Hierarchical Real-time Garbage Collection

Filip Pizlo Anthony L. Hosking Jan Vitek
Purdue University Purdue University IBM T.J Watson
pizlo@purdue.edu hosking@purdue.edu Purdue University

Abstract

Memory management is a critical issue for correctness and perfor-
mance in real-time embedded systems. Recent work on real-time
garbage collectors has shown that it is possible to provide guar-
antees on worst-case pause times and minimum mutator utiliza-
tion time. This paper presents a new hierarchical real-time garbage
collection algorithm for mixed-priority and mixed-criticality envi-
ronments. With hierarchical garbage collection, real-time program-
mers can partition the heap into a number of heaplets and for each
partition choose to run a separate collector with a schedule that
matches the allocation behavior and footprint of the real-time task
using it. This approach lowers worst-case response times of real-
time applications by 26%, while almost doubling mutator utiliza-
tion — all with only minimal changes to the application code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—interpreters, run-time environments; D.4.7
[Operating Systems]: Organization and Design—real-time systems
and embedded systems.

General Terms Languages, Experimentation.

Keywords Real-time systems, Java Memory management.

1. Introduction

Multi-million line systems are being developed in Java for avion-
ics, shipboard computing and simulation. A key attraction of the
Real-time Specification for Java (RTSJ) [7] for such systems is that
it makes it possible to develop applications that mix hard-, soft-,
and non-real-time tasks in the same environment in a memory-safe
way. Unfortunately these advantages may come at the expense of
predictability of the real-time subsystems. In Java, one important
cause of unpredictability is garbage collection which can some-
times interrupt application code for hundreds of milliseconds. Real-
time garbage collectors (RTGC) attempt to mitigate this problem by
lowering the worst-case bounds on pause times [4, 10, 23, 22].
The challenge in real-time garbage collection is not only to
provide predictably small pause times for real-time tasks, but,
just as importantly, to ensure some minimum mutator utilization
(MMU) [4]. For any time interval, MMU measures the fraction of
that interval guaranteed to be available to the mutator threads. In
a real-time system this bounds how much useful work a task can
hope to accomplish while the collector is idle. Consider a real-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright © ACM [to be supplied]. .. $5.00.

jvitek@us.ibm.com

time task scheduled periodically every 10 ms. If RTGC guaran-
tees 50% mutator utilization, the task can count on at least Sms
per period (excluding any additional overhead imposed by RTGC
for read/write barriers, allocation costs, etc.). In Metronome [4], a
state-of-the-art production RTGC algorithm, the lower bound on
mutator utilization depends on the maximum allocation rate of all
threads running in the virtual machine. Thus, MMU is obtained as
a function of the maximum number of bytes allocated in a given
time window over all concurrent threads. As MMU is a crucial
input to schedulability analysis, avoiding conflating real-time and
non-real-time tasks into a single global maximum allocation rate
is desirable, otherwise real-time tasks are forced to depend on the
behavior of plain Java code.

This paper introduces a new hierarchical real-time garbage col-
lector (HRTGC), which allows differentiation between real-time
and non-real-time workloads running within a single Java virtual
machine (JVM). HRTGC increases the MMU of the real-time tasks
without overly impacting the plain Java parts of the system by split-
ting the heap into a number of disjoint heaplets and running a dif-
ferent collector in each heaplet. Each collector can be tuned inde-
pendently to best match the characteristics (allocation behavior and
footprint) of the tasks running in that heaplet. Moreover, the rate at
which a collector must run is determined by the maximum alloca-
tion rate of the threads running within its heaplet and not all threads
in the system. Fig. 1 illustrates HRTGC. In this example, the heap
is split into three heaplets. Each heaplet has one real-time collec-
tor thread and a number of mutator threads. In a typical configu-
ration of HRTGC, programmers will assign high-priority real-time
threads to the leaves of the heaplet tree — since they require less

Collector

1 # 19|deay

2 Collector o
=

I
S i/of 2
oo| | | Mutator T2 D] =
£ <)
3
g N
||| Mutator T3 Legend
= O Object

O Cross Object

—— Internal reference

Collector
Mutator T4

Figure 1. Heap hierarchy with heaplets and inter-heaplet references.
Cross-heaplet references are allowed to exist freely, giving programs writ-
ten with HRTGC the same expressive power as those using RTGC. However,
the highest-priority thread, T1, is not affected by the collectors associated
with the lower-priority heaplets.

—» Up-reference

= = p Cross-reference

—]> Heaplet child-o-parent relationship

19|deap jo0y

work on the part of the collector — and each collector thread usu-
ally will have higher priority than the threads running in its heaplet.
It is noteworthy that with HRTGC, unlike RTSJ, all patterns of ref-
erences between objects are allowed, though references that cross
heaplet boundaries may require additional book-keeping. HRTGC
is designed so that references from a child heaplet to an ancestor
heaplet cost nothing, a necessary feature since we don’t want to
penalize access to static variables, while all other cross-heaplet ref-
erences incur some overhead. It is worth emphasizing differences
from the Real-time Specification for Java. In terms of functional
correctness, adding a heaplet can never cause the program to fail,
whereas adding a new RTSJ memory scope may cause exceptions
to be raised by the JVM. The impact of heaplets shows in the per-
formance, footprint, and processor utilization of the mutators.

This paper makes the following contributions:

e Hierarchical RTGC: We designed and implemented a proto-
type hierarchical real-time garbage collector in a high-perform-
ance real-time JVM. To the best of our knowledge this is the
first partitioned collector to provide real-time guarantees.

¢ Predictability: We target hard real-time systems where pre-
dictability is paramount. The algorithm strives to eliminate vari-
ability in all collector operations. In particular, barriers and allo-
cation always have predictable performance behavior — as op-
posed to most other collectors which have “fast” and “slow”
paths. Our results demonstrate that even with this restriction
performance is competitive.

e Usability: The HRTGC API is much simpler than the region-
based memory model of RTSJ and much less error-prone. We
have refactored RTSJ code to use HRTGC and found that it
improved readability and reduced failures.

e Empirical Evaluation: To the best of our knowledge we are
the first to report performance results for real-time garbage
collection that are not based on micro-benchmarks or non-
real-time workloads. We have evaluated our implementation
of HRTGC on two real-time applications: the RTZen Object
Request Broker [14] and the Collision Detector (comprising
202K and 41K lines-of-code, respectively).

e Performance: The performance of HRTGC surpasses that of
previously published approaches. On one application we see
a 26% improvement in response time over non-hierarchical
RTGC, and an almost two-fold increase in MMU for large
windows. Such improvements are remarkable, considering that
the collision detector is not memory-intensive, which means
GC-related improvements would not be felt so strongly.

In summary, the proposed HRTGC API and implementation is a
simple yet effective extension of the Real-time Specification for
Java that will make real-time programs more robust and better able
to meet their hard real-time guarantees.

2. Programming model

Unlike most other partitioning garbage collectors, HRTGC requires
user input to define the heap partitions. Each heaplet partition rep-
resents an independent GC domain that can be scheduled and col-
lected separately, and preempted as necessary based on the prior-
ity of its GC thread. This permits establishing tight bounds on the
overheads of GC for threads running in different heaplets, subject
to per-heaplet scheduling parameters. Partitioning into heaplets and
establishing the parent-child relation between heaplets is explicit in
the code, however creating cross-heaplet references remains trans-
parent avoiding the need for invasive refactoring of libraries. While
beneficial in terms of GC overhead and scheduling, partitioning
has overheads. Each independent heaplet collector must actively

discover, or be provided, all incoming references from ancestor
heaplets. Tracking such cross-references is one source of additional
overhead for mutators. To keep these overheads low, programmers
must be careful how they allocate objects in heaplets so as to min-
imize the number of incoming references from ancestor or sibling
heaplets.

