}

fn 〈v0 . . . vn〉 = fn v0 ∪ · · · ∪ fn vn fn P | Q = fn P ∪ fn Q

fn !P = fn P fn 0 = {}

fn (ν x)P = fn P − x fn out v = fn v

fn in v, x.P = fn P − x ∪ fn v fn rd v, x.P = fn P − x ∪ fn v

fn react .P = fn P − x ∪ fn v fn move h.P = fn P ¹ x

Table 3. Auxiliary functions.

handler in v, x.P . As an example, the following configuration

ah[react 〈? a
′ a′′ s〉, x.P1 | P2] | a

′
h′ [out 〈〈x〉 a′′ s〉 | Q] N (CF1)

can take a step and evolve into

ah[P2] | a
′
h′ [out 〈〈x〉 a′′ s〉 | Q] N ′

TNX (CF2)

where N ′
T = NT ¹ 〈〈? a

′ a′′ s〉 〈a h〉 in v, x.P1〉.

Finally, the move rule changes the location of the agent and moves all its tuples,

including reactions, to the destination host. The tuple relocation is performed by the

mvt function.

Reaction rules. The second set of reduction rules models the execution of reactions. Since

reactions are kept as special types of tuples in the environment, the rules have the format

N ;S N ′, where S is the set of tuples candidate for triggering reactions. There are three

rules for evaluating reactions. Rule (R3) simply states that when the set S is empty,

there are no reactions to execute. When the set is not empty but there is a tuple that

does not match any reaction, the tuple is discarded using (R2).

N ;S N
′

N ;v ∪S N
′

Rule (R1) deals with the more interesting case when a tuple triggering a reaction is

found.

ah[P{v
′/x}] N ′ ⇒∗ ah[0]N

′′ N ′′
;v ∪S N

′′′

N ;v ∪S N
′′′

A new agent with a fresh name is then created to run on the host where the owner

of the reaction currently resides, and that evaluates the reaction handler with every

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 12

free occurrence of x replaced by the matching tuple. The new agent executes in an

environment that no longer contains the current reaction but is extended with the name

of the agent. The evaluation of the agent is done using the rule⇒ that is described in the

next paragraph. The resulting N ′′ is used to recursively evaluate the remaining reactions,

under the same set of candidate tuples, since the current matching tuple might trigger

other reactions.

Global computations. The final set of rules combines the previous two. The rule format

is A N ⇒ A′ N ′. (G1) shows that after every primitive step all the triggered reactions

have to be evaluated
N ′

;S N
′′ A N → A′ N ′

A N ⇒ A′ N ′′

where S = N ′
T −NT . Lime allows reactions only for the insertion of tuples, so only out

and move are of real interest for the execution of reactions. This is illustrated in the

content of S that is the set of tuples added or modified by the primitive step. In rule

(G2) we make use of structural congruence rules to take a global step.

A N ≡ A′ N ′ A′ N ′ ⇒ A′′ N ′′

A N ⇒ A′′ N ′′

The rule states that if a configuration is structurally congruent with a configuration that

takes a step, then the initial configuration takes the same step. We impose an additional

well formedness constraint on configuration: the names of all agents and hosts must be

included in the environment’s set of names NX .

Structural Congruence. Table 2 presents the congruence rules, tuple matching rules and

several functions used in the operational semantics. There are two types of structural

congruence rules. The first ones are for processes and are similar in concept to the

asynchronous π-calculus rules. The second type is used for configurations. (SC8) models

the commutativity of agents, its purpose being to move in the leftmost position the agent

that has to be evaluated. (SC9) moves a new name into the set of global unique names,

and (SC10) makes use of the process congruence rules.

3.2. Restrictions

The operational semantics presented above makes certain simplifications to the actual

Limespec. It is our belief that their inclusion would not add value. For completeness we

detail them here.

Reactions. In Limeimp reactions are restricted in two ways that are not modeled in our

semantics. These restrictions try to prevent the evaluation of reactions from blocking an

entire federation. Lime forbids reaction bodies from using blocking operations such as

in and scopes reactions to the current host of their originating agent. The name strong

reaction is used to denote such scoped local reactions.

