
Flexible Task Graphs:
A Unified Restricted Thread Programming Model for Java

Joshua Auerbach
David F. Bacon

IBM Research

Rachid Guerraoui
Jesper Honig Spring

Ecole Polytechnique Fédérale
de Lausanne

Jan Vitek

Computer Science Dept.
Purdue University

Abstract
The disadvantages of unconstrained shared-memory multi-threading
in Java, especially with regard to latency and determinism in real-
time systems, have given rise to a variety of language extensions
that place restrictions on how threads allocate, share, and commu-
nicate memory, leading to order-of-magnitude reductions in latency
and jitter. However, each model makes different trade-offs with re-
spect to expressiveness, efficiency, enforcement, and latency, and
no one model is best for all applications.

In this paper we present Flexible Task Graphs (Flexotasks), a
single system that allows different isolation policies and mecha-
nisms to be combined in an orthogonal manner, subsuming four
previously proposed models as well as making it possible to use
new combinations best suited to the needs of particular applica-
tions. We evaluate our implementation on top of the IBM Web-
Sphere Real Time Java virtual machine using both a microbench-
mark and a 30 KLOC avionics collision detector. We show that
Flexotasks are capable of executing periodic threads at 10 KHz
with a standard deviation of 1.2µs and that it achieves significantly
better performance than RTSJ’s scoped memory constructs while
remaining impervious to interference from global garbage collec-
tion.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—interpreters, run-time environments; D.3.3
[Programming Languages]: Language Constructs and Features—
classes and objects; D.4.7 [Operating Systems]: Organization and
Design—real-time systems and embedded systems.

General Terms Languages, Experimentation.

Keywords Real-time systems, Java virtual machine, Memory
management, Ownership types.

1. Introduction
The Java programming language has become a viable platform
for real-time systems with applications in avionics [2], shipboard
computing [19], audio processing [4, 21], industrial control [17]
and the financial sector [8]. High performance real-time Java vir-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
LCTES’08, June 12–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-60558-104-0/08/06. . . $5.00

tual machines (RT JVMs) are now available from multiple ven-
dors [28, 13, 3, 1]. Ideally, real-time Java applications would not re-
quire language restrictions or special language features, they would
be written just as any other application using the same design pat-
terns, programming idioms and familiar library classes. Achieving
this ideal is becoming feasible due to progress in real-time garbage
collection [6, 29, 18], ahead-of-time compilation [16], operating
system support [3, 23] and faster processors. Many real-time pro-
grams can now be written as simple Java programs where devel-
opers pay attention to the timing properties of the application logic
without having to be overly concerned about interference from the
virtual machine.

However, some applications have latency/throughput real-time
requirements that cannot be met by current real-time garbage col-
lection (GC) technology. When scheduling latency goes below a
millisecond any interference from the JVM is likely to result in
missed deadlines. One of the key design decisions of the Real-time
Specification for Java (RTSJ) [14] was to support those applications
with a programming model that restricts expressiveness to avoid
unwanted interactions with the JVM and the GC in particular. The
RTSJ introduced the NoHeapRealtimeThread for this pur-
pose. More recently, alternatives to NoHeapRealtimeThread
have been proposed, such as Eventrons [31], Reflexes [33], Exo-
tasks [5], and StreamFlex [32]. Typically, time critical tasks ac-
count for only a fraction of the code of the entire application.
The rest of the application is either soft real-time or non-real-time
code. The existence of restrictions in a subset of the code, along
with rules for communication between that code and the remainder
of the application, gives rise to a restricted thread programming
model, or RTPM. As with any programming model, an RTPM has
advantages beyond low scheduling latency, including static error
detection and facilitation of development tools and model-driven
development strategies.

At first glance, one may wonder what added value these dif-
ferent restricted thread programming models bring over and above
RTSJ’s NoHeapRealtimeThread s which are, after all, sup-
ported by all RT JVMs. Experience implementing [9, 15, 25, 2]
and using [12, 24, 10, 26, 27] the RTSJ revealed a number of seri-
ous deficiencies. In the RTSJ, interference from the GC is avoided
by allocating data needed by time critical real-time tasks from a
part of the JVM’s memory that is not subject to garbage collection,
dynamically checked regions known as scoped memory areas. Indi-
vidual objects allocated in a scoped memory area cannot be deallo-
cated; instead, an entire area is torn down as soon as all threads
exit it. Dynamically enforced safety rules check that a memory
scope with a longer lifetime does not hold a reference to an ob-
ject allocated in a memory scope with a shorter lifetime and that
a NoHeapRealtimeThread does not attempt to dereference a

StreamFlex

Reflex

Eventron

ExoTasks

RTSJ

RTGC Java

Latency

E
x
p
re
s
s
iv
e
n
e
s
s

<< 1 ms 1 ms >> 1 ms

R
u
n
-

ti
m
e

C
h
ec
ki
n
g

C
o
m
p
il
e-

ti
m
e

L
o
a
d
-

ti
m
e

L
o
a
d
-

ti
m
e

Figure 1. Comparing expressiveness versus worst case latencies of
different Real-time Java Programming Models. There is a tradeoff
between latency guarantees and expressiveness. We focus on pro-
gramming models that target sub-millisecond scheduling latencies.
The RTSJ is arguably the most expressive programming model with
sub-millisecond latency, but it incurs throughput overheads due to
run-time scope checks and faces the possibility of run-time failures.
This paper presents a unification of four programming models (Ex-
oTask, StreamFlex, Reflex, Eventron) which rely on static checking
and thus have no run-time checks.

pointer into the garbage collected heap. The worst-case cost of us-
ing scoped memory is predictable [2]: every store to a reference
field incurs a substantial slow-down due to a slow path that per-
forms a range check [25]. Memory reads require two branches (a
check whether the thread is a NoHeapRealtimeThread and a
check to ensure the reference does not point into the garbage col-
lected heap) [27]. Unfortunately, there is a significant difference be-
tween slow path and fast path memory accesses which makes pre-
dicting worst-case performance difficult. However, use of the fast
path is essential to maintaining acceptable average case throughput.
Another issue with the RTSJ programming model is that, due to a
lack of isolation, it is possible for a NoHeapRealtimeThread
to block on a lock held by a plain Java task. If this ever occurs,
all bets are off in term of real-time guarantees as the blocking time
cannot be bounded. Finally, dynamic memory access checks entail
a loss of compositionality. Components may work just fine when
tested independently, but break when put in a particular scoped
memory context. This is because for a RTSJ program to be correct,
developers must deal with an added dimension: where a particular
datum was allocated. Design patterns and idioms for programming
effectively with scoped memory have been proposed [26, 11, 12],
but anecdotal evidence suggests that programmers have a hard time
dealing with NoHeapRealtimeThreads and that resulting pro-
grams are brittle.

