
A Technology Compatibility Kit for Safety Critical Java

Lei Zhao Daniel Tang Jan Vitek
Purdue University

ABSTRACT
Safety Critical Java is a specification being built on top a
subset of interfaces from the Real-Time Specification for
Java. It is designed to ease development and analysis of
safety critical programs that have to be certified. Though
Real-Time Java was developed to add hard real-time support
to Java, it permits too many freedoms that are not desirable
for safety critical programs. The Safety Critical Specifica-
tion for Java aims to deliver a more restricted programming
model and provide a predictable structure and data flow that
will ease analysis of applications written against it. Since the
specification is being developed with the Java Community
Process, a Technology Compatibility Kit is required so that
all aspiring implementations can check for conformance to
the specification. In this paper, we present the first steps
towards an open source compatibility kit. We have devel-
oped it to test other implementations, including the refer-
ence implementation being developed concurrently with the
specification.

1. INTRODUCTION
The Real-Time Specification for Java (RTSJ) [5] is an ex-

tension to Java that provides real-time capabilities, enabling
development of programs with hard real-time constraints
in Java. RTSJ uses region-based memory management to
curtail unbounded delays caused by the garbage collector
and provide predictable timing, which is necessary for hard
real-time programs. However, there are a number of char-
acteristics about RTSJ that make it unsuitable for safety
critical systems. Safety Critical Java (SCJ) [11] is being
developed to provide a real-time framework based on a sub-
set of RTSJ that is also suitable for the development and
analysis of safety critical programs for safety critical certifi-
cation. For example, it removes the ability to allocate from
the heap, which is still present in RTSJ. The specification
also aims to leverage static checking techniques to remove
runtime exceptions caused by bad memory accesses.

Three pieces are required in the Java Community Process
(JCP) for a Java Specification Request (JSR) ratification:
the specification, the reference implementation (RI), and the
Technology Compatibility Kit (TCK). As the specification
and RI are evolving alongside each other, the need for a SCJ
TCK is becoming more urgent.

A TCK is a suite of tests that determine whether or not an
implementation conforms to its corresponding specification.
Although every approved JSR release contains a TCK, little
literature has been published on the subject of TCKs. An
example TCK can be found in the Java Compatibility Kit

(JCK) [7], a TCK for Java Standard Edition (J2SE) 6 [6],
which was initiated and is supported by Sun Microsystems.
It consists of tests on the compiler, runtime, and develop-
ment tools. The JCK source is released under a read-only
license [8]. For TCK development, the JCP provides the
Java Compatibility Test Tools (Java CTT) [9] for assistance
in many aspects. The package contains a test harness, signa-
ture test tool, and several instructional documents, as well
as a Spec Trac tool which can associate tests with the spec-
ification assertions. However, Java CTT is only free to par-
ticular JCP members. JUnit [12] is a known open-source
testing framework. However, JUnit is designed to test stan-
dard Java programs in a per unit way, it is not suitable for
direct use in the development of SCJ TCK, which can get
limited runtime supports and requires entire program tests.

Generally, performance is not taken into account in judg-
ing the compatibility of an implementation to a specification.
However, due to the nature of real-time systems, timeliness
is also an important factor in judgment. Real-time bench-
marks, such as [2] [3] [1], should also be integrated into TCKs
if possible.

In this paper, we present our work on an open source TCK
for Safety Critical Java. Our TCK focuses on functionality
and behavior tests. We are also developing a benchmark-
ing suite for testing timeliness and performance. The TCK
will eventually also include signature tests, but this is not
particularly interesting, since open source signature testing
tools already exist [14].

In our work, we try to measure how well the TCK is de-
signed. Unfortunately, due to the lack of conventional crite-
ria, measurement is difficult. We rate the TCK by consid-
ering the following three quantities, where higher values are
desired.

• RI code coverage rate;

• the amount of tested assertions in the specification;

• the amount of failure messages the TCK can report.

Clearly, the code coverage rate reflects how comprehensive
the TCK can is in testing code paths. A higher coverage
rate means less untested code, which are the potential places
where specification violations can avoid detection. Although
not the whole story, the amount of assertions and failure
messages show the test’s completeness in one dimension.

The main contributions of this paper are:

1. development of an open source SCJ TCK;

2. results of using it against the current SCJ RI;



3. a report and analysis of code coverage and failure mes-
sages.

The remainder of the paper is organized as follows: Sec-
tion 2 gives a more detailed overview of Safety Critical Java;
section 3 describes what assertions the TCK tests and ex-
plains testing logic; section 4 gives implementation details
of the TCK; section 5 presents testing results on the current
reference implementation; section 6 gives conclusive state-
ments. The appendix sections provide information about
where to find the source code, how to run the TCK and
get code coverage report, as well as a summary of all failure
messages.

