
Static Checking of Safety Critical Java Annotations

Daniel Tang, Ales Plsek, Jan Vitek
Purdue University

ABSTRACT
The Safety Critical Java Specification intends to support
the development of programs that must be certified. The
specification includes a number of annotations used to con-
strain the behavior of programs written against it. This
paper describes and motivates the design of these annota-
tions and the rules used to check statically that programs
respect their intended semantics. We report on a prototype
implementation with the Java Checker Framework and ini-
tial experiments annotating a 24KLoc application.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—run-time
environments; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—classes and objects; D.4.7
[Operating Systems]: Organization and Design—real-time
systems and embedded systems.

General Terms
Languages, Experimentation.

Keywords
Safety Critical Systems, Verification, Annotations, Memory
Safety.

1. INTRODUCTION
Safety-critical applications must undergo a rigorous valida-
tion and certification process. To facilitate this, software
is often written so as to be analyzable and verifiable. Tra-
ditional approaches to certification, such as the DO-178B
certification for airborne systems in the US [9], ED-12B in
Europe, dictate software engineering processes and manual
verification, however, there is growing pressure to use au-
tomated techniques. This is motivated by the growing size
of todays’s safety-critical code bases. Thus the challenge
is to propose languages, methodologies and tools that can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’10 August 19-21, 2010 Prague, Czech Republic
Copyright 2010 ACM 978-1-4503-0122-0/10/08 ...$10.00.

scale to large systems and provide the necessary guarantees
of safety and certifiability.

The Safety Critical Java (SCJ) Specification [5] is an emerg-
ing standard for developing safety-critical applications in
Java. SCJ is based on a subset of the Real-time Specifi-
cation for Java (RTSJ) [2] and is designed to enable the
creation of applications, infrastructures, and libraries that
are amenable to certification under safety-critical standards.
For the purpose of this work there are three salient features
to the SCJ Specification. First, the programs are composed
of one or more missions, where each mission is composed
of a bounded number of schedulable objects. Second, each
schedulable object is given its dedicated memory area that
is allocated during initialization phase of the mission. And
third, SCJ distinguishes three compliance levels with differ-
ent cost and difficulty of certification.

The draft SCJ specification defines a set of Java meta-
data annotations which can be used to annotate user code
and API classes. These annotations impose constraints on
what code is legal, or compliant with the SCJ specification.
The annotations are intended for controlling three aspects
of program behavior: (i) level compliance – adherence of
applications to one of the three SCJ compliance levels, and
restriction of APIs used to the level of the application; (ii)
behavioral compliance – verify compliance of the applica-
tion to certain temporal and behavioral restrictions; and
(iii) memory safety – ensure that no memory store can lead
to a dangling pointers. The specification prescribes static
checking of SCJ applications, and programs that fail to ver-
ify must be rejected.

The contributions of this paper are to describe the SCJ an-
notations and give a list of rules that must be followed when
using these annotations. We have implemented a static
checker that checks compliance of applications as part of
the compilation process using the Java checker framework.
Finally, we have conducted a case study to evaluate usability
of the annotations on a small SCJ program. The results of
this work are available as part of our Open Safety Critical
Java, oSCJ, project1.

It should be noted that the SCJ specification does not
require automated verification of SCJ applications. Thus,
for instance, checking that the program will not run out of
memory is out of scope. Richer properties will have to be
verified as part of the certification process using methods
and techniques deemed acceptable by the certification body.

1The oSCJ distribution is available at www.ovmj.net/oscj.

148

2. THE SAFETY CRITICAL JAVA SPECI-
FICATION

The complexity of safety critical software varies greatly;
the cost of certification of both the application and the in-
frastructure is highly sensitive to their complexity, so en-
abling the construction of applications that employ a more
restricted programming model is desirable. The SCJ speci-
fication defines three compliance levels to which both imple-
mentations and applications may conform. Level 0 provides
a simple, frame-based cyclic executive model which is single
threaded with a single mission at a time. Level 1 extends this
model with support for multi-threading via aperiodic event
handlers, multiple concurrent missions, and a fixed-priority
preemptive scheduler. Level 2 lifts all restrictions on threads
and supports nested missions with managed threads.