If the programming community were to choose to avoid the
problems of NoHeapRealtimeThreads by adopting and even-
tually standardizing the newer RTPMs, the problem of choosing
among them is difficult because they make different tradeoffs and
emphasize different advantages. The purpose of this work is to pro-
vide a unifying framework, which we call Flexible Task Graphs
(or Flexotasks), for four of the available RTPMs (Eventrons, Re-
flexes, Exotasks, and StreamFlex). In doing this, we respect the re-
ality that there are some hard tradeoffs and that not all features of all
four models can be available simultaneously. Consequently, a Flex-
otask program is constructed using a core of unified features and a
choice from among alternative optional features. The core provides
essential properties needed by any RTPM and confers the maxi-

Guard

[T]

Transient

T
obj

obj

obj

Guard

[T']
T'

Channel

Figure 2. The Flexotasks runtime relationships. A task of type
T has a memory region split into a garage collected private heap
and an optional transient area which is reclaimed in bulk between
invocations of execute(). Task-allocated objects are isolated
from the main Java heap and thus not affected by the main heap
garbage collector. A task may optionally access objects that are
outside its memory region if those objects are reference immutable.
An AtomicFlexotask may be accessed from plain Java code
through a guard, which is a heap-allocated proxy object. Tasks
communicate by the means of connections.

mum practical set of advantages common to the precursor RTPMs.
Options add features or guarantees that can be activated accord-
ing to the requirements of a particular application. We do not aim
to subsume NoHeapRealtimeThread functionality in Flexo-
tasks, because we want to avoid the need for run-time checks. Flex-
otasks employ both development-time checking and enforcement at
program initialization time. Consequently, dynamic checks are lim-
ited to a small number of less frequently executed operations (e.g.
JNI callbacks) that are impossible to check statically.

We introduce Flexotasks by summarizing the main features,
explaining how and why each was chosen from among the useful
properties of Eventrons, Reflexes, Exotasks, and StreamFlex and
how some inherent conflicts between those models were resolved.
In subsequent sections, we elaborate on aspects of the resulting
system, in particular, how Flexotasks are validated, and how the
system may be used in practice for programming.

2. Flexible Task Graphs: Features, Origins, and
Rationale

Our goal with Flexotasks was to subsume all four precursor
RTPMs: Eventrons, Reflexes, Exotasks, and StreamFlex. We used
two main strategies to accomplish this. First, where a feature of one
model was general enough already to subsume another, we chose
the more general feature, and, similarly, we preferred less restric-
tive rules over more restrictive ones. In choosing the more general
or less restrictive capability, we were aware that the less general
or more restrictive one may have had advantages of simplicity or
efficiency. To recover simplicity for users who desire it, we rely on
selective veneer interfaces that provide a simplified semantics (we
have such veneers for both Eventrons and Reflexes). To recover ef-
ficiency for applications that can live within tighter restrictions, we
made some stronger checks available but optional (both allocation
and synchronization are allowed by default but may be forbidden
by static checking).

Second, where two precursor models simply did something dif-
ferently, we incorporated both mechanisms, and either required a
choice (if they conflicted) or allowed both to be used together (if
they did not). Thus, we retained the storage management semantics
of both Exotasks and Reflexes, the external communication mech-
anisms of both Eventrons and Reflexes, and the intertask commu-
nication mechanisms of both Exotasks and StreamFlex. We will

Feature Eventrons Reflexes Exotasks StreamFlex RTSJ Flexotasks
Restricted Unit Task Task Graph Graph Thread Graph
Long-term Storage Pre-allocated Stable region Private heap Stable region Immortal memory Private heap
Short-term Storage Stack variables Transient region Private heap Transient region Scoped memory Transient region
External Communication Shared scalars Transactions None Transactions Programmed Shared and transactions
Synchronization Forbidden Discouraged Disabled Discouraged Allowed Allow, forbid, or disable
Scheduling Periodic Periodic Pluggable Data Driven Periodic and event Pluggable
Construction Direct Direct Via template Direct Direct Via template
Intertask Communication – – By Deep Copy By Reference – Copy or reference
Enforcement Initialization Compilation Initialization Compilation Dynamic Compilation and initial.

Figure 3. Features of Different Restricted Thread Programming Models.

explain in each case why multiple mechanisms were felt worthy of
retention and how a Flexotask user should reason about which to
use in particular applications.

Figure 2 shows the overall components of a Flexotask system.
Figure 3 summarizes some key features of previous RTPMs and
Flexotasks. We will use this summary in explaining how the fea-
tures of Flexotasks were chosen. For more details, the reader is
referred to published descriptions of Eventrons [31], Reflexes [33],
Exotasks [5], StreamFlex [32], and RTSJ [14]. For simplicity, we
describe Exotasks as they were presented in [5], although a later
version [20] includes a unification with Eventrons that is carried
forward and extended to the other models by the present work.

2.1 Threads, Flexotasks, and Flexotask Graphs
Although any RTPM ultimately provides restricted threads, a use-
ful model is not obligated to make such threads directly manipu-
lable. Of the preexisting RTPMs, only the RTSJ actually uses the
thread as the unit of restriction. Restricting threads directly implies
dynamic checking, since a thread can ultimate execute any body
of code, and so we did not follow this approach. The other models
define tasks, which are bodies of code rooted in an executable ob-
ject, subject to statically checkable restrictions. Eventrons and Re-
flexes employ single tasks, while Exotasks and StreamFlex employ
graphs of tasks with explicit channels of communication connect-
ing individual tasks. In all four cases, restricted threads are man-
aged by the system to execute the restricted tasks without them-
selves being directly visible to the programmer.

In Flexotasks we employ a graph of tasks. This relates di-
rectly to graph-based modeling systems, such as Simulink [30] and
Ptolemy [22], that are often used to design real time control sys-
tems, or to stream-based programming languages [34]. Fortunately,
a single task is just a degenerate case of a graph, and so selecting a
graph-based approach does not result in any fundamental loss.

2.2 Memory Management in Flexotasks
A key aspect of an RTPM concerns their restrictions on the use of
memory. A partial characterization of this issue, in terms of short
and long-term storage is shown in Figure 3. In Flexotasks, we unify
the two-regions solution of Reflexes with the private heap solution
of Exotasks. We provide two regions, with the more permanent of
them being garbage collected.

Each Flexotask has thus a private memory area that is divided
into a heap (as in Exotasks) and an optional transient area (as
in Reflexes). The Flexotask heap is garbage collected on either a
scheduled basis (when the task is not running) or on-demand (if
memory is exhausted during task execution). Garbage collection
can be disabled by the programmer if the application has a steady
state that does require reclamation of heap data. The transient area
is cleared each time the task’s execute() method returns.

Allocations are directed to the private heap or the transient area
based on the the class being instantiated, as in Reflexes. Allocations

by Flexotasks are never directed to the public heap. We adopt the
Reflex terminology in calling a Flexotask’s heap-allocated classes
stable, although they are not invariably long-lived as in the Reflex
model. We adopt rules similar to those used by Reflexes to provide
safety:

1. No transient class may inherit from a stable class.
2. Arrays with stable element type are stable and arrays with

transient element type are transient.
3. Primitive arrays are handled according to how the programmer

chooses to use transient storage (described below).
4. Fields of stable classes can only refer to stable objects.

These rules ensure that there will be no dangling pointers from
objects on the Flexotask heap into the associated transient area.
Other rules (described in more depth in Section 3) guarantee that
the few permitted pointers into or out of either portion of the
Flexotask memory area are strictly controlled.

The two memory areas can be used in one of the following
ways:

1. All classes (including primitive arrays) are assumed stable.
2. Stable classes are explicitly declared by the programmer, ei-

ther by implementing the Stable marker interface, or by
listing them. The Flexotask object itself is necessarily sta-
ble. Other classes are considered to be transient. Primitive ar-
rays are considered transient. A set of encapsulating classes
(StableBooleanArray, etc.) is provided to enable primi-
tive array usage on the private heap.