2. SAFETY CRITICAL JAVA
Safety Critical Java was born from the desire to design

programs that were not only more predictable, but also
highly reliable. When these programs concern the well-being
of something or someone, they are said to be safety critical.
Safety critical programs, due to the risk they incur, must
undergo certification to be used in real systems; for exam-
ple, in avionics, DO-178B/ED-12B is required in the United
States and Europe, respectively [13]. While SCJ does not
and cannot ensure that applications built against it will be
certifiable, SCJ provides a very strict model which makes
analysis easier, compared to potentially more freeform RTSJ
or standard Java programs.

SCJ programs are composed of one or more missions.
Each mission is composed of a bounded number of schedula-
ble objects, the types of which are restricted by SCJ compli-
ance levels. Level 2 is the most liberal compliance level, and
allows NoHeapRealtimeThread objects to run, while level 0
is the most restrictive, which uses a frame-based model of
execution. These levels of compliance refer to the expected
cost and difficulty of certification, rather than any actual
relation to the certification process itself.

Throughout execution of an SCJ program, allocation to
heap memory is not allowed. This is important, because
heap memory implies garbage collection and thus unbounded
delay. Each mission is given its own dedicated memory re-
gion for allocation during an initialization phase, and each
schedulable object is given its own private memory to allo-
cate to.

These are arguably the two outstanding characteristics of
SCJ. More information will be presented while also present-
ing the TCK in the following section.

3. TCK DESCRIPTION
The SCJ APIs consist of a subset of plain Java and RTSJ
APIs as well as a newly introduced package javax.safety-

critical. Given that TCKs exist for standard Java and
RTSJ, we concentrate our TCK on the new SCJ package.
Requirements are extracted from the SCJ specification, and
the enforcement of which are tested. In our following dis-
cussion, some of the requirements from the SCJ specification
will be quoted. We will go through most of them; a complete
failure message list can be found in Appendix C. Some kinds
of requirements are not and will not be included in check.
This is for the following three reasons.

1. They are not testable from user-code, e.g. for the as-
sertion of “the thread that executes the initialization
phase is a bound asynchronous event handler”, the

thread itself has no way to determine whether it is a
schedulable object (which will be discussed in Section
3.2.1) or what kind of schedulable object it is. The
enforcement of such as assertions relies on a careful
runtime system implementation.

2. They are requirements that require static analysis, e.g.
“no use of the synchronized statement is allowed”. Ap-
plications with prohibited syntax should not compile
or verify. The TCK works based on the assumption
that there are well functioning compilers or checkers
able to rule out all syntax errors, which we think is
reasonable.

3. They need negative tests, e.g. “deadline miss detection
is not supported”. Clearly, there is no need to label
those with the feature of deadline miss detection as
failed implementations.

Following we discuss the testing approaches taken in every
aspect of SCJ. The discussion is organized with the same
section structure as in SCJ specification.

3.1 Mission Life Cycle
An SCJ application must be organized as a series of mis-
sions, whose order is specified by the mission sequencer and
issued by the infrastructure. The mission life cycle consists
of three phases: initialization, execution, and cleanup. A
mission can be restarted as necessary.

We have tested that the infrastructure can issue the se-
ries of missions completely and without lifetime overlaps. To
test for completeness, a global mission counter is maintained
to show how many missions have been actually issued. The
difference between the final value of the counter and the
real mission numbers implies a failure of the infrastructure.
To test the serializability of missions, the initialization and
cleanup time of each mission are recorded and checked for
linearity as soon as the whole application terminates. Aside
from the above requirements, which apply to all levels, some
are level specific. On level 0, the workload in a mission is
further divided into frames, which are also issued by the
infrastructure. We test that “the frames will be issued ac-
cording to their pre-defined order”. On level 2, “applications
are allowed to launch nesting missions”. In the TCK, a nest-
ing mission which contains all kinds of schedulable objects
are launched. The schedulable objects check the indicating
variables if they get executed successfully.

3.2 Concurrency and Scheduling Models

3.2.1 Schedulable Objects
In SCJ, work is carried out through schedulable objects. Three
kinds of Schedulable objects are supported: Periodic-

EventHandler (PEH), AperiodicEventHandler (AEH), and
NoHeapRealtimeThread (NHRT). Regular Java threads and
RTSJ real-time threads that use heap are forbidden. A PEH
is a periodically released schedulable object whose release is
ensured by the SCJ runtime. The functions of AEH and
NHRT are analogous with their counterparts in RTSJ. For
level considerations, PEH objects are allowed on all levels;
AEH is allowed on level 1 and 2; NHRT is only allowed on
level 2. In the TCK, all testing logic is delivered via schedu-
lable objects.

SCJ requires that “the schedulable objects must be no-
heap and non-daemon”. This is tested on level 2, where



all kinds of schedulable objects are allowed to run. While
the check of non-daemon is straightforward by consulting
Thread.isDaemon() method on current threads, that of no-
heap is to some extent guaranteed automatically. Because
heap memory is not part of the SCJ specification, program-
mers would have no chance to allocate in the heap explic-
itly (which known can be done in RTSJ by using Heap-

Memory.instance().newInstance()). Because of this, we
want to make sure that the active memory areas during mis-
sion life cycle would always be either immortal memory or
scoped memory, so that an implicit allocation in heap is not
possible. However, though the TCK can guarantee no use
of heap by user logic, it cannot determine things on the in-
frastructure side. For a virtual machine which has heap on
it but also supports SCJ, the absence of heap interface actu-
ally prevents the TCK from monitoring the heap usage. As a
result, improperly creating auxiliary objects in the heap by
the infrastructure for some implementing purposes during
the mission life cycle cannot be reflected by the TCK. The
infrastructure designers should always make sure no heap is
used in SCJ sphere.