Furthermore, Limeimp provides a kind of distributed reaction, the so-called weak reac-

tions which are implemented by loosening the atomicity of reactions and introducing an

Coordination and Mobility in CoreLime 13

asynchronous step between the identification of the candidate tuples and execution of

the reactions. Weak reactions are implemented by registering a strong reaction on every

host in the federation. These strong reactions will notify the host that registered a weak

reaction of the insertion of a matching tuple. Thus for instance a rough translation of

the following remote reaction into a set of local reactions

ah[react 〈? ? ? s〉, x.P | Q] | a′h′ [Q
′] | a′′h′′ [Q

′′] N

is

ah[Q] | a′h′ [Q
′] | a′′h′′ [Q

′′] NT ∪ TNX

where T is the following set of reactions†

〈〈? a ? s〉 〈a h〉 〈xP 〉〉,

〈〈? a′ ? s〉 〈a′ h′〉 〈xout 〈x↓0 a s〉〉〉,

〈〈? a′′ ? s〉 〈a′′ h′′〉 〈xout 〈x↓0 a s〉〉〉

The original reaction specified on all agents in space s (the query template is 〈? ? ? s〉)

is replaced by a reaction that guards the portion of the space associated to a (written

〈? a ? s〉) and two reactions, one for each agent a′ and a′′ which guard their respective

spaces. If one of the latter reactions is triggered, a tuple will be output in a’s space which

in turn will trigger P .

Our semantics does not differentiate between strong and weak reactions and does not

prevent reactions from blocking the tuple space, indeed if

react v, x.!P

is triggered (R1) will never terminate. We will argue, in Section 4, that even with this

distinction and the attached restrictions it is possible to block a tuple space, and by

extension an entire federation.

Finally, we have not modeled persistent reactions, also called once-per-tuple reactions.

Modeling those entails changes to the reaction rules so that they not to consume a reac-

tion after it fires. Difficulties with the semantics of once-per-tuple reactions are described

in the following section and motivate their omission.

Non-blocking and group operations. Limeimp provides both non-blocking input opera-

tions and operations that return groups of tuples. Each non-blocking operation can be

modeled by extending the semantics with two new reduction rules, one for the case when

a matching tuple is immediately found and returned, and one for the case when there is

no such tuple and the operation succeeds without blocking the process or modifying the

tuple space. Group operations can be defined easily in our formalism by the addition of

reduction rule returning all matching tuples.

Host engagement and disengagement. We chose not to model engagement and disengage-

ment of hosts. Engagement could be modeled by creating a set of new agents running

† We use the syntax 〈a0 . . . an〉↓i= ai for selecting values out of a tuple.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 14

on a fresh host identifier. To model disengagement we would have to add a connectivity

map to indicate which hosts are connected. While this is not a particularly critical part

of the formal model, the engagement protocol raises thorny implementation issues which

will be discussed next.

4. A Critique of Lime

During our evaluation we found several inefficiencies and design defects in both Limespec

and Limeimp that have to be addressed if Lime, or a similar model, is to gain widespread

acceptance. We categorize these issues in three broad classes: scalability, atomicity, and

security. Scalability issues pertain to the way a system may scale to large configurations,

in particular support for federated operations has to be carefully considered here. Atom-

icity problems stem from the strong atomicity and consistency imposed by Limespec. Even

when weakened in the implementation those requirements make Lime implementations

overly complex, full of potential synchronization problems and quite inefficient. Our ex-

periments with the current system implementation suggest that these inefficiencies affect

all applications, even if they do not perform any remote operations. The last category,

security issues, collects some missing features of the model with regards to security and

discusses potential attacks on an implementation.

4.1. Scalability

4.1.1. Federated spaces Federated spaces are distributed data structures which can be

accessed concurrently from many different hosts. Limespec places strong consistency re-

quirements on federated spaces. The challenge is therefore to find implementation strate-

gies that decrease the amount of global synchronization required. The approach chosen

by Limeimp is to keep a single copy of every tuple on the same host as it’s owner agent.

Federated input requests, such as

ah[in 〈? ? ? s〉] | a′h′ [Q] N

in which an agent a queries space s of all agents are implemented by multicast over the

federation. Depending on the size of the federation multicast may be an onerous choice,

but the Limespec is quite clear in that if there is a matching tuple somewhere this tuple

should be returned. Thus the entire federation must be searched one way or another.