3. Stable status may be inferred. Starting with the Flexotask object
itself, the transitive closure of classes appearing in instance
fields are automatically marked stable and then all subclasses
of stable classes are similarly marked stable. All other classes
are considered to be transient.

The second option closely resembles Reflexes and StreamFlex,
except that the stable region may actually be garbage collected.
The first and third options give the semantics of Exotasks. The
first is almost exactly equivalent to Exotasks’ behavior, while the
third confers the benefit of some reduced memory pressure in the
event that some classes are found to be safely (and transparently)
transient.

The semantics of the more restricted Eventron model can be
achieved by simply avoiding allocation in the task. Our validation
framework will optionally flag and reject any allocations (exempt-
ing Throwable objects, the management of which was particu-
larly problematic in Eventrons), but employing this level of check-
ing can also be omitted when there is enough slack to schedule
occasional garbage collections.

Choosing whether to use a transient area explicitly or whether
to simply heap-allocate everything will generally be predicated on

the kind of code reuse that is contemplated. When the internal data
structures of the Flexotask use general-purpose classes (such as the
Java collection framework), it is hard to satisfy the type checking
rules for explicit declaration of stable classes and so the ability to
treat everything as stable is very useful. On the other hand, as one
fine-tunes the application to use more specialized data structures
(which are usually more efficient and more predictable in their
storage utilization), it eventually becomes easy to identify the stable
classes and produce more regular memory usage behavior. The
example presented in Section 4 went through exactly this evolution
before settling on its current configuration, which makes use of the
transient area.

Finally, Flexotasks may not make use of Thread or any of
its subclasses, objects with finalizers, or any of the specialized
Reference types (weak, soft, and phantom references).

2.3 Communication with Ordinary Threads
A second key differentiator of the precursor models concerns how
they handled communication between the restricted thread and or-
dinary threads. Exotasks disallowed such communication entirely.
Eventrons used one model of communication, enabling exchange
of scalar values via a limited sharing of references to common ob-
jects. Reflexes and StreamFlex introduced an additional option, us-
ing a limited form of transaction. In Flexotasks, both the scalar val-
ues and transactional forms of communication may be used in the
same graph, and the graph may optionally be marked strongly iso-
lated to achieve the semantics of the Exotasks model.

2.3.1 Communication through Reference Immutable Objects
In understanding the first of the two Flexotask communication
options, it is useful to establish the following recursive definition
of reference immutability. We first define an effectively final field to
be one that is either declared final or one that is both declared
private and not mutated by any non-constructor method of its
defining class. We then define a reference immutable field to be any
field that is either (1) of a primitive type (possibly mutable) or (2)
an effectively final reference field that is either (2a) null or (2b)
containing a reference-immutable object. A reference-immutable
object is defined as either a primitive array or an object that has
only reference-immutable fields. This property is readily checked
in an incremental fashion, as we revisit in Section 3.

Informally, any reference immutable object provides access to
a graph of objects connected by references that cannot change but
containing other fields that can change. Some leaf objects in this
graph may be primitive arrays, whose elements can change, but not
their extent.

By giving a Flexotask access to some reference immutable ob-
jects residing on the public heap (prevented from moving to avoid
races with the public heap’s garbage collector), the Flexotask can
communicate with ordinary threads. The processes by which a
Flexotask comes to have such references are described in Sec-
tions 2.7 and 3. Otherwise, this facility is based quite directly on
Eventrons.

To obtain the semantics of the Exotask model, and the associ-
ated advantages of strict determinism, the programmer simply la-
bels the Flexotasks of the graph as being strongly isolated, which
prevents the creation of any channels of communication through
reference immutable objects. However, we permit strongly iso-
lated graphs to have references to completely (and recursively) im-
mutable objects, since no communication can occur through such
objects. This allows sharing of global constants (as with Exotasks),
simplifying the code without compromising determinism.

2.3.2 Atomic Flexotasks
The second communication option, known as atomic Flexotasks,
may be used whether or not the graph has been marked strongly
isolated. The semantics of atomic Flexotasks is based on the similar
Reflex capability, but is implemented differently. In this alternative,
ordinary threads are given limited transactional access to state
stored in the Flexotasks’ private heaps. Changes to this state by
the restricted thread running the Flexotask will always commit, but
changes made by ordinary threads are unilaterally aborted if the
restricted thread needs access to the state while the ordinary thread
is still modifying it. The restricted thread then observes the state
as it was before the ordinary thread attempted its modification, and
the ordinary thread gets an exception.

To obtain these semantics, a programmer writes tasks that spe-
cialize the AtomicFlexotask abstract class. The programmer
also creates one or more interfaces that extend the External-
Methodsmarker interface. The AtomicFlexotask implemen-
tation must implement at least one such interface.

The Reflex and StreamFlex models implemented a similar trans-
actional capability but did so in the Ovm virtual machine [28],
which has a uni-processor design with threading controlled by the
virtual machine. In that type of implementation, it was straightfor-
ward to implement preemption by the scheduler, which can imme-
diately roll back any partially applied transactional change to the
state of the task. In constrast, Flexotasks are implemented on IBM’s
WebSphere Real Time VM, which has a multi-processor design and
(usually) maps Java threads to OS threads. In that type of imple-
mentation, it is very difficult to implement a roll-back approach
for transactions, perhaps impossible to do so without introducing
locking overheads that would substantially perturb execution pre-
dictability.

Consequently, we have adopted a roll-forward approach in
which a method that is reachable by ordinary threads must com-
mit its changes explicitly in an epilog. Prior to the epilog, the
method is allowed to examine the task’s heap state and can ac-
cumulate planned mutations in a local log, but should not actually
perform these mutations. The epilog checks whether the state of
the task has changed out from under the method, and if so throws
an AtomicException. If not, the method is permitted to com-
mit its changes, with the scheduler briefly locked out. Effective use
of the facility is therefore predicated on the epilog being carefully
designed to commit its changes efficiently. The Flexotask system
handles this automatically by using class rewriting, as is discussed
in Section 2.9.

Locking out the scheduler during the commit operation makes it
vulnerable to being blocked indirectly by the garbage collector, be-
cause the committing thread is an ordinary one that can be paused
by the collector while holding the lock. We thus require the thread
to complete its commit and release the lock before yielding to the
collector. Our implementation of this feature is currently incom-
plete and that is responsible for some of the outliers in the results
of Section 5.

At runtime, the transformed AtomicFlexotask will re-
side inside the graph, while the rest of the Java program is given
access only to a guard object that implements the same set of
ExternalMethods interfaces as the AtomicFlexotask.
The guard object delegates to the AtomicFlexotask while pro-
hibiting the creation of any improper aliases.

2.3.3 Choosing and Combining Communication Mechanisms
As previously stated, the atomic Flexotasks option can be used
in strongly isolated graphs but can also be combined with the
Eventron-based mechanism of communication through shared ob-
jects. For the most part, the atomic Flexotasks option stresses pre-
cise knowledge of what was and wasn’t communicated, and hence

is particularly useful when there needs to be coordination (in lieu of
Java level synchronization) between restricted threads and normal
threads. On the other hand, an atomic Flexotasks’ external methods
can delay the restricted thread during a roll-forward commit opera-
tion, and so this option is not a very good choice for bulk data trans-
fer from normal to restricted threads. Combining the two options in
the same program is thus a very powerful feature of Flexotasks: it
is usually possible to partition the communication capabilities so
that bulk data updates are done in a non-transactional way but no-
tification and coordination of states are done transactionally. This
strategy was used in the example of Section 4.