SCJ programs are organized into a set of missions, which
are relatively independent with respect to lifetime and re-
sources needed. It is up to the programmer to decompose the
application into missions and define their startup sequence.
Missions are launched according to a pre-defined order. A
mission has three phases in its lifecycle, which are initial-
ization, execution, and cleanup. After a mission terminates,
the next mission is released, if there is one. A mission, is
made up of a set of shedulable objects, i.e. threads and their
scheduling constraints.

2.1 Scoped Memory
The scoped memory model was introduced by the RTSJ and
is retained in SCJ. The heap, on the other hand, has been
abandoned to make memory usage predictable. The SCJ
specification supports three types of memory areas: immor-
tal memory, mission memory, and private memory. As the
name suggests, immortal memory is the memory area that
spans the lifetime of the application; objects allocated there
live for the entire program execution. The other two are
scoped memory areas, they will be created and reclaimed at
runtime. The scoped memory model requires implementa-
tion of runtime scope memory checks verifying each memory
write. Each mission has a mission memory, shared by the
mission’s schedulable objects to store mission-scoped data.
Each schedulable object has it’s own private memory. It
can create nested private memory areas by invoking the en-
terPrivateMemory() method. The private memory is re-
tained for the duration of the schedulable object’s run()
method. The bound on the total size of all private memory

class MyHandler extends PeriodicEventHandler {
 public void handleEvent() {
 ...
 ManagedMemory mem = ManagedMemory.
 getCurrentManagedMemory();
 Logger log = new Logger();
 while(...) {
 ...
 log.setMessage(msg);
 mem.enterPrivateMemory(3000, log);
 }
 }
}

class Logger implements Runnable {...}

Figure 1: Enter Private Memory Example

instances of any given schedulable are determined at mission
startup. The difference between enterPrivateMemory() and
the RTSJ enter() method is that former creates and enters
a nested scope only if the current scope does not already
have a subscope. This means that scope hierarchy is a stack
rather than a tree as in the RTSJ. The executeInArea()
method is available to switch to a parent scope but this can
not be used to create nested scopes higher in the hierarchy.
Figure 1 illustrates this. A PeriodicEventHandler is per-
forming computations in a loop and at the end of each itera-
tion, a logging message is stored into the logger. In order to
prevent memory leaks, the operation of logging is performed
in a dedicated memory area. To create this new area, the
user first needs to obtain a reference to the current memory
area and then call enterPrivateMemory(). As input param-
eters, the user specifies a size of the new area, which must
be smaller than the memory reserved for the current schedu-
lable, and a class implementing the functionality — Logger,
that will be executed inside this memory.

3. SCJ ANNOTATIONS
The SCJ expert group proposed a set of Java metadata

annotations which enables tool developers to add type-like
information to a SCJ program. The three main groups of
annotations are described in the following subsections.

In the remainder of the paper, we differentiate between
user code and infrastructure code. User code is checked by
the tool to abide by the restrictions outlined in this chapter.
Infrastructure code is verified by the vendor. Infrastructure
code includes the java and javax packages as well as vendor
specific libraries.

3.1 Compliance Levels
The SCJ specification defines three levels of compliance.
Both application and infrastructure code must adhere to one
of these compliance levels. These API visibility annotations
are used to prevent client programmers from accessing SCJ
API methods that are intended to be internal. Since the SCJ
specification spans two packages, package-private visibility
is not an option. In addition, elements intended to only be
used at certain compliance levels, should be considered in-
visible to applications and infrastructure code declared to
be at a lower compliance level. For this purpose, the spec-
ification introduces the @SCJAllowed annotation, which can
be placed on any class or member, see Figure 2. This anno-
tation has two parameters: value and members.

annotation parameters description

@SCJAllowed

value =
 LEVEL_0
 LEVEL_1
 LEVEL_2

 SUPPORT

 INFRASTRUCTURE

 HIDDEN

value specifies compliance level
of an element.

Infrastructure private, can be
overridden by user-level code.

Infrastructure private.

An element non-accessible both
from user and infrastructure.

@SCJAllowed

members =
 true / false (default)

if TRUE, value is recursively
inherited by sub-elements.

Figure 2: Compliance Levels Annotation.