3.2.2 Synchronization
Like plain Java, synchronization in SCJ is performed by us-
ing the synchronized keyword or wait/notify features, but
with some restrictions applied:

• “No use of the synchronized statement is allowed”

• “The receiver of Object.wait() should only be this”

• “Synchronized methods are supported and nested calls
from one synchronized method to another are allowed”

For the reason stated at the beginning of this section, we
do not test the first two assertions. The test for the last
one is done by simply defining a number of synchronized
methods nested together and invoking the outermost during
mission. It is expected that the deepest nesting method
could be eventually invoked.

Beside the above restrictions, which are applicable to all
levels, “synchronized code is not allowed to self-suspend”ap-
plies to level 0 and 1 applications. Violation to this will cause
an IllegalMonitorStateException to be thrown. Self-sus-
pension can be the result of sleep method calls or block-
ing I/O operations; requesting a lock (via the synchronized
method) is not considered self-suspension. To test this, we
define a class with two methods: one self-suspends by calling
Thread.sleep() and the other just invokes some synchro-
nized method, which not considered self-suspension. An
IllegalMonitorStateException should be caught outside
the self-suspending method on level 0 and 1, while no ex-
ception outside the other. On level 2, no exception should
be caught when either is invoked.

3.2.3 Scheduling Model
SCJ uses a preemptive, priority-based scheduling model with
priority ceiling emulation (PCE) for priority inversion man-
agement. Unlike RTSJ, priority inheritance is not supported.
SCJ requires that “the default ceiling for locks should be
equal to the maximum priority that current priority sched-
uler can provide”. This can be tested by comparing the re-
sults of System.getDefaultCeiling() against that of Pri-
orityScheduler.instance().getMaxPriority().

For the requirement “on level 0, only one thread of control
shall be provided by the real-time virtual machine to exe-
cute handlers”, we do the necessary, but insufficient test –
make sure all PEHs are executed by the same thread. The
insufficiency of the test lies in that they can happen to be
executed by the same thread. At all events, an enforcement
to this requirement implies the assertion that “the handlers
shall be executed non preemptively”.

As the specification states, “full preemptive scheduling
should be supported on level 1 and 2”. The test for this
is carried out on three threads with different priorities: L
(low), M (median), H (high), which are launched in or-
der of L, H, M. Each records its actual starting and ending
time. The thread life time is adjusted to be long enough so
that preemption has a definite chance of happening. Under
a correctly implemented scheduler, we should get a mono-
tonically increasing time record with the form of tL

start <
tH
start < tH

end < tM
start < tM

end < tL
end, where the subscript

indicates whether it is starting or ending time, while the
superscript indicates the thread.

The test for priority ceiling emulation is mostly similar
to the preemption test, but with following changes: the L
and H threads serialize their execution by synchronizing on a
lock, while the M thread synchronizes on a lock for which no
other thread competes. With L correctly lifting its priority
to the maximum as entering its critical section, we expect
to get the time record of tL

start < tL
end < tH

start < tH
end <

tM
start < tM

end.
Testing that “a preempted schedulable object must be

placed at the front of the run queue for its active priority
level” is somewhat complex. This requirement is enforced if
and only if following assertion is true: the preempted thread
is the first one, among all those on the same priority level,
getting back to run upon the preempter finishes. The major
issues here are how a thread knows it is the first one being
scheduled after a preemption happens and how it knows who
is the last one that has just been preempted. Our solution
is to maintain two shared variables: preempted indicates
whether or not a thread has been preempted and curRun-

ner stores the ID of the just-preempted thread. When the
mission starts, several low priority threads run in a loop to
compete to assign curRunner with their own ID in order to
indicate who the current running thread is. Clearly, once the
preemption occurs, the thread being preempted will have its
ID left in curRunner. A high-priority thread is defined to
kick in periodically to preempt low threads and set pre-

empted to true to declare a preemption. After it is done, the
first low thread being scheduled will notice the preemption
by checking preempted. Then, the low thread will check
curRunner for the preemptee’s ID. If it gets its own ID, it
knows it was correctly placed at the front of the run queue
for its priority level. Otherwise, the failure will be reported.

3.2.4 Interrupt Handling
Compared to the RTSJ, SCJ aims to enhance support for in-
terrupt handling; however, the discussion of which features
are to be supported is still in progress. Basically, SCJ defines
its own external event interface and will support handling
both software and hardware interrupts. We have an elemen-
tary testcase for this, but since we lack meaningful definition
of the happening string and interrupt ID, we leave this for
future work.