Combining atomic Flexotasks with strong isolation enables very
tight control over the balance between isolation and coordination.
This is appropriate when the amount of data transferred into the
restricted portion of the program is small. Use of strong isolation
by itself (no external communication) is appropriate for control
applications that are very self contained and for which a high level
of determinism is required (the original design point of Exotasks).
In particular, strong isolation ensures that tasks are functionally
deterministic in their inputs on channels.

Communicating scalars through shared reference immutable
objects is useful when tight coordination between the restricted
thread and ordinary threads is not needed. As will be seen in Sec-
tion 2.4, effective use of this option may be enhanced through
the use of the notifyIfWaiting facility taken from Even-
trons. Otherwise, reliance on ordinary Java synchronization is to
be avoided.

2.4 Synchronization Operations
For the purposes of this section, we use the term “synchronization
operations” to mean specifically the synchronized block and
synchronized methods in the Java language.

To reconcile the behavior of Eventrons, Reflexes, and Stream-
Flex (which prohibit or strongly discourage synchronization) with
that of Exotasks which ignore it, Flexotasks offer two programmer-
selectable options for dealing with synchronization operations: they
are either permitted, or they are prohibited (in the latter case, the
prohibition is via code analysis at development time and at initial-
ization time).

When synchronization operations are permitted, they may or
may not have any effect. If the task graph is strongly isolated, then
all the objects it can access are either private to a task or completely
immutable. Private objects can only be accessed by one thread (that
of the task), so the synchronization operation will never have any
effect. Synchronization on shared immutable objects by strongly
isolated tasks is ignored; semantically it is as though they had been
copied into the private heap.

Tasks that are not strongly isolated may execute synchronization
operations which actually interact with other threads in the system
and therefore may block. Generally speaking we discourage this
when using Flexotasks, but there may be situations where backward
compatibility with libraries makes it necessary.

To facilitate coordination when the resricted thread is not al-
lowed to or should not use synchronization operations, we adopt
the Eventrons notifyIfWaiting facility, which permits the or-
dinary thread to block and be notified in a non-blocking fashion by
the restricted thread.

2.5 Scheduling
When the unit of restriction is a task graph rather than a thread,
threads must be managed implicitly, and the executions of the tasks
are thus scheduled. The precursor models handled this differently,
but the Exotasks model had the most general solution, which was
to make the scheduler pluggable, and to give it the responsibility
to schedule not only tasks, but data movement between tasks and

Main template:
Set of task specifications
Set of connection specifications
Timing information for the scheduler
Handling option for stable versus transient
Optional list of stable classes
Is allocation forbidden?
Is synchronization forbidden?

Each task specification:
Implementing class
Input and output port types
Is strongly isolated?
Optional guard class (if Atomic)
Timing information for the scheduler

Each connection specification:
Data type
Timing information for the scheduler

Figure 4. Contents of a Flexotask Template.

the garbage collection of tasks. This solution is adopted in Flexo-
tasks. We carry forward the “time triggered” scheduler from Exo-
tasks, which supports periodic execution, either of single tasks, or
of graphs of tasks, with tasks being assigned specific time offsets
within the period. We also intend to reimplement the data-driven
scheduler of the StreamFlex model as a Flexotask scheduler, al-
though this is future work. As in Exotasks, all restricted threads
in Flexotasks actually belong to schedulers and the mapping of
threads to tasks is usually not one-to-one (more typically, the num-
ber of threads reflects the level of real concurrency available in the
hardware).

2.6 Construction of a Flexotask Program
As with Exotasks, a Flexotask program is instantiated from a tem-
plate (called a “specification graph” in [5]). In contrast, other mod-
els used APIs to construct graphs (or isolated tasks) programmati-
cally. The template idea facilitates the transfer of information about
complex programs from development time to runtime, and the in-
dependent development of tools that help in the construction of
such programs (the template can be constructed with a graphical
editor and stored in a special file format). Templates also help con-
cretize the initialization-time validation step by providing a single
call that validates the template and returns a handle to the resulting
graph. On the other hand, simple programs (e.g. single-task pro-
grams) don’t especially benefit from templates. Flexotasks mitigate
the bias toward complex programs just as Exotasks did by having
an API for the construction of templates at runtime. The Flexotask
system provides veneers for programmers used to the Eventron and
Reflex style of programming. The veneers provide a single opera-
tion that constructs a template and validates it producing the desired
single-task graph.

The contents of the Flexotask template are summarized in Fig-
ure 4. As can be seen, most of the features discussed in earlier
sections (and connection properties, which are discussed in Sec-
tion 2.8) are present in this template. The runtime method that in-
stantiates a Flexotask graph uses as inputs (1) a template, (2) an
optional parameter map (discussed next), (3) a choice of scheduler,
and (4) optional platform-specific task characteristics to pass to the
scheduler. We will not discuss (4) due to lack of space; that aspect
is taken directly from Exotasks. Implicitly, the code of all classes
mentioned in the template is also an input, and this code is validated
as part of instantiation.

2.7 Parameter Maps
A parameter is simply an object that is passed to each task at run-
time as part of its initialization, and a parameter map is a map from
task names to parameters that is provided to the Flexotask system,
along with the template, to instantiate the graph. Parameters were
not originally a feature of any of the precursor models, although
Exotasks adopted the idea in a later version [20]. They serve two
purposes. They promote reuse of tasks, eliminating tasks that are
only small variations on each other. They also permit the controlled
introduction references to reference immutable objects on the pub-
lic heap to facilitate communication through such objects as was
discussed in Section 2.3.1. To support the second goal, a parame-
ter passed to a strongly isolated Flexotask is (deeply) cloned, while
one passed to an ordinary Flexotask is checked for reference im-
mutability and passed by reference.

2.8 Intertask Communication
Since only Exotasks and StreamFlex (among the precursor models)
used a graph as the unit of restriction, only they provide possible
models for intertask communication. There were two key differ-
ences between the two original models.

1. In Exotasks, communication is by deep copy (which avoids
introducing aliases). StreamFlex communicates by reference
while avoiding aliases in a different way, which requires that
transmitable types be restricted to classes with only primitive
fields (this includes primitive arrays).

2. Exotask connections are a single-stage buffer (the most recently
sent value can differ from the most recently received, but no
other “in transit” values are kept). In contrast, StreamFlex con-
nections are parameterizable by depth and can store a limited
but flexible number of values.

StreamFlex achieves its model by introducing a third type
catagory, the Capsule, which is mutually exclusive with stable and
transient and is limited to the transmittable types. Stable classes
may not point to capsule classes. A special memory area separate
from any task area contains all capsules, and a capsule is deallo-
cated when the current owning task returns without transmitting
it.

The Flexotask system provides both styles of connection, based
on type. Connections are assigned a data type (as in both precur-
sors) and the type of each connection may be either stable or cap-
sule (but not transient). A list of capsule classes may optionally be
supplied as part of the template. There is, therefore, a clean divi-
sion into connections of (purely) stable type, which are managed
by deep copy, and those of capsule type (which are managed by
reference).

In Flexotasks, connections are always single-stage buffers, as
in the Exotask model, but a specialized task called a buffer task
may always be interposed (so the sending task has a single-stage
connection to the multi-stage buffer task which then has a single-
stage connection to the receiving task). Buffer tasks also subsume
the more limited single-stage communicators in the Exotask model.