149

The value parameter may contain the following values or-
dered from the lowest to the highest level : LEVEL 0 <
LEVEL 1 < LEVEL 2 < SUPPORT < INFRASTRUCTURE
< HIDDEN. SCJ specifies that an element with a certain
level may only be visible by those elements that are at the
specified level or higher. Therefore, a method that is an-
notated with @SCJAllowed(LEVEL 1) may be invoked by a
method having an annotation @SCJAllowed(LEVEL 2) but
not vice versa.

The elements with level SUPPORT and INFRASTRUC-
TURE can only occur in infrastructure code that can not
be accessed from user code. HIDDEN denotes classes and
methods that can not be accessed from user or infrastruc-
ture code. @SCJAllowed(HIDDEN) is assigned by default to
all unannotated elements. The members parameter controls
whether or not the annotation applies to its enclosed mem-
bers. This reduces the annotation burden on the program-
mer.

3.1.1 Rules
If a class, interface, or member has compliance Level C, it
may only be used in code that also has compliance Level
C or higher. It is legal for an implementation to not emit
code for methods and classes that may not be used at the
chosen level of SCJ application, though it may be necessary
to provide stubs in certain cases. If a class has a default
constructor, the constructor’s compliance level is that of the
class if the annotation has members=true, and HIDDEN oth-
erwise. Static initializers have the same compliance level as
their defining class, regardless of the members argument. It
is illegal for an overriding method to change the compliance
level of the overridden method. It is also illegal for a sub-
class to have a lower compliance level than its superclass.
Intuitively, all of enclosed elements of a class or member
should have a compliance level greater than or equal to the
enclosing element.

3.1.2 Example
Figure 3 illustrates use of the compliance level annotation.
The example shows both user and infrastructure fragments
of source code. As we can see, all the elements are de-
clared to reside at some level. Class MyMission is at Level
0. Every Level 0 mission is composed of one or more peri-
odic handlers; in this case, we define the MyHandler class.
The handler is, however, declared to be at Level 1, which
is an error. Furthermore, MyMission’s initialization method
attempts to instantiate MyHandler and tries to call Peri-
odicEventHandler’s run() method. However, the method
is annotated as @SCJAllowed(INFRASTRUCTURE)and can
be called only from infrastructure code.

Looking at the SCJ infrastructure code, the PeriodicEven-
tHandler class implements the Schedulable interface, both
of which are Level 0 compliant. However, PeriodicEven-
tHandler is defined to override getReleaseParameters(),
originally allowed only at Level 2. This is an illegal attempt
to decrease method visibility.

3.2 Behavior Restrictions
This set of annotations deals with behaviors and character-
istics of methods. For example, some methods may only
be called in a certain mission phase. Others may be re-
stricted from allocation or blocking calls. In both cases, the
restricted behavior annotation @SCJRestricted is used. The

@SCJAllowed(LEVEL_0, members=true)
class MyMission extends
 CyclicExecutive {
 WordHandler peh;

 public void initialize() {
 peh = new MyHandler(...);
 peh.run();
 }
}

@SCJAllowed(LEVEL_1)
class MyHandler extends
 PeriodicEventHandler {

 public void handleEvent() {
 ...
 }
}

@SCJAllowed(LEVEL_0)
public abstract class
 PeriodicEventHandler
 extends ManagedEventHandler
 implements Runnable {

 @SCJAllowed(LEVEL_0)
 public PeriodicEventHandler(..) {
 super(...);
 }

 @SCJAllowed(LEVEL_0)
 public ReleaseParameters
 getReleaseParameters() {
 ...
 }
 @SCJAllowed(INFRASTRUCTURE)
 public final void run() {
 ...
 }
}

@SCJAllowed (LEVEL_0)
public interface Schedulable
 extends Runnable {
 @SCJAllowed(LEVEL_2)
 public ReleaseParameters getReleaseParameters();
}

User
Domain Code SCJ Infrastructure Code

ERROR

ERROR ERROR

OK

Figure 3: Compliance Levels Annotation Example.

annotation parameters description

@SCJRestrict

mayAllocate =
true (default) / false

Specifies that method allocates
memory.