3.3 Memory
RTSJ extends standard Java with immortal and scoped mem-
ory regions, which enable programmers to get more control
of memory allocation and deallocation and their associated
delays. However, as mentioned above, SCJ removes heap
memory access to completely eliminate the option, which
makes time analysis much simpler. It also restricts the way
scoped memory regions are used.

3.3.1 Memory Model
All objects needed by the mission should be allocated in the
mission initialization phase, where “the default allocation
area is mission memory”. All schedulable objects share the
mission memory and immortal memory, but will allocate in
their own private memory by default.

It is required that “the mission memory and private mem-
ory are scoped memory, and the private memory should also
be LTMemory”. We test this by acquiring the memory area
instance during mission initialization and execution phases,
and checking their classes. Mission memory should be an in-
stance of ScopedMemory and private memory should be that
of LTMemory.

The immortal and mission memories should hold mission
global objects, so we test that “the global objects can be
accessed by all schedulable objects during a mission”. Ac-
cording to the SCJ specification, “object creation in mis-
sion scoped memory or immortal memory during the mission
phase is not encouraged but allowed” and “mission memory
is resizable”. The TCK covers both of them.

3.3.2 Nesting Scopes
Except level 0, “new private memory instances are allowed
to be created and nested during mission”. We test this by
simply creating several nesting private memory instances in
a PEH and checking the deepest nesting one can be entered.

In order to simplify the nesting structure, SCJ requires
that “a given scoped memory can only be entered by a single
thread at any given time”, and“a scope may only be entered
from the memory area in which it is created.” We test the
first assertion by arranging several PEHs to try to enter a
scoped memory simultaneously. According to the specifica-
tion, after the private memory is occupied by the first PEH,
a MemoryInUseException should be thrown upon the sec-
ond PEH is about to enter. If more than one PEH success-
fully enters the private memory, a ScopedCycleException

should be caught due to the violation of single parent rule
– a memory region can only have one parent region, and
multiple PEHs entering the region would result in several.
In this case, a failure report is generated. For the second
assertion, an intentional violation is made by creating two
private memories in the same place and entering one from
another. If this can be done without any exception being
thrown, an implementation failure is detected.

3.4 Clocks, Timers, and Time
SCJ inherits the RTSJ classes AbsoluteTime, RelativeTime,
and HighResolutionTime for representing time. It supports
only a single system real-time clock. No timer is supported.
What has been tested in this section includes:

• “The real-time clock should be monotonic and non-
decreasing.”

• “HighResolutionTime.waitForObject() method should

be allowed on level 2.”

3.5 JNI
SCJ provides very restricted JNI support. The supported
JNI services are listed below, all of which have been tested
in straightforward ways.

Version Information
GetVersion

General Object Analysis
GetObjectClass

IsInstanceOf

IsSameObject

GetSuperclass

IsAssignableFrom

String Functions
GetStringLength

GetStringChars

ReleaseStringChars

GetStringUTFLength

GetStringUTFChars

ReleaseStringUTFChars

GetStringRegion

GetStringUTFRegion

Array Operations
GetArrayLength

GetObjectArrayElement

SetObjectArrayElement

New<PrimitiveType>Array Routines
Get<PrimitiveType>ArrayElements Routines
Release<PrimitiveType>ArrayElements Routines
Get<PrimitiveType>ArrayRegion Routines
Set<PrimitiveType>ArrayRegion Routines
NIO Support
NewDirectByteBuffer

GetDirectBufferAddress

GetDirectBufferCapacity

3.6 Exceptions
SCJ’s exception feature is similar to the RTSJ’s when deal-
ing with exceptions thrown across memory boundaries. The
only differences lie in two aspects of ThrowBoundaryError.
First is the exception allocation place. In RTSJ, with an oc-
currence of a boundary-crossing exception, a ThrowBound-

aryError exception will be allocated in the enclosing scoped
memory. In SCJ, exceptions “behave as if there is a pre-
allocated exception instance on a per-schedulable object ba-
sis.” As the specification does not explicitly specify the allo-
cation location, we just test that the ThrowBoundaryError

exception is not allocated in the scoped memory which is
created by user logic. Such kind of memory is created on
the fly while the schedulable object runs, therefore logically
impossible to be pre-allocated in before the schedulable ob-
ject actually starts. Obviously, the test is necessary but
insufficient. SCJ also defines its own ThrowBoundaryError,
which extends the RTSJ version with following functions:

• getPropagatedExceptionClass()

• getPropagatedMessage()

• getPropagatedStackTraceDepth()



• getPropagatedStackTrace()

Information of the original exception can be retrieved with
these new features. In our testcase, a scenario of cross-scope
boundary exception propagation is constructed. The class
and message of the original exception are examined. In order
to check the stack trace, the same exception is made to be
thrown without crossing boundary. The stack trace (the
elements and depth) between the two scenarios should be
the same. However, this seemingly reasonable assumption
is not necessarily true. Since boundary exceptions are pre-
allocated, the stack trace can only hold so many items, which
may result in a truncated stack trace. To try to avoid false
failure reports, we choose to just compare the top several
elements. The compared element amount can either be set
to maximum length of stack trace or kept in a reasonable
small range if no such information is available so that no
truncation is likely to happen.