The implementation of capsules and buffers for Flexotask will
be completed as future work and is not evaluated in this paper. In
the present prototype, only stable classes can be sent on connec-
tions, and so deep copies are always made.

2.9 The Flexotask Infrastructure
The Flexotask system comes with development tool support inte-
grated in the Eclipse IDE as well as virtual machine support imple-
mented in the IBM WebSphere Real Time virtual machine. Figure 5
gives an overview of the Flexotasks infrastructure. Programs are
developed under Eclipse, validated, and selectively rewritten if the

Real-time Java VM

RewritingClass

Class

Class

Class

Class

Class

Class

Development-time validation Startup-time validation

Real-time Java VM

RewritingClass
Class

Guard

[T']

T'

Guard

[T']

T'

Guard

[T']

T'
Guard

[T']

T'
Guard

[T']

T'

 Task Graph

Class

Class

Class

Class

Class

Development-time validation Startup-time validation

Real-time Java VM

RewritingClass
Class

Guard

[T']

T'

Guard

[T']

T'

Guard

[T']

T'
Guard

[T']

T'
Guard

[T']

T'

 Task Graph

Class

Class

Class

Class

Class

Development-time validation Startup-time validation

Figure 5. Flexotask Infrastructure. Programs developed within the
Eclipse IDE are validated at development time with an integrated
bytecode verifier. Class files are rewritten to include support for
transactions. The JVM has an initialization-time validator that per-
forms a data-sensitive analysis of a Flexotask graph.

program contains atomic Flexotasks (as discussed in Section 2.3.2).
Then, after the code is loaded into the JVM and the program partly
initialized, the code (including rewritten classes) is validated again
using run-time information about arguments and static variables.

This architecture adopts the best of the precursor models. The
Reflex and StreamFlex models performed validation as part of com-
pilation at development time, which has the advantage of early de-
tection of errors. The Eventron and Exotask models perform valida-
tion as a step during program initialization, after class initialization
and some object construction has already been done. The resulting
data-sensitive analysis is more precise and admits a larger set of
valid programs. In addition, compile-time enforcement alone does
not permit untrusted code to be run in a restricted thread, since
there is no guarantee that it went through the appropriate com-
piler. To achieve the advantages of both kinds of checking, we do
the checking twice, with some of the (necessarily) more conserva-
tive checks during develoment reduced to the status of warnings.
Note that NoHeapRealtimeThreads employ continuous run-
time checking, which we rejected, since it makes it much harder to
determine whether a program is correct.

3. Validating Flexotasks
Validation of a Flexotask graph occurs both at development time
and at initialization time. To ensure that similar rules are enforced
in both places, both validators are built on a common framework.
The base of this framework is an engine that performs Rapid Type
Analysis [7] (RTA) to build a summarized call graph rooted in
initially reachable methods of the Flexotasks in the graph. The
engine examines every bytecode of every reachable method. At
initialization time, for security, these bytecodes are found in the
already-loaded and verified classes of the JVM (and classloading
is forced by the validator to ensure initialization). At development
time, bytecodes are read from the classfiles in the classpath using a
conventional classfile parser.

The rules to be enforced include (1) separation of classes into
stable and transient in a way consistent with the rules of Section 2.2,
(2) enforcement of the strong isolation property (Section 2.3) if re-
quested, (3) checking that parameters (Section 2.7) passed by ref-
erence are reference immutable, (4) checking that references ac-
quired through static fields are reference immutable (or fully
immutable if strong isolation was requested), and (5) checking op-
tional prohibitions on allocation (Section 2.2) and synchroniza-
tion (Section 2.4). In addition, the development time validator also
rewrites any atomic Flexotasks (Section 2.3.2) to conform to a spe-
cial set of rules, and the initialization time validator checks the
rewritten code for adherance to the rules (to avoid counterfeiting).
The special rules for atomic Flexotasks require that they always ex-

ecute their epilog and that they perform all mutations in the epilog.
Checking that the epilog commits its changes “efficiently” is omit-
ted in the interest of practicality, although the rewriter attempts to
achieve this goal.

The initialization time validator, as with Eventrons and Exo-
tasks, performs its checking for reference (or full) immutability in
a data sensitive fashion. That is, it maintains the set F of field sig-
natures (static or instance) found to be referenced (for reading or
writing) in any method, and the set O of objects residing on the
global heap but accessible to Flexotask code. Initially, the set O
consists of objects passed as parameters, but it is augmented when
a static field is accessed with a getstatic bytecode. When-
ever a field signature is added to F , the validator considers objects
in O that contain a matching field. The referents of such fields are
added to O. Whenever an object is added to O, it is inspected for
fields that match F . Thus, an addition to either set can expand both
sets up to a fixpoint. When fields or objects are added to either set,
they are checked for reference immutability (or full immutability if
strong isolation is requested).

The development time validator has two challenges not faced
at initialization time. First, it does not know the actual objects
passed as parameters, nor does it know the actual objects present
in static fields so it must substitute a class-based analysis that is
more conservative. The stable/transient rules do not change because
they are based on classes rather than objects. However, because the
set of potentially live classes inferred by the RTA engine may be
larger at development time, some potentially transient classes may
not be identified.

Checks for reference immutability, however, require a class-
based definition. Thus, a reference immutable field is either of prim-
itive type or is effectively final and assignable only from reference
immutable classes (among the live classes). A reference immutable
class is either a primitive array or one with only reference im-
mutable fields. To find the relevant live classes for purposes of
this algorithm, the class initialization methods must be examined
as well as other methods analyzed by the RTA engine.

A second challenge faced by the development time validator is
that of incomplete information. The development time validator an-
alyzes each template that it finds and any classes referenced by it,
although this set of classes may be incomplete. It also analyzes (in-
dividually) any Flexotask classes not referenced by any template,
on the grounds that they may later be so-referenced. It continu-
ously posts error and warning indicators in the Eclipse view, which
may be temporarily (or permanently) suppressed by annotations.
This is necessary since the initialization time validator, with more
information, will be more precise and may permit things that the
development time validator flags as suspicious.

4. Example: Collision Avoidance
To illustrate the usage of Flexotasks, we present the example of an
aircraft collision detection algorithm (we thank the authors of [35]
for making their source code available). Collision detection is per-
formed by a single atomic Flexotask (Section 2.3.2) which periodi-
cally processes the latest frame it has received. Each frame contains
aircraft call signs paired with the positions and direction vectors of
the aircraft. The output of the algorithm is a warning each time any
pair of aircraft are on a collision course. In our implementation, the
aircraft call signs, positions and direction vectors are all provided
by a separately running plain Java thread that simulates this data
based on symbolic execution of a set of equations describing plane
trajectories.

This example illustrates the simultaneous use of both kinds of
external communication, as was discussed in Section 2.3.3. Be-
cause each frame potentially contains a fair amount of data, we
do not incur the overhead of transmitting this information atomi-

cally. Rather, we rely on a ring buffer of RawFrame data structures
which is shared between the Flexotask and the simulator. These
handle the bulk data transfer. The coordination around availability
of frames for use by either the Flexotask or the simulator is handled
by atomic Flexotask methods. The invariant maintained by these
methods is that no frame is ever used simultaneously by both.

