
Secure Composition of Untrusted Code:

Box π, Wrappers, and Causality Types

Peter Sewell
Computer Laboratory

University of Cambridge
Peter.Sewell@cl.cam.ac.uk

Jan Vitek
Department of Computer Sciences

Purdue University
jv@cs.purdue.edu

August 17, 2001

Abstract

Software systems are becoming heterogeneous: instead of a small number of
large programs from well-established sources, a user’s desktop may now consist
of many smaller components that interact in intricate ways. Some components
will be downloaded from the network from sources that are only partially trusted.
A user would like to know that a number of security properties hold, e.g. that
personal data is not leaked to the net, but it is typically infeasible to verify that
such components are well-behaved. Instead, they must be executed in a secure
environment that provides fine-grain control of the allowable interactions between
them, and between components and other system resources.

In this paper, we consider the problem of assembling concurrent software sys-
tems from untrusted or partially trusted off-the-shelf components, using wrapper
programs to encapsulate components and enforce security policies. We introduce
a model programming language, the box-π calculus, that supports composition of
software components and the enforcement of information flow security policies.
Several example wrappers are expressed using the calculus; we explore the del-
icate security properties they guarantee. We present a novel causal type system
that statically captures the allowed flows between wrapped possibly-badly-typed
components; we use it to prove that an example ordered pipeline wrapper enforces
a causal flow property.

Correspondence Address
Peter Sewell
University of Cambridge
Computer Laboratory
JJ Thomson Avenue
Cambridge CB3 0FD
UK

Peter.Sewell@cl.cam.ac.uk
Tel: +44 1223 33 46 24,
fax: +44 1223 33 46 78.

1

1 Introduction

Software systems are evolving. Increasingly, monolithic applications are being replaced
with assemblages of software components coming from different sources. Instead of a
small number of large programs from well-established suppliers, nowadays a user’s
desktop is made up of many smaller applications and software modules that interact
in intricate ways to carry out a variety of information processing tasks. Moreover,
whereas it used to be that a software base was fairly static and controlled by a system
administrator, it is now easy to download code from the network and even extend
application programs while they are running. These components are obtained from
different untrusted or partially-trusted sources and they may be faulty or malicious,
or designed with a weaker security policy that the user requires – what is legitimate
marketing data to a vendor may be considered sensitive by a user. It is difficult for a
user to gain assurance that the composed system is secure.

In such fluid operating environments, traditional security mechanisms and policies
appear almost irrelevant. While passwords and access control mechanisms are adequate
to protect the integrity of the computer system as whole, they utterly fail to address
the issue of protecting the user from downloaded code being run from her account
[21, 15, 27]. Approaches such as the Java sandbox that promise security by isolation
are not satisfactory either, as they propose a model in which components can either
interact freely or not at all [16].

While it is not feasible, in general, to analyse or modify third-party software pack-
ages, it is possible to intercept the communications between a package and the other
parts of the system, interposing code at the boundaries of the different software com-
ponents to observe and modify the data passing through [22, 44, 13, 12, 10, 4, 15].
Interposition techniques effectively encapsulate untrusted components in wrapper pro-
grams that have full control over the interactions between encapsulated components
and the OS and over the interactions among components. The code of a wrapper can,
for instance, perform access control checks, audit, attempt to detect intruders, and even
monitor covert channels. Clearly, writing wrappers should not be left to the end-user.
Rather we envision wrappers as reusable software components; users should then only
have to pick the most appropriate wrappers, customize them with some parameters
and install them. All of this process should be dynamic: wrappers must be no harder
to add to a running system than new applications. Ultimately, end users will require
a clear description of the properties guaranteed by their wrappers.

Practical work on wrappers underlines the difficulty of understanding exactly what
these guarantees are. For example, in [12] Fraser, Badger and Feldman presented a
system that splits the task of writing a wrapper into two parts. The wrapper’s body
is written in a variant of C called the Wrapper Definition Language. The dynamic
aspects of creating wrappers and instantiating concurrently executing components are
specified in the Wrapper Life Cycle framework. While quite expressive, their approach
does not provide guarantees that the wrappers actually enforce the desired security
policies. The powerful wrapper language, the fact that all wrappers execute in kernel
mode, and the fact that components are concurrent combine to make it difficult to
understand precisely what properties a wrapper enforces.

Our work in the current paper explores secure composition using wrappers, fo-
cussing on the rigorous statement and proof of their security properties. To express and
reason about wrappers we require a small programming language, with a well-defined
semantics, that allows the composition of concurrently-executing software components
to be expressed straightforwardly and also supports the enforcement of security poli-

2

cies. We have therefore abstracted the essential aspects of the problem in a process
calculus: the box-π calculus, introduced in Section 2. Box-π is a minimal extension
of the π-calculus [26] with encapsulation; it is expressive enough to code non-trivial
wrappers and the concurrent composition of components, but retains the simplicity
and tractable semantics needed for proving properties. Moreover Pict [29] demon-
strates how to build a real programming language above a π-calculus core; a similar
approach could be used for box-π.

Several wrappers are expressed in box-π in Section 3. We begin with a simple exam-
ple, the wrapper W1. It encapsulates a single component and controls its interactions
with the environment, limiting them to two channels in and out . W1 is written as a
unary context in Figure 1.

W1()
def
= (ν a)

(
a[]
| ! in↑y.in

a
y

| ! outay.out
↑
y
)

Figure 1: The filtering wrapper W1 in box-π.

This creates a box with a new name a, installing in parallel with it two forwarders
– one that receives messages from the environment on channel in and sends them to
the wrapped program, and one that receives messages from the wrapped program on
channel out and sends them to the environment. An arbitrary program P (possibly
malicious) can be wrapped to give W1(P); the design of the calculus and of W1 ensures
that no matter how P behaves the wrapped program W1(P) can only interact with its
environment on the two channels in and out .

The wrapper W1 controls interaction between a single component and its environ-
ment – it filters messages that the component can send and receive, restricting it to
a particular interface. A more interesting case occurs when the interaction between
untrusted components has to be controlled. In Section 3.3 we introduce W2, a binary
wrapper that encapsulates two components P and Q as W2(P,Q), allowing each to
interact with the environment in a limited way but also allowing information to flow
from P to Q, but not vice versa, along a directed communication channel. The box-π
program of Figure 2 is a simplified version of this example.

(ν a, b)
(

a[P] | ! cax.cbx | b[Q]
)

Figure 2: A simplified pipeline wrapper W2, encapsulating P and Q.

Processes P and Q are arbitrary, possibly malicious, components. They are encap-
sulated in named boxes, with private names a and b, and placed in parallel with a
forwarder process on channel c from box a to box b. The term cbx is an output to
channel c in box b of value x. The term cax.cbx prefixes this with an input on channel
c from box a; here the first x is a formal parameter that binds the second. The ! oper-
ator indicates a replicated input, so the forwarder persists after use. The boxes restrict
communication of the encapsulated processes and ensure that P and Q cannot inter-
act with each other directly; the private names ensure that they cannot interact with
their environment in any other way. This simplified forwarder sends only unordered
asynchronous messages; our main example, the wrapper F of Section 3.4, provides

3

FIFO communication on an ordered pipeline (this is related to the NRL pump [23], as
discussed in later).

Intuitively, the wrapper W2 enforces an information flow policy that prevents Q
from leaking secrets to P . When one attempts to make such properties precise, how-
ever, there are many choices. A body of model-theoretic work on non-interference
uses delicate extensional properties of the trace sets of systems. In our programming
language setting a more intensional approach allows what we believe to be clearer state-
ments. We start with a labelled transition semantics (defined in §2.3) that specifies the
input/output behaviour of programs and extend it to represent and propagate causal
dependencies explicitly. In terms of this, one can state the desired property as ‘no
visible action of P is causally dependent on any action of Q’. The causal semantics
and property are defined in Section 4.

Verifying such a causal flow property directly can be laborious, requiring a char-
acterisation of the state space of a wrapper containing arbitrary components. We
therefore introduce a type system that statically captures causal flows. Since compo-
nents are often provided as object code, which is impractical for the user to typecheck,
our type system must admit programs with badly-typed subcomponents.

The causal type system, given in Section 5, allows us to prove information flow
properties of box-π programs. For the example of Figure 2, to statically allow the
flow from a to b but disallow the converse we can associate the components with
principals p and q, then take a to be a box name whose contents may be affected by
p, written a :box{p}, b to be a box name whose contents may be affected by p or q,
written b :box{p,q}, and c to be a channel, carrying values of a top type >, which
can be affected only by p, so c : chan{p}>. The fragment is then typable, whereas the
converse forwarder cbx.cax is not. The type system also deals with tracking causes
through computation within a wrapper, including communication of channel names,
and with interaction between a wrapper and badly-typed components. All boxes are
assumed to contain untyped processes; wrapper code is statically typed; run-time type
checking is required only when receiving from a component.

Further discussion of related work is given in Section 6; Section 7 concludes with
future work. The appendices contain outline proofs of the results; full details can be
found in the technical reports [34, 36]. This paper is an extended version of [35, 37].

2 A Boxed π Calculus

The language – known as the box-π calculus – that we use for studying encapsulation
properties must allow interacting components to be composed. The components will
typically be executing concurrently, introducing nondeterminism. It is therefore natural
to base the language on a process calculus. The box-π calculus lies in a large design
space of distributed calculi that build on the π-calculus of Milner, Parrow and Walker
[26], including among others the related calculi [2, 8, 11, 30, 32, 38, 40]. A brief overview
of the design space can be found in [33]; here we highlight the main design choices for
box-π.

The calculus is based on asynchronous message passing, with components interact-
ing only by the exchange of unordered asynchronous messages. Box-π has an asyn-
chronous π-calculus as a subcalculus – we build on a large body of work studying such
calculi, notably [19, 6]. They are known to be very expressive, supporting many pro-
gramming idioms including functions and objects, and are Turing-complete; a box-π
process may therefore perform arbitrary internal computation. The choice of asyn-

4

chronous communication is important as it allows two components to interact without
creating causal connections in both directions between them.

Box-π requires facilities for constraining communication – in standard π-calculi, if
one process can send a message to another then the only way to prevent information
flowing in the reverse direction is to impose a type system on components, which
(as observed above) is not appropriate here. We therefore add a boxing primitive –
boxes may be nested, giving hierarchical protection domains; communication across
box boundaries is strictly limited. Underlying the calculus design is the principle that
each box should be able to control all interactions of its children, both with the outside
world and with each other [40]. Boxes can be viewed as protection domains, akin to
operating system-enforced address spaces. All other communication, in particular that
between two sibling boxes, must be mediated by code running in the parent. This code
can enforce an arbitrary security policy, even supporting dynamically-changing policies
and interfaces (in contrast to static restriction or blocking operators [7, 41]).

Turning to the values that may be communicated, it is convenient to allow arbitrary
tuples of names (or other tuples). Note that we do not allow communication of process
terms. Moreover, no primitives for movement of boxes are provided, in contrast to most
work cited above. The calculus is therefore entirely first order, which is important for
the tractable theory of behaviour (the labelled transition semantics) that we require to
state and prove security properties. The calculus is also untyped – we wish to consider
the wrapping of ill-understood, probably buggy and possibly malicious programs.

2.1 Syntax

The syntax of the calculus is as follows:

Names We take an infinite set N of names, ranged over by a, b, c etc. (except
i, j, k, o, p, u, v). Both boxes and communication channels are named; names also play
the role of variables, as in the π-calculus.

Values and Patterns Processes will interact by communicating values which are
deconstructed by pattern-matching by the receiver. Values u, v can be names or tuples,
with patterns p correspondingly tuple-structured.

u, v ::= x name
〈v1 .. vk〉 tuple (k ≥ 0)

p ::= wildcard
x name pattern
(p1 .. pk) tuple pattern

(k ≥ 0, no repeated names)

Processes The main syntactic category is that of processes, ranged over by P,Q. We
introduce the primitives in three groups.

Boxes A box n[P] has a name n, it can contain an arbitrary process P . Box names are
not necessarily unique – the process n[0] | n[0] consists of two distinct boxes named n,

5

both containing an empty process, in parallel.

P ::= n[P] box named n containing P
P | P ′ P and P ′ in parallel
0 the nil process
. . .