4. IMPLEMENTATION
In this section, we describe the implementation details of the
TCK, and how to create new testcases within the current
framework.

4.1 Framework
The TCK is organized as one testcase per SCJ applica-

tion manner instead of squeezing all tests into one appli-
cation. This is partly forced by the characteristics of SCJ
applications that the compliance level is fixed throughout
the application lifetime. Starting a new application enables
level adjustment and testing of level-specific features. The
TCK framework is shown in Figure 1. All SCJ applica-
tions must implement the Safelet interface. All testcases
in the TCK subclass a MainSafelet abstract class, which
implements Safelet and helper methods that are useful for
testcases and benchmarks. For example, MainSafelet in-
cludes a Properties object which is loaded at runtime from
a configuration file and contains parameters such as period
length, mission memory size, running level, etc.
The availability of the file system is not guaranteed by the
SCJ specification. Since our target SCJ RI is implemented
based on J2SE and RTSJ, we can make use of file system

-_prop
-_launcher

MainSafelet

+setup()
+teardown()
+getLevel()
+getSequencer()

<<interface>>
Safelet

+fail()

TestCase

TestCase1 TestCase2

Properties

Benchmark

Config 
File

Figure 1: TCK Framework

to ease the property configuration. For those running in an
environment without file systems, all parameters have to be
hardcoded for each run, which introduces no difficulties but
takes more effort in regenerating TCK binaries.

Failure Report. Our TestCase class has a String set for
storing the failure messages; fail() can be used to report
such failure wherever an error is detected.

4.2 Start and Termination
An SCJ application launched by the infrastructure may re-
quire termination if necessary. Ideally, the infrastructure
should be able to notice the termination of the application
and shift to the cleanup phase. As no complete SCJ in-
frastructure is available thus far, we have written a plain
Java launcher to emulate the SCJ infrastructure on a RTSJ-
compliant virtual machine. Some synchronization between
the launcher thread and testcase thread is needed – the test-
case notifies the launcher of its termination in order for an
external script to be able to run all of following the test-
cases without overlap. To achieve this, a _launcher field in
MainSafelet is maintained and assigned with reference to
the launcher thread while setup() is invoked. The launcher
will sleep until it is interrupted by the testcase after all work
is done.

4.3 Extending the TCK
The SCJ specification is still in development. The appear-
ance of new features will require extensions to the current
TCK. Extensions are also expected while the java and javax.realtime

packages in SCJ are taken into consideration. We claim that
adding more testcases to current testcase set is very easy. To
extend the TCK, following steps may be taken:

1. Define a testcase class extending TestCase.

2. Organize the test logic in a mission sequence.

3. Invoke TestCase.fail() to report failure.

4. Interrupt the launcher thread at the cleanup phase of
the last mission.

5. Define more properties in Properties class as need
and providing proper configuration files.

Several pre-configured SCJ application components are
provided in MainSafelet as inner classes, which further fa-
cilitates testcase creation and simplifies code as well. For
example, a GeneralMission class exists that automatically
calls its parent Mission constructor based on the parameters
in the Properties object. Other classes do the same with
their parent constructors, but of course, the parent classes
can be used directly if necessary.

5. TESTING RESULTS
Currently, there is no full-fledged SCJ RI released; the SCJ
RI developed by the JSR 302[10] expert group is still incom-
plete. It implements most of the classes in javax. safe-

tycritical, but is still missing a few components, which
will be mentioned. However, we tested it against our TCK
anyway, as it is the only implementation of SCJ at all at the
present state. Our results are presented below.



5.1 Code Coverage
In this section, we report code coverage rates, which are
one indication of how thoroughly the TCK tests SCJ. We
measure the code coverage rate on javax.safetycritical

package by using the open-source tool EMMA [4], which sup-
ports offline Java bytecode instrumentation. The result is
achieved by running the instrumented TCK and SCJ classes;
EMMA can automatically merge the coverage of each sin-
gle testcase into a comprehensive report. Tables 2 and 3
show the merged results of javax.safetycritical package.
Coverage rate is calculated with respect to class, method,
block, and line respectively. Table 2 is the summary for
the whole package, and table 3 breaks it down into files.
Files are sorted by block coverage rate. From examination
of the blocks without coverage, it turns out that most of
them are the result of exception and recovery mechanisms
which are just for implementation purposes. For those doc-
umented exceptions, for example the IllegalArgumentEx-

ception upon feeding a negative memory size to an event
handler, we test that they can actually be thrown with ille-
gal parameters. A second important reason for non-covered
code comes from non-invoked small methods, such as set-
ter/getter, toString(), getName(), and so on. They have
not been taken into consideration by current stage of spec-
ification and can be added into test easily once they have
been. Detailed classification is shown below:

Exception & Recovery
MissionMemory, MissionManager

LevelZeroManager, LevelOneManager

Mission, MissionSequencer, ManagedEventHandler

Small Methods
Mission, PrivateMemory

Currently, ThrowBoundaryError has no coverage at all. This
is simply because the RI currently has no implementation for
the SCJ version of the class, so the RTSJ version is thrown
instead. Once the RI implements the class, the coverage rate
will naturally rise above 0. The next least covered classes
are ExternalEvent and InterruptHandler. The reason, as
previously stated in section 3, is that interrupt handling is
virtual machine dependent (which may even not supported);
it is impossible to give a general test. As the happening
string and interruption ID are given arbitrary values in the
TCK, these two classes do not fully function during tests.
LevelOneManager, which manages interrupt handling, has
its related code that is also not covered as consequence.

5.2 Detected Failures
In this section, we report detected RI failures. As stated
above, the RI we tested against is incomplete. A few of
its methods have dummy implementations. We show the
detected specification violations without the intention to re-
port RI bugs, but instead to give a feeling of how well the
TCK can work in practice.

Ten RI failures are detected by the TCK. The correspond-
ing messages are listed in Table1. Note that the interrupt
handler test is excluded due to the lack of a meaningful way
to test. A proper test requires a happening string or inter-
ruption ID, which are VM-dependent. Without documen-
tation on such, we are unable to implement a meaningful
test.

The failures can be classified into three groups according

to their causes. The first two failures occur because the cur-
rent RI is built based on existing RTSJ implementations.
The maximum priority of the scheduler has not been ad-
justed to be equal to the default ceiling of monitors. As the
RTSJ runtime would not be aware of any SCJ requirements,
the old javax.realtime.ThrowBoundaryError instance will
still be thrown upon the happening of cross scope boundary
propagations.

The second group, failures 3, 4, and 5, results from the
broken PrivateMemory class. It does not perform the run-
time checks for nesting and parent scope at all. While it
does attempt to check that only one thread can be in a pri-
vate memory at a time, the checking logic is incorrect: each
private memory instance relies on a field indicating whether
it is occupied or not. Unfortunately, while the first thread
entering it will set the field to true, the second will incur
a MemoryInUseException and reset the field to false, which
will wrongly allow the third thread to enter the occupied
private memory without incurring any exception.

The last four failures are simply due to the dummy im-
plementations of a series of sleep methods. These methods
do not function at all.

6. CONCLUSIONS
In this paper, we presented an open source SCJ TCK. A
TCK is an integral part of a JCP specification, which makes
it a high-priority task to complete, alongside the specifica-
tion itself. The aspects that we covered span the mission
life cycle, scheduling, memory, clock, JNI, and exceptions.
Many of the assertions in the specification were presented
to demonstrate how the TCK tests them. We also showed
some results of running the TCK against the current RI; the
results show high code coverage, which we believe indicates
that the TCK is thorough in testing. If more implementa-
tions show otherwise, the TCK is easily extendable with new
testcases, with little to worry about aside from the testing
logic. The detected failures were also stated and the causes
were discussed.

Our current TCK emphasizes functional tests of the javax.
safetycritical package. In future work, the completeness
of APIs including those in java and javax.realtime pack-
ages would be a concern as well. The SCJ specification is still
in development; pending issues will eventually be decided.
Accordingly, we need to make the corresponding tests, such
as the interrupt handling test, work. As the specification
grows, more testcases may be added into the TCK as well.

7. ACKNOWLEDGMENTS
The authors thank Martin Schoeberl from Vienna Uni-

versity of Technology, Anders P. Ravn from Aalborg Uni-
versity for their comments and advice in paper revision.
The authors thank Mike Fulton and Shirish Kuncolienkar
from IBM and Wolfgang Puffitsch from Vienna University
of Technology for the feedback of testing the TCK on related
virtual machines. The authors also thank James Hunt, Andy
Wellings, and Tomas Kalibera for providing helpful informa-
tion in the TCK development.

8. REFERENCES
[1] A. Corsaro and D. C. Schmidt. Evaluating real-time

java features and performance for real-time embedded
systems. In RTAS ’02: Proceedings of the Eighth IEEE
Real-Time and Embedded Technology and Applications



Symposium (RTAS’02), page 90, Washington, DC,
USA, 2002. IEEE Computer Society.

[2] B. P. Doherty. A real-time benchmark for javaTM. In
JTRES ’07: Proceedings of the 5th international
workshop on Java technologies for real-time and
embedded systems, pages 35–46, New York, NY, USA,
2007. ACM.

[3] D. Dvorak, G. Bollella, T. Canham, V. Carson,
V. Champlin, B. Giovannoni, M. Indictor, K. Meyer,
A. Murray, and K. Reinholtz. Project golden gate:
towards real-time java in space missions. In
Object-Oriented Real-Time Distributed Computing,
2004. Proceedings. Seventh IEEE International
Symposium on, pages 15–22, May 2004.

[4] http://emma.sourceforge.net/.

[5] J. Gosling and G. Bollella. The Real-Time
Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[6] http://java.sun.com/javase/6/.