The example also illustrates the tradeoff between the use of
pure heap allocation and stable/transient allocation discussed in
Section 2.2. We were able to get the example working quickly
using pure heap allocation, which was necessary because the
StateTable needed by the Flexotask used Java collection
classes. Then, to optimize the example, we replaced the Java col-
lection classes with a small number of custom classes that could
be made stable under the rules of section Section 2.2. In all, this
example required six classes to be labelled stable (in addition to
the Flexotask itself, which is implicitly stable, and arrays of stable
classes, which do not have to be labelled).

A sketch of the main program is shown in Figure 6, the rele-
vant Flexotask code is shown in Figure 7, and the shared reference
immutable data structure is shown in Figure 8. A non-atomic Flex-
otask would simply implement the Flexotask interface, which
requires it to provide a one-time initialize() method and
a periodic execute() method. To use transactions, in contrast,
the task extends the AtomicFlexotask abstract class (requir-
ing the same methods to be provided but furthermore supplying
some necessary behavior for transactionality). Methods reachable
via the guard are indicated via a separate interface that extends the
ExternalMethods marker interface. Any class providing the
atomic methods invoked by the plain Java thread must implement
such an interface. Furthermore, each of the methods declared in this
interface are required to throw AtomicException.

Figure 6 illustrates the reconstruction of a template from one
previously prepared in the development environment, and stored as
an XML file. The FlexotaskXMLParser class provides capa-
bilities for loading templates and creating a Java object representa-
tion. The template encapsulates the name of the single task (“De-
tectorTask”), its implementation class (DetectorTask), the re-
sult of running the development-time rewriter on its code, and the

// To obtain template
InputStream in = DetectorTask.class

.getResourceAsStream("Detector.ftg");
FlexotaskTemplate spec =

FlexotaskXMLParser.parseStream(in);

// To instantiate graph with sharing
Map parameters = new HashMap();
RawFrameArray sharedArray = new RawFrameArray();
parameters.put("DetectorTask", sharedArray);
FlexotaskGraph graph =

spec.validate("TTScheduler", parameters);

// To obtain reference to Detector
DetectorGuard detector = (DetectorGuard)

graph.getGuardObject("DetectorTask");

graph.start();

// To communicate a new frame:
int frameIndex = detector.getFirstFree();
if (frameIndex == -1) { ... no buffer available }
frames.get(frameIndex)
.copy(lengths, callsigns, positions);

detector.setNextToProcess(frameIndex);

Figure 6. Constructing a Flexotasks graph.

interface DetectorGuard
implements ExternalMethods {

void setNextToProcess(int frameIndex)
throws AtomicException;

int getFirstFree() throws AtomicException;
}

class DetectorTask extends AtomicFlexotask
implements DetectorGuard {

private StateTable state;
private RawFrameArray frames;
private int nextToProcess;
private int firstFree;

void initialize(..., Object parameter) {
frames = (RawFrameArray) parameter;
state = new StateTable();

}

void execute() {
if (nextToProcess != firstFree) {

cd = new Detector(state,
Constants.GOOD_VOXEL_SIZE);

cd.setFrame(frames.get(nextToProcess));
cd.run();
nextToProcess = firstFree =

increment(nextToProcess);
// increment ’increments’ modulo a ring size

}
}

int getFirstFree() throws AtomicException {
int check = increment(firstFree);
if (check == nextToProcess) {
return -1;

}
int ans = firstFree;
firstFree = check;
return ans;

}

void setNextToProcess(int nextToProcess)
throws AtomicException {

this.nextToProcess = nextToProcess;
}

}

Figure 7. Implementing an Atomic Flexotask.

list of stable and transient classes that were marked and checked at
development time. The validate() method selects a scheduler
(pluggable, as in the Exotasks [5] system) and produces a runnable
Graph. The parameters argument passes in the shared object
that will be used for communication. The getGuardObject()
method retrieves a reference to the guard for the task that can be
used to invoke task atomic methods by the plain Java thread. This
object is automatically generated from the DetectorTask class
and its transactional interface DetectorGuard.

Figure 7 shows the class DetectorTask which extends
AtomicFlexotask and implements DetectorGuard. The
initialize() method establishes the sharing relationship
by storing the RawFrameArray parameter and initializes the
StateTable to store stable state. In a graph with more than one
Flexotask this method would also pass in representations of the
task’s ports to use for intertask communication, and these would
be saved in instance variables. The execute() method estab-
lishes the frame to be processed and analyzes the data it con-
tains. Each invocation of execute() will create transient ob-

class RawFrameArray implements Stable {
private final ImmutableArray frames;

public RawFrame get(final int i) {
return (RawFrame) frames.get(i);

}

public RawFrameArray() {
RawFrame[] innerArray =

new RawFrame[MAX_FRAMES];
for (int i = 0; i < MAX_FRAMES; i++)

innerArray[i] = new RawFrame();
frames = new ImmutableArray(innerArray);

}
}

Figure 8. A reference immutable data structure.

jects of types Detector and its numerous dependent working
objects, as well as new stable objects to represent call signs and
vectors that will be stored in the StateTable. The implemen-
tation of the getFirstFree() and setNextToProcess)
methods represents the code as the programmer would write it,
i.e., the code before being rewritten by the development tools. The
actual code executed at runtime is instrumented at the bytecode
level so as to redirect all mutations (and subsequent reads thereof)
to a transaction log that is then committed by rolling forward the
mutations in an epilog, as described earlier. As such, the transac-
tionality of a method is completely transparent to the program-
mer, except that the invoking program should catch and handle the
AtomicException.

As previously mentioned, the RawFrameArray data structure
must be reference immutable. The code of this class is shown in
Figure 8. For reference immutability to hold, the RawFrame data
structure must first be reference immutable, which is easily accom-
plished since this class is just a set of primitive arrays connected
to their parent object by final references. But, an array of refer-
ences is not normally reference immutable. This problem is solved
in the Flexotask system as it is in Eventrons by using a special
ImmutableArray class. This class’s constructor copies its argu-
ment and does not subsequently leak it, ensuring that no mutations
occur to the enclosed array after construction.

5. Evaluation
We evaluate Flexotasks on predictability and performance, both
important properties of real-time systems. We employ two appli-
cations, a high frequency reader and an airline collision detector.
We also report on analysis time for both applications. The exper-
iments were performed using an experimental variant of the IBM
WebSphere Real Time (WRT) virtual machine [3]. The virtual ma-
chine includes support for high resolution timing on real-time ker-
nels, a real time garbage collector [6], and an implementation of
the RTSJ. WRT also includes expermental features added for Even-
trons, providing object pinning/unpinning and the ability to exempt
certain threads from being paused by the global heap garbage col-
lector. The Flexotasks implementation extended the Exotasks im-
plementation [5, 20], which provides private per-task heaps, and
deep copying between heaps. For the current work we added sup-
port for transient allocation and roll-forward transactions.

As our execution platform, we used an IBM blade server with
4 dual-core AMD Opteron 64 2.4 Ghz processors and 12GB of
physical memory. The operating system used was Linux (kernel
version 2.6.21.4 in the RHEL 5 real time configuration).

Figure 9. Frequencies of inter-arrival times of an atomic Flexo-
task scheduled with a period of 100 µs, executing concurrently with
(1) a plain Java thread communicating by transactional invocations,
and (2) a plain Java thread simulating regular memory consumption
by continuously allocating at 2Mb per second. The x-axis depicts
the inter-arrival time of two consecutive executions in microsec-
onds. The y-axis depicts the logarithm of the frequency.