Communication The standard asynchronous π-calculus communication primitives are
xv, indicating an output of value v on the channel named x, and xp.P , a process that
will receive a value output on channel x, binding it to p in P . Here we refine these with
a tag indicating the direction of the communication in the box hierarchy. An input tag
ι can be either ?, for input within a box, ↑, for input from the parent box, or a name
n, for input from a sub-box named n. An output tag o can be any of these, similarly.
For technical reasons we must also allow an output tag to be ↑, indicating an output
received from the parent that has not yet interacted with an input, or n, indicating an
output received from child n that has not yet interacted. The communication primitives
are then

P ::= . . .
xov output v on channel x to o
xιp.P input on channel x from ι
!xιp.P replicated input
. . .

The replicated input !xιp.P behaves essentially as infinitely many copies of xιp.P
in parallel. This gives computational power, allowing e.g. recursion to be encoded
simply, while keeping the theory simple. In xιp.P and !xιp.P the names occurring in
the pattern p bind in P . Empty patterns and tuples will often be elided.

New name creation Both box and channel names can be created fresh, with the stan-
dard π-calculus (ν x)P operator. This declares any free instances of x within P to be
instances of a globally fresh name.

P ::= . . .
(ν x)P new name creation

In (ν x)P the x binds in P . We work up to alpha conversion of bound names through-
out. This means, for example, that (ν y)x↑y and (ν z)x↑z denote the same mathemat-
ical object. We write the free name function, defined in the obvious way for values,
tags and processes, as fn(), so fn((ν y)x↑y) = {x}. Figure 3 summarizes the syntax of
box-π.

2.2 Reduction Semantics

The simplest semantic definition of the calculus is a reduction semantics, a one-step
reduction relation P → P ′ indicating that P can perform one step of internal compu-
tation to become P ′. We first define the complement ι of a tag ι in the obvious way,
with ? = ? and ι = ι. We define a partial function { / }, taking a pattern and a value
and giving, where it is defined, a partial function from names to values.

{v/ } = {}
{v/x} = {x 7→ v}

{〈v1 .. vk′ 〉/(p1 .. pk)} = {v1/p1} ∪ . . . ∪ {vk/pk
} if k = k′

undefined, otherwise

6

u, v ::= x name p ::= wildcard
〈v1 .. vk〉 tuple x name pattern

(p1 .. pk) tuple pattern

P ::= n[P] box named n containing P
P | P ′ P and P ′ in parallel
0 the nil process
xov output v on channel x to o
xιp.P input on channel x from ι
!xιp.P replicated input
(ν x)P new name creation

Figure 3: Box-π syntax.

The natural definition of the application of a substitution σ (from names to values)
to a process term P , written σP , is also a partial operation, as the syntax does not
allow arbitrary values in all the places where free names can occur. We write {v/p}P
for the result of applying the substitution {v/p} to P . This may be undefined either
because {v/p} is undefined, or because {v/p} is a substitution but the application of that
substitution to P is undefined. For example, {〈z z〉/x}x?〈〉 is not defined as 〈z z〉?〈〉 is not
in the syntax. Note that the result {y/x}P of applying a name-for-name substitution
is always defined.

This definition of substitution leads to a lightweight notion of runtime error. A
more conventional notion of runtime error would give errors only when a tuple is used
as a name, e.g. for output. The substitution-based notion is forced by our choice of
syntax, which disallows values in various places where names may appear. In general
it will report errors sooner than the conventional notion.

The definition of reduction involves an auxiliary structural congruence ≡, defined
as the least congruence relation such that the axioms of Figure 4 hold. This allows the
parts of a redex (an instance of the left-hand-side of one of the axioms in Figure 5) to
be brought syntactically adjacent.

P | 0 ≡ P
P | Q ≡ Q | P

(P | Q) | R ≡ P | (Q | R)
(ν x)(ν y)P ≡ (ν y)(ν x)P
(ν x)(P | Q) ≡ P | (ν x)Q x 6∈ fn(P)

(ν x)n[P] ≡ n[(ν x)P] x 6= n

Figure 4: Structural congruence relation.

The reduction relation is now the least relation over processes satisfying the axioms
and rules of Figure 5. The (Red Comm) and (Red Repl) axioms are subject to the
condition that {v/p}P is well-defined. The (Red Up) axiom allows an output to the
parent of a box to cross the enclosing box boundary. Similarly, the (Red Down) axiom
allows an output to a child box n to cross the boundary of n. The (Red Comm) axiom
then allows synchronisation between a complementary output and input within the
same box. The (Red Repl) axiom is similar, but preserves the replicated input in the
resulting state.

7

n[x↑v | Q] → xnv | n[Q] (Red Up)

xnv | n[Q] → n[x↑v | Q] (Red Down)

xιv | xιp.P → {v/p}P (Red Comm)

xιv | !xιp.P → !xιp.P | {v/p}P (Red Repl)

P → Q ⇒ P | R → Q | R (Red Par)

P → Q ⇒ (ν x)P → (ν x)Q (Red Res)

P → Q ⇒ n[P] → n[Q] (Red Box)

P ≡ P ′ → Q′ ≡ Q ⇒ P → Q (Red Struct)

Figure 5: Box-π reduction semantics.

Communications across box boundaries take two reduction steps, as in the following
upwards and downwards communications.

n[x↑v] | xnp.P → n[0] | xnv | xnp.P
→ n[0] | {v/p}P

xnv | n[x↑p.P] → n[x↑v | x↑p.P]
→ n[{v/p}P]

This removes the need for 3-way synchronisations between a box, an output and an
input (as in [40]), simplifying both the semantics and the implementation model.

2.3 Labelled Transition Semantics

The reduction semantics defines only the internal computation of processes. The state-
ments of our security properties must involve the interactions of processes with their
environments, requiring more structure: a labelled transition relation characterising the
potential inputs and outputs of a process. We give a labelled semantics for box-π in an
explicitly-indexed early style, defined inductively on process structure by a structured
operational semantics. The reader unfamiliar with process calculi may wish to skim to
the start of Section 3 on a first reading.

The labels are

` ::= τ internal action
xov output action
xγv input action

where o is any output tag and γ ranges over tags ?, n, ↑ and n. The labelled transitions
can be divided into those involved in moving messages across box boundaries and those
involved in communications between outputs and inputs. The movement labels are

xnv (sending to child n)
xnv (box n receiving from its parent)
x↑v (sending to the parent)

8

We say mv(o) iff o is of the form n or ↑. The communication labels are

x?v (local output)
x?v (local input)
xnv (output received from child n)
xnv (input a message received from child n)
x↑v (output received from parent)
x↑v (input a message received from parent)

Labels synchronise in the pairs xγv and xγv. The labelled transition relation has the
form

A ` P
`−→ Q

where A is a finite set of names and fn(P) ⊆ A; it should be read as ‘in a state where
the names A may be known to P and its environment, process P can do ` to become
Q’. The relation is defined as the smallest relation satisfying the rules of Figure 6. We
write A, x for A ∪ {x} where x is assumed not to be in A, and A, p for the union of A
and the names occurring in the pattern p, where these are assumed disjoint.

The labelled semantics is similar to a standard π semantics, but must also deal with
boxes and with reductions such as

((ν x)xnz) | n[0] → (ν x)n[x↑z]

in which a new-bound name enters a box boundary.
In more detail, for the subcalculus without new-binding the labelled transition rules

are straightforward — instances of the reduction rule (Red Up) correspond to uses of
(Box-1), (Out), and (Par); instances of (Red Down) correspond to uses of (Comm),
(Out), and (Box-2); instances of (Red Comm) correspond to uses of (Comm), (Out),
and (In). The derivations of the corresponding τ -transitions can be found in the proof of
Lemma 24. The addition of new-binding introduces several subtleties, some inherited
from the π-calculus and some related to scope extrusion and intrusion across box
boundaries. We discuss the latter briefly.

The (Red Down) rule involves synchronisation on the box name n but not on
the channel name x — there are reductions such as that above with new-bound names
entering box boundaries. To correctly match this with a τ -transition the side-condition
for (Res-2) for labels with output tag n requires the bound name to occur either in
channel or value position, and the (Comm) rule reintroduces the x binder on the right
hand side.

Similarly, the (Red Up) rule allows new-bound names in channel position to exit a
box boundary, for example in

n[(ν x)x↑z] → (ν x)(xnz | n[0])

The (Res-2) condition for output tag ↑ again requires the bound name to occur either
in channel or value position; here the (Box-1) rule reintroduces the x binder on the
right hand side.

Reductions generated by (Red Comm) involve synchronisation both on the tags and
on the channel name. The (Res-2) condition for output tags ?, ↑ and n is analogous to
the standard π-calculus (Open) rule; requiring the bound name to occur in the value
but not in the tag or channel. The (Comm) rule for these output tags is analogous
to the standard π rule — in particular, here it is guaranteed that x ∈ A. The two
semantics coincide in the following sense.

9

A ` xov
xov−→ 0

(Out)

A ` xιp.P
xιv−→ {v/p}P

(c) (In)

A ` P
`−→ P ′

A ` P | Q `−→ P ′ | Q
(Par)

A ` !xιp.P
xιv−→ !xιp.P | {v/p}P

(c) (Repl)

A ` P
xγv−→ P ′ A ` Q

xγv−→ Q′

A ` P | Q τ−→ (ν fn(x, v)−A)(P ′ | Q′)
(Comm)

A ` P
x↑v−→ P ′

A ` n[P] τ−→ (ν fn(x, v)−A)(xnv | n[P ′])
(Box-1)

A ` n[P] xnv−→ n[x↑v | P]
(Box-2) A ` P

τ−→ P ′

A ` n[P] τ−→ n[P ′]
(Box-3)

A, x ` P
`−→ P ′

A ` (ν x)P `−→ (ν x)P ′
(a) (Res-1)

A, x ` P
yov−→ P ′

A ` (ν x)P
yov−→ P ′

(b) (Res-2)

A ` P
`−→ P ′ P ′ ≡ P ′′

A ` P
`−→ P ′′

(Struct)

(a) The (Res-1) rule is subject to x 6∈ fn(`). (b) The (Res-2) rule is subject to x ∈
fn(v) − fn(y, o), if o is ?, ↑ or n, and to x ∈ fn(y, v) − fn(o) otherwise. (c) In the (In)
and (Repl) axioms there is a side condition that {v/p}P is well-defined. In all rules with

conclusion of the form A ` P
`−→ Q there is an implicit side condition fn(P) ⊆ A.

Symmetric versions of (Par) and (Comm) are elided.

Figure 6: Box-π Labelled Transition Semantics

10

Theorem 1 If fn(P) ⊆ A then A ` P
τ−→ Q iff P → Q.

This give confidence that the labelled semantics carries enough information. The proof
is somewhat delicate; it is sketched in Appendix A and given in detail in [34].

Some auxiliary notation is useful. For a sequence of labels `1 . . . `k we write

A ` P1
`1−→ . . .

`k−→ Pk+1

to mean ∃P2, . . . , Pk . ∀i ∈ 1..k . Ai ` Pi
`i−→ Pi+1, where Ai = A ∪⋃

j∈1..i fn(`j). If

` 6= τ we write A ` P
ˆ̀

=⇒ P ′ for A ` P
τ−→∗ `−→ τ−→∗

P ′; if ` = τ then A ` P
ˆ̀

=⇒ P ′

is defined as A ` P
τ−→∗

P ′, which we also write as A ` P =⇒ P ′.

3 Wrappers and Components in Box-π

This section gives four example wrappers. The first wrapper, W1, encapsulates a
single component, restricting its interactions with the outside world to communications
obeying a certain protocol. The second, L, is similar, but also writes a log of all such
communications. The third wrapper, W2, encapsulates two components, allowing each
to interact with the outside world in a limited way but also allowing information to
flow from the first to the second (but not vice versa) along an unordered pipeline. The
fourth and most complex wrapper, F , is similar to W2, but implements an ordered
pipeline between the components.

Wrappers are designed in the context of some fixed protocols for interaction between
components and their environment, interaction among components, and additional
interaction between the environment and the wrapper (for logging or control). These
protocols can be designed so that wrappers can be nested, allowing a complex security
policy to be constructed from off-the-shelf wrappers. The example wrappers below all
assume rather simple fixed protocols. As a trivial example, one can compose W1 with
itself, with

(W1 ◦W1) ()
def
= W1(W1())

as its internal and external interfaces coincide. For more interesting composition, one
would have to generalise to arbitrary sets of channels instead of in and out , and allow
n-ary wrappers.