For developers familiar with the Real-time Specification for
Java (RTSJ), this partitioning comes naturally. As in RTSJ, pro-
grammers must define a tree of memory regions and decide in
which region to allocate. While partitioning a real-time system into
mostly disjoint subsystems is arguably good from a software engi-
neering viewpoint — reducing coupling decreases the potential for
interference between real-time tasks and enables local reasoning
about the different tasks in the application — RTSJ may be too rigid
in its enforcement. Any reference from a parent region to one of
its children, or between sibling regions immediately leads to a run-
time memory access exception. In previous work we have shown
the intricate and demanding programming idioms required to avoid
errors [20, 2] and reported on anecdotal evidence that RTSJ-style
memory management is an important source of software defects.
The key difference between RTSJ and heaplets in HRTGC is that
cross-heaplet references are permitted, though they may incur over-
heads. Thus, the only impact of cross-heaplet references may be to
degrade the benefits of partitioning but not to endanger functional
correctness. Nevertheless, the degenerate case where most refer-
ence are cross-heaplet references will likely lead to violations of
the non-functional (time and/or space) requirements of a hard real-
time system. While more empirical experience is needed, we do
believe this is a less severe impediment than the current issues with
RTSJ scoped memory.

The HRTGC API is simple, it appears in Fig.2. The Heaplet
class reifies the notion of an allocation area. Instantiation of a
heaplet reserves space of the specified size from which to allocate
for that heaplet, and starts a new collector thread for that heaplet.
The collector runs with a priority and a predefined schedule.
A heaplet has an enter() method that takes a Runnable and
executes it with allocation directed to that heaplet. Additionally,
to allow the programmer to co-locate objects within a heaplet, the
heapletOf static method returns the allocation heaplet of a given
object. Heaplets are multithreaded and re-entrant.

public class Heaplet {
public Heaplet (Heaplet parent, int size,
String schedule, int priority);
public void enter(Runnable logic);
public static Heaplet heapletOf (Object o) ;

}

Figure 2. HRTGC APL A Heaplet represents a partition of the heap.
The heaplet hierarchy is set up implicitly at creation, a new heaplet becomes
a child of the current heaplet.

There is a single distinguished root heaplet to which all allo-
cation is initially directed. Programmers define heaplets as hints to
refine memory management scheduling policies. Other than their
impact on scheduling, heaplets dictate neither lifetime nor thread-
locality for their allocated objects. Modest changes to the JVM’s
own use of allocation are required to support heaplets. Monitors
are always allocated in the same heaplet as the object they serve.
Static initialization is always performed in the root heaplet. Addi-
tionally, the current heaplet is inherited across threads: if a thread
is instantiated in a given heaplet, it will run in that heaplet by de-
fault. Finally, though not supported in our current implementation,
finalization can be performed in any heaplet.

2.1 Refactoring Existing Real-time Java code

How does one refactor an existing RTSJ application to use a hier-
archical collector? Our experience suggests that the modifications
needed are minimal. A correct RTSJ program is guaranteed to have
no costly cross-heaplet references (it may have upward references
but these are free with HRTGC), it is thus an ideal candidate for
HRTGC as its developers have already architected the code so that
objects accessed by real-time threads are segregated from the main
Java heap. Thus, turning an RTSJ application into an HRTGC one
typically requires changing a few API calls. RTSJ programs use the
ScopedMemory API to manage allocation of objects that should
not be touched by the garbage collector. The virtual machine en-
forces a separation, via run-time checks, between objects allocated
in scoped memory and standard Java objects. Any reference from
a heap-allocated object to scope-allocated object will cause an ex-
ception to be thrown by the JVM. A hierarchical collector is more
permissive — such references are allowed at a small performance
overhead.

In RTSJ programs, using ScopedMemory is often tricky be-
cause programmers have to be very careful to avoid run-time er-
rors. In one of our benchmarks (Zen) we found over 500 lines scat-
tered over many files that were dealing with memory management.
Refactoring the application to use HRTGC meant deleting all of this
code (or rather linking against a dummy library that ignores calls
to ScopedMemory), and adding the following to the application:

Heaplet area = new Heaplet(200%KB, "--R", 25);
area.enter (new Runnable(){
public void run() { ZenDemo.main(); } });

This code creates a new Heaplet with 200KB of memory. The
schedule argument, "--R", means that the collector runs every
third time quantum (these have a default value of 1 ms) at prior-
ity 25. Then the enter () method is invoked with a freshly cre-
ated Runnable to be executed within the allocation context of the
heaplet. Interestingly, the original program had several different
memory regions set up for different real-time tasks. We were sur-
prised to find that a single heaplet was sufficient to meet the real-
time requirements of our benchmarks.

In both our example applications and some smaller benchmarks,
we have been able to run with only two heaplets: one for the real-
time data and the other for plain Java. In these examples, there were
only a handful of cross-heaplet references. Clearly there will be
cases where a richer heaplet hierarchy is needed, but our experience
suggests that the HRTGC version of an application will be simpler
than the corresponding RTSJ system.

3. Hierarchical Real-time Garbage Collection

Hierarchical real-time garbage collection relies on a hierarchy of
cooperating heaplet collectors running at different rates in separate
real-time threads. Here we implement these collectors as a variant
of the Metronome [4] RTGC, though other algorithms are possible.
The key challenge for HRTGC is defining and implementing the
protocols that coordinate the collection activity of the JVM.

In HRTGC, a heaplet is a fixed-size partition of the heap with
an associated heaplet collector. Except for the distinguished root
heaplet, every heaplet has a single parent. References between ob-
jects are categorized as internal references when the source and tar-
get objects are located in the same heaplet, up-references when the
target object is located in an ancestor heaplet, and cross-references
when the target is any other heaplet. We organize the handling of
internal and up-references so that they can be established for free,
while establishing a cross-reference comes at a non-trivial price.

loop
[scan thread stacks atomic |
scan static fields
trace heap
sweep heap
flip
end loop

(@)

loop loop
[scan thread stacks atomic | [scan thread stacks atomic |
scan static fields scan static fields
if root heaplet trace all heaplets
scan descendent heaplets sweep cross-set
scan cross-set flip
if not root heaplet end loop
trace current heaplet
sweep current heaplet
flip
end loop

(b) (c)

Figure 3. Collection algorithms. (a) shows the basic mark-sweep algo-
rithm that we base HRTGC on. The collector runs in a high-priority thread
that collects indefinitely. Only the stack scanning is atomic; all other phases
are incremental, with the collector periodically yielding to the mutator. In
(b) we show the modified algorithm used for heaplet collection, while in (c)
we show the cycle collector.

HRTGC is based on a simple incremental mark-sweep snapshot-
at-the-beginning collector. Fig.3(a) shows the basic technique
which, with the exception of thread stack scanning, is fully pre-
emptible. In a real-time setting the basic RTGC algorithm runs in
an infinite loop, proactively checking whether it should yield to a
mutator thread. Our approach is to use this same algorithm to col-
lect each heaplet; however, it cannot be used for this purpose with-
out modification since it does not account for up-references and
cross-references. Fig.3(b) and (c) give an overview of HRTGC.
Each heaplet collector, shown in Fig. 3(b), is augmented to look for
up-references by scanning descendent heaplets; cross-references
are handled by scanning the cross set (see Sec.3.1). For the root
heaplet, static fields must also be processed. Of course, one down-
side to collecting heaplets independently is the possibility that cy-
cles of references result in cyclic garbage that cannot be collected
by any one heaplet collector. Thus, we augment the separate heaplet
collectors with a global cycle collector, shown in Fig. 3(c) and ex-
plained in Sec. 3.3. Compaction is not currently supported.