[7] https://jck.dev.java.net/.

[8] https://jck.dev.java.net/jck-read-only-license.txt.

[9] http://jcp.org/en/resources/tdk.

[10] http://jcp.org/en/jsr/detail?id=302.

[11] JSR302-Expert-Group. Safety Critical Specification for
Java (Version 0.66 Draft). 1 May 2009.

[12] http://www.junit.org/.

[13] RTCA. DO178B / ED12B, Software Considerations in
Airborne Systems and Equipment Certification.
RTCA, 1992.

[14] https://sigtest.dev.java.net/.

APPENDIX
A. GETTING THE TCK
The source code of the TCK can be downloaded from http:-

//ovmj.org/.

B. RUNNING THE TCK
Our TCK is arranged into several different directories:

• bin/ Java class files

• doc/ Documentation files (readme, etc.)

• lib/ JNI C library sources

• properties/ Property files for testcases

• RICompl/ Complementary classes to the RI

• src/ Contains s3scj Java package (TCK)

For testing, we used the Sun Real-Time Virtual Machine.
Compilation and execution of the TCK may vary between
different virtual machines, due to different command-line
parameters. For example, IBM’s J9 compiler requires the
-Xrealtime flag for compiling and running RTSJ programs.
A Makefile is included in the root directory that compiles all
of the TCK classes. It compiles the RI and subsequently the
TCK against the RI. It assumes that the javac in the exe-
cutable path is that of a real-time virtual machine with no
necessary command-line parameters. If this is the case, sim-
ply typing make should successfully build the TCK, placing
the class files in the lib directory.

To run the TCK, a tckrun.sh script is provided in the
root directory. Once again, it assumes that java is a real-
time virtual machine. Manually running a testcase simply

involves using javax.safetycritical.S3Launcher as the
main class and passing the class name and property file as
arguments. For example, to run the TestSchedule400 test-
case:

$ java -cp bin javax.safetycritical.S3Launcher \

s3scj.tck.TestSchedule400 \

properties/tck/TestSchedule400.prop

EMMA, the coverage tool we used, is not included in the
download, but is open source and easily accessible. The
steps to using EMMA are:

1. Instrument the TCK and RI class files with EMMA.
The following instruments the class files in bin and out-
puts them in instrbin.

$ java -cp emma.jar emma instr -d instrbin -ip bin

2. Run the TCK normally, except add emma.jar to the
classpath.

$ java -cp instrbin:emma.jar \

javax.safetycritical.S3Launcher \

s3scj.tck.TestSchedule400 \

properties/tck/TestSchedule400.prop

3. Generate a text and HTML report with EMMA. The
-sp option gives EMMA a source path for highlighting
coverage of blocks.

$ java -cp emma.jar emma report -r txt,html \

-in coverage.em,coverage.ec -sp <RISRCPATH>

C. FAILURE MESSAGES
All failure messages that the TCK can report are summa-
rized in Table 4. Some messages contain execution depen-
dent information, which represented by <...>.



Table 1: Detected Failure
Default ceiling should equal to the max priority
javax.realtime.ThrowBoundaryError is thrown (javax.safetycritical.ThrowBoundaryError expected)
Private memory should not nest on Level 0
Private memory not entered from its parent scope
Multiple handlers entered a private memory simultaneously (scope cycle)
Self-suspension illegally allowed in synchronized code on Level 0 and 1
Error occurred in javax.safetycritical.System.sleep(RelativeTime)
Error occurred in javax.safetycritical.System.sleep(RelativeTime, boolean true)
Error occurred in javax.safetycritical.System.sleep(RelativeTime, boolean false)
Error occurred in javax.safetycritical.System.sleep family (threads not sleep)

Table 2: Coverage Summary for Package
name class, % method, % block, % line, %

javax.safetycritical 97% (28/29) 88% (118/134) 87% % (1413/1621) 89% (378.6/426)

Table 3: Coverage Breakdown by Source File
name class, % method, % block, % line, %