@SCJRestrict
maySelfSuspend =
true / false (default)

Specifies that the method may
perform blocking operation.@SCJRestrict

value = INITIALIZATION
RUN

CLEANUP
ALL

Specifies mission context in which a
certain method can be executed.

Figure 4: Behavior Restriction Annotations.

annotations and its parameters are defined in Figure 4.
The default argument value is one of the list of restrictions
of type Phase:

• INITIALIZATION denotes a method which can only be
called during the initialization phase of a mission,

• CLEANUP denotes a method which may only be called
during the clean-up phase,

• RUN denotes a method which may be called during the
mission execution phase,

• ALL denotes a method which may be called at any
time.

The restrictions INITIALIZATION, RUN, and CLEANUP are mu-
tually exclusive. Furthermore, two other parameters are
specified: mayAllocate and maySelfSuspend:

• mayAllocate=false is annotated on methods that per-
form no allocation in themselves,

• maySelfSuspend=false denotes a method which is guar-
anteed to not block.

There is a partial ordering on annotations: maySelfSus-
pend=true < maySelfSuspend=false, mayAllocate=false
< mayAllocate=true, INITIALIZATION < ALL, RUN < ALL,

150

CLEANUP < ALL. When overriding a method, a subclass is re-
quired to retain the annotation of the overridden method or
strengthen it. Annotations that are related by the ordering
relation are mutually exclusive.

When no annotation is present or some of the parameters
are not specified, default values are mayAllocate=true, may-
SelfSuspend=false and value=ALL. Native methods have
no defaults and thus must be fully annotated.

3.2.1 Rules
Only methods annotated with mayAllocate=true may con-
tain expressions that result in allocation. This includes
new expressions, as well as string concatenation and auto-
boxing of primitive types to objects. Methods annotated
mayAllocate=false may only invoke methods annotated may-
Allocate=false. A similar rule is necessary for maySelfSus-
pend=false. In addition, maySelfSuspend=false methods may
not have blocking statements, such as synchronized blocks.
Methods annotated INITIALIZATION, CLEANUP, or RUN
may only invoke other methods with the same annotation or
ALL. Methods annotated ALL may only invoke other meth-
ods annotated ALL.

3.3 Memory Safety
Memory safety is similar in RTSJ and SCJ: Objects in a
certain scope may not reference objects in a child scope.
Objects in a child scope are deallocated before objects in
a parent scope. Therefore, the specification introduces the
following annotations, see Figure 5:

annotation parameters description

@DefineScope name - name of the scope
parent - parenting scope

Defines a scope and its parent.

@Scope name - name of the scope
where object lives

For an element specifies in which
scope it is allocated.

@RunsIn name - the scope where
an element is executed.

Specifies allocation context of a
method or class.

Figure 5: Memory Safety Annotations.

@DefineScope(name, parent) is used to statically construct
the scope tree. It must be attached to ManagedMemory refer-
ences to keep track of what scope each reference represents.
It is also used to annotate the Runnable passed to enterPri-
vateMemory() to name the new scope being created. Mis-
sion classes should also carry the @DefineScope annotation
to name the mission memory and define what the parent
scope of the defined mission is. It is not necessary to anno-
tate Mission objects; by default, a scope named after the
mission is created, with immortal memory as the parent. Al-
though event handlers create implicit scoped memories, the
necessary addition to the scope tree can be inferred from the
@Scope and @RunsIn annotation on the event handler class.

During the first pass of checking for memory safety, the
scope tree is constructed and checked for well-formedness.
That is, there can be no duplicates in the scope tree, or
cycles. In addition, every chain of scopes must end at the
immortal scope.

@Scope is used to annotate a class to indicate in which
scope all objects of the class are allocated. Under our sys-
tem, all objects of a type are allocated in the same memory
area. All methods in the class run in the specified scope by

default.
@RunsIn is used to annotate either classes or methods.

When annotating a class, it signifies the default allocation
context for its methods. When attached to a method, it
specifies the context for that particular method, overriding
any annotations on its enclosing type.

The @Scope and @RunsIn annotations together define the
allocation context for each method in a SCJ program. An-
notations on methods take precedence over annotations on
classes, with @RunsIn taking precedence over @Scope.

3.3.1 Rules
Verifying memory safety involves two passes over the code;
the first pass constructs the scope tree and checks it for
errors and the second pass uses the tree constructed in the
first pass to do actual checking.