The heaplet hierarchy enforces a containment policy regarding
which portions of the global heap need to be scanned for collection
of a given heaplet. This policy permits up-references to be created
with no additional book-keeping. Cross-references are recorded by
a write barrier. This permits a descendent heaplet to be collected
independently of its ancestors and siblings, without having to scan
those ancestors for incoming references.

The remainder of this section is structured as follows. We first
describe the cross set. The correctness invariants that we preserve
even in the case of interference from the mutator and between col-
lectors follow. The collection algorithms are discussed in Sec. 3.3,
and Sec. 3.4 shows the modifications to object structure that are
required for HRTGC. Secs. 3.5 and 3.6 talk about the allocation
algorithm and the write barrier, respectively. Finally, Sec. 3.7 talks
about worst-case performance and scheduling.

3.1 The Cross Set

In addition to maintaining the heaplet hierarchy, an HRTGC
must maintain meta-data to facilitate collection. The most signif-
icant component is the cross set, which allows us to track cross-
references. The cross set is a global data structure, shared by
all heaplets, which remembers all objects having outgoing cross-
references. Objects are added when a write barrier detects creation
of a cross-reference. Once an object is added to the set it will re-
main there until it is reclaimed or removed by the cycle collector.
The cross set is maintained as a sparse array with constant time
insertion and deletion. Insertion is managed using a free-list that
contains a stack of all the indices in the sparse array that are un-
used. Both the free-list and the sparse array are sized statically. This
requires the user to control how many cross objects she is willing
to allow. Additionally, the cross set allows for non-blocking scans
— adding or removing elements from the cross set while it is being
scanned causes no disruptions.

3.2 Correctness Invariants

Interference between the collector and mutator, or between one col-
lector and another collector, can result in the system’s correctness
invariants being broken. In this section we consider what correct-
ness invariants we need to maintain, and what techniques we em-
ploy to ensure those invariants. Because our system is non-moving,
the collector does not interfere with the mutator; hence, we re-
strict our attention to mutator-collector interference, and collector-
collector interference. To aid in handling interference from either
the mutator or other collectors, every collector in HRTGC main-
tains the weak tri-color invariant [19]. Each collector labels each
object white, grey, or black. White objects are candidates for recla-
mation. White objects are colored grey when the collector identifies
them as reachable. Grey objects are colored black when all of the
references they contain have been followed by the collector. Unlike
objects in a conventional collector, objects in the HRTGC may at
any time be subject to simultaneous marking phases by different
collectors — at worst, one for each heaplet and one for the cycle
collector — thus, we must attach multiple colors to each object.

The weak tri-color invariant states that a black object may only
refer to a white object if that white object is also reachable from
a grey object through a path of zero or more white objects. A
collector that maintains the weak tri-color invariant is said to be
a snapshot-at-the-beginning collector because as soon as the root
objects are turned grey at the beginning of collection, any objects
reachable from them form a snapshot that is guaranteed to be
traced by the collector. This immediately suggests the strategy for
handling mutator-collector interference. We add another action to
be performed in the write barrier: when a reference is about to be
overwritten, we mark (grey) the referenced object both in the cycle
collector and in the object’s heaplet. Hence, if a reference to an
object in the snapshot is broken, that object is immediately marked,
ensuring that no part of the snapshot is lost.

Collector-collector interference is a greater challenge. The set
of grey objects for one collector may include objects in a foreign
heaplet. Consider the scenario in Fig. 4. Here, Collector #1 (which
may be either a heaplet collector or the cycle collector) has a
white object referenced from a black object. This is legal under
the weak tri-color invariant since there is a grey object in Collector
#2’s heaplet that also references that white object. However, the
grey object is about to be deleted by Collector #2 — for example
because all references to it will soon be cleared and Collector #2
will observe that it is unreachable. Thus we have a race: if Collector
#1 scans the grey object first, everything will be fine. But there may
be a problem if Collector #2 gets to it first.

Collector #2's Heaplet

White

To be deleted by Grey
Collector #2 = 4

~ '

I .
Objects being traced
by Collector #1

Figure 4. A collector-collector interference scenario. The white object
is live, being referenced from the black object. Collector #1 counts on
being able to find the white object by eventually scanning the grey object.
However, Collector #2 is planning on deleting the grey object.

See Fig.5 for an illustration of this race. In Fig. 5(a) nothing
special needs to be done because the scan completes before the
deletion begins. However, in Fig.5(b) and (c), we need to have
some way of ensuring that whatever is referenced from the grey
object gets marked, and also that Collector #1 doesn’t crash be-
cause of an attempt to scan garbage. The solution is to abort either
the scan or the deletion, depending on which came second. If, as
shown in Fig. 5(b), the deletion begins before the scan begins, we
simply abort the scan. To catch all of the references that would be
lost, we augment the deletion with a deletion barrier that, for each
collector that had the deleted object in its snapshot, marks all ob-
jects referenced from the deleted object. Because the deletion bar-
rier does not affect collectors that did not have the deleted object
in their snapshot, it does not introduce additional object “drag”. In
Fig. 5(c) the deletion starts during the scan, so we simply abort the
deletion. The collector will once again attempt to delete the object
on the next collection cycle.

Aborting the deletion in the case of a concurrent scan is accom-
plished by using a hold count associated with each page. When
a page contains an object that is being scanned, its hold count is
incremented, only to be decremented when the scan completes.
Aborting the scan is handled differently depending on how the ob-
ject is found. In the case of the descendent heaplet scan, the col-
lector doing the scan is iterating over the current in-use objects. If
an object is not in-use when it is encountered by the scan, it is ig-
nored. When a collector is scanning the cross set, it is guaranteed
that it will not observe any deleted objects, since object deletion in-
volves removal from the cross set. Finally, the cycle collector may
enqueue an object on its worklist only to have that object deleted
before it is dequeued. This scenario can be broken down into two
cases:

1. Dequeuing garbage: The pointer dequeued does not point at
a valid object. The heap structure used by the hierarchical
garbage collector allows us to identify whether an address refers
to the base of an in-use object in constant time. If it does not,
the cycle collector ignores the object.

2. Reallocation: The object that was enqueued may be deleted and
anew object may be allocated in its place. In this case the newly
allocated object will already be marked in the cycle collector.
Hence it is safe to scan it (since it is a proper object, we aren’t
scanning garbage); on the other hand, since it is already marked,
the act of scanning it won’t mark any objects that would not
have been otherwise marked.

3.3 Collection Algorithms

The Heaplet collector, shown in Fig.3(b), is a snapshot-at-the-
beginning mark-sweep collector. The collector begins by scanning
all thread stacks. This is essential: it allows any thread to refer to

Collector#1 Collector #2

<2

(a) The object is scanned before being
deleted. There is no interference in this

Collector #2

Scan De]ete
De[ete

Collector#1

(b) Scan after deletion: Heaplet #1 attempts
to scan an object that has been deleted.
case. We abort the scan, and Collector #2 uses

the deletion barrier to guarantee that

Collector#1 Collector #2

awi]

c) Deletion during scan: this case must
be prevented — either we must abort
the scan or the delete. If the delete
starts during the scan, we abort the

Collector #1 doesn't lose track of objects. delete.