Blocking remote requests are implemented by the weak reactions described in Section

3.2 which register a strong reaction on every host of the federation and a special reaction

on the host of the agent that issued the input request. Then whenever one of the local

reactions finds a matching tuple the originating host is notified and if the agent is still

waiting for input the tuple is forwarded. The problem with this approach is one of

scalability. For every federated input operation, all hosts in the federation have to be

contacted, new reactions created and registered. Then once a tuple is found, the reactions

have to be disabled. From a practical standpoint having additional reactions on a host

slows down every local operation as the reactions have to be searched for each output.

We argue that federated operations are inherently non-scalable and furthermore that

Coordination and Mobility in CoreLime 15

they impact on the performance of applications that do not use them, even purely local

applications that do not have to go to the network.

4.2. Once-per-tuple reactions

The semantics of once-per-tuple reactions is that every tuple should be distinguishable

from all others so that Lime can ensure that reactions are indeed only triggered once

per tuple. In Lime agents can move, taking their tuples with them. The question then

becomes: if an agent leaves a host and then comes back, are its tuples going to trigger

reactions (Busi and Zavattaro, 2001). Consider the following configuration

ah[moveh′ | moveh | P] NT ¹ 〈v a a s〉NX

agent a may move to h′ and then return to h, if this does happen will its tuple 〈v a a s〉

trigger reactions on h. The answer in our semantics is no. Similarly, Limespec provides an

answer to this question by requiring that every tuple be equipped with a globally unique

identifier (GUID). The obvious implementation strategy for once-per-tuple reactions is

then to store the GUIDs of the tuples it has already reacted to. One drawback of this

approach is that reactions may need to store an unbounded amount of data to remember

all tuples seen. Unicity of GUIDs can be difficult to ensure in practice. In Limeimp, for

instance, agents are moved with Java serialization. In this form it is easy to create a

copy of an agent along with all of its tuples. To provide real unicity guarantees the im-

plementation would have to protect itself against replay attacks which would complicate

considerably the mobility protocols.

4.3. Atomicity

4.3.1. Reaction Livelocks Limespec requires that reactions be executed atomically until a

fixed point is reached. All other tuple space operations on the current host are blocked

until reactions terminate. This is a heavy price to pay in a highly concurrent setting.

Reaction atomicity implies that the runtime cost of a Lime out is entirely unpredictable.

Since reaction bodies are normal programs, termination can not be guaranteed. In our

semantics, the following expression react v, x.(!out v′) will never terminate as we require

that the reaction body reduces to 0. Limespec requires that no blocking operations be used

in the body of a reaction. But that is hardly enough to guarantee termination. In Limeimp

the use of unrestricted Java code fragments in reaction bodies renders their behavior hard

to assess. Once-per-tuple reactions carry an additional risk as they can trigger themselves

recursively by outputting a tuple that matches the query template that the reaction is

interested in, as in the program

react o-p-t〈v a a s〉, x.out 〈v a s〉

While one may argue that this particular example can be prevented by careful coding, it

is much harder to prevent independently developed applications from creating mutually

recursive patterns by accident. Non-terminating reactions present a serious problem for

Limeimp. Firstly, they block the tuple space of the current host, and since disengagement is

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 16

global and atomic in Lime, they can prevent disengagement procedures from terminating,

thus blocking the entire federation.

4.3.2. Engagement and Disengagement In Limeimp hosts joining a federation must be

brought to a consistent state. This boils down to making sure that all of the weak reactions

that hold over the federation be enforced for the new host. For each weak reaction,

a strong reaction must be registered on the incoming host. The current engagement

procedure is atomic which is awkward as it means that new hosts must be serialized and

that other tuple operations are blocked while they are being added to the configuration.

When a host desires to leave the federation it must execute a disengage operation

which atomically de-registers all weak reactions registered by agents currently on that

host from all other hosts in the federation using a distributed transaction. This is a costly

operation as there may be many strong reactions to disable on the hosts that make up the

federation, and since it involves a global lock on the federated space. Furthermore, one

may question the choice of requiring explicit disengagement notification in the context of

mobile devices. If a mobile device moves out of range, loses connectivity or just crashes,

it is highly unlikely that it will have the time to send a message.