3.1 W1: A Simple Unary Filtering Wrapper

To demonstrate the use of box-π we give the definition of a wrapper that restricts the
interface for user programs. In most operating systems, programs installed and run
by a user enjoy the same access rights as the user, so if the user is allowed to open
a socket and send data out on the network then so can any component. We idealize
this scenario with the configuration below – an idealized single-user OS in which user
Alice is executing a program P . Here the box around P stands for the user protection
domain enforced by the operating system.

alice[P] |
!!!...in

alice
x... | OS write on Alice’s in port

! outalicex... | OS read from Alice’s out port
!netalicex... OS read from Alice’s net port

11

The OS provides three channels in, out and net, to respectively allow the user’s program
to read from and write to the terminal and to send data out on a network connection.
The program P is executing within a box and so interacts with the OS using the ↑ tag
– for example P = in↑x.out

↑〈xx〉 receives a value from the terminal and then sends a
pair of copies of the value back to the terminal.

To execute some untrusted code fragment Q, Alice may run the code in parallel with
her other applications, perhaps as alice[P | Q]. But, this grants too much privilege to
Q. In particular, if Q = ! in↑x.net

↑
x then any terminal input may be redirected to the

net, or if Q = ! c?y.(net
↑
c | c?y

)
then Q can eavesdrop on communications on channel

c between other parts of the system in P .
A wrapper is a box-π context which can enforce fine-grain control on the behaviour

of Q. Our first example is the filtering wrapper W1, which prevents Q from accessing
the network or from eavesdropping:

W1()
def
= (ν a)

(
a[]
| ! in↑x.in

a
x

| ! outax.out
↑
x

)
a

in out

The system becomes alice[P | W1(Q)]. The untrusted code is placed in a box with a
fresh name a, so a 6∈ fn(Q). In parallel with the box are two forwarders for in and out
messages. The first, ! in↑x.in

a
x, is a replicated input receiving values from the OS and

sending them to a; the second is dual. Only these two processes can interact with a
due to the scope of the restriction, so even when put in parallel with other code the
wrapper guarantees that Q will not be able to send on net.

We show a small reduction sequence where P = 0 and Q = in↑x.net
↑
x. Here B is

the forwarders ! in↑x.in
a
x | ! outax.out

↑
x.

in
alice

y | alice[P | W1(Q)]
≡ in

alice
y | alice[(ν a)(a[Q] | B)]

→ alice[in
↑
y |(ν a)(a[Q] | B)]

≡ alice[(ν a)(in
↑
y | a[Q] | B)]

→ alice[(ν a)(in
a
y | a[Q] | B)]

→ alice[(ν a)(a[in
↑
y |Q] | B)]

→ alice[(ν a)(a[net
↑
y] | B)]

→ alice[(ν a)(net
a
y | a[0] | B)]

At the final state the output from Q is prevented from leaving the alice box directly
as B does not contain a forwarder for net. It is prevented from interaction with any P
(although here P was empty) by the restriction on a.

3.2 L: A Logging Wrapper

Wrappers can be used for monitoring as well as filtering; in operating systems auditing
untrusted components is an important part of most security infrastructures. The L
wrapper extends W1 to maintain a log of all communications of a process, sending

12

copies on a channel log to the environment, as follows:

L()
def
= (ν a)

(
a[]
| ! in↑y.(log

↑
y | ina

y)
| ! outay.(log

↑
y | out

↑
y)

)
a

in out log

Note that L does not interfere with the operation of the component it encapsulates;
the logging activity is transparent.

3.3 W2: A Pipeline Wrapper

A pipeline wrapper allows a controlled flow of information between two components.
We give a binary wrapper W2 that encapsulates two processes. In an execution of
W2(Q1, Q2) the two wrapped processes Qi can interact with the environment as before,
on channels ini and out i. In addition, Q1 can send messages to Q2 on a channel mid .

W2(1, 2)
def
= (ν a, b)

(
a[1] | b[2]
| ! in1

↑y.in1
a
y

| ! in2
↑y.in2

b
y

| ! out1
ay.out1

↑
y

| ! out2
by.out2

↑
y

| !miday.mid
b
y

)
a

mid

in1 out1

b

in2 out2

As before W2 is a non-binding context – we assume, wherever we apply it to two
processes Q1, Q2, that {a, b} ∩ fn(Q1, Q2) = ∅. For an example of a blocked attempt
by the second process to send a value to the first, suppose Q2 = mid

↑
v. We have

W2

(
Q1,mid

↑
v
)

= (ν a, b)
(
a[Q1] | b[mid

↑
v] | R)

→ (ν a, b)
(
a[Q1] | b[0] | mid

b
v | R)

where R is the parallel composition of forwarders. The output mid
b
v in the final state

cannot interact further – not with the environment, as b is restricted, and not with the
forwarder !miday.mid

b
y, as a 6= b.

3.4 F : An Ordered Pipeline Wrapper

There is a tension between the strength of communication primitive supported by a
wrapper and the strength of the security property it can guarantee. The previous
three examples provide only asynchronous unordered communication between compo-
nents, which would be awkward to use in most real systems. At the other extreme,
synchronous communication introduces causal flows in both directions (the causal flow
property we state in Section 4.5 would not hold in a synchronous calculus, so a more
delicate property would be required – perhaps stating that there are only data-less
acks from one component to another). There are two intermediate points: one can
provide asynchronous ordered communication, as we do below, or use some form of

13

F(1, 2) = (ν a, b)
(

a[1] | b[2] |
(ν buff , full)

(
(ν front , back)

(
(create FIFO buffer) buff

?
〈front back〉 |

(connect froma to buffer) ! froma
(v r).(ν r′)(front

?
〈v r′〉 | r′?.ra) |

(connect buffer to tob) ! back?
(v r).(ν r′)(tob〈v r′〉 | r′b.r?)

) |
(buffer code) ! buff ?

(front back).front?
(v r).(r? | (ν back′)(buff

?
〈front back′〉

| full
?
〈back′ back v〉)) |

! full?(back′ back v).(ν r)(back
?
〈v r〉 | r?.back′?(v′ r′).(r′

?

| full
?
〈back′ back v′〉))

) |
(I/O forwarders) ! in1

↑x.in1
a
x | ! out1

ax.out1
↑
x |

! in2
↑x.in2

b
x | ! out2

bx.out2
b
x
)

in1 out1 in2 out2

(r′)

(r) to

a

from

FIFO buffer

b

Figure 7: FIFO Pipeline Wrapper F .

weak acknowledgments, as in the NRL pump [23]. The former still guarantees an ab-
sence of information flow (albeit at the cost of maintaining an unbounded buffer) while
the latter limits bandwidth of covert channels. In both cases, it is essential to be able
to guarantee that the implementation of the communication primitives does actually
have the desired flow property; this is what we set out to do here.

In Figure 7 we give a wrapper F that takes two components and allows the first
to communicate with the second by a first-in, first-out buffer. The wrapper has been
written with care to avoid any information leak from the second component to the
first. For simplicity both components have simple unordered input and output ports
ini and out i to the environment; it would be routine to make these FIFO also.
The interface to the wrapper is as follows. To write to the buffer a producer sends a
value together with an acknowledgment channel to the wrapper (using a standard asyn-
chronous π-calculus idiom). The wrapper inserts the value in a queue and acknowledges
reception. For value v the producer may contain

(ν ack)(from
↑〈v ack〉 | ack↑...),

sending the value and a new acknowledgement channel ack to the wrapper and, in
parallel, waiting for a reply before proceeding with its computation. On the receiver

14

side, we may have a process that waits for a pair of a value and an ack channel:

to↑(z r).(r↑ | ...)

The name of the receiving channel is to; channel r is used to send the acknowledgement
back to the wrapper. Thus a configuration where B stands for the body of the wrapper
could be:

(ν a, b)
(

a[(ν ack)(from
↑〈v ack〉 | ack↑.0)] |

b[to↑(z r).r↑] |
B

)
The implementation of the wrapper is somewhat tricky, as we have to be careful not
to introduce covert channels between the components. Within the wrapper there is a
replicated input on buff that creates a new empty FIFO buffer and a replicated input
on full that creates a new buffer cell containing a value. The key point is to ensure that
the acknowledgment to the first component not be dependent on any action performed
by the second component. The glue process that connects the froma channel to the
buffer has a subprocess, r′?.ra, to send the ack to a. This small process itself expects
an ack from the head of the buffer saying that the message was inserted in the queue.
The buffer code front?

(v r).(r? . . . acks on r immediately, in parallel with placing the
new message in a full buffer cell at the head of the queue. The asynchrony here is
essential.

4 Security Properties

So far we have been vague about the statement of the properties that we expect wrap-
pers to enforce. For W1 it may be clear from examination of the code and the semantics
that the wrapper is satisfactory, but it is unclear exactly what properties are guaran-
teed. For F the situation is much worse – even this simple wrapper is complex enough
that a rigorous statement and proof of its security properties is essential; the user
should not be required to examine the code of a wrapper in order to understand the
security that it provides. We now turn to the task of formalizing these properties and
developing the tools needed to prove them.

4.1 Purity

The most basic questions that one would expect a theory of wrappers to deal with
are whether a component is well-behaved and, for certain wrappers, whether wrap-
ping an ill-behaved component creates a well-behaved component. Statements of such
properties must be with respect to a particular choice of protocol for legitimate wrap-
per/component interaction. For example, for the unary wrappers W1 and L a well-
behaved component is expected to interact only on in and out channels with its parent.
This can be easily formalised using our labelled transition semantics: we say an inter-
face M is a set of pairs m of a (co)name and a tag, e.g. M = {in↑, out

↑}.

Definition 1 A process P is well-behaved for an interface M iff whenever A ` P
l1..lk−→

Q then for each j ∈ 1..k we have lj = τ or ∃m ∈ M,v . lj = mv.

Recalling the examples of Section 3.1,

P = in↑x.out
↑〈xx〉

Q = ! in↑x.net
↑
x

15

P is well-behaved for interface {in↑, out
↑} (it has transitions only with labels of the

forms τ , in↑v or out
↑
v) but Q is not.

Irrespective of the behaviour of a component R, wrapperW1 enforces good behavior,
thus W1(R) does obey the protocol – again this can be stated clearly using the LTS:

Proposition 2 For any program R with a 6∈ fn(R), W1(R) is well-behaved for {in↑,
out

↑}.
We say a unary wrapper with this property is pure. The proof is via an explicit
characterisation of the states reachable by labelled transitions of W1(R); it can be
found in Appendix B.

The logging wrapper L is not pure in this sense, but a wrapped program L(R) can
again interact only in limited ways.

Proposition 3 For any program R with a 6∈ fn(R), L(R) is well-behaved for {in↑,
out

↑, log
↑}.

For an analogous notion of purity for binary wrappers with interfaces such as W2, say
a binary wrapper C is pure iff for any programs R1, R2, (satisfying the appropriate free
name condition, i.e. that with {a, b} ∩ fn(R1, R2) = ∅), C(R1, R2) is well-behaved for
{in↑1, out1

↑
, in↑2, out2

↑}.

Proposition 4 Binary wrappers W2 and F are pure.

Propositions 3 and 4 can be proved either via explicit characterisations similar to that
of Proposition 2 or using the type system developed later.

4.2 Honesty

The properties of wrappers stated in the previous subsection are weak as they hardly
constrain the behaviour of the wrapper. For example, the useless unary wrapper

C()
def
= 0

is trivially pure as it inhibits all interactions. In [34] we introduced the class of honest
wrappers that are guaranteed to forward legitimate messages. An initial attempt at a
definition of honesty might be to take W1 as a specification, defining a unary wrapper
C to be honest iff for any program P the processes C(P) and W1(P) are operationally
equivalent. This is unsatisfactory – it rules out wrappers such as L, and it does not give
a very clear statement of the properties that may be assumed of an honest wrapper.