Figure 5. The three cases of collector-collector interference. A grey object, as in Fig. 4, is about to be deleted by Collector #2. However; Collector # needs
to scan it. In (a), the scan occurs before the delete. This is the simple case — no additional coordination is necessary. In (b) the delete occurs before the scan.
We handle this with a two-pronged approach: we ensure that Collector #1 can realize that the object was deleted and abort its scan, while at the same time
adding a deletion barrier to Collector #2 that shades all objects referenced from the object being deleted. In (c) the deletion starts before the scan finishes. In

this case we abort the deletion.

any heaplet without additional book-keeping. We consider static
fields virtually part of the root heaplet. Hence, only the root heaplet
and the cycle collector scan static fields. If a static field refers to
a non-root heaplet, the class object is placed on the cross set. This
frees non-root collectors from having to traverse all static fields.
Two additional sources of roots may be used by heaplet collectors:
descendent heaplets and the cross set. Each collector scans the
in-use objects of all of its descendent heaplets. By scanning we
mean that the collector simply walks the memory occupied by the
heaplets, scanning each object that has not been condemned. When
designing the algorithm we considered having collectors trace their
descendents; however, because every entity that may trace an object
would require an additional mark bit and write barrier step, we
have decided to use a scan instead because of the lower overheads.
Since all collectors are always running anyway, a scan is a good
approximation of a trace. Finally, non-root heaplets must scan the
cross set to find incoming references from ancestors, siblings, and
their descendents.

Following the root scanning phase the collector proceeds with
a trace. After this completes, the collector will sweep, deleting any
objects that are no longer reachable. Our sweep is eager, thus in-
creasing the predictability of our allocation code and allowing us to
assign a simple worst-case bound on allocation. Sweeping is mod-
ified to perform three additional actions on object deletion: (i) the
deletion barrier marks objects in foreign heaplets referenced from
the object being deleted; all referenced objects are also marked for
the cycle collector; (ii) if the object is on the cross set it is removed
(see Sec. 3.4 for the mechanism that facilitates constant-time cross
set removal); and finally (iii) if the object’s page has a non-zero
hold count, the deletion is aborted, and the object will not be deleted
until the next collection cycle.

The cycle collector, shown in Fig. 3(c) uses a mark-sweep algo-
rithm similarly to the heaplet collector. It starts by scanning thread
stacks and static fields. Then it traces the entire heap, ignoring
heaplet boundaries. Finally, it sweeps the cross set. The cycle col-
lector’s sweep phase does not do any space reclamation. Instead, it
breaks cycles by removing cross objects that it knows to be dead
from the cross set. This facilitates space reclamation to happen on
the next iteration of the affected heaplet collectors.

3.4 Object Structure

HRTGC requires four additional bits in each object header. To
quickly determine if an object is already a cross object, we need
a cross bit. We need two mark bits — one for the heaplet collector

that corresponds to the object and one for the cycle collector. We
also need an in-use bit for determining if the object is in use versus
being on a free-list. See Fig.6 for the object header our system
uses. Notably missing from the object structure is any reference to
the heaplet that owns the object. Instead, we mandate that each page
is mapped to only one heaplet, allowing for a fast page-table-based
heaplet lookup.

In-use Bit

Heaplet Collector Mark Bit
Cycle Mark Bit

Cross Bit

A\ Y Y
[cImi]m]Ju

Class Pointer

Monitor and Fastlock

Object Body

Figure 6. Structure of the object header in HRTGC.

Any object may end up on a cross set. If the object is deleted by
its heaplet collector, the collector must be able to remove it from
the cross set in constant time. For this we need a back pointer from
the object to the cross set. The object’s monitor is used to store
this pointer. Monitors are used in Java for synchronization, and
are typically implemented as a separate object referenced from the
object they serve. Because most objects do not require a monitor,
storing it separately from the object header saves space. We extend
the monitor, giving it an additional field, which we call the monitor
token, that we use to refer back to the cross set entry. Hence, the use
of this back-pointer does not inflate heap usage except in the case
of objects that already have a monitor (which is rare) and objects
that end up on the cross set (which will be rare in the case of a
well-chosen heaplet hierarchy).

Fig. 7 shows the cross set in use. In this example, an object in
heaplet #1 wishes to point at an object in heaplet #2. The source
object is placed on the cross set, and to facilitate constant-time
removal, we inflate the monitor and install a back-pointer in the
monitor token.

The monitor needs to be available when an object is being freed.
If the object is being freed then neither the object nor its monitor
are reachable. Hence it is possible that the monitor gets freed first,
if it comes first in memory, leading to memory corruption when the
collector accesses the monitor after it has been freed. To prevent

Heaplet #1 Heaplet £2

Cross
Object

Monitor + Monitor Pointer

(in Object Header)
Monitor Tokén = \

Figure 7. Example of the cross set and monitor token in use. An object in
heaplet #1 wishes to point at an object in heaplet #2. Because heaplet #2 is
not an ancestor of heaplet #1, we must place a reference to the object on the
cross set. To be able to remove the object from the cross set in the future, we
inflate the object’s monitor and store a back-pointer in the monitor token.

Cross Set

this, we pin the monitor (not in the sense of preventing it from
moving, but in the sense of preventing it from being collected even
if it is not reachable), until its object is freed.

3.5 Allocation

Allocation in HRTGC requires checking which heaplet the thread
is currently allocating from. We maintain a thread-local variable
that refers to the current heaplet, as most recently designated by
Heaplet.enter (). The allocation routine dispatches allocation
requests to that heaplet, which chooses how to handle the request.

Following allocation we initialize the new object’s header so
that its class pointer refers to the correct class and the four GC bits
are set appropriately (see Fig. 6 for the object header structure).
All collectors in HRTGC allocate black (i.e., as if the collector had
already marked them live), so we set both of the mark bits (M for
the cycle collector and M, for the heaplet collector) to true. Then
we set the used bit (U) to true and the cross bit (C) to false.

3.6 Write Barrier

We use a write barrier to detect when an object needs to be placed
on the cross set, and also to maintain the weak tri-color invariant for
both the cycle collector and the heaplet collectors. To maintain the
weak tri-color invariant, we shade the old referent on write. Hence
the write barrier has three tasks to perform:

1. Place objects on the cross set when a cross reference is estab-
lished.

2. Perform the shade-old-referent-on-write action for the cycle
collector.

3. Perform the shade-old-referent-on-write action for the collector
that corresponds to the old referent.

Fig. 8 shows the write barrier mechanism. The addCross auxiliary
function is called if there is a need to add the object to the cross
set. This function manages the cross set, cross bit, and the monitor
token to ensure proper bookkeeping.

It should be noted that like [4] and [10], we do not support
truly parallel thread execution — our implementation is restricted
to a uniprocessor setting. Thus, we do not have to worry about
concurrency in the write barriers; instead we simply disable thread
switching during the write barrier.

3.7 Worst-case Performance

The HRTGC is a hard real-time collector designed to provide strong
worst-case performance guarantees. As in [4], the user is allowed
to specify the collector schedule a priori. Further, we make critical
collector functions called by the mutator (such as allocation, barri-

void writeBarrier(word. t *referee, int off, word_t *newObj) {
word_t *ptr = referee + off, *o0ldObj = *ptr;
word_t headerword = *0ldObj;
if (!headerword.M1) {
headerword.M1 = true;
cycleCollector.enqueue (01d0bj) ;

if (!headerword.M2) {
headerword.M2 = true;
Heaplet *oldObjHeaplet = heapletMap[oldObj / pagesize];
oldObjHeaplet->enqueue(01d0bj) ;

*01d0bj = headerword;
Heaplet *newObjHeaplet = heapletMap[newObj / pagesize];
Heaplet *refHeaplet = heapletMap[referee / pagesize];
if (newObjHeaplet != refHeaplet &&
! (newObjHeaplet isdescendentof refHeaplet))
addCross(referee) ;

Figure 8. HRTGC write barrier. First we shade the old referent in both
the cycle collector and the heaplet collector. The M| mark bit is used for the
cycle collector, while the M, mark bit is used for the heaplet collector. After
shading the old referent, we check if the store would cause the referee to
become a cross object. If so, we call the addCross () function, which adds
the object to the cross set.

ers, and heaplet entry) highly predictable. In this section we lay out
what guarantees are provided by HRTGC.