4.3.3. Migration The semantics of the Lime calculus specifies that moves are atomic.

There is no clear statement about moves in Limespec. Making moves atomic has pleasant

properties, for instance we are guaranteed that in the following configuration the non-

blocking inp will succeed.

ah[moveh′.0] | bh[inp 〈v a a s〉, x.P] {〈v a a s〉}NX

because regardless of scheduling, the inp will always be run in an environment in which

agent a is connected, either from host h or host h′. In practice, this is of course not the

case as there will be some period of time during which a transits between hosts. Thus,

in Limeimp the inp in the above program can return empty handed, while in Limespec

the operation is guaranteed to succeed. A simple way to model this behavior in the

formalization is translate every move into a two-step operation, the agent first moves to

a distinguished host which is disconnected, in the Lime sense, from every other host and

then, in a second step, moves to its destination.

4.3.4. Remote input In Lime all input operations are atomic, even the remote ones. The

presence of mobility complicates the implementation of remote input operations as the

agent may try to move while waiting for a reply. The question is then what should a

Lime implementation do in a configuration such as

ah[moveh′.0 | in 〈v b b s〉, x.P]

where agent b is assumed to be remote. If the input operation is selected first, should

the implementation wait for the input to complete before allowing the move. Since this

is a blocking in, the wait time is unbounded. On the other hand if the agent is allowed

to move then the system must be ready to handle the additional complexity of messages

Coordination and Mobility in CoreLime 17

sent from b’s host while a is in transit. In practice setting up reliable and efficient message

forwarding infrastructure is not trivial.

4.4. Security

Provisions for security are minimal. Lime’s approach to security is to offer private tu-

ple spaces, which are not merged with other tuple spaces, and are not accessible to

other applications. Security breaches may occur as soon as tuple spaces are made pub-

lic. Communication is in no way protected from malicious applications. Issues such as

confidentiality, integrity and accessibility have not found a place in the model. Any appli-

cation can accidentally or on purpose remove or read a tuple used by other applications

to communicate. Such an application can also modify the content of the tuple or even

send it multiple times. Nothing prevents applications from trying to remove all tuples or

fill in the memory of a host thus effectively denying service to all co-located agents.

Summary. The semantics of Lime places very strong atomicity requirements on imple-

mentations of the model. These requirements are hard to implement in a distributed

setting, and even harder when devices as well as programs are allowed to move. The next

section presents a simpler model of Lime that we propose as a basis for building more

robust Lime implementations.

5. The CoreLime coordination language

The initial goal of our research was to add security primitives to Lime, but the problems

that we discovered while trying to understand its implementation convinced us that we

had to simplify the model. The root of many of those problems lies in the transparency

and atomicity of Lime operations. We have chosen to define a simpler incarnation of Lime

that we call CoreLime which is a non-distributed variant of the basic Lime operation

with, as sole distributed operation, agent mobility. The syntax and semantics of most

Lime operations is retained with the exception of two important differences. The first

one is that operations are scoped over the local host only. The second difference relaxes

the constraint of atomic execution of reactions at the host level, by allowing reaction

handlers to execute in parallel with the other agents.

In CoreLime there is no direct means to operate over remote tuple spaces, nor is there

any notion of federation. This choice is motivated by the difficulties we have outlined

above. As we were not able to find a semantics of Lime that would yield an efficient and

scalable implementation, we chose to retain the main innovation of the original model,

namely transient sharing. Furthermore mobility of agents is theoretically sufficient to

encode distributed operations. Though in practice, it is still unclear what are suitable

semantics.

We have retained reactions as they provide a convenient way to monitor the tuple

spaces. The main difference with Lime reactions is that CoreLime reactions are run

as parallel processes that are spawned whenever a matching tuple is inserted in the

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 18

tuple space. Since they are not atomic, we can dispense with the restrictions on allowed

operations.

The representation of tuples is the same as in Limespec, tuples are made up of a value,

the names of their owner and destination, as well the as target tuple space. In CoreLime

tuple spaces are shared between co-located agents, and when an agent moves to another

host all of its tuples are migrated with it.