A better attempt might be to say that a unary wrapper C is honest iff for any
well-behaved P the processes C(P) and P are operationally equivalent. This would be
unsatisfactory in two ways. Firstly, some intuitively sound wrappers have additional
interactions with the environment – e.g. the logging outputs of L – and so would
not be considered honest by this definition. More seriously, this definition would not
constrain the behaviour of wrappers for non-well-behaved P at all – if a component P
attempted, in error, a single illicit communication then C(P) might behave arbitrarily.

To address these points we gave an explicit definition of honesty, in the style of
weak asynchronous bisimulation [3], for unary wrappers such as W1 and L.

16

Definition 2 (Honesty) Consider a family of relations R indexed by finite sets of
names such that each RA is a relation over {P | fn(P) ⊆ A }. Say R is an h-
bisimulation if, whenever C RA Q then:

1. if A ` C
`−→ C ′ for ` = out

↑
v, τ then A ` Q

ˆ̀
=⇒ Q′ ∧ C ′ RA∪fn(`) Q′

2. if A ` C
in↑v−→ C ′ then either A ` Q

in↑v=⇒ Q′ and C ′ RA∪fn(in,v) Q′ or A ` Q =⇒ Q′

and C ′ RA∪fn(in,v) Q′ | in↑v

3. if A ` C
`−→ C ′ for any other label then C ′ RA∪fn(`) Q

together with symmetric versions of clauses 1 and 2. Say a unary wrapper C is honest
if for any program P (satisfying the appropriate free name condition) and any A ⊇
fn(C(P)) there is an h-bisimulation R with C(P) RA P .

Loosely, clauses 1, 2 and the symmetric versions ensure that legitimate communi-
cations and internal reductions must be weakly matched. Clause 3 ensures that if the
wrapper performs some additional communication then this does not affect the state
as seen by the wrapped process.

Proposition 5 The unary wrapper W1 is honest.

We conjecture that L is also honest. We give some examples of dishonest wrappers.
Take

C()
def
= (ν a)a[]

This is not honest – a transition A ` P
out

↑
v−→ P ′ cannot be matched by C(P), violating

the symmetric version of clause 1. Now consider

C()
def
=

This wrapper is also dishonest as C(P) can perform actions not in the protocol that
essentially affect the state of P . For example, take P = x?y.out

↑〈〉. Suppose C(P) RA P

for an h-bisimulation R. We have A ` C(P) x?〈〉−→ out
↑〈〉 so by clause 3 out

↑〈〉 RA P , but
then clause 1 cannot hold – the left hand side can perform an out

↑〈〉 transition that
cannot be matched be the right hand side.

A definition of honesty for binary wrappers must take into account the legitimate
interactions between the two components. In [34] we gave a tentative definition, in
terms of binary h-bisimulations, but it was rather complex – dealing with the combi-
nation of the W2 protocol and the asynchrony of the calculus. We regard it as an open
problem to give satisfactory definitions of honesty for complex wrappers and of an op-
erational equivalence ≈, concluding this subsection with some desirable relationships
between them.

The protocol for communication between a component and a unary wrapper is
designed so that wrappers may be nested. We conjecture that the composition of any
honest unary wrappers is honest.

Conjecture 6 If C1 and C2 are honest unary wrappers then C1 ◦ C2 is honest.

17

Analogous results for non-unary wrappers would require wrappers with more complex
interfaces so that the input, output and mid channels could be connected correctly.

A desirable property of a pure wrapper is that it should not affect the behaviour of
any well-behaved component — one might expect for any pure and honest C and well-
behaved P that P ≈ C(P) for any reasonable operational equivalence ≈. Unfortunately
this does not hold for the obvious naive adaptation of weak asynchronous bisimulation
to box-π, even for W1, as the wrapper can make input transitions that cannot be
matched – a more refined equivalence is required.

A simpler property would be that multiple wrappings have no effect. We would
expect that W1 is idempotent, i.e. that W1(W1(P)) ≈ W1(P), for any reasonable
equivalence ≈.

4.3 Unidirectional Information Flow: First Attempts

Honesty and Purity are desirable properties, but they do not address our central prob-
lem: that of understanding in what sense a multi-hole wrapper such as W2 or F allows
fine-grain control over the information flows between components – enforcing the uni-
directional flow property that the second wrapped component should not be able to
affect the first. By examining the code for W2 it is intuitively clear that information
can not flow from Q to P within W2(P,Q). For F it is much less obvious, however,
and when one comes to make the intuition precise it becomes far from clear exactly
what property is desired. Moreover, the user should not have to examine the wrapper
code in order to get sufficient guarantees about its behaviour.

In this subsection we define two information flow properties expressed using the
LTS: new name directionality and permutation. Neither is satisfactory; we argue that
a more intensional semantics is required. The following two subsections develop a
coloured labelled transition semantics and state a causal flow property in terms of it.
Together, these definitions illustrate the wide range of precise properties which the
intuitive statement might be thought to mean. We hope to provoke discussion of
exactly what guarantees should be desired by users and by component designers.

For simplicity, only pure binary wrappers C are considered.

New-name directionality As we are using a calculus with creation of new names,
we can test a wrapper by supplying a new name to the second component, on in2,
and observing whether it can ever be output by the first component on out1. Say C is
directional for new names if whenever

A ` C(P1, P2)
`1−→ . . .

`j−→in2
↑u−→ `′1−→ . . .

`′k−→out1
↑
u′−→ P

with x ∈ fn(u), but x is new, i.e. x 6∈ A ∪ fn(`1 . . . `j), and x is not subsequently input
to the first component, i.e.

x 6∈
⋃

i∈1..k∧`′i=in1
↑v

fn(v)

then x is not output by the first component, i.e. x 6∈ fn(u′). This property does not
prevent all information flow, however – a variant of W2 containing a reverse-forwarder
that only forwards particular values, such as

!mida2y.if y ∈ {0, 1} then mid
a1

y

could still satisfy it. (Here 0 and 1 are free names, which must therefore be in A.)

18

Permutation Our second property formalises the intuition that if no observable be-
haviour due to P1 depends on the behaviour of P2 then in any trace it should be
possible to move the actions associated with P1 before all actions associated with P2.
Say C has the permutation property if whenever

A ` C(P1, P2)
`1=⇒ . . .

`k=⇒ P

with `i 6= τ there exists a permutation π of {1, . . . , k} such that

A ` C(P1, P2)
`π(1)=⇒ . . .

`π(k)=⇒ P

and no in1 or out1 transition occurs after any in2 or out2 transition in `π(1) . . . `π(k).
Permutation ensures that actions of P1 do not depend on inputs of P2 but it does not
prevent initial interactions between the components.

For an example wrapper without this property, consider a wrapper C which forces
inputs of P1 to be causally dependent on inputs of P2.

C(1, 2)
def
= (ν a1, a2)

(
a1[1] | a2[2]

| ! in2
↑y.

(
in2

a2
y | ! in1

↑y.in1
a1

y
)

| ! out1
a1y.out1

↑
y

| ! out2
a2y.out2

↑
y

| !mida1y.mid
a2

y
)

Here the in1 messages are not forwarded until at least one in2 input is received from
the environment. Nonetheless, in some sense there is still no information flow from the
second component to the first.

The new-name directionality and permutation properties are expressed purely in
terms of the externally observable behaviour of C(P,Q) (in fact, they are properties of
its trace set, a very extensional semantics). Note, however, that the intuitive statement
that information does not flow from Q to P depends on an understanding of the inter-
nal computation of P and Q that is not present in the reduction or labelled transition
relations (given only that C(P,Q) →∗ R there is no way to associate subterms of R
with an ‘origin’ in C, P or Q). We therefore develop a more intensional semantics in
which output and input processes are tagged with sets of colours. The semantics prop-
agates colours in interaction steps, thereby tracking the causal dependencies between
interactions.

4.4 Colouring the Box-π Calculus

We introduce two semantics for capturing the intuitive property that one wrapped
component does not causally affect another. First, we define a simple coloured reduction
semantics for box-π which annotates output processes with sets of colours that record
their causal histories – essentially the sets of principals that have affected them in the
past – and the reduction semantics propagate this causal history data. Secondly, we
introduce a coloured labelled transition semantics, allowing more direct statements of
security properties of wrappers that interact with their environment. The coloured
calculus is a trade-off – it captures less detailed causality information than the non-
interleaving models studied in concurrency theory [45, 5, 9] but is much simpler; it
captures enough information to express interesting security properties.

19

The coloured syntax. We take a set col of colours or principals (we use the terms
interchangeably) disjoint from N . Let k, p, q range over elements of col and C,D,K
range over subsets of col. We define a coloured box-π calculus by annotating all outputs
with sets of colours:

P ::= C :xov
∣∣ xιp.P

∣∣ !xιp.P
∣∣ n[P]

∣∣ 0
∣∣ P | P ′ ∣∣ (ν x)P

If P is a coloured term we write |P | for the term of the original syntax obtained by
erasing all annotations. Conversely, for a term P of the original syntax C ◦P denotes
the term with every particle coloured by C. For a coloured P we write C •P for the
coloured term which is as P but with C unioned to every set of colours occurring in it.
We sometimes confuse p and the set {p}. Let pn(P) be the set of colours that occur
in P . We write CD for the union C ∪ D.

In the coloured output C : xov think of C as recording the causal history of the
output particle – C is the set (possibly empty) of principals p ∈ C that have affected
the particle in the past. In an initial state all outputs might typically be coloured by
singleton sets giving their actual principals, for example colouring the code of wrapper
F and two wrapped components with different colours w, p, q:

(w ◦F) (p ◦P | q ◦Q)

The coloured reduction semantics is obtained by replacing the first four axioms
of the uncoloured semantics by the rules

n[C :x↑v | Q] −→ C :xnv | n[Q] (C Red Up)

C :xnv | n[Q] −→ n[C :x↑v | Q] (C Red Down)

C :xιv | xιp.P −→ C •({v/p}P) (C Red Comm)

C :xιv | !xιp.P −→ !xιp.P | C •({v/p}P) (C Red Repl)

that propagate colour sets. The coloured calculus has essentially the same reduction
behaviour as the original calculus:

Proposition 7 For any coloured P we have |P | → Q iff ∃P ′ . P −→ P ′ ∧ |P ′| = Q.

The proof is by straightforward induction on the derivation of transitions.

The coloured labelled transitions have labels ` exactly as before. The coloured
labelled transition relation has the form

A ` P
`−→C Q

where A is a finite set of names and fn(P) ⊆ A; it should be read as ‘in a state where
the names A may be known to P and its environment, process P can do `, coloured
C, to become Q’. Again C records causal history, giving all the principals which have
directly or indirectly contributed to this action. The relation is defined as the smallest
relation satisfying the rules in Figure 8. It coincides with the previous LTS and with
the coloured reduction semantics in the following senses.

Proposition 8 For any coloured P we have A ` |P | `−→ Q iff ∃C, P ′ . A ` P
`−→C

P ′ ∧ |P ′| = Q.

20

A ` C :xov
xov−→C 0

(Out)

A ` xιp.P
xιv−→C C •{v/p}P

(c) (In)

A ` P
`−→C P ′

A ` P | Q `−→C P ′ | Q
(Par)

A ` !xιp.P
xιv−→C !xιp.P | C •{v/p}P

(c) (Repl)

A ` P
xγv−→C P ′ A ` Q

xγv−→C Q′

A ` P | Q τ−→∅ (ν fn(x, v)−A)(P ′ | Q′)
(Comm)

A ` P
x↑v−→C P ′

A ` n[P] τ−→∅ (ν fn(x, v)−A)(C :xnv | n[P ′])
(Box-1)

A ` n[P] xnv−→C n[C :x↑v | P]
(Box-2) A ` P

τ−→C P ′

A ` n[P] τ−→C n[P ′]
(Box-3)

A, x ` P
`−→C P ′

A ` (ν x)P `−→C (ν x)P ′
(a) (Res-1)

A, x ` P
yov−→C P ′

A ` (ν x)P
yov−→C P ′

(b) (Res-2)

A ` P
`−→C P ′ P ′ ≡ P ′′

A ` P
`−→C P ′′

(Struct)

(a) The (Res-1) rule is subject to x 6∈ fn(`). (b) The (Res-2) rule is subject to x ∈
fn(v) − fn(y, o), if o is ?, ↑ or n, and to x ∈ fn(y, v) − fn(o) otherwise. (c) In the (In)
and (Repl) axioms there is a side condition that {v/p}P is well-defined. In all rules with

conclusion of the form A ` P
`−→C Q there is an implicit side condition fn(P) ⊆ A.