Priority-preemptive scheduling. HRTGC assumes a priority-
preemptive scheduler. We permit the user to specify a priority for
each heaplet collector, including the root heaplet collector and the
global cycle collector. HRTGC allows the priority of a heaplet col-
lector to be either lower or higher than the priorities of threads
using the heaplet; thus HRTGC can be used to emulate either the
Henriksson [10] scheduling style or the style of Metronome [4].

Collector schedules. Heaplet collector scheduling is a direct ex-
tension of [4]. Whereas Metronome only has one collector, we have
many: a collector for each heaplet, plus the cycle collector. To fa-
cilitate scheduling of multiple collectors, we allow the user to spec-
ify not only how much time is given to each collector, but pre-
cisely when each collector will be released. Because the underly-
ing scheduling mechanism of a typical RTOS and RTJVM is quan-
tized — based on scheduler quanta driven by a hardware clock inter-
rupt — the HRTGC’s API for determining collector schedules is also
quantized. For each collector the user supplies a finite scheduling
sequence S as follows:

s = of

0 = W
where Q corresponds to a quantum, and the value ‘R’ indicates
that the collector should run, and ‘-’ indicates that it should yield.
The scheduler steps to the next entry in S at the beginning of each
new quantum; when the end of the sequence is reached, it wraps
around to the beginning. For example, a schedule that gives a 50/50
mutator/collector split would be specified as either ‘-R’ or ‘R-". But
the strength of this mechanism is that it allows the user to schedule
multiple collectors. For example, in a two collector setting the user
may use ‘—~-R-’ for one collector and ‘R---" for the other, ensuring
that the two collectors never attempt to run at the same time.

“_»

Allocator and Barrier performance. Both the allocator and the
write barrier are designed to be highly predictable. The alloca-
tor’s worst-case performance is nearly identical to the best-case.
Since there is no “slow path” that would lead to performance out-
liers in the allocator, it is sensible to empirically determine the
worst-case performance of any procedure that uses allocation. A

slightly weaker claim can be made for the write barrier. The bar-
rier has two performance modes: one for establishing internal and
up-references, and another for cross-references. For internal and
up-references the barrier is designed to run at worst-case when the
collector is not active. Thus, to determine the worst-case perfor-
mance all one needs to do is disable the collector. Paradoxically,
when the collector activates, the performance of the barrier will
actually improve. This means that when accounting the worst-case
degradation to throughput due to the collector activating, the barrier
does not need to be taken into account.

However, the barrier has a different performance mode for
cross-references. Establishing cross-references is expensive, though
predictably so (the performance is still constant time, and does not
depend on either page size or object size). Thus, to avoid an overly
conservative estimation of the worst-case performance of a proce-
dure, the programmer must be able to identify those heap stores
that may generate cross references. To aid the programmer in this
task, HRTGC includes a cross reference profiler that will identify
the types that are involved in cross reference creation. Thus, in
practice we have not found it to be difficult to identify all cross
reference creation sites.

Collector performance. Each collector’s running time is trivially
bounded by the total size of the entire heap. But some heaplets can
be shown to require significantly less work. The amount of work
W (h) necessary to collect a heaplet 4 depends on that heaplet’s size
S(h), the objects on the cross set (we say that S(C) is the total size
of all objects on the cross set), and the total size of that heaplet’s
descendents in the hierarchy (we write g <: h to mean that g is a
descendent heaplet of /). We can bound W () as follows:

W(h) is 0<S(h)+S(C)+) S(g)>

Vg<:h

Thus, a heaplet with no descendents can be collected in the time it
takes to trace the heaplet itself, and scan all of the objects in the
cross set. The cross set is bounded in size (see Sec. 3.1), so the user
has the ability to set tight bounds on heaplet collector performance.
A typical use of HRTGC thus only assigns high collector priorities
to small leaf heaplets, which have no descendents. Real-time tasks
are then restricted to allocating in small leaf heaplets, and are pri-
oritized to preempt larger heaplet collectors. This is the mechanism
by which HRTGC can be used to achieve higher mutator utilization
and faster response times than a conventional RTGC.

On the other hand, HRTGC is not designed to yield good perfor-
mance if child heaplets are too large, if the hierarchy is too deep, or
if the cross set is too large. We have not found this to be a problem
in any of our benchmarks.

4. Evaluation

The goal of HRTGC is to reduce the response times and increase
the mutator utilization of real-time tasks provided that two or more
heaplets are used. We conducted a number of experiments to evalu-
ate the extent to which HRTGC improves response times and MMU
for real-time benchmarks. We also construct a microbenchmark to
further characterize the benefits of HRTGC. Finally we measure
the raw throughput overheads of HRTGC’s more complicated col-
lection, allocation, and write barrier mechanisms by running the
SPECjvm98 benchmark suite without any heaplet instrumentation.

These experiments were performed on a 3.8Ghz Pentium 4,
with 4GB of physical memory. The operating system used was
Linux (Ubuntu kernel version 2.6.15-25-686); all benchmarks were
run with the SCHED_FIFO scheduling policy. The only threads run-
ning at a higher priority were OS kernel threads. We implemented
HRTGC and a baseline RTGC similar to the Metronome by mod-

ifying the Ovm Real-Time JVM developed by researchers at Pur-
due. The Ovm RTSJVM is a reasonable vehicle for our work as it
features a high-performance ahead-of-time compiler and is the first
RTSJVM to have been deployed and flight tested [3].

The main thrust of our evaluation is using two freely-available
real-time benchmarks: the Collision Detector (CD) and RTZen.
In both cases we add 227 _mtrt from the SPECjvm98 benchmark
suite as a noise-maker because of its high allocation rate and large
footprint.

CD is a 41Kloc RTSJ program with two real-time threads. One
thread is a periodic hard real-time thread that detects collisions in
data generated by a simulator thread. The input is a complex sim-
ulation involving 266 aircraft. Our experiment is set up as follows.
The real-time CD thread is mapped to one heaplet, the simulator
is mapped to a sibling heaplet. The rest of the system, including
two threads running the 227_mtrt benchmark, is in the root heaplet.
The simulator thread communicates with the detector by copying
data allocated in the simulator’s heaplet into the detector’s heaplet.
When run in RTGC, the heaplet API calls are removed. Response
time is measured as the time between the reception of a frame in
the CD thread and the end of the processing of that frame. What we
want to show is that using HRTGC allows us to reduce worst-case
response times while maximizing the mutator utilization of the CD
thread.

RTZen is a 202Kloc multithreaded real-time CORBA ORB de-
veloped at U.C. Irvine [14]. We measure RTZen 1.1 running the
DOOM demo application (bundled with the RTZen release) with
one client. Client and server are on the same machine. The client
uses the RTSJ scoped memory API and thus does not experience
GC pauses. The server is configured by running the main () method
of the DOOM application in a heaplet. The static variables and
VM data structures are in the root heaplet. Two threads running
the 227_mtrt benchmark are also in the root heaplet. In the case of
RTGC we simply use the original Zen code, without the modified
main() method. Response time measures the processing of one
request, which includes marshalling on the client, local socket I/0O,
marshalling on the server and server side processing. What we want
to show is that the response times under HRTGC are better than
under RTGC, and that mutator utilization for all of Zen improves.
Note that other than instrumenting the main () method, no changes
to the Zen code base were required in this experiment. Hence, a per-
formance improvement in this benchmark demonstrates not only
the potential speed-ups, but also the ease with which they can be
attained.