Being the most complex property that our checker verifies,
there are many rules that code must follow:

• Objects may only be allocated in the context specified
by the annotation on their types.

• Arrays may only be allocated in the same context as
that of their element type.

• Variables of a specific type may not be declared in
any scope that is a parent of the scope specified by
the type. Intuitively, if all objects are allocated in a
particular scope, a reference from a parent scope will
result in a dangling pointer.

• Static variables must have types with no @Scope an-
notation or @Scope(”immortal”).

• Methods retain annotations from methods that they
override.

• Invocation of a method is only allowed if its allocation
context is the same as the current context or is a parent
to it. This is simply to prevent objects from being
allocated in the wrong scope.

• Calls to a scope’s executeInArea() method can only
be made if the scoped memory is a parent of the cur-
rent context in the scope tree. In addition, the Runnable
object passed to the method must have a RunsIn anno-
tation that matches the name of the scoped memory.

• Calls to a scope memory’s enterPrivateMemory(size,
runnable) method are only valid if the runnable vari-
able definition is annotated with @DefineScope(name=
”x”,parent=”y”) where x is the memory area being en-
tered and y is a the current allocation context. The
@RunsIn annotation of the runnable must be the name
of the scope being defined by @DefineScope.

• Calls to a scope’s newInstance() or newArray() meth-
ods are only valid if the class or element type of the
array are annotated to be allocated in target scope.

• Class casting must follow special rules in order to not
to lose the scope knowledge associated with each vari-
able. When casting a variable of a certain type, its
defined scope must be either the as the scope of the
target type or the scope of the target type must be
undefined and the current allocation context must be
the same as the scope of the variable being casted.

151

The above rules assume that all classes that undergo ver-
ification are annotated. However, in some cases, this may
not be the case. In order to handle unannotated classes, we
augment the above set of rules:

• Objects of unannotated types may be allocated any-
where. Since we can statically determine the allocation
context in any annotated class, the allocation context
of an unannotated object can subsequently be deter-
mined.

• Objects of unannotated types may not leave the al-
location context in which they were instantiated (i.e.,
may not be passed to a method which has a different
allocation context). Allowing an unannotated object
to pass to a different scope from the one in which it
was created would lose scope information necessary for
determining assignability.

• When a method returns an object of an unannotated
type, it must be allocated in the method’s allocation
context.

• Classes that are unannotated may not reference any
annotated types. This prevents objects of unannotated
types, which can be allocated anywhere, from allocat-
ing objects in a scope other than their designated one.

3.3.2 Example
Figure 6 gives an example illustrating the use of memory
safety annotations. A MyMission class declares a scope in
which the mission is running by @DefineScope(name=”My-
Mission”,parent=”immortal”). Furthermore, the mission han-
dler MyHandler is defined to be allocated in mission’s mem-
ory by @Scope(”MyMission”), while running in its own han-
dler private memory by @RunsIn(”MyHandler”), thus implic-
itly defining a new memory area. The user is also expected
to define a new scope area any time code enters a child
scope. This is illustrated by the MyRunnable class that is
allocated in MyHandler private memory while running in its
own scope. When instantiating this runnable, we annotate
it with @DefineScope to define a new scope area that may
be entered using this runnable.

4. IMPLEMENTATION
Static verification is done using the Checker Framework,
which is built on top of JSR308 [4]. JSR308 is part of Java
7 and extends the Java 5 annotation system. Annotations
can be used in many more places than previously, which
can allow programmers to create richer type systems. The
Checker Framework exposes a low level AST visitor for low
level processing for annotations. All of our verification is
done with these AST visitors.

The SCJ specification expects that the metadata annota-
tions will be checked at compile time as well as at load time
(or link time if class loading is integrated with the linking).
Therefore, the SCJ annotations are retained in the compiled
bytecode intermediate forma. Compile-time checking is use-
ful to provide rapid feedback to developers, while load- or
link-time checking is essential for ensuring safety. Virtual
machines that use an ahead-of-time compilation model are
expected to perform the checks when the executable image
of the program is assembled. The virtual machine may omit
memory access checks for classes that have been successfully
checked.