Symmetric versions of (Par) and (Comm) are elided.

Figure 8: Coloured Box-π Labelled Transition Semantics

21

The proof is by straightforward induction on the derivation of labelled transitions.

Proposition 9 For coloured P and Q, if fn(P) ⊆ A then A ` P
τ−→∅ Q iff P → Q.

The proof is a minor adaptation of that of Theorem 1.

4.5 Unidirectional Flow: The Causal Flow Property

A more convincing property can now be stated. Say an instantiation of some binary
wrapper W is an uncoloured process W(P,Q) where P and Q are uncoloured processes
not containing the new-bound names scoping the holes of W. As before, say W is a
pure binary wrapper if for any instantiation and any transition sequence

A ` W(P,Q) `1−→ . . .
`k−→ R

the labels `j have the form τ , ini
↑v, or outi

↑
v, for i ∈ {1, 2}. (purity simply means

that the wrapper has a fixed interface and thus simplifies the statement of the causal
flow property).

Definition 3 (Causal flow property) A pure binary wrapper W has the causal flow
property if for any instantiation W(P,Q) and any coloured trace

A ` ∅ ◦W(P,Q) `1−→C1 . . .
`k−→Ck

,

such that all input transitions in1
↑v and in2

↑v in `1..`k are coloured with principal sets
{p} and {q} respectively, we have `j = out1

↑
v implies that q 6∈ Cj.

This property forbids any causal flow from an input on in2 to an output on out1.
Different variants of the flow property, with different characteristics, can also be

stated. For example, to prevent information in the initial state of Q affecting outputs
on out1 we could consider coloured traces

A ` (∅ ◦W)(p ◦P, q ◦Q) `1−→C1 . . .
`k−→Ck

This still allows the Q to communicate with P but only on the condition that P does
not perform any further output dependent on the communicated values. Forbidding
Q affecting P at all (even if there are no inputs or outputs of either component) can
be done with a slightly more intricate coloured semantics. There is no clear cut ‘best’
solution, yet the use of causal semantics allows succinct statement of the alternatives
and eases the comparison of these different properties.

5 Causality Types

Verifying a causal flow property directly can be laborious, requiring a characterisation
of the state space of a wrapper containing arbitrary components. We therefore intro-
duce a type system that statically captures causal flows; a wrapper can be shown to
satisfy the causal flow property simply by checking that it is well-typed. This section
introduces the type system, gives its soundness theorems, and applies it to F .

A simple type system for Box-π would have types

T ::= chan T
∣∣ box

∣∣ 〈T .. T 〉

22

for the types of channel names carrying T , box names, and tuples. We annotate the
first two by sets K of principals and add a type name, of arbitrary names, and >, of
arbitrary values, giving the value types

T ::= chanKT
∣∣ boxK

∣∣ 〈T .. T 〉 ∣∣ name
∣∣ >

If x : chanKT then x is the name of a channel carrying T ; moreover, in an output
process C : x?v on x the typing rules will require C ⊆ K – intuitively, such an output
may have been causally affected only by the principals k ∈ K. In an input xιp.P on
x the continuation P must therefore be allowed to be affected by any k ∈ K, so any
output within P must be on a channel of type chanK′T with K ⊆ K′.

We are concerned with the encapsulation of possibly badly-typed components, so
must allow a box a[P] in a well-typed term to contain an untyped process P . The type
system cannot be sensitive to the causal flows within such a box; it can only enforce
an upper bound on the set of principals that can affect any part of the contents. If
a :boxK then a is a box name; the contents may have been causally affected only by
k ∈ K.

We take type environments Γ to be finite partial functions from names to value
types. The type system has two main judgments, Γ ` v :T for values and Γ ` P :procK

for processes. The typing for processes records just enough information to determine
when prefixing a process with an input is legitimate – if P :procK then P can be
prefixed by an input on a channel x : chanK′〈〉, to give x?.P , iff K′ ⊆ K. Note, however,
that a P :procK may have been affected by (and so syntactically contain) k 6∈ K.

To type interactions between well-typed wrapper code and a badly-typed boxed
component some simple subtyping is useful. We take the subtype order T ≤ T ′ as
below, and write

∧{Ti | i ∈ 1..k } for the greatest lower bound of T1, .., Tk, where this
exists.

>

name 〈T1 .. Tk〉

boxK chanKT

The complete type system is given in Figure 9. It uses judgements ` p : T B ∆, meaning
pattern p matches values of type T and gives bindings ∆; Γ ` v : T , meaning value v
has type T in environment Γ; and Γ ` P :procK, meaning process P is well-formed
in environment Γ and can be prefixed by anything that affects at most K. We now
explain the key aspects by giving some admissible typing rules.

Basic Flow Typing Consider the type environment x : chanK〈〉, y : chanL〈〉 and the
reduction

C :x? | x?.D :y? → (C ∪ D) :y?

During the reduction the output y? on y is causally affected by the output on x – the
right-hand process term (C ∪ D) :y? records that the output on y has been (indirectly)
affected by all the principals that had affected the output on x. For the left process
to be well-typed we must clearly require C ⊆ K and D ⊆ L; for the right process to be
well-typed we need also C ⊆ K, to guarantee this the typing rules require K ⊆ L. The

23

relevant admissible rules are below.
Γ ` x : chanKT
Γ ` v : T
C ⊆ K

Γ ` C :x?v : procK

Γ ` x : chanKT
Γ, y : T ` P :procK′′

K ⊆ K′′

Γ ` x?y.P :procK

Now consider also y : chanL′〈〉 and the process

C :x? | x?.
(
D :y? | D′ :y′?)

Here both the output on y and that on y′ must be affectable by C, so the typing rule
for parallel must take the intersection of allowed-cause sets:

Γ ` P :procK Γ ` Q :procK′

Γ ` P | Q :procK∩K′

The examples above involve only communication within a wrapper, with tag ?. Com-
munication between a wrapper and its parent, with tag ↑, has the same typing rules,
as the parent is presumed well-typed.

Channel Passing Channel passing involves no additional complication. Consider the
type environment Γ = z : chanK′′〈〉, x : chanKchanK′′〈〉, and the reduction

C :x?z | x?y.D :y? → (C ∪ D) :z?

The left-hand process is typable using the rules above if C ⊆ K for the x output, D ⊆ K′′

for the y output, and K ⊆ K′′ for the input, using Γ, y : chanK′′〈〉 ` D : y? :procK′′ .
Together these imply (C ∪ D) ⊆ K′′, so the right-hand process is well-typed.

Interacting with a box (at >) As discussed above, the contents of a box may be
badly-typed, yet a wrapper must still be able to interact with them. The simplest case
is that in which a wrapper sends and receives values that it considers to be of type
>; we consider more general communication in the next paragraph. The typing rule
for boxes requires only that the principals pn(P) syntactically occurring within the
contents P of a box are contained in the permitted set and that P ’s free names are all
declared in the type environment.

Γ ` a :boxK

pn(P) ⊆ K
fn(P) ⊆ dom(Γ)

Γ ` a[P] :procK

Consider sending to and receiving from a box a :boxK.

C :xav | a[P] | zay.Q

For the output to be well-typed we must insist only that C ⊆ K; for the input to be
well-typed Q must be allowed to be affected by any principal that might have affected
the contents P .

Γ ` a :boxK

Γ ` x :name
Γ ` v :>
C ⊆ K

Γ ` C :xav : procK

Γ ` a :boxK

Γ ` x : chanK′>
Γ, y :> ` P :procK′′

K ⊆ K′ ⊆ K′′

Γ ` xap.P :procK′

24

Interacting with a box (at any transmissible S) More generally, a wrapper may
receive from a box tuples containing names which are to be used for communicating
with the box as channel names, for example

xa
(v r).

(
C :ra | . . .)

receives a value v and name r from box a and uses r to send an ack back into a. This
necessarily involves some run-time typechecking, as the box may send a tuple instead
of a name for r. There is a design choice here: how strong should this typechecking
be? Requiring an implementation to maintain a run-time record of the types of all
names would be costly, so we check only the structure of values received from boxes.
We suppose the run-time representations of values allow names (bit-patterns of some
fixed length) and tuples to be distinguished, and the number of items in a tuple to be
determined, but no more (so e.g. x : chanKT and y :boxL will both be represented as
bit patterns of the same length). We introduce the supertype name of chanKT and
boxL, and allow a wrapper to receive only values of the transmissible types

S ::= > | name | 〈S .. S〉

To send a value to a box by C :xav it is necessary only for x to be of type name.
The operational semantics expresses this run-time typechecking by means of the

condition that {v/p}P is well-defined in the reduction communication rule and the
labelled-transition input rules – for example, {〈z z〉/x}C :x? is not well-defined, as the
syntax does not allow a tuple to occur in channel-name position of an output. We
would like to ensure that run-time typechecking is only required when receiving values
from a box, i.e. that for communication within a wrapper or between a wrapper and
its parent such a substitution is always well-defined. This is guaranteed by requiring
a box input prefix to immediately test all parts of a received value that are assumed
of type name – in typing an input xap.P the type environment ∆ derived from the
pattern p must contain no tuples, and all x :name in ∆ must be used within P as a
channel or box. For example, if a :boxK and x : chanK〈namename〉 then

xa
(y z).

(
K :ya | K :za

)
is well-typed as the pattern (y z) completely decomposes values of type 〈namename〉
and both y and z are used as channels in K :ya | K :za. On the other hand

xaw.x?w

is not, as it may receive (for example) a triple from the box, leading to a later run-
time error within the wrapper. The type system is conservative in also excluding
xa(y z).

(
K :ya

)
. Say a type is atomic if it is of the form name, chanKT or boxK and

flat if it is of the form >, name, chanKT , or boxK. Say Γ is atomic or flat if all
types in ran(Γ) are. The atomic types are those which can be dynamically extended
using restriction. We consider dynamics (reductions and labelled transitions) only
for processes with respect to atomic typing contexts; the definitions ensure that an
extruded name can always be taken to be of an atomic type. The calculus has no basic
data types, e.g. a type of integers, that are not dynamically extensible. This makes
the type system a little degenerate.

25

Patterns:

` : T B ∅ ` x : T B x : T
` p1 : T1 B ∆1 .. ` pk : Tk B ∆k

` (p1 .. pk) : 〈T1 .. Tk〉 B ∆1, ..,∆k

Values:

Γ, x : T ` x : T
Γ ` v1 : T1 .. Γ ` vk : Tk

Γ ` 〈v1 .. vk〉 :〈T1 .. Tk〉
fn(v) ⊆ dom(Γ)

Γ ` v :>
T atomic

Γ, x : T ` x :name

Processes:

o ∈ {?, ↑, ↑}
Γ ` x : chanKT
Γ ` v : T
C ⊆ K

Γ ` C :xov : procK
(Out-?, ↑, ↑)

ι ∈ {?, ↑}
Γ ` x : chanKT
` p : T B ∆
Γ,∆ ` P :procK

Γ ` xιp.P :procK

(In-?, ↑)

o ∈ {a, a}
Γ ` a :boxK

Γ ` x :name
Γ ` v :>
C ⊆ K

Γ ` C :xov : procK

(Out-a, a)

Γ ` a :boxK′

Γ ` x : chanKS
` p : S B ∆
Γ,∆ ` P :procK

K′ ⊆ K
∆ flat
P tests all names of type name in ∆
p contains no wildcards

Γ ` xap.P :procK

(In-a)

Γ ` P :procK

Γ ` Q :procK′

Γ ` P | Q :procK∩K′
(Par)

Γ ` n :boxK

pn(P) ⊆ K
fn(P) ⊆ dom(Γ)

Γ ` n[P] :procK

(Box)

Γ ` 0 :procK

(Nil)

Γ, x : T ` P :procK

T atomic

Γ ` (ν x)P :procK

(Res)

Γ ` P :procK′

K ⊆ K′

Γ ` P :procK

(Spec)

The replicated input rules are similar to the input rules. The predicate
‘P tests all names of type name in ∆’ is defined to be true iff for all y :name
in ∆, y occurs free in channel or box position within P .