4.1 Response Time

Zen exhibits a 15% improvement in worst-case response times
when run in HRTGC, versus using RTGC. In the worst case for
RTGC, Zen has a response time of 952us, while HRTGC sees a
worst case of 811us. Both numbers are the worst case over a ran-
dom ten-minute run involving 20,000 samples. The improvement
in HRTGC is due to the handling of background tasks: in RTGC,
we were forced to pick a schedule that results in lower mutator uti-
lization to compensate for 227_mtrt’s high allocation rate, while in
the HRTGC case we only had to worry about Zen’s allocations —
the root heaplet collector, which served the 227_mtrt benchmark,
ran at a lower priority than Zen, so its activities had no effect on the
Zen response times. The Zen heaplet collector ran with a schedule
where the collector is running only one sixth of the time.

The pattern of response time behavior can be seen in Fig. 9(a)
for the RTGC and in Fig. 9(d) for the HRTGC. We only show a SK-
sample selection to make the structure easier to see. The saw-tooth
pattern is caused by the collector’s periodicity being slightly out
of phase with the Zen client’s periodicity — as time progresses, the

1400

1200

g g8 8 &

Response time in microseconds

1000 2000 3000 4000 5000
Number of Iterations

(a) Response time. RTZen ORB with RTGC. The
x-axis is the number of iterations and the y-axis
is response time in Us. The worst-case observed
response time over the entire run was 952 |s. The
227 _mtrt benchmark is running in the background.

1400

1200

1000

H

H

A ———

1000 2000 3000 4000 5000

Response time in microseconds
]

H

Number of Iterations

(d) Response time. RTZen ORB with HRTGC. The
x-axis is the number of iterations and the y-axis is
response time in [Ls. The HRTGC uses 2 heaplets
(Zen, Root). The worst case observed response
time over the entire run was 811 s. The 227 _mtrt
benchmark is running in the background.

w i il

e

Response time in microseconds

RTGC (low footprint)

Mutator Utilization

HRTGC 227_mirt + Zen

o 500 1000 1500 2000

Number of Iterations.

(b) Response time. CD with RTGC. The x-axis is
the number of iterations and the y-axis is response
time in Us. The worst-case observed response time
over the entire run was 8.255 ms. The 227_mtrt
benchmark is running in the background.

Response time in microseconds

ot

1000

- mntw\. INMMM M Ui
il |

(e) Response time. CD with HRTGC. The x-axis is
the number of iterations and the y-axis is response
time in [s. The HRTGC uses 3 heaplets (CD, Sim,
Root). The worst case observed response time over
the entire run was 6.113 ms. The 227 _mtrt bench-
mark is running in the background.

10° 10° 107 10° 10° 10 10"
Window size in nanoseconds

(¢) MMU. Comparing minimum mutator utiliza-
tion for the RTZen ORB for time windows in ns.

HRTGC

RTGC

Mutator Utilization

100 100 107 10¢ 10° 10 10"
‘Window size in nanoseconds

(f) MMU. Comparing minimum mutator utiliza-
tion for the CD for time windows in ns.

Figure 9. Performance summary of Zen and CD benchmarks.

Zen client’s requests come increasingly earlier in a GC quantum,
leading to increasingly higher round-trip times. The drop-off occurs
when the requests start to arrive outside of a GC quantum.

CD shows a more pronounced difference. The worst observed
response time for the CD thread with HRTGC is 6.113 ms versus
8.255 ms for RTGC. This is a 26% reduction in response time
thanks to HRTGC. It is due to two factors: 1) the CD has a lower
allocation rate than Zen, leading to an optimal schedule where the
collector ran only for one eighth of the time (as opposed to one
sixth), and 2) the CD response times were on average much longer,
which places the CD activity window higher on the MMU plot,
leading to a more pronounced difference between HRTGC and
RTGC. Fig. 9(b) shows the response time pattern for RTGC, while
Fig.9(e) shows the pattern for HRTGC. The saw-tooth pattern is
missing because the response time for CD is not observed by an
outside source — since the beginning and end of the observations
occur when the collector is not running, the amount of time stolen
by the collector is quantized. For the RTGC we see four strata:
the best case response times occur when the detector gets lucky
and experiences no GC interruptions. Above that are two strata
corresponding to one or two GC interruptions. Finally the worst
case times occur when there are three interruptions. In the case of
HRTGC, the detector sees at most one collector interruption.

4.2 Minimum Mutator Utilization

Cheng and Blelloch have defined the minimum mutator utilization
(MMU) [8] for a given time interval & as the minimum CPU
utilization by the mutator over all intervals of length §.

In the case of HRTGC, the MMU must take the different collec-
tors into account. Rather than giving a single MMU for all threads
(real-time and plain), HRTGC allows us to differentiate between
threads running under different collectors. For each collector pri-
ority p we record a separate MMU curve, showing the times when
mutator threads of priority < p are not prevented from using the
CPU by collector threads of priority > p.

The Zen MMU, Fig.9(c), shows the MMU of HRTGC Zen
collector, which is the highest priority collector, and the MMU for
the union of the Zen and 227 _mtrt collectors. We show two RTGC
MMU curves, one for the RTGC configuration that we’ve discussed
so far and one for a low-footprint configuration of RTGC (see
Sec. 4.3). The graphs show that the real-time task gets significantly
higher utilization under HRTGC by penalizing lower priority tasks
—in this case 227_mtrt clearly gets worse utilization. The minimum
pause time (smallest window) is on the order of 600 us. The
maximum utilization for HRTGC is 97% in Zen and 35% for the
mtrt threads. The maximum utilization for RTGC is 53%.

CD has similar results (see Fig. 9(f)). Both collectors experience
worst-case pause times around 1 ms, but as the window size in-
creases HRTGC displays much better utilization, with a maximum
of 92% utilization, while RTGC peaks at only 51%.

4.3 Footprint

We examine the footprints of Zen running in HRTGC and RTGC.
The amount of used memory in bytes in each heaplet of HRTGC
is shown in Fig. 10(a), while the total memory usage in RTGC is
shown in Fig. 10(b). In the worst case, HRTGC uses a total of

227_mtrt Heaplet

Bytes allocated

RTZen Heaplet |

Bytes allocated

T 2 3 0 5 g 7 g g

x107
Microseconds elapsed

z 3 0 5 s 7 g g T
x40
Microseconds elapsed

z B T 5 O 7 0 s 7
Microseconds elapsed 1o

(a) Footprint. Number of allocated bytes in the (b) Footprint. Number of allocated bytes for (c) Footprint. Number of allocated bytes for
two heaplets for RTZen ORB and 227 _mtrt under RTZen ORB and 227 mtrt under RTGC running at RTZen ORB and 227 _mtrt under RTGC running at

HRTGC.

1400

1200

2

Response time in microseconds
H

1000 2000 3000 4000 5000
Number of Iterations.

(d) Response time. RTZen ORB with RTGC (low-
footprint configuration). The x-axis is the number
of iterations and the y-axis is response time in [Ls.
The worst case observed response time over the
entire run was 1.362 ms. The 227_mtrt benchmark
is running in the background.

a low rate.

a high rate.

Mean = 0.30
Max =326 |

Number of 200ps Quanta

5 0 T 3 W 3

£} £ 3
Number of references

(e) Cross-references. Histogram of the number of

cross-references created for non-overlapping 200
s windows in a run of the RTZen ORB benchmark
and 227_mirt. A point (x,y) exists if there are 'y
200 ps windows in which x cross-references were
created.

Mean = 68.33
o Max = 55249 |

Number of 200ps Quanta

Number of references
(f) Up-references. Histogram of the number of
up-references created for non-overlapping 200 |s
windows in a run of the RTZen ORB benchmark
and 227 _mirt. A point (x,y) exists if there are y 200
s windows in which x up-references were created.