@Scope("immortal")
@DefineScope(name="MyMission",
 parent="immortal")
class MyMission extends CyclicExecutive {
 public void initialize() {
 new MyHandler(...);
 }
}

@Scope("MyMission")
@RunsIn("MyHandler")
class MyHandler extends PeriodicEventHandler {

 public void handleEvent() {
 @DefineScope(name="MyRunnable",parent="MyHandler")
 MyRunnable r = new MyRunnable();
 ManagedMemory.getCurrentManagedMemory().
 enterPrivateMemory(3000, r);
 }
}

@Scope("MyHandler")
@RunsIn("MyRunnable")
class MyRunnable implements Runnable {
 public void run() {
 }
}

Figure 6: Example of Memory-Safety Annotations.

5. EXAMPLE AND EVALUATION
Figure 7 presents an example that uses all three types of
SCJ annotations. The example shows a Level 0 MyMission
class and its periodic handler – MyHandler. The MyMission
object is allocated in a scope named similarly and implicitly
runs in the same scope. A substantial portion of the class’
implementation is dedicated to the initialize() method,
which creates mission’s handler and then uses enterPri-
vateMemory() to perform some initialization tasks in sub-
scopes using ARunnable and BRunnable.

The figure also highlights several errors detected by the
checker. First, the user attempts to allocate instances of
classes A and B in an allocation context that is not consistent
with those defined for these classes. In order to instantiate
properly the class B in MyMission class, the user has not
other choice then to duplicate the class implementation and
provide each class declaration with a different scope anno-
tation, as it is shown in the example where B is defined in
both packages with corresponding scope annotations.

Furthermore, the usage of both handlers is also illegal.
The ARunnable class is annotated to be Level 1 and therefore
is not accessible in the context of the Level 0 MyMission. The
BRunnable class is defined to run in the BRunnable scope;
however, the initialization method defines the instance of
BRunnable class to run in PrivateMemory.

The MyHandler class implements functionality – the han-
dleEvent() method – that will be periodically executed
throughout the mission. The allocation context of this ex-
ecution will be MyHandler scope, as the RunsIn annotation
upon the MyHandler class suggests. Looking at the han-
dleEvent() method, we can see that some of the functional-
ity is designated to be executed in child scope memory areas
through the ARunnable and BRunnable classes. However, the
checker will detect an error since the ARunnable is declared
to run in the MyMissionInit memory area, which is not a

152

package mission;

@SCJAllowed(LEVEL_0)
@Scope(”MyMission”)
class MyMission extends Mission {

 static Immortal instance = new Immortal(); // Ok
 A a = new A(); // Error

 @SCJRestricted(value=INITIALIZATION,
 mayAllocate=true, maySelfSuspend=true)
 void initialize() {
 handler.B bObj = new handler.B(); // Error
 B aObj = new B(); // Ok
 new MyHandler();

 @DefineScope(name=”MyMissionInit”, parent=”MyMission”)
 ARunnable aRun = new ARunnable(); // Error
 ManagedMemory.getCurrentManagedMemory().
 enterPrivateMemory(1000, aRun);

 @DefineScope(name=”MyMissionInit”, parent=”MyMission”)
 BRunnable bRun = new BRunnable(); // Error
 ManagedMemory.getCurrentManagedMemory().
 enterPrivateMemory(1000, bRun);
}

@SCJAllowed(LEVEL_1)
@Scope(”MyMission”)
@RunsIn(”MyMissionInit”)
class ARunnable implements Runnable { ... }

@SCJAllowed(LEVEL_0)
@Scope(”MyHandler”)
@RunsIn(”BRunnable”)
class BRunnable implements Runnable { ... }

@SCJAllowed(LEVEL_0)
@Scope(”MyMission”)
class B { ... }

 package handler;

 @SCJAllowed(value=LEVEL_0, members=true)
 @Scope(”MyMission”)
 @RunsIn(”MyHandler”)
 class MyHandler extends PeriodicEventHandler {
 @SCJRestricted(mayAllocate=true,maySelfSuspend=true)
 void handleEvent() {
 A aObj = new A(); // Error
 B bObj = new B(); // Ok
 @DefineScope(name=”MyHandler”, parent=”MyMission”)
 ManagedMemory mem = ManagedMemory.getCurrentManagedMemory();