5.1. Semantics of CoreLime

The semantics of CoreLime is presented in Table 4. The one step reduction relation →

defines evaluation of CoreLime configurations. A configuration A N is composed of an

agent expression and an environment. The environment is, as before, a set of tuples NT

and a set of global names NX . The definitions of structural congruence, pattern matching

and auxiliary functions of Table 3 and Table 2 carry over unchanged. We remind the

reader that we use EJP K in place of ah[P] | A.

The input rule (T1) is identical to the corresponding Limespec rule modulo the added

side condition that the tuple to be retrieved must reside on the same host as the agent

performing the operation, which is written loc v′ = h. The auxiliary function loc is

overloaded to yield the location of its argument which can be either an agent or a tuple.

In the case of a tuple, loc v returns the location of the agent owning the tuple.

The output rule (T2) differs from Lime’s out in that it may spawn a number of

reaction processes. The rule is

EJout v | P K N → EJP K | A′ N ′

The new agent term A′ is the parallel composition of all reactions that matched the tuple

v. Each reaction is run within the body of an anonymous agent, i.e. an agent with a fresh

name. The side condition for T2 extends the environment with the tuple v′ constructed as

in Limespec and with a new name r which was not previously in NX . Finally all reactions

matching v are extracted from the environment and run in parallel.

The reaction rule (T3) is identical to Limespec’s rule. It simply extends the environment

with a new reaction. The handler P is protected by an input prefix. Note that the main

role of this prefix is to bind x in P , without it x would be a free name.

The CoreLimemove rule (T4) does the following things, it changes the agent’s location

and relocates its tuples and reactions, delivers all misplaced tuples, and starts all reactions

triggered by the moved tuples.

ah[move h′ . P | P ′] |A N → ah′ [P | P ′] |A |A′ N ′

Again, the agent term A′ represents the agents assigned to execute the reactions triggered

by the move.

The auxiliary functions defined for CoreLime’s semantics are mostly straightforward.

The expression sel a N yields the multiset of tuples owned by a. When applied to a

tuple v, a location h and a multiset NT , the selr function selects matching reactions and

returns the parallel composition of their handler processes. If none is found 0 is returned.

selr applies selr’ to each element in turn. This latter function either returns the inert

Coordination and Mobility in CoreLime 19

Reductions

EJin v, x . P | P ′K N → EJP{v′/x} | P ′K N ′ (T1)

EJout v | P K N → EJP K | A′ N ′ (T2)

EJreact v, x . P | P ′K N → EJP ′K N ′ (T3)

ah[move h′ . P | P ′] |A N → ah′ [P | P ′] |A |A′ N (T4)

A N ≡ A′ N ′ A′ N ′ → A′′ N ′′

A N → A′′ N ′′ (T5)

The rules are subjected to the following side conditions:

(T1) N = N ′
T ¹ v′NX ∧ v ≤ v′ ∧ loc v′ = h

(T2) N ′ = NT ¹ v′NX ¹ r ∧ v′ = mkt v a h ∧ A′ = react r hN {v′} ∧ r 6∈ NX

(T3) N ′ = NT ¹ 〈v 〈a h〉 in v, x.P 〉 NX

(T4) N ′ = (mvt ah′NT) NX ¹ r ∧ A′ = react r h′N ′ (sel aN) ∧ r 6∈ NX

Functions
mkt 〈v a′ s〉 ah = 〈v a′ a′ s〉, if loc a′ = h
mkt 〈v a′ s〉 ah = 〈v a a′ s〉, otherwise

react r hN = (fold (react′ r hN) |0)
react′ r hN v = rh[selr(v hNT)]

selr v h = (fold (selr′ v h) | 0)

selr′ v h 〈v′ 〈a h〉 in v, x.P 〉 = P{v/x}, if v′ ≤ v

selr′ v h v′ = 0, otherwise

mvt a h = (fold (mvt ′ a h) ∪ {})

mvt ′ a h 〈v a a′ s〉 = 〈v a′ a′ s〉, if loc a′ = h

mvt ′ a h 〈v a′ a s〉 = 〈v a a s〉, if loc a′ = h
mvt ′ a h 〈v 〈a h′〉 in v, x.P 〉 = 〈v 〈a h〉 in v, x.P 〉
mvt ′ a h v = v, otherwise

sel aN = {v ∈ NT | 〈? a ? ?〉 ≤ v}

Table 4. Semantics of CoreLime.

process or, if a matching reaction is found, returns the body of the handler with the

matched tuple substituted in P{v/x}. The expression react ′ r h N v yields an agent

r with, as body, the parallel composition of all reactions matching v. The expression

(react r h N) T function yields the parallel composition of a set of agents, one agent per

tuple in the multiset T . The body of each of these agents is generated by react ′.