Figure 10. Detailed measurements of Zen benchmark performance.

26.4MB, while RTGC uses 43.5MB — so RTGC is 65% worse.
The higher memory usage in RTGC is due to the scheduling: in
HRTGC, we can afford to run the root heaplet collector at a very
high rate, keeping 227_mtrt’s memory usage at bay. But to attain
competitive response times in RTGC, we must loosen the sched-
ule, resulting in more memory being allocated by 227_mtrt during
the collection cycle — hence the larger memory usage. To confirm
this we reran the Zen benchmark with RTGC configured to run two
thirds of the time. We say that this is a low footprint configuration
because it improves memory usage by collecting more frequently,
at the cost of worsened response times. The memory usage of this
modified system is shown in Fig. 10(c), while the response times
are shown in Fig. 10(d). The worst case response time in the low
footprint configuration is 1362us, which is 43.1% worse than for
HRTGC. Further, as shown in Fig. 9(c), the low footprint config-
uration results in only 38% utilization in the best case. However,
the memory usage is 30% better than HRTGC. This is expected: it
is possible to trade off response time for memory usage. However,
it would not be possible to reduce the response times of RTGC to
be better than HRTGC under any configuration that uses the same
total memory as HRTGC.

4.4 Cross references

The purpose of organizing heaplets into a hierarchy is to take ad-
vantage of the fact that the majority of cross-heaplet stores involve
references going in one direction. In Fig. 10(e) and Fig. 10(f) we
show histograms of the number of references created in 200us
windows in the Zen benchmark. Recall that in this benchmark the
heaplet hierarchy was not optimized, nor was the Zen code itself
modified to optimize heaplet usage. Nevertheless, what we see is

that up-references are created at a much higher rate than down-
hierarchy references. On average only 0.3 down-hierarchy refer-
ences are created per 200us window — hence the rate of down-
hierarchy reference creation is only 1.5 KHz. On the other hand,
up-references are created at a rate of 342 KHz. To understand why,
consider that Zen does not get an opportunity to create many ob-
jects outside of its heaplet (if any at all — it would only create such
objects from static initializers, since everything else runs in the Zen
heaplet). Hence, most down-hierarchy references are from static
fields into the Zen heaplet, plus some references from VM objects
allocated in the root heaplet to other VM objects created on behalf
of Zen in the Zen heaplet. CD has an even more pronounced ef-
fect — only three down-hierarchy references are ever created. This
is because in the case of CD, we optimized our usage of heaplets to
reduce cross-hierarchy references.

4.5 TwoHeap Microbenchmark

In both the Zen and CD benchmarks, we showed an improvement in
MMU and response times for the highest-priority task when using
two or three heaplets. For Zen we also showed that lower-priority
tasks get penalized. In the case of SPEC, we did not take advantage
of heaplets, and showed the bare overhead of HRTGC. This raises
the question: can HRTGC deliver a net gain in performance for
all tasks? Intuitively, if two concurrent real-time tasks have vastly
different memory usage patterns, having two heaplets where each
heaplet is tuned specifically to the requirements of its task should
result in an overall boost to mutator utilization.

Consider that a task with a large footprint but a zero allocation
rate never has to collect — if nothing is being allocated, then no
garbage is being created. Further, consider that collecting for a task

that has a very small footprint but a high allocation rate is similarly
not too difficult — the trace will complete quickly and all of the time
will be spent in the sweep. But now consider both tasks running
together in one heap. The increase in necessary collection work is
not additive: to collect the garbage allocated by the high-allocation-
rate task, we need to spend time tracing the large static footprint of
the task that does not allocate. Hence, if we take these tasks and run
them in separate heaplets, we expect to be able to achieve better
mutator utilization overall, even when the time required by both
collectors is taken into account.

For this we create the TwoHeap microbenchmark. This code
simply creates two heaplets of equal size, allocates a large footprint
in one and a very small footprint in the other. It then starts two
threads: one that enters the small-footprint heaplet and allocates at
the highest rate possible for small objects (it just loops allocating
instances of Object), while the other one enters the large-footprint
heaplet and allocates at a very low rate — high enough to require
only occasional collection. We also enable TwoHeap to run with
RTGC by simply removing all Heaplet API calls.

We then exhaustively searched the space of all RTGC and
HRTGC schedules (in the case of RTGC it was a 1-D search, in
the case of HRTGC it was a 2-D search since we had two heaplets
that we were equally interested in; in both cases we restricted our
granularity to schedules that contained 20 quanta). For RTGC the
best schedule had 14 out of 20 quanta going to the collector, while
for HRTGC the best schedule had 11 out of 20 quanta going to the
collectors — with the high-allocation heaplet getting 10 quanta and
the high-footprint heaplet getting 1 quantum. Hence, even though
HRTGC is a slower collector, it gave a net performance improve-
ment for the entire application in this case. See Fig.11 for the
MMUs of HRTGC and RTGC for the TwoHeap microbenchmark.

10° 10° 107 10° 10° 10'°
1

0.8

o
=)

HRTGC

’ RTGC

Mutator Utilization
o
~

02 -

10° 10° 107 108 10° 10"
Window size in nanoseconds

Figure 11. MMU. Microbenchmark with different configurations of
HRTGC and RTGC.

4.6 Throughput

The SPECjvm98 benchmark suite is used to evaluate the perfor-
mance impact of HRTGC on Java applications. In this scenario each
benchmark of SPECjvm98 is run within a single heaplet thus not
taking advantage of differentiated garbage collection. SPECjvm98
was run with problem size 100. The heap size was capped at
256MB. For each benchmark we record the median of the second
iteration of three runs of the benchmark.

Fig. 12 compares the performance of the default mostly-copying
garbage collector that comes bundled with the JVM against our
real-time collector and the hierarchical real-time collector. The ge-
ometric mean overhead of HRTGC over RTGC is 14.6%. This over-
head comes in three parts: a heaplet check necessary for alloca-
tion, a larger write barrier, and a more complex root scanning and

compress jess db javac mpegaudio mtrt jack Geo. Mean

(@] 2
<
]
&
15
e}
=
[
>
=1
«
[
=
Q
gos5
=

0

compress jess db javac mpegaudio mitrt jack Geo. Mean
Benchmark
[] Java-GC W RTGC [J HRTGC

Figure 12. Throughput. Comparison of mostly-copying (Java-GC), real-
time and hierarchical garbage collectors on the SPECjvm98 benchmark
suite. The HRTGC is configured with a single heaplet to emphasize the
overheads due to allocation, write barriers and collection.

sweeping algorithm in the collector (mainly, the need to run a dele-
tion barrier). In the best case (compress and mpeg) there is no per-
formance penalty and in the worst case (202_jess) we observed a
33.6% slowdown. The mean overhead of RTGC over our mostly-
copying collector is 30%.