 @DefineScope(name=”MyMissionInit”, parent=”MyHandler”)
 ARunnable aRun = new ARunnable(); // Error
 mem.enterPrivateMemory(1000, aRun);

 @DefineScope(name=”BRunnable”, parent=”MyHandler”)
 BRunnable bRun = new BRunnable();
 mem.enterPrivateMemory(1000, bRun); // Ok
 }
 }

 @SCJAllowed(LEVEL_0)
 @Scope(”MyMission”)
 class A {
 @SCJRestricted(mayAlocate=true)
 void bar() { }
 }

 @SCJAllowed(LEVEL_0)
 @Scope(”MyHandler”)
 class B {
 A a;
 A a2 = new A(); // Error
 Object o;

 @SCJRestricted(mayAllocate=false)
 void foo(A a) {
 a.bar(); // Error
 o = a; // Error
 }
 }

instance of BRunnable must
reside in MyHandler

Cannot assign variable
from MyMission scope
to a variable in scope
MyHandler.

instance of ARunnable must
reside in MyMission

Not at LEVEL_0.

instance of A must reside in
MyMission memory

A must reside
 in MyMission memory area

B must reside
 in MyHandler memory area

Illegal Invocation:
 bar() is MAY_ALLOCATE

class B duplicated to
reside in different scopes

ERROR

ERROR

OK

MyMisisonInit is not
child of MyHandler

Figure 7: SCJ Annotations; A Full-Scale Example.

child to the MyHandler memory area. Furthermore, the My-
Handler and B classes try to instantiate the A class in illegal
contexts. Method bar() in B further tries to call a.foo(),
which is annotated as mayAllocate=true whereas the caller
method prohibits any allocation. Finally, the assignment o
= a; is illegal, since the user is assigning a variable from
the MyMission scope to a variable in the MyHandler scope.
Assigning an instance of an unannotated type into a vari-
able in a different scope would cause lost of scope knowledge
related to this instance, which is illegal.

This example, together with roughly more than 100 other
examples, which each demonstrate a detection of a specific
annotation error, are part of our checker and can be found
in oSCJ distribution2.

5.1 Evaluation
In order to conduct a field test for feasibility, we have imple-
mented and annotated miniCDj as a case study. miniCDj3

is a SCJ application based on the CDx benchmark [6,8] and
simulates a collision-detector algorithm that iteratively com-
putes collision courses of aircraft. From the annotation point
of view, miniCDj represents a Level 0 application, where a
periodic handler iteratively processes the aircraft movements

2Available in oSCJ/tools/Checker/tests.
3The miniCDj distribution available at www.ovmj.net/cdx/.

and computes collision courses in a child scope while keep-
ing and updating position of each aircraft in the mission’s
memory. The 24kLoC of miniCDj spans over 61 classes, to
properly annotate the source code we used 92 annotations
(61 level annotations and 31 memory safety annotations).
One class (Vector3d) needed to be duplicated as it is used
in two different allocation contexts.

We have extracted several points highlighting the charac-
teristics of a development process that involve SCJ annota-
tions:

• Class Duplication – The most displeasing aspect of as-
signing each class to a specific scope, already men-
tioned in [1], is the necessity to duplicate a class that
depending on the execution context needs to reside in
two different scopes. This can be alleviated by defining
the class without any scope annotations.

• Restrictive – The annotations are sometimes too re-
strictives, e.g. for o = a observed in Figure 7 which
is evaluated as illegal because of the scope knowledge
lost.

• Negligible Engineering Burden – The effort required
to convert a vanilla RTSJ to the code compliant with
the SCJ annotations is estimated as relatively small
since the developer must be aware of these metadata

153

information (e.g. SCJ functionality needed for given
application, allocation context and object life span)
prior to the implementation. Furthermore, the effort
is facilitated by the checker that can be easily used in
the development process and that iteratively reports
all violations of the SCJ annotation rules.