Figure 9: Coloured Box-π Typing

26

Nil and Restriction The typing rules for nil and restriction are straightforward;
there is also a specialisation rule allowing some permitted affectees of a process to be
forgotten.

Γ ` 0 :procK

Γ, x : T ` P :procK

T atomic

Γ ` (ν x)P :procK

Γ ` P :procK′

K ⊆ K′

Γ ` P :procK

5.1 Soundness

We wish to infer properties of the coloured input/output behaviour of wrappers from
the soundness of the type system, and therefore need a subject reduction result which
refers not only to reductions (equivalently, τ transitions) but also to input/output
transitions. Define typed labelled transitions by

Γ `K P
`−→C Q iff

(
Γ atomic ∧ Γ ` P :procK ∧ dom(Γ) ` P

`−→C Q
)

The subject reduction theorem for ` an output xov should state that x, o, v and Q
have suitable types; the theorem for ` an input should state that if ` can be typed then
Q can. The result is complicated by the fact that box-π is a calculus with new name
generation, so new names can be extruded and intruded. Type environments for these
names are calculated as follows. For a type environment Γ, with Γ atomic, and a value
v extruded at type T define the type environment tc(Γ, v, T) for new names in v as
follows.

tc(Γ, x, T) = x : T if x 6∈ dom(Γ)
and T atomic

tc(Γ, x,>) = x :name if x 6∈ dom(Γ)
tc(Γ, x, T) = ∅ if Γ ` x : T
tc(Γ, 〈v1 .. vk〉,>) =

∧
1..n tc(Γ, vi,>)

tc(Γ, 〈v1 .. vk〉, 〈T1 .. Tk〉) =
∧

1..n tc(Γ, vi, Ti)
tc(Γ, v, T) undefined elsewhere

Here
∧

i∈1..k Γi is the type environment that maps each x in some dom(Γi) to
∧{T | ∃i .

x : T ∈ Γi }, where all of these are defined.
∧

i∈1..k Γi is undefined otherwise. Note that
in the > case the tc(Γ, vi,>) will necessarily all be well-defined and will be consistent.
To see the need for

∧
, consider Γ = c : chanK〈boxK name〉 and P = (ν x)c?〈xx〉. P

has an extrusion transition with value 〈xx〉; the type context tc(Γ, 〈xx〉, 〈boxK name〉)
should be well-defined and equal to x :boxK.

Further, the type system involves subtyping, so tc(Γ, v, T) can only be used as a
bound on the extruded/intruded type environments. Say Γ ≤ Γ′ iff dom(Γ) = dom(Γ′)
and ∀x ∈ dom(Γ) . Γ(x) ≤ Γ′(x).

We can now state the subject reduction result. For output tags {?, ↑} and ↑ the
name x is guaranteed to have a channel type and v the type carried; for a and a
they are only guaranteed to be a name and a value of type >. {?, ↑} and a are
communication tags, so x cannot be extruded, whereas ↑ and a are movement tags, so
x may be extruded. By convention we elide a conjunct that tc(...) is defined wherever
it is mentioned.

Theorem 10 (Subject Reduction) If Γ `K P
xov−→C Q then

case o ∈ {?, ↑}: for some K′, T we have C ⊆ K′, Γ ` x : chanK′T , and there exists
Θ ≤ tc(Γ, v, T) such that Γ,Θ ` Q :procK.

27

case o =↑: for some K′, T we have C ⊆ K′ and there exists Θ ≤ tc(Γ, 〈x v〉, 〈chanK′T T 〉)
such that Γ,Θ ` Q :procK.

case o = a: for some K′ we have C ⊆ K′, Γ ` a :boxK′ , and there exists a type envi-
ronment Θ ≤ tc(Γ, 〈x v〉, 〈name, >〉) such that Γ,Θ ` Q :procK.

case o = a: for some K′ we have C ⊆ K′, Γ ` a :boxK′ , Γ ` x :name, and there exists
Θ ≤ tc(Γ, v,>) such that Γ,Θ ` Q :procK.

If Γ `K P
xγv−→C Q then

case γ ∈ {?, ↑}: for some K′, T we have Γ ` x : chanK′T . If moreover C ⊆ K′ and
Θ ≤ tc(Γ, v, T) then Γ,Θ ` Q :procK.

case γ = a: for some K′ ⊆ K′′, and S we have Γ ` a :boxK′ , Γ ` x : chanK′′S,
tc(Γ, v, S) well-defined, and ran(tc(Γ, v, S)) ⊆ {name}. If moreover C ⊆ K′′

and Θ ≤ tc(Γ, v, S) then Γ,Θ ` Q :procK.

case γ = a: for some K′ we have Γ ` a :boxK′ . If moreover C ⊆ K′ and we have
Θ ≤ tc(Γ, 〈x v〉, 〈name>〉) then Γ,Θ ` Q :procK.

If Γ `K P
τ−→C Q then C = ∅ and Γ ` Q :procK.

A run-time error for box-π is a process in which a potential communication fails
because the associated substitution is not defined. More precisely, P contains a run-
time error if it contains subterms xγv and xγp.P in parallel (and not under an input
prefix) and {v/p}P is not defined. In a well-typed process run-time errors can only
occur within boxes (whose contents are untyped) or at communications from a box
to the wrapper. Internal transitions of the wrapper and communications between the
wrapper and its parent therefore do not require dynamic typechecking.

Theorem 11 (Limited Runtime Errors)
If Γ ` P :procK, P ≡ (ν x1 .. xn)

(
xγv | xγp.P ′ | Q

)
, Γ atomic, P ′ does not contain a

box and γ ∈ {?, ↑} then {v/p}P is well-defined. Similarly for replicated input.

5.2 Typing the Ordered Pipeline Wrapper

Finally, we can show that instantiations of F are well-typed and use the subject re-
duction theorem to conclude that F has the causal flow property.

Theorem 12 (F typing) If

Γ = Γ1, in1 : chan{p}>, out1 : chan{p}>, from : chan{p}〈>name〉,
in2 : chan{q}>, out2 : chan{p,q}>, to : chan{p,q}〈> chan{p,q}〈〉〉

and also fn(P,Q) ⊆ dom(Γ)− {a, b}
then Γ ` ∅ ◦F(P,Q) :procp.

28

The proof of this involves type assumptions for the new-bound names of F as follows.

a:box{p}
b:box{p,q}

buff :chan{p}〈 chan{p}〈> chan{p}〈〉〉
chan{p,q}〈> chan{p,q}〈〉〉〉

full :chan{p,q}〈chan{p,q}〈> chan{p,q}〈〉〉
chan{p,q}〈> chan{p,q}〈〉〉
>〉

A straightforward induction on trace lengths using the Subject Reduction theorem then
proves the desired causal flow result:

Theorem 13 Wrapper F has the causal flow property.

6 Discussion

Policy enforcement mechanisms: Wrappers impose security policies on compo-
nents for which it is impractical to analyze the internal structure, e.g. where only
untyped object code is available.

Several alternative approaches are possible, differing in the level of trust required,
the flexibility of the security policy enforced, and their costs to component producers
and users. Code signing and Java-style sandboxing have low cost but cannot enforce
flexible policies – signed components may behave in arbitrary ways whereas sandboxed
components should not be able to interact with each other at all. Code signing requires
the user to have total trust in the component producers – not just in their intent, but
also in their ability to produce bug-free components. Sandboxing requires no trust,
but the lack of any interaction is often too restrictive. More delicate policies can
be enforced by shipping code together with data allowing the user to type-check it
in a security-sensitive type system [43, 17], or to check a proof of a security-relevant
behavioural property [27]. In the long term these seem likely to be the best approaches,
but they require component producers to invest effort and to conform to a common
standard for types or proofs – in the short term this is prohibitive. Shifting the burden
of proof to the user, by performing type inference or static analysis of downloaded code,
seems impractical given only the object code, which may not have been written with
security in mind and so may not conform to any reasonable type system. In contrast,
wrappers have been shown to have low-cost – none to the producer and only a small
run-time cost to the user [12]. They allow more flexible interaction than sandboxing,
albeit coarser-grain policies than proof-carrying components or security-type-checked
components.

Information flow properties: The causal flow property is related to the property,
studied in many contexts, that there is no information flow from a high to a low security
level (though most work addresses components, which may have the property, rather
than wrappers, which may enforce it on subcomponents). The literature contains a
range of definitions that aim to capture this intuition in some particular setting; the
formalisations vary widely. A basic choice is whether the property is stated purely
extensionally, in terms of a semantics that describes only the input/output behaviour

29

of a system, or using a more intensional semantics. A line of work on Non-Interference,
summarised in [25], takes an extensional approach, stating properties in terms of the
traces of input and output events of a system. Related definitions, adapted to a pro-
gramming language setting, are used in [43, 17]. In the presence of nondeterminism,
however, non-interference becomes problematic – as discussed in [42], the property may
only be meaningful given probabilistic scheduling, which has a high run-time cost.

We believe that the basic difficultly is that the intuitive property is an intensional
one – the notion of one component affecting another depends on some understanding
of how components interact; a precise statement requires a semantics that captures
some aspects of internal execution, not just input/output behaviours. This might be
denotational or operational. Intensional denotational semantics have been used in the
proofs (and, in the last, statements) of non-interference properties in [17, 1, 31], which
use a logical relations proof and PER-based models. [42] and [31] go on to consider
probabilistic properties.

For wrappers, it is important that the end-user be able to understand the security
that they provide as clearly as possible. We therefore wish to use as lightweight a
semantics as possible, as this must be understood before any security property stated
using it, and so adopt an annotated operational semantics (developing a satisfactory
denotational semantics of box-π, dealing with name creation, boxes, and untyped com-
ponents, would be a challenging research problem in its own right). In a sequential
setting annotated operational semantics have been used by [46]; see also [24]. The
definition of the coloured semantics for box-π seems unproblematic, but in general one
might validate an annotated semantics by relating it to a lower-level execution model
(as mentioned below).

Neglecting boxing and wrappers for the moment, considering simply π-processes,
we believe that intensional properties stated in terms of causal flow will generally imply
properties stated purely in terms of trace-sets. As a starting point, we show that our
type system implies a non-interference property (similar to the permutation property
of [35], but for processes rather than wrappers) in a particular case. We prove that
an output on a ‘low’ channel can always be permuted before an input on a ‘higher’
channel (with respect to the lattice of sets of colours).

Proposition 14 If L (H and {h : chanHU, l : chanLV } ` P :proc∅ then

{h, l} ` P
h?u−→ l

?
v−→ Q implies {h, l} ` P

l
?
v−→h?u−→ Q.

Proof Sketch One can first show that ∅ ◦P has coloured transitions with the in-
put coloured H and the output by some C. By subject reduction C ⊆ L. Analysing the
form of P with Lemmas 21,20 from [35], and using L (H, shows that the output term
in P is not prefixed by the input, so the transitions can be permuted. 2

Information flow type systems: The type system differs from previous work [43,
42, 28] primarily in handling badly typed components. Necessarily, it does not provide
fine-grain tracking of information flow through these components. It also handles
nondeterminism, new name creation and channel passing. Precise comparisons with
related type systems are difficult as the languages involved differ widely. One can,
however, embed fragments of these languages into box-π (noting that this only exploits
the fully-typed part of our calculus). For example, in the work of Smith and Volpano
[39] an assignment to a low security variable can follow an assignment to a high variable

30

– the program h:=3;l:=1 is well-typed. The natural translation of this program in
box-π would be

(h
?
0 | l?0) | h?y.(h

?
3 | l?y.l

?
1)

where the left subterm models an initial store assigning 0 to h and l. This would not
be well-typed in the system of this paper, taking h : chan{H,L}Int, l : chan{L}Int and
a new base type Int. Here the low assignment is causally dependent on the high, even
though no high information can leak. On the other hand a box-π encoding of branches
would not forbid high variable guards. In recent papers, type systems for capturing
information flow in the π-calculus have been proposed by Honda, Vasconcelos and
Yoshida [20], and by Hennessy and Riely [18]. We leave detailed comparison of the
expressiveness of these systems and the π fragment of the causal type system presented
here to future work.