5.1 Predictability
We evaluate predictability of a high frequency reader benchmark
(540 LOC). The application has an atomic Flexotask scheduled
at a period of 100µs. At each periodic execution, the task reads
available data on its input buffer in circular fashion into its stable
state. A plain Java thread that runs continuously feeds the Flexotask
with data on its input buffer by invoking a transactional method on
the task approximately every 20ms. Out of 3,000 invocations of
the transactional method, 516 of them aborted, indicating that the
atomic Flexotask feature was being heavily exercised. To evaluate
the influence of computational noise and garbage collection, an-
other ordinary Java thread runs concurrently, continuously allocat-
ing at the rate of 2Mb per second, using 48 byte objects and main-
taining a live set of 40,000 objects. To avoid perturbations caused
by the JIT-compiler, we ran this test in interpreted mode.

Figure 9 shows a histogram of the frequencies of inter-arrival
times of the periodically scheduled atomic Flexotask, i.e., the time
between two consecutive executions. The figure contains observa-
tions covering almost 600,000 periodic executions. As can be seen
in the figure, all observations of the inter-arrival time are centered
around the scheduled period of 100 µs. Overall, there are only a
few microseconds of jitter to be seen in the figure, with inter-arrival
times ranging from 57 to 144 µs.

5.2 Performance
To evaluate performance, we considered a larger application in
the form of the collision detector described in Section 4. The
collision detector (30 KLOC) consists of three threads running
concurrently: the DetectorTask running at a period of 20ms,
the simulator thread generating flight data and communicating
with DetectorTask every 20ms, and the 2Mb/second allocator
thread described in the previous section. Because the 20ms period
allows more slack than in the predictability test (necessary both for
realism and to allow the simulator to keep up), we instructed the
allocator thread to keep 150,000 objects live in order to cause more
garbage collection overhead and a greater opportunity for conflict.

High Freq. Collision
Reader Detector

Compile-time Validation 33 ms 173 ms
Bytecode Rewriting 10 ms 51 ms
Startup-time Validation 332 ms 699 ms

Figure 11. Analysis times for the two benchmark applications.

To have a baseline with which to compare our measurements,
we implemented two additional variants of the collision detector,
respectively a plain Java variant where the time critical thread was
just an ordinary thread, and a RTSJ variant making use of scoped
memory areas. The plain Java version was run both under a normal
garbage collector (the non-realtime IBM J9 collector with default
parameters), and under the real-time garbage collector of the WRT
VM. For this experiment, we measured performance as time taken
by the detector to process a frame.

Figure 10 shows the results of our measurements. For the plain
Java variant with a non-realtime collector (a), the worst-case ob-
served processing time over the entire run was around 28 mil-
liseconds which is not surprising given that the virtual machine
uses an ordinary non-real-time garbage collector. With the real-
time garbage collector, this number declines substantially but this
comes at the expense of mutator utilization, thereby increasing the
average processing time. The smaller but non-negligible jitter in (b)
happens because a varying number of the garbage collector’s work
quanta can fall within the relatively long processing times (about
4ms) for the detector.

Both the RTSJ variant (c) and Flexotasks (d) are largely im-
pervious to such interference. We note that they are not entirely
impervious: each has two spikes that correspond to garbage col-
lections though other garbage collections in the run pass without
incident. In the Flexotask version (d), the two spikes are due to a
thread being preempted while holding a lock needed by the sched-
uler, a known problem that will be addressed through the design
discussed in Section 2.3.2. In the RTSJ version the spikes are unex-
plained but probably represent a flaw in the implementation of the
VM.

Clearly, the best-case performance time of the RTSJ variant is
significantly slower than that of any other variant. We attribute
the slowdown to the dynamic checks imposed during runtime by
the virtual machine to ensure safety of pointer manipulation when
using the RTSJ scoped memory areas.

In summary, we have shown how four different variants of
our collision detector application are subject to a varying degree
of interference caused by the presence of garbage collection. As
expected, the plain Java variant experiences infrequent, but large,
latencies when running on a non-real-time collector and much
smaller latencies but still noticible jitter when running on the real-
time collector. The RTSJ variant has low jitter but poor average-
case performance. In contrast to these, the Flexotasks variant runs
at high performance with the smallest amount of jitter.

5.3 Static Analysis Performance
We measure the time needed for validating our two benchmarks at
compile time code and at initialization time. Whereas initialization
time validation was performed on the platform described above,
compile time validation occurred on a development machine run-
ning JDK 1.5.0 07-87 on a Intel Core Duo, 2.16GHz with 2GB
of physical memory. Figure 5.2 shows the empirical measurements
of the time to perform the various stages of the code analysis. As
can be seen, it takes twice as long to validate the collision detector.
This is not surprising given the difference in code size. The longer
time taken at initialization time primarily reflects the fact that “val-

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

##"

#$"

#%"

#&"

(!"

'!!!" ')!!" #!!!" #)!!" (!!!" ()!!"

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

##"

#$"

#%"

#&"

(!"

'!!!" ')!!" #!!!" #)!!" (!!!" ()!!"

(a) Plain Java. (b) Plain Java with real-time garbage collection.

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

##"

#$"

#%"

#&"

(!"

'!!!" ')!!" #!!!" #)!!" (!!!" ()!!"

!"

#"

$"

%"

&"

'!"

'#"

'$"

'%"

'&"

#!"

##"

#$"

#%"

#&"

(!"

'!!!" ')!!" #!!!" #)!!" (!!!" ()!!"

(c) RTSJ with Scoped Memory. (d) Flexotasks.

Figure 10. Comparing performance of four different variants of the collision detector benchmark. The x-axes show the data frames
processed, numbering from 1 (only a representative set of frames are shown), and the y-axes the processing time in milliseconds for the
individual frame.

idation” actually includes the time to instantiate and schedule the
Flexotask graph in addition to simple checking. Also, the checking
is more detailed since it is done in a data-sensitive fashion.

5.4 Software Engineering Aspects
We briefly comment on our experience refactoring the collision
detector application to use the Flexible Task Graphs APIs. The
collision detector code obtained from [35] consisted of 195 files,
containing 241 classes (around 30 KLOC). The version we started
with was written against the RTSJ APIs. The changes needed to
convert it to Flexotasks were limited to algorithmic modification
in 8 of 195 files and adding Stable declarations to 7 classes.
The main changes were in the setup portion of the application:
the original version had code for creating RTSJ-style real-time
threads, whereas the Flexotasks version created a one-node graph.
This required changes in constructor arguments of a few application
classes. The other main change was in the communication between
ordinary Java threads and the real-time task. In order to pass the
validation phase, we had to ensure that objects shared between
the two were reference immutable. Finally, in a number of places
where the RTSJ code had to resort to reflective invocation, the
calls were transformed into normal allocations of stable classes
in the Flexotasks version. Overall, we felt that the effort going
from the earlier version of the code was modest (one hour for
someone familiar with the application) and made the code easier
to understand.

6. Conclusion
In this paper, we have introduced Flexotasks, a restricted thread
programming model for Java, which unifies four previously exist-
ing models. Flexotasks provide programmers with a single frame-
work for developing real-time programs observing timing con-
straints tighter than those possible with state-of-the-art real-time
garbage collection algorithms.

As a unified framework, Flexotasks provide flexibility to choose
between a set of programming abstractions supporting different sets
of tradeoffs and advantages in order to meet the timing constraints
and functionality requirements of a given application.