6. RELATED WORK
The Aonix PERC Pico virtual machine introduces stack-
allocated scopes, an annotation system, and an integrated
static analysis system to verify scope safety and analyze
memory requirements. The PERC type system [7] intro-
duces annotations indicating the scope area in which a given
object is allocated. A byte-code verifier interpreting the an-
notations proves the absence of scoped memory protocol er-
rors. The PERC Pico annotations do not introduce absolute
scopes identifiers. Instead, they emphasize scope relation-
ships (e.g. argument A resides in a scope that ”encloses”
the scope of argument B). This allows more generic reuse of
classes and methods in many different scopes, rather than
requiring duplication of classes for each distinct scope con-
text at the cost of a higher annotation burden. The PERC
annotations address sizing requirements which are not con-
sidered here.

The authors of [3] proposed a type system for Real-Time
Java. Although the work is applied to a more general sce-
nario of RTSJ-based applications, it shows that a type sys-
tem makes it possible to eliminate runtime checks. In com-
parison to the approach in this paper, the proposed type
system provides a richer but a more complex solution.

Scoped Types [1, 10] introduce a type system for RTSJ
which ensures that no run-time errors due to memory ac-
cess checks will occur. Furthermore, Scoped Types capture
the runtime hierarchy of scopes and subscopes in the pro-
gram text by the static hierarchy of Java packages and by
two dedicated Java annotations. The authors demonstrates
that it is possible to statically maintain the invariants that
the RTSJ checks dynamically, yet syntactic overhead upon
programmers is small. The solution presented by the au-
thors is a direct ancestor of the approach proposed by this
paper.

7. CONCLUSION
The Safety Critical Java Specification (SCJ) developed by
JSR-302 expert group is near completion. The goal of this ef-
fort is to bring Java to the domain of safety-critical systems.
As one of its goals, the specification proposes a metadata an-
notation system that enforces correct usage of SCJ concepts
in applications. This paper provides an overview of these an-
notations, their semantics, and rules that must be followed
by users. We have also developed a checker that statically
checks conformance of applications to the specification. Our
initial evaluation case study reports that although the anno-
tation model may sometimes be restrictive or require a class
duplication, the annotations impose small syntactic over-
head upon programmers while allowing to statically check
required SCJ properties.

Acknowledgments. This work was partially supported
by NSF grants CNS-0938256, CCF-0938255, CCF-0916310
and CCF-0916350. The authors gratefully acknowledge the
contributions of the JSR 302 Expert Group to the ideas pre-
sented in this paper and thank reviewers for their comments.

8. REFERENCES
[1] Chris Andreae, Yvonne Coady, Celina Gibbs, James

Noble, Jan Vitek, and Tian Zhao. Scoped types and
aspects for real-time Java memory management.
Realtime Systems Journal, 37(1), 2007.

[2] Greg Bollella, James Gosling, Benjamin Brosgol, Peter
Dibble, Steve Furr, and Mark Turnbull. The
Real-Time Specification for Java. Addison-Wesley,
June 2000.

[3] Chandrasekhar Boyapati, Alexandru Salcianu,
William Beebee, Jr., and Martin Rinard. Ownership
types for safe region-based memory management in
real-time java. In Programming Language Design and
Implementation (PLDI), 2003.

[4] JSR 308 Expert Group. Type Annotations
specification (JSR 308).
http://types.cs.washington.edu/jsr308/,
September 12, 2008.

[5] JSR 302. Safety critical Java technology, 2007.
[6] Tomas Kalibera, Jeff Hagelberg, Filip Pizlo, Ales

Plsek, and Jan Vitek Ben Titzer and. CDx: A family
of real-time Java benchmarks. In International
Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES), September 2009.

[7] Kelvin Nilsen. A type system to assure scope safety
within safety-critical Java modules. In International
workshop on Java technologies for real-time and
embedded systems (JTRES), 2006.

[8] Filip Pizlo, Lukasz Ziarek, Ethan Blanton, Petr Maj,
and Jan Vitek. High-level programming of embedded
hard real-time devices. In EuroSys Conference, 2010.

[9] RTCA and EUROCAE. Software considerations in
airborne systems and equipment certification. Radio
Technical Commision for Aeronatics(RTCA),
European Organization for Civil Aviation Electronics
(EUROCAE), DO178-B, 1992.

[10] Tian Zhao, James Noble, and Jan Vitek. Scoped types
for real-time Java. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS),
2004.

154