Causal flow is a robust and straightforward property; it can be enforced by a re-
markably simple type system. But, as the example above shows, it is sometimes over-
constraining. We envisage that in a large system the bulk of the code will be typeable
in a secure type system, a small portion will be in clearly-identified unsafe modules
that are subject only to conventional typechecking, and a small portion (any untrusted
code) will be encapsulated in wrappers. Automatic type inference would be required
to relieve the burden of adding security annotations to all declarations.

7 Conclusion

The issue of securely composing untrusted or partially trusted components has great
practical relevance. In this paper we have studied techniques for formally proving that
software wrappers – the glue between components – actually enforce user-specified
information flow constraints. We have defined a coloured operational semantics for a
concurrent wrapper language. By keeping track of all the principals that have affected
a process in the semantics it becomes easy to formulate clear statements of information
flow properties. To prove that particular wrappers are secure, we defined a causal type
system and so only need show that the wrappers are well typed.

Throughout the paper we focussed on wrapper properties – the calculus, statement
of security properties and type system are all designed specifically for wrappers – but
we believe similar techniques are applicable to other situations in which interaction
must be controlled but not completely excluded, for example in isolating a security-
critical kernel of a single application, or in controlling interactions between packets
in an active network. Allowing untyped code fragments in otherwise typed programs
gives a way to loosen security restrictions when necessary.

In future work it would be worth integrating the causal type system with a lower-
level semantics for object code, such as the typed assembly language of [14], addressing
the issue of type inference of security levels. The proper statement of properties in-
volving dynamic changes in information flow policy is also open.

Acknowledgements We would like to thank J. Leifer, J. Palsberg, and the anonymous
referees, for comments. The first author was supported by a Royal Society University
Research Fellowship and by EPSRC grant GR/L 62290 Calculi for Interactive Systems:
Theory and Experiment. The second author did part of this work in the Object System
Group at the University of Geneva.

31

A Coincidence of the Labelled Transition and Re-
duction Semantics

This appendix contains the proof of equivalence of the labelled transition semantics and
the reduction semantics. It is divided into three parts, the first giving basic properties
of the labelled transition system, the second showing that any reduction can be matched
by a τ -transition and the third showing the converse.

A.1 Basic Properties of the LTS

The first lemmas are all proved by induction on derivations of transitions.

Lemma 15 If P ≡ Q then fn(P) = fn(Q).

Lemma 16 If A ` P
`−→ Q then

1. fn(P) ⊆ A

2. fn(Q) ⊆ fn(P, `)

3. if ` = xov then fn(`) ∩A ⊆ fn(P)

4. if ` = xov then fn(o) ⊆ fn(P)

5. if ` = xov and ¬mv(o) then x ∈ fn(P)

6. if ` = xγv then fn(γ) ⊆ fn(P).

7. if ` = xγv and γ 6= n then x ∈ fn(P).

Lemma 17 (Strengthening) If A,B ` P
`−→ P ′ and B ∩ fn(P, `) = ∅ then A `

P
`−→ P ′.

Lemma 18 (Injective Substitution) If A ` P
`−→ P ′, and f : A→B and g :(fn(`)−

A)→(N −B) are injective, then B ` fP
(f+g)`−→ (f + g)P ′.

Lemma 19 (Weakening and Strengthening) (A ` P
`−→ P ′ ∧ x 6∈ A ∪ fn(`)) iff

(A, x ` P
`−→ P ′ ∧ x 6∈ fn(P, `)).

Proof The right-to-left implication follows from the well-formedness of A, x and
from Lemma 17. The left-to-right implication follows from the condition fn(P) ⊆ A in
the definition of the transition rules and from Lemma 18, taking f to be the inclusion
from A to A, x and g the identity on fn(`)−A. 2

Lemma 20 (Shifting) 1. (A ` P
zιv−→ P ′ ∧ x ∈ fn(v) − A) iff (A, x ` P

zιv−→ P ′ ∧
x ∈ fn(v)− fn(P)) .

2. (A ` P
znv−→ P ′ ∧ x ∈ fn(z, v)−A) iff (A, x ` P

znv−→ P ′ ∧ x ∈ fn(z, v)− fn(P))

32

Proof Sketch Each part is by two inductions on derivations of transitions. 2

As we are working up to alpha conversion a little care is required when analysing
transitions. We need the following lemma (of which only the input and restriction cases
are at all interesting).

Lemma 21 1. A ` xov
`−→ Q iff fn(xov) ⊆ A, ` = xov and Q ≡ 0.

2. A ` xιp.P
`−→ Q iff there exists v such that fn(xιp.P) ⊆ A, ` = xιv, {v/p}P is

defined and Q ≡ {v/p}P .

3. A ` !xιp.P
`−→ Q iff there exists v such that fn(!xιp.P) ⊆ A, ` = xιv, {v/p}P is

defined and Q ≡ !xιp.P | {v/p}P .

4. A ` n[P] `−→ Q iff one of the following hold.

(a) there exist x, v, and P̂ such that n ∈ A, ` = τ , A ` P
x↑v−→ P̂ , and Q ≡

(ν fn(x, v)−A)(xnv | n[P̂]).

(b) there exist x and v such that fn(n[P]) ⊆ A, ` = xnv and Q ≡ n[x↑v | P].

(c) there exists P̂ such that n ∈ A, ` = τ , A ` P
τ−→ P̂ , and Q ≡ n[P̂].

5. A ` P | Q `−→ R iff either

(a) there exists P̂ such that fn(Q) ⊆ A, A ` P
`−→ P̂ and R ≡ P̂ | Q.

(b) there exists x, γ, v, P̂ and Q̂ such that ` = τ , A ` P
xγv−→ P̂ , A ` Q

xγv−→ Q̂,
and R ≡ (ν fn(x, v)−A)(P̂ | Q̂).

or symmetric cases.

6. A ` (ν x)P `−→ Q iff either

(a) there exists x̂ 6∈ A∪ fn(`)∪ (fn(P)−x) and Q̂ such that A, x̂ ` {x̂/x}P `−→ Q̂
and Q ≡ (ν x̂)Q̂.

(b) there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(y, o) ∪ (fn(P)− x) such that ` = yov,

A, x̂ ` {x̂/x}P yov−→ Q̂, x̂ ∈ fn(v), ¬mv(o) and Q ≡ Q̂.

(c) there exists y, o, v, Q̂ and x̂ 6∈ A ∪ fn(o) ∪ (fn(P) − x) such that ` = yov,

A, x̂ ` {x̂/x}P yov−→ Q̂, x̂ ∈ fn(y, v), mv(o) and Q ≡ Q̂.

Proof Sketch The right-to-left implications are all shown using a single transition
rule together with (Trans Struct Right). The left-to-right implications are shown by
induction on derivations of transitions. 2

33

A.2 Reductions Imply Transitions

Take the size of a derivation of a structural congruence to be number of instances of
inference rules contained in it.

Lemma 22 If P ′ ≡ P and {v/p}P is defined then {v/p}P ′ is defined and {v/p}P ′ ≡
{v/p}P . Moreover, for any derivation of P ′ ≡ P there is a derivation of the same size
of {v/p}P ′ ≡ {v/p}P .

Proof Sketch Immediate. 2

Proposition 23 If P ′ ≡ P then A ` P ′ `−→ Q iff A ` P
`−→ Q.

Proof Sketch A lengthy induction on the size of derivation of P ′ ≡ P . The most
interesting cases are for the structural congruence axioms for scope extrusion across
parallel composition and boxes. 2

Lemma 24 If fn(P) ⊆ A and P → Q then A ` P
τ−→ Q.

Proof Sketch Induction on derivations of P → Q, constructing derivations of τ -
transitions for the reduction axioms (Red Up), (Red Down), (Red Comm) and (Red
Repl), and using Proposition 23 for the (Red Struct) case. We give the first three cases
in detail.

(Red Up)

A ` x↑v x↑v−→ 0
(Trans Out)

A ` x↑v | Q x↑v−→ 0 | Q
(Trans Par)

A ` n[x↑v | Q] τ−→ (ν fn(x, v)−A)(xnv | n[0 | Q])
(Trans Box-1)

By the premise fn(n[x↑v | Q]) ⊆ A we have fn(x, v) ⊆ A, so using (Trans Struct
Right) we have A ` n[x↑v | Q] τ−→ xnv | n[Q], the right hand side of which is
exactly the right hand side of (Red Up).

(Red Down)

A ` xnv
xnv−→ 0

(Trans Out)
x ∈ A

A ` n[Q] xnv−→ n[x↑v | Q]
(Trans Box-2)

A ` xnv | n[Q] τ−→ (ν fn(v)−A)(0 | n[x↑v | Q])
(Trans Comm)

By the premise fn(xnv | n[Q]) ⊆ A we have x ∈ A and also fn(v) ⊆ A, so using
(Trans Struct Right) we have A ` xnv | n[Q] τ−→ n[x↑v | Q], the right hand side
of which is exactly the right hand side of (Red Down).

(Red Comm)

A ` xιv
xιv−→ 0

(Trans Out)

A ` xιp.P
xιv−→ {v/p}P

(Trans In)

A ` xιv | xιp.P
τ−→ (ν fn(v)−A)(0 | {v/p}P)

(Trans Comm)

34

The side condition {v/p}P defined for (Trans In) is ensured by the same condition
for (Red Comm). By the premise fn(xιv | xιp.P) ⊆ A we have fn(v) ⊆ A, so
using (Trans Struct Right) we have A ` xιv | xιp.P

τ−→ {v/p}P , the right hand
side of which is exactly the right hand side of (Red Comm).

2

A.3 Transitions Imply Reductions

For the converse direction we first show that if a process has an output or input
transition then it contains a corresponding output, input or box subterm.

Lemma 25 If A ` P
zov−→ P ′ then P ≡ (ν fn(z, v)−A)(zov | P ′)

Proof Sketch Induction on derivation of A ` P
zov−→ P ′. 2

Lemma 26 If A ` Q
xιv−→ Q′ then there exist B, p,Q1 and Q2 such that B ∩ (A ∪

fn(xιv)) = {} and either Q ≡ (ν B)(xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | Q2) or
Q ≡ (ν B)(!xιp.Q1 | Q2) and Q′ ≡ (ν B)({v/p}Q1 | !xιp.Q1 | Q2).

Proof Sketch Induction on derivation of A ` Q
xιv−→ Q′. 2

Lemma 27 If A ` Q
xnv−→ Q′ then there exist B, Q1 and Q2 such that B ∩ (A ∪

fn(xnv)) = {}, Q ≡ (ν B)(n[Q1] | Q2) and Q′ ≡ (ν B)(n[(x↑v | Q1)] | Q2).

Proof Sketch Induction on derivation of A ` Q
xnv−→ Q′. 2

Lemma 28 If A ` P
τ−→ Q then P → Q.

Proof Sketch Induction on derivations of A ` P
τ−→ Q, using the preceding three

lemmas for the (Trans Box-1) and (Trans Comm) rules. 2

The proof of Theorem 1, i.e. that if fn(P) ⊆ A then A ` P
τ−→ Q iff P → Q, is

now immediate from Lemmas 24 and 28.

35

B Purity and Honesty

This appendix sketches the proofs of purity and honesty results. We first give another
transition-analysis lemma. This allows us to rename extruded names in a label instead
of in the source process term.

Lemma 29 If A ` (ν N)P `−→ Q, ` = y↑v, and A, N and M are pairwise disjoint
finite sets of names then there exists a partition N1, N2 of N , a process P ′, and

h :(fn(`)−A)→(N − (A,N2,M))

injective such that

A,N ` P
(1A+h)`−→ P ′

A ` (ν N)P
(1A+h)`−→ (ν N2)P ′ ≡ (1A + h)Q

N2 = N − fn((1A + h)`)

Proof Sketch Induction on N , using Lemmas 18 and Lemma 21.6. 2

The simple security properties are proved using an explicit characterisation of the
states and labelled transitions of W1(P). If N is a finite set of names, a is a name and
A and Q are processes define

[[a;N ;A;Q]]
def
= (ν N ∪ {a})(A

| a[Q]
| ! in↑y.in

a
y

| ! outay.out
↑
y

)
Say the 4-tuple a, N , A, Q is good if N , {a}, and {in, out} are pairwise disjoint, A is
a parallel composition of outputs of the forms

out
a
v, out

↑
v, in

a
v, xav where x 6∈ {out, a}

with a 6∈ fn(v) in each case, and Q is a process with a 6∈ fn(Q). Say a process P is
good if P ≡ [[a;N ;A;Q]] for some good a, N , A, Q.