5. Related work

Work on real-time collection can be traced back to Baker’s in-
cremental copying collector [5]. The central idea behind Baker’s
collector is decreasing the intrusiveness of a collector by piggy-
backing work onto mutator operations. To ensure consistency, a
small piece of code, called a read barrier, is inserted by the com-
piler before every memory read to perform copying, and the allo-
cation code is modified to perform a bounded amount of collection
work. The worst-case in a program using Baker’s collector involves
a copy operation upon every read, and a (large) unit of collection
work on every allocation. Hence, even though individual pauses are
small, the worst case execution time of an allocation makes Baker’s
collector unsuitable for hard real-time settings. Put another way, the
collector fails to bound its impact on throughput. Baker’s collector
is said to be work-based, in the sense that work done by the mutator
leads to work by the collector. Bacon etal. [4] investigate differ-
ent approaches to real-time collection. In Bacon’s time-based sys-
tem, the collector interleaves with the mutator at regular intervals.
In [10] Henriksson proposes a collector that only becomes active
during periods when the real-time tasks are idle. In both collec-
tors, constant time read (or write) barriers are still needed to main-
tain consistency, and allocation must be made predictable (constant
time, or linear in object size). The worst-case bounds on execution
time in the mutator become more realistic, allowing the collector
to be used in hard real-time systems. In previous work we reported
results comparing real-time GC and RTSJ scoped memory [21].
Heap-partitioning garbage collectors have long been used in dis-
tributed and persistent environments where the cost of traversing
cross-partition references is high [6, 9, 17]. Similarly to our cross
list cyclic collector, Juul and Jul [13] used a separate global mark-
ing collector to remove unnecessary “inlist” references, regardless
of any involvement they may have in a cycle. Other approaches
rely on piggy-backing of cyclic collection with partition traces [15].
Yong et al. [24] used “remembered sets” to record objects contain-
ing inter-partition references that had to be fetched and scanned be-
fore tracing a partition. This is similar to our cross objects, except

that their remembered sets were maintained per-partition, whereas
our cross set is global. Amsaleg et al. [1] used partitioned collection
in a transactional database setting, focusing on supporting rollback
of transactions, using the database log to process inter-partition ref-
erences. Other approaches rely on migrating objects among parti-
tions to enable cycle collection [11, 16, 18]. None of these collec-
tors addresses hard real-time systems. Jones and King coined the
term heaplet in the context of a compile-time escape analysis for
thread-local allocation [12].

6. Conclusion

We have introduced the hierarchical real-time garbage collection
algorithm in which the user partitions the heap into heaplets, each
of which are independently collected. By partitioning the heap we
are able to achieve much better throughput and response times in
realistic real-time applications, as compared to our implementation
of the Metronome. In particular, we were able to reduce worst-
case response times by 26% while almost doubling mutator utiliza-
tion. These are significant improvements, especially considering
that these are not memory-intensive benchmarks and so less sus-
ceptible to other improvements in memory management. Adding
hierarchical GC permits much more focused processor through-
put and utilization by real-time tasks (at the expense of reduced
throughput for the non-real-time portions of the application).

Like other RTGCs [4, 10], we do not support multiprocessors,
which are a challenge for any real-time system because thread
scheduling becomes much less predictable, and it is not possible
to ensurex atomicity simply by disabling interrupts and context
switches. HRTGC may be more amenable to a highly predictable,
low-overhead multiprocessor implementation because heaplets can
be used to indicate processor locality. We leave this to future work.

We do not currently support compaction, though there is nothing
in our algorithm to prevent compaction, except the challenge to al-
low cycle collection to track objects even as they are moved without
locking. Since none of our benchmarks require compaction, com-
paction should not change the results presented here.

References

[1] Laurent Amsaleg, Olivier Gruber, and Michael Franklin. Efficient
incremental garbage collection for workstation-server database
systems. In Proceedings of the International Conference on Very
Large Data Bases, pages 42-53. Morgan Kaufmann, 1995.

[2

—

Chris Andreae, Yvonne Coady, Celina Gibbs, James Noble, Jan
Vitek, and Tian Zhao. Scoped Types and Aspects for Real-Time
Java. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 124-147, Nantes, France, July 2006.
Springer.

[3

=

Austin Armbuster, Jason Baker, Antonio Cunei, David Holmes,
Chapman Flack, Filip Pizlo, Edward Pla, Marek Prochazka, and Jan
Vitek. A Real-time Java virtual machine with applications in avionics.
ACM Transactions in Embedded Computing Systems (TECS), to
appear.

[4

=

David F. Bacon, Perry Chang, and V.T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Conference
Record of the ACM Symposium on Principles of Programming
Languages, pages 285-298, New Orleans, Louisiana, January 2003.

[5] H. G. Baker. List processing in real time on a serial computer.
Communications of the ACM, 21(4):280-294, April 1978.

[6] Peter B. Bishop. Computer Systems with a Very Large Address Space
and Garbage Collection. PhD thesis, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 1977.

[7] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dibble, Steve
Furr, and Mark Turnbull. The Real-Time Specification for Java.
Addison-Wesley, June 2000.

[8] Perry Cheng and Guy Blelloch. A parallel, real-time garbage
collector. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages
125-136, Snowbird, Utah, June 2001.

Paulo Ferreira and Marc Shapiro. Garbage collection and DSM
consistency. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation, pages 229-241, Monterey,
California, November 1994.

[9

—

[10] Roger Henriksson. Scheduling Garbage Colection in Embedded
Systems. PhD thesis, Lund University, July 1998.

[11] Richard L. Hudson and J. Eliot B. Moss. Incremental collection of
mature objects. In Proceedings of the International Workshop on
Memory Management, pages 388—403. Springer-Verlag, 1992.

[12] Richard Jones and Andy C. King. A fast analysis for thread-local
garbage collection with dynamic class loading. In Proceedings of
the 5th IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM), pages 129—-138, Budapest, Hungary, October
2005.

[13] Niels Christian Juul and Eric Jul. Comprehensive and robust garbage
collection in a distributed system. In Proceedings of the International
Workshop on Memory Management, volume 986 of Lecture Notes in
Computer Science, pages 103—115, 1995.

[14] Arvind S. Krishna, Douglas C. Schmidt, and Raymond Klefstad.
Enhancing Real-Time CORBA via Real-Time Java Features. In 24th
International Conference on Distributed Computing Systems (ICDCS
2004), pages 66-73, Hachioji, Tokyo, Japan, March 2004.

[15] Bernard Lang, Christian Queinnec, and José M. Piquer. Garbage
collecting the world. In Conference Record of the ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 39-50,
Albuquerque, New Mexico, January 1992.

[16] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed
garbage by controlled migration. Distributed Computing, 10(2):79—
86, 1997.

[17] Umesh Maheshwari and Barbara Liskov. Partitioned garbage
collection of a large object store. In Proceedings of the ACM
International Conference on Management of Data, pages 313-323,
June 1997.

[18] J. Eliot B. Moss, David S. Munro, and Richard L. Hudson. PMOS:
A complete and coarse-grained incremental garbage collector for
persistent object stores. In Proceedings of the Seventh International
Workshop on Persistent Object Systems, pages 140-150. Morgan
Kaufmann, 1997.

[19] Pekka Pirinen. Barrier techniques for incremental tracing. In
Proceedings of the ACM International Symposium on Memory
Management, pages 20-25. ACM, March 1999.

[20] Filip Pizlo, Jason Fox, David Holmes, and Jan Vitek. Real-time Java
scoped memory: design patterns and semantics. In Proceedings of
the IEEE International Symposium on Object-oriented Real-Time
Distributed Computing (ISORC’04), Vienna, Austria, May 2004.

[21] Filip Pizlo and Jan Vitek. An empirical evalutation of memory
management alternatives for Real-Time Java. In Proceedings of the
27th IEEE Real-Time Systems Symposium (RTSS), December 2006.

[22] William J. Schmidt and Kelvin D. Nilsen. Performance of a hardware-
assisted real-time garbage collector. In Proceedings of the Sixth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 76—85, San Jose,
California, October 1994.

[23] Fridtjof Siebert. Real-time garbage collection in multi-threaded
systems on a single processor. In Proceedings of the 20th IEEE Real-
Time Systems Symposium (RTSS), pages 277-278, Phoenix, Arizona,
December 1999.

[24] Voon-Fee Yong, Jeffrey F. Naughton, and Jie-Bing Yu. Storage
reclamation and reorganization in client-server persistent object stores.
In Proceedings of the International Conference on Data Engineering,
pages 120-131. IEEE Computer Society, 1994.