5.2. CoreLime Capabilities

As mentioned before, Lime has no provisions for security, making it particularly exposed

to a variety of attacks. We extend CoreLime with a fine-grained access control mecha-

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 20

nism based on the notion of capabilities. Capabilities can be construed as tokens to be

presented by a principal to gain access to a resource. In CoreLime agents are the princi-

pals and tuple spaces are the resources. Thus capabilities regulate tuple space operations.

Every tuple space operation is controlled by a capability which can be granted to one or

several agents. In our formalization we choose to represent capabilities by the following

global names, cr denotes the creator of a tuple space, in allows to read a tuple space, out

allows to write to a space and react allows to register a reaction. Capabilities are stored

in the environment as tuples with the following fields: capability type r (either , cr, in,

out or react), an owner a, a destination a′ and a tuple space name s. The destination

a′ is the agent which will be granted the capability r. The owner a is either the agent

who issued the capability or the destination. The tuple space s is the name of the space

for which the capability applies.

The operational semantics of the capabilities is presented in Table 5 as an increment

to CoreLime’s semantics, the syntax of the calculus is extended in the obvious way. We

only present new rules and side conditions.

The rule (TN) shows how to construct a new tuple space in the extended calculus.

EJnts s.P | P ′K N → EJ((ν s)P | out 〈cr a s〉 | out 〈cr a s〉) | P ′K N ′

The operation creates a fresh name s and registers the agent a as the creator of that

space. For every space there is a single creator which is initially allowed to output to the

space and to grant capabilities.

A capability is issued using rule (T0), the operation takes three arguments, the capa-

bility, a principal and a tuple space.

EJcap 〈r a′ s〉.P | P ′K N → EJout 〈r a′ s〉 | P | P ′K N ′

The side condition of (T0) checks that the operation is issued by the creator of the tuple

space. Capabilities, like all tuples belong to agents, are stored in their share of the tuple

space and are relocated whenever their owner moves.

The side conditions (T1-3) check the existence of a capability allowing the agent to

perform the desired operation on the specified tuple space. Note that originally the creator

of a tuple space does not have the right to read or register reactions and must explicitly

Reductions

EJnts s.P | P ′K N → EJ((ν s)P | out 〈cr a s〉 | out 〈out a s〉) | P ′K N ′ (TN)

EJcap 〈r a′ s〉 .P | P ′K N → EJout 〈r a′ s〉 | P | P ′K N ′ (T0)

The rules, including the corresponding ones from Table 4 are subjected to the following side conditions:

(T0) ∃〈cr a a s〉 ∈ NT (T2) ∃〈out a a s〉 ∈ NT (T3) ∃〈react a a s〉 ∈ NT

(T1) ∃〈in a a s〉 ∈ NT ∧ v 6∈ {cr, in,out, react}

Table 5. Semantics of Capabilities.

Coordination and Mobility in CoreLime 21

enable those rights. Furthermore (T1) must prevent agents from removing capabilities

from the tuple space.

As an example of the use of capabilities we show how an agent sends its public key to

a co-located agent.

ah[nts s.cap 〈in b s〉 .out 〈k b s〉] | bh[inp v, x〈? b b s〉]

Agent a creates a new tuple space s and grants agent b the right to read from it, then

sends its public key k to b in the newly created tuple space. Agent b just reads from

tuple space s. This assumes that both agents apriori know the tuple space name s. Even

if another agent knows s it will not be capable to access it, as the only capability was

issued for b.

In this simple capability model we have chosen to disallow capability transfer, that is,

only the owner of a tuple space is permitted to grant capabilities to that space. Since

capabilities are first class entities, a weaker security model in which capability can be

exchanged could easily be modeled.