We implemented our framework in the form of a single API
supporting all four models, combined with development time and
run-time tools integrated into the Eclipse IDE. These tools ensure
safety guarantees of memory operations by verifying the code at
the bytecode level against the different sets of type constraints, and
thus enable execution free of expensive runtime memory checks as
required when using RTSJ scoped memory. To enable non-blocking
communication between time constrained tasks and time oblivious
code, we have implemented support for atomic methods through
bytecode rewriting, thereby making it transparent to the program-
mer. Furthermore, we have extended previous work by providing
support for multi-processors using a roll forward transaction log
approach.

Acknowledgments
This work is supported in part by NSF grants 501 1398-1086 and
501 1398-1600.

References
[1] AICAS. The Jamaica virtual machine, www.aicas.com.

[2] Austin Armbuster, Jason Baker, Antonio Cunei, David Holmes,
Chapman Flack, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan
Vitek. A Real-time Java virtual machine with applications in avionics.
ACM Transactions in Embedded Computing Systems (TECS), 7(1):1–
49, 2007.

[3] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry Cheng, Michael
Dawson, Mike Fulton, David Grove, Darren Hart, and Mark Stoodley.
Design and implementation of a comprehensive real-time Java virtual
machine. In Proceedings of the 7th ACM & IEEE international
conference on Embedded software (EMSOFT), pages 249–258, 2007.

[4] Joshua Auerbach, David F. Bacon, Florian Bömers, and Perry Cheng.
Real-time music synthesis in Java using the Metronome garbage
collector. In Proceedings of the International Computer Music
Conference, Copenhagen, Denmark, August 2007.

[5] Joshua S. Auerbach, David F. Bacon, Daniel T. Iercan, Christoph M.
Kirsch, V. T. Rajan, Harald Roeck, and Rainer Trummer. Java takes
flight: time-portable real-time programming with exotasks. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES’07), pages 51–62, San Diego, CA,
2007.

[6] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collecor with low overhead and consistent utilization. In Conference
Record of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, New Orleans, LA, January 2003.

[7] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++
virtual function calls. In Proceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages and Applications,
volume 31, pages 324–341, October 1996.

[8] BEA. Weblogic real time. www.bea.com, 2006.

[9] William S. Beebee, Jr. and Martin Rinard. An implementation
of scoped memory for Real-Time Java. In Embedded Software
Implementation Tools for Fully Programmable Application Specific
Systems (EMSOFT), pages 289–305, 2001.

[10] Edward G. Benowitz and Albert F. Niessner. Experiences in
adopting real-time java for flight-like software. In Proceedings of
the International workshop on Java technologies for real-time and
embedded systems (JTRES), pages 490–496, 2003.

[11] Edward G. Benowitz and Albert F. Niessner. A patterns catalog
for RTSJ software designs. In Workshop on Java Technologies for
Real-Time and Embedded Systems (JTRES), OTM Workshops, pages
497–507, 2003.

[12] Greg Bollella, Tim Canham, Vanessa Carson, Virgil Champlin,
Daniel Dvorak, Brian Giovannoni, Mark Indictor, Kenny Meyer, Alex
Murray, and Kirk Reinholtz. Programming with non-heap memory
in the real-time specification for Java. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 361–369, 2003.

[13] Greg Bollella, Bertrand Delsart, Romain Guider, Christophe Lizzi, and
Frederic Parain. Mackinac: Making hotspot real-time. In Proceedings
of the Eighth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’05), pages 45–54, 2005.

[14] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve
Furr, and Mark Turnbull. The Real-Time Specification for Java.
Addison-Wesley, June 2000.

[15] Angelo Corsaro and Ron K. Cytron. Efficient memory reference
checks for real-time Java. In Proceedings of Languages, Compilers,
and Tools for Embedded Systems (LCTES’03), 2003.

[16] Mike Fulton and Mark Stoodley. Compilation techniques for real-time

Java programs. In Proc. International Symposium on Code Generation
and Optimization, 2007.

[17] Sven Gestegard Robertz, Roger Henriksson, Klas Nilsson, Anders
Blomdell, and Ivan Tarasov. Using real-time Java for industrial robot
control. In Proceedings of the 5th international workshop on Java
technologies for real-time and embedded systems (JTRES), pages
104–110, 2007.

[18] Roger Henriksson. Scheduling Garbage Collection in Embedded
Systems. PhD thesis, Lund University, July 1998.

[19] IBM. DDG1000 Next Generation Navy Destroyers, www.ibm.com/-
press/us/en/pressrelease/21033.wss, 2007.

[20] IBM Corporation. IBM Expedited Real Time Task Graphs.
www.alphaworks.ibm.com/tech/xrtgs, 2007.

[21] Nicolas Juillerat, Stefan Müller Arisona, and Simon Schubiger-Banz.
Real-time, low latency audio processing in Java. In Proceedings of the
International Computer Music Conference, Copenhagen, Denmark,
August 2007.

[22] E.A. Lee. Overview of the Ptolemy project. Technical Report
UCB/ERL M03/25, EECS Department, University of California,
Berkeley, 2003.

[23] Ingo Molnar and Thomas Gleixner. The RT-PREEMPT patch set for
Linux.

[24] Albert F. Niessner and Edward G. Benowitz. Rtsj memory areas and
their affects on the performance of a flight-like attitude control system.
In Proceedings of the International workshop on Java technologies
for real-time and embedded systems (JTRES), pages 508–519, 2003.

[25] Krzysztof Palacz and Jan Vitek. Java subtype tests in real-time.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 378–404, Darmstadt, Germany, July
2003.

[26] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java
scoped memory: design patterns and semantics. In Proceedings of
the IEEE International Symposium on Object-oriented Real-Time
Distributed Computing (ISORC), Vienna, Austria, May 2004.

[27] Filip Pizlo and Jan Vitek. An empirical evalutation of memory
management alternatives for Real-time Java. In Proceedings of the
27th IEEE Real-Time Systems Symposium (RTSS), December 2006.

[28] Purdue University. The Ovm virtual machine, www.ovmj.org.

[29] Fridtjof Siebert. The impact of realtime garbage collection on realtime
Java programming. In Seventh IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’04),
pages 33–40, 2004.

[30] Simulink. www.mathworks.com/products/simulink. 2007.

[31] Daniel Spoonhower, Joshua Auerbach, David F. Bacon, Perry Cheng,
and David Grove. Eventrons: a safe programming construct for high-
frequency hard real-time applications. In ACM SIGPLAN Conference
on Programming language design and implementation (PLDI), pages
283–294, 2006.

[32] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek.
StreamFlex: High-throughput stream programming in Java. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA),
October 2007.

[33] Jesper Honig Spring, Filip Pizlo, Rachid Guerraoui, and Jan
Vitek. Reflexes: Abstractions for highly responsive systems. In
Proceedings of the 2nd International Conference on Virtual Execution
Environments (VEE), 2007.

[34] William Thies, Michal Karczmarek, and Saman Amarasinghe.
Streamit: A language for streaming applications. In International
Conference on Compiler Construction (CC’02), April 2002.

[35] Tian Zhao, James Noble, and Jan Vitek. Scoped types for real-
time Java. In Proceedings of the 25th IEEE International Real-Time
Systems Symposium (RTSS), Lisbon, Portugal, December 2004.