ThrowBoundaryError.java 0% (0/1) 0% (0/5) 0% (0/11) 0% (0/6)
ExternalEvent.java 100% (1/1) 75% (3/4) 74% (35/47) 76% (13/17)
InterruptHandler.java 100% (1/1) 60% (3/5) 75% (6/8) 67% (4/6)
System.java 100% (1/1) 89% (8/9) 77% (10/13) 89% (8/9)
LevelOneManager.java 100% (1/1) 100% (6/6) 77% (139/180) 69% (31.8/46)
MissionMemory.java 100% (2/2) 88% (21/24) 81% (192/236) 87% (54.6/63)
Mission.java 100% (2/2) 83% (10/12) 83% (158/190) 96% (42/44)
MissionSequencer.java 100% (1/1) 100% (4/4) 86% (93/108) 89% (25/28)
MissionManager.java 100% (1/1) 100% (10/10) 88% (85/97) 96% (26/27)
PrivateMemory.java 100% (1/1) 83% (5/6) 88% (124/141) 95% (26.6/28)
ManagedEventHandler.java 100% (2/2) 83% (5/6) 91% (86/94) 92% (22/24)
LevelZeroManager.java 100% (1/1) 100% (5/5) 93% (136/147) 92% (29.6/32)
AperiodicEvent.java 100% (1/1) 100% (3/3) 100% (31/31) 100% (9/9)
AperiodicEventHandler.java 100% (1/1) 100% (2/2) 100% (16/16) 100% (4/4)
AperiodicReleaseParameters.java 100% (1/1) 100% (1/1) 100% (7/7) 100% (2/2)
CyclicExecutive.java 100% (1/1) 100% (2/2) 100% (19/19) 100% (5/5)
CyclicSchedule.java 100% (2/2) 100% (7/7) 100% (58/58) 100% (16/16)
LevelTwoManager.java 100% (1/1) 100% (2/2) 100% (12/12) 100% (5/5)
MissionMemoryStore.java 100% (1/1) 100% (4/4) 100% (20/20) 100% (8/8)
NoHeapRealtimeThread.java 100% (1/1) 100% (3/3) 100% (24/24) 100% (6/6)
PeriodicEventHandler.java 100% (1/1) 100% (2/2) 100% (44/44) 100% (10/10)
PortalExtender.java 100% (1/1) 100% (1/1) 100% (6/6) 100% (2/2)
SingleMissionSequencer.java 100% (1/1) 100% (3/3) 100% (13/13) 100% (5/5)
Terminal.java 100% (1/1) 100% (7/7) 100% (96/96) 100% (23/23)
ThreadConfigurationParameters.java 100% (1/1) 100% (1/1) 100% (3/3) 100% (1/1)



Table 4: Failure Message List
Mission Life Cycle
Failed to launch all missions
Mission timelines overlap
Frames not executed sequentially
Error occurred in nested NHTR
Error occurred in nested PEH
Error occurred in nested AEH
Memory
PrivateMemory illegally created in <memory area name>
Mission memory is not instance of ScopedMemory
Schedulable objects not run in private memory
Private memory is not instance of ScopedMemory
Private memory is not instance of LTMemory
Error occurred in PrivateMemory.getManager()
Unable to enter nested private memory
Error occurred during object creation in mission memory during mission phase
Error occurred during object creation in immortal memory during mission phase
Private memory not entered from its parent scope
Mission global object inaccessible or incorrect
Multiple handlers entered a private memory simultaneously (scope cycle)
Failure in resizing mission memory size - Msg: <message>
Clock, Timer, Time
The real-time clock should be monotonic and non-decreasing
HighResolutionTime.waitForObject() should be allowed on level 2
Schedule
AEH should be non-daemon
AEH should be non-heap
PEH should be non-daemon
PEH should be non-heap
NHRT should be non-daemon
NHRT should be non-heap
Error occurred in AEH or PEH
Error occurred in nested synchronization
More than one realtime server thread running
Private memory should not nest on Level 0
Default ceiling should equal to the max priority
Scheduler should provide at least 28 priorities
Requesting a lock (via the synchronized method) should not be considered self-suspension
Level 0 execution illegally preempted
Error in priority ceiling emulation
Error in preemptive scheduling
Thread being preempted should be placed in front of the run queue
Error occurred in calling Thread.join() - Msg: <message>
Self-suspension illegally allowed in synchronized code on Level 0 and 1
Self-suspension should be allowed on Level 2 - Msg: <message>
Error occurred in wait/notify/notifyAll
“null” illegally accepted as PriorityParameters
“null” illegally accepted as ReleaseParameters
Negative memory size illegally accepted
Error occurred in ExternalEvent (single handler)
Error occurred in ExternalEvent (multiple handlers)
Error occurred in InterruptHandler



Table 4: Failure Message List (continued)
Exception
ThrowBoundaryError should be pre-allocated
Error in ThrowBoundaryError.getPropagatedExceptionClass()
Error in ThrowBoundaryError.getPropagatedMessage()
Error in ThrowBoundaryError.getPropagatedStackTraceDepth()
Error in ThrowBoundaryError.getPropagatedStackTrace()
javax.realtime.ThrowBoundaryError is thrown (javax.safetycritical.ThrowBoundaryError expected)
JNI
Failure in JNI test: Object information
Failure in JNI test: String
Failure in JNI test: Array
Failure in JNI test: NIO
Misc
Error occurred in javax.safetycritical.System.sleep(RelativeTime)
Error occurred in javax.safetycritical.System.sleep(RelativeTime, boolean true)
Error occurred in javax.safetycritical.System.sleep(RelativeTime, boolean false)
Error occurred in javax.safetycritical.System.sleepNonInterruptable(RelativeTime)
Error occurred in javax.safetycritical.System.sleepNonInterruptable(RelativeTime, boolean true)
Error occurred in javax.safetycritical.System.sleepNonInterruptable(RelativeTime, boolean false)
Error occurred in javax.safetycritical.System.sleep() family (threads not sleep)
Time out in TestMisc