5.3. Implementation details

The current implementation of CoreLime is written in Java, and is built on top of the

TSpaces (Lehman et al., 1999) implementation of tuple spaces. A platform on which

agents execute runs on every device belonging to the federation and listens on a default

port for incoming agents. Every platform has a host-level public tuple space, uniquely

determined by the host address and platform’s port number, and every agent running on

the platform is given a reference to it. The purpose of this host tuple space is to allow

co-located agents to exchange information, such as capabilities. Following Lime’s require-

ments, we also provide a host-level system tuple space, used to store system information

such as what applications are present at any time.

As specified in CoreLime’s semantics, agents can access the tuple spaces of other agents

only if located on the same host. Agents can move between hosts, and their share of tuples

and reactions migrates with them and is merged on the destination host. An agent moves

by specifying a file containing its code, while its state is saved using serialization. When

receiving the code and state of an agent, a platform loads the class files with a local class

loader and deserializes the state using the classes already loaded.

Readers interested in further description of the CoreLime interface as well as in exper-

imental results are referred to (Carbunar et al., 2001).

6. Related Work

The operational semantics presented in this paper resemble the ambient calculus of

Cardelli and Gordon (Cardelli and Gordon, 1998). In the ambient calculus, ambients

containing a set of running processes can enter and exit ambients. Processes running in

an ambient communicate by exchanging asynchronous messages, but the primitive used

for reading messages is not based on pattern matching and thus communicating processes

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 22

must know each other’s identity. Also, processes cannot transparently read messages lo-

cated in sibling ambients. Similar to the ambient calculus, CoreLime relies on migration

to support remote communication.

Busi and Zavattaro have also proposed a formalization of transiently shared tuple

spaces (Busi and Zavattaro, 2001). They model local versions of in and inp but they

do not model reactions and do not consider the impact of supporting federating tuple

spaces in a real system.

KLAIM (de Nicola et al., 1998) provides a coordination language based on Linda’s

primitive operations. It’s main idea is the notion of explicit localities, an abstraction

mechanism over hosts, that allows tuples and processes to be sent and retrieved from

remote hosts. KLAIM is also extended with a type system that statically enforces security

properties, such as checking of the access rights.

TuCSoN (Omicini and Zambonelli, 1999) is a coordination model intended to be as-

sociated with existing agent systems. Every host provides tuple spaces that can be used

by local agents for inter-agent communication and to access local resources. Tuple spaces

have unique names at the host level, and Linda like operations can be performed remotely

on them by specifying their name and the name of the host. In addition, TuCSoN extends

tuple spaces with the notion of behavior specification, which are similar to reactions.

The concept behind reactive tuple spaces is very close to the publish/subscribe paradigm

(Carzaniga et al., 2001; Eugster et al., 2000), if we view the data structures representing

events as tuples. In addition the publish/subscribe model provides flow decoupling of

interlocutors, as neither publisher nor subscriber waits for the operation to succeed. As

future work we could build efficient and scalable remote operations using an implemen-

tation of a publish/subscribe system. A remote in can be viewed as a blocking subscribe

to the occurrence of a tuple matching a specified template, and an out can be a publish

of an event containing the argument tuple.

7. Conclusion

This paper has provided a semantics of the Lime middleware for mobile environments.

This infrastructure is being proposed as a communication model for mobile systems. Our

investigation has uncovered a number of deficiencies in the specification and implemen-

tation of Lime. As a reaction we proposed and implemented a simplified system called

CoreLime. CoreLime retains the key feature of its predecessor, namely transient shar-

ing of tuple spaces, but does away with distributed operations and loosens the original

system’s stringent atomicity requirements.

We view this paper as a starting point for a number of research directions. One im-

portant question is whether sensible semantics for remote operations can be defined and

implemented. Another open problem is related to efficiency, in our current implementa-

tion some of the query operations can be quite costly, much more than message passing

through named channels. Finally, type and effect systems for CoreLime are needed to be

build larger distributed applications out of numerous cooperating agents.

Coordination and Mobility in CoreLime 23

References

Bryce, C., Oriol, M., and Vitek, J. (1999). A Coordination Model for Agents Based on Secure

Spaces. In Ciancarini, P. and Wolf, A., editors, Proc. 3rd Int. Conf. on Coordination Models

and Languages, volume 1594, pages 4–20, Amsterdam, Netherland. Springer-Verlag, Berlin.

Bryce, C. and Vitek, J. (1999). The JavaSeal Mobile Agent Kernel. In Milojevic, D., editor,

Proceedings of the 1st International Symposium on Agent Systems and Applications, Third

International Symposium on Mobile Agents (ASAMA’99), pages 176–189, Palm Springs. ACM

Press.

Busi, N., Gorrieri, R., and Zavattaro, G. (1998). A process algebraic view of Linda coordination

primitives. Theoretical Computer Science, 192(2):167–199.

Busi, N. and Zavattaro, G. (2001). Some Thoughts on Transiently Shared Tuple Spaces. In

Workshop on Software Engineering and Mobility. Co-located with International Conference

on Software Engineering.

Carbunar, B., Valente, M. T., and Vitek, J. (2001). Lime revisited. Proceedings of the Fifth

IEEE Conference on Mobile Agents, LNCS 2240.

Cardelli, L. and Gordon, A. (1998). Mobile Ambients. In Nivat, M., editor, Foundations of

Software Science and Computational Structures, volume 1378 of Lecture Notes in Computer

Science, pages 140–155. Springer-Verlag.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001). Design and evaluation of a wide-area

event notification service. ACM Transactions on Computer Systems, 19(3):332–383.

de Nicola, R., Ferrari, G. L., and Pugliese, R. (1998). Klaim: a kernel language for agents inter-

action and mobility. IEEE Transactions on Software Engineering (Special Issue on Mobility

and Network Aware Computing).

DeNicola, R. and Pugliese, R. (1996). A Process Algebra based on Linda. In Ciancarini, P.

and Hankin, C., editors, Proc. 1st Int. Conf. on Coordination Models and Languages, volume

1061 of Lecture Notes in Computer Science, pages 160–178. Springer-Verlag, Berlin.

Eugster, P. T., Guerraoui, R., and Sventek, J. (2000). Distributed asynchronous collections:

Abstractions for publish/subscribe interaction. In Bertino, E., editor, ECOOP 2000 - Object-

Oriented Programming, volume 1850 of LNCS, pages 252–276.

Fournet, C. and Gonthier, G. (1996). The reflexive chemical abstract machine and the join-

calculus. In Proceedings of POPL’96, pages 372–385. ACM.

Gelernter, D. (1985). Generative communication in Linda. ACM Transactions on Programming

Languages and Systems, 7(1):80–112.

Lehman, T. J., McLaughry, S. W., and Wycko, P. (1999). T spaces: The next wave. In HICSS.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, Parts I and II.

Journal of Information and Computation, 100:1–77.

Morin, J.-H. (1998). HyperNews: a Hyper–Media Electronic Newspaper based on Agents. In

Proceedings of HICSS-31, Hawai International Conference on System Sciences, pages 58–67,

Kona, Hawaii.

Murphy, A. L., Picco, G. P., and Roman, G.-C. (2001). Lime: A Middleware for Physical

and Logical Mobility. In Proceedings of the 21st International Conference on Distributed

Computing Systems (ICDCS-21). to appear.

Murphy, A. T. (2000). Enabling the Rapid Development of Dependable Applications in the Mobile

Environment. PhD thesis, Washigton University, St. Louis.

Omicini, A. and Zambonelli, F. (1999). Tuple Centres for the Coordination of Internet Agents.

In Proceedings of the 1999 ACM Symposium on Applied Computing (SAC’99), pages 183–190.

ACM.

B. Ca r b una r, M. Tu l i o Va l e n t e and J. V i t e k 24

Picco, G. P., Murphy, A. L., and Roman, G.-C. (1999). Lime: Linda Meets Mobility. In

Garlan, D., editor, Proceedings of the 21st International Conference on Software Engineering

(ICSE’99), pages 368–377. ACM Press.

Vitek, J. (1999). The Seal model of Mobile Computations. PhD thesis, University of Geneva.

Wojciechowski, P. T. and Sewell, P. (2000). Nomadic Pict: Language and infrastructure design

for mobile agents. IEEE Concurrency, 8(2):42–52.