Lemma 30 If a 6∈ fn(P) then W1(P) ≡ [[a; ∅; 0;P]], hence W1(P) is good.

Proof Sketch Straightforward. 2

We define a transition relation A ` P
`

⇀ Q as the least satisfying the following rules.

t1 A ` [[a; N ;A; Q]]
in↑v
⇀ [[a; N ;A | ina

v; Q]] fn(v) ∩ (N ∪ {a}) = ∅
t2 A ` [[a; N ;A | ina

v; Q]]
τ
⇀ [[a; N ;A; Q | in↑

v]]

t4 A, N, a ` Q
out↑v−→ Q′ A ` [[a; N ;A; Q]]

τ
⇀ [[a; N, fn(v)− (A, N, a);A | out

a
v; Q′]]

t5 A, N, a ` Q
x↑v−→ Q′ A ` [[a; N ;A; Q]]

τ
⇀ [[a; N, fn(x, v)− (A, N, a);A | xav; Q′]]

t6 A ` [[a; N ;A | out
a
v; Q]]

τ
⇀ [[a; N ;A | out

↑
v; Q]]

t7 A ` [[a; N ;A | out
↑
v; Q]]

out↑v
⇀ [[a; N − fn(v);A; Q]]

t8 A, N, a ` Q
τ−→ Q′ A ` [[a; N ;A; Q]]

τ
⇀ [[a; N ;A; Q′]]

36

A ` P
`

⇀ P ′ P ′ ≡ P ′′

A ` P
`

⇀ P ′′

For rule t5, we have a side condition that x 6= out. For all rules we have a sidecondition
that the 4-tuple in the left hand side of the conclusion is good. For all rules we have a
sidecondition that the free names of the process on the left hand side of the conclusion
are contained in A.

Lemma 31 If A ` P
`
⇀ P ′ then P ′ is good.

Proof By inspection of the transition axioms, checking that the 4-tuple on the
right hand side is good in each case, and noting that the definition of P good is pre-
served by structural congruence. For t4 by the condition fn([[a;N ;A;Q]]) ⊆ A we
have {in, out} ⊆ A so {in, out} ∩ (fn(v) − (A,N, a)) = ∅. By Lemma 16.3 a 6∈ fn(v)
By Lemma 16.2 a 6∈ fn(Q′). For t5 by the condition fn([[a;N ;A;Q]]) ⊆ A we have
{in, out} ⊆ A so {in, out} ∩ (fn(x, v) − (A,N, a)) = ∅. By Lemma 16.3 a 6∈ fn(x, v)
By Lemma 16.2 a 6∈ fn(Q′). For t8 by Lemma 16.2 a 6∈ fn(Q′). The other cases are
straightforward. 2

Lemma 32 For all good P we have A ` P
`−→ P ′ iff A ` P

`
⇀ P ′.

Proof Sketch We first show that A ` P
`
⇀ P ′ implies A ` P

`−→ P ′, by induction
on derivations of the former. The converse direction is by a case analysis of the possible
transition derivations. 2

Proof Sketch (of Proposition 2 (Purity)) We show by induction on k that Q is
good and that the conclusion holds. The k = 0 case is by Lemma 30. The inductive
step uses Lemmas 31 and 32. 2

Proof Sketch (of Proposition 5 (Honesty)) To check that the unary wrapper W1

is honest, if N is a finite set of names, a is a name and A and Q are processes define

〈〈〈a;N ;A;Q〉〉〉 def
= Q

| {| out
↑
v | out

a
v ∈ A |}

| {| out
↑
v | out

↑
v ∈ A |}

| {| x↑v | xav ∈ A ∧ x 6= out |}
| {| in

↑
v | ina

v ∈ A |}
〈〈a;N ;A;Q〉〉 def

= (ν N)〈〈〈a;N ;A;Q〉〉〉

Note that if a;N ;A;Q is good then a 6∈ fn(〈〈a;N ;A;Q〉〉). Now take the family of
relations below.

RA = ≡ ◦{ [[a;N ;A;Q]], 〈〈a;N ;A;Q〉〉 | a;N ;A;Q good and fn([[a;N ;A;Q]]) ⊆ A }◦ ≡

We must check that for any P with a 6∈ fn(P) and A ⊇ fn(W1(P)) we haveW1(P) RA P
and that R is an h-bisimulation. The former follows from Lemma 30 and the fact
〈〈a; ∅; 0;P 〉〉 ≡ P . For the latter there are a number of cases to check; we omit the
details. 2

37

C Causality Typing: Soundness and Application

This appendix gives the soundness proofs for the type system (of the Subject Reduc-
tion and Limited Runtime Error theorems) and the proof that F has the causal flow
property.

C.1 Soundness

The proof of Subject Reduction is divided into three main parts. First we require
lemmas giving conditions under which a substitution is well-defined and well-typed
(here ‘good’). We then prove substitution lemmas for values and processes by induction
on typing derivations, and finally the Subject Reduction result by induction on pairs
of transition and typing derivations. The Limited Runtime Error result is almost an
immediate consequence of these lemmas.

Say Γ;∆ ` {u/p} good iff {u/p} is well-defined, dom({u/p}) = dom(∆), and ∀x : T ∈
∆ . Γ ` {u/p}x : T . We adopt the convention below that wherever tc(Γ, v, T) is men-
tioned it is also assumed well-defined.

Lemma 33 If Γ =
∧

i∈1..n Γi and for some j ∈ 1..n Γj ` v : T then Γ ` v : T .

Proof Sketch Induction on derivation of Γj ` v : T , using the fact that atomic
types are down-closed in the (Name) case. 2

Lemma 34 (tc) If Θ
def
= tc(Γ, v, T) then Θ atomic and Γ,Θ ` v : T .

Proof Sketch The first part is by induction on v, noting that the set of atomic
types is closed under defined glbs. The second part is also by induction on v. 2

Lemma 35 If Γ atomic then tc(Γ, v,>) is well-defined and is equal to the type context
mapping each x ∈ fn(v)− dom(Γ) to name.

Proof Sketch Induction on v. 2

Lemma 36 (Goodness - Standard - Preliminary) If

Γ atomic
Γ ` u : U
` p : U B ∆

then Γ;∆ ` {u/p} good.

Proof Sketch By induction on the two typing derivations, with case analysis on
the last rule of the pattern judgement. 2

Note that this result requires that the range of Γ contains no tuple types. Consider
u = x, U = 〈boxK boxK〉, Γ = x : U and p = (y z). We have ` p : U B y :boxK, z :boxK

but {x/(y z)} is not well-defined.

38

Lemma 37 (Goodness - Dynamic) If

Γ atomic
` p : S B ∆
dom(Γ) and dom(∆) disjoint
{u/p} well defined
∆ flat (so ran(∆) ⊆ {>,name})
∀y :name ∈ ∆ . {u/p}y is a name
p contains no wildcards

then Θ
def
= tc(Γ, u, S) is well-defined, ran(Θ) ⊆ {name}, and Γ,Θ;∆ ` {u/p} good.

Proof Sketch By induction on the pattern p, using Lemmas 35 and 33 in the vari-
able and tuple cases. 2

Lemma 38 (Substitution - values) If

Γ,∆ ` v : T
Γ,Θ;∆ ` {u/p} good

then {u/p}v is well-defined and Γ,Θ ` {u/p}v : T

Proof Sketch By Γ,Θ;∆ ` {u/p} good we have that {u/p} is well-defined, so {u/p}v
is well-defined. The second part is proved by induction on the value typing derivation.
2

Note that for this to hold the typing rules must ensure that names of tuple types do
not have type name. Note also that this lemma does not require any atomicity, and
that that is important in the first input clause of the process substitution lemma.

Lemma 39 (Substitution - processes) If

Γ,∆ ` P :procK

Γ,Θ;∆ ` {u/p} good

then (1) if {u/p}P is well-defined then Γ,Θ ` {u/p}P :procK and (2) if P contains no
subterm n[Q] then {u/p}P is well-defined.

Proof Sketch We prove both parts simultaneously by induction on the size of type
derivation for P . For (1) we give two instances of each typing rule; in each case showing
that the premises of the right-hand instance follow from those of the left-hand instance.
This uses Lemma 38. 2

To see the need for the condition that P is box-free, consider Γ = ∅, ∆ = x :〈namename〉,
Θ = z :name, P = (ν n)n[x?〈〉], and {u/p} = {〈z z〉/x}. The premises of the Lemma
hold, but {u/p}P is not well-defined.

Lemma 40 (Painting – Jackson Pollack style) If

Γ ` P :procK

C ⊆ K

then Γ ` C ◦P :procK

39

Proof Sketch Routine induction on typing derivations. 2

Lemma 41 If Γ ` v : T then tc(Γ, v, T) = ∅.
Proof Sketch Routine induction on v. 2

Lemma 42 If dom(∆) is disjoint from dom(Γ), fn(v) and fn(P) then

1. Γ ` v : T ⇐⇒ Γ,∆ ` v : T .

2. tc(Γ, v, T) = tc((Γ,∆), v, T).

3. Γ ` P :procK ⇐⇒ Γ,∆ ` P :procK

Proof Sketch Routine inductions. 2

Lemma 43 If tc((Γ, y : U), v, T) well-defined and y ∈ fn(v) then there exists some V
with U ≤ V and tc(Γ, v, T) = tc((Γ, y : U), v, T), y : V .

Proof Sketch Induction on v, using Lemma 42.2. 2

Lemma 44 If Γ, y : U atomic, Θ ≤ tc((Γ, y : U), v, T) and y ∈ fn(v) then Θ, y : U ≤
tc(Γ, v, T).

Proof An immediate corollary of Lemma 43, which gives that there exists some V
with U ≤ V and tc(Γ, v, T) = tc((Γ, y : U), v, T), y : V . 2

Lemma 45 (Structural Congruence) If Γ ` P :procK and P ≡ Q then Γ ` Q :procK.

Proof Sketch Induction on derivations of P ≡ Q. 2

Say Γ ≤ Γ′ iff dom(Γ) = dom(Γ′) and ∀x ∈ dom(Γ) . Γ(x) ≤ Γ′(x).

Lemma 46 If Γ ≤ Γ′ and Γ′ ` v : T then Γ ` v : T .

Proof Sketch Induction on typing derivation of v. 2

Lemma 47 If Γ ≤ Γ′ and Γ′;∆ ` {u/p} good then Γ;∆ ` {u/p} good.

Proof By the definition of good and Lemma 46. 2

Lemma 48 If A ` P
xov−→C Q then C ⊆ pn(P) and pn(Q) ⊆ pn(P).

Proof Sketch Routine induction on transition derivations. 2

We can now restate and prove Theorem 10.

40

Theorem 49 (subject reduction)

1. If Γ `K P
xov−→C Q and o ∈ {?, ↑} then for some K′, T

Γ ` x : chanK′T
there exists Θ ≤ tc(Γ, v, T) such that Γ,Θ ` Q :procK

C ⊆ K′

2. If Γ `K P
x↑v−→C Q then for some K′, T

there exists Θ ≤ tc(Γ, 〈x v〉, 〈chanK′T T 〉) such that Γ,Θ ` Q :procK

C ⊆ K′

3. If Γ `K P
xav−→C Q then for some K′

Γ ` a :boxK′

there exists Θ ≤ tc(Γ, 〈x v〉, 〈name, >〉) such that Γ,Θ ` Q :procK

C ⊆ K′

4. If Γ `K P
xav−→C Q then for some K′

Γ ` a :boxK′

Γ ` x :name
there exists Θ ≤ tc(Γ, v,>) such that Γ,Θ ` Q :procK

C ⊆ K′

5. If Γ `K P
xγv−→C Q and γ ∈ {?, ↑} then for some K′, T Γ ` x : chanK′T . If

moreover
Θ ≤ tc(Γ, v, T)
C ⊆ K′

then Γ,Θ ` Q :procK.

6. If Γ `K P
xav−→C Q then for some K′ ⊆ K′′, and S we have Γ ` a :boxK′ , Γ `

x : chanK′′S, tc(Γ, v, S) well-defined, and ran(tc(Γ, v, S)) ⊆ {name}. If moreover

Θ ≤ tc(Γ, v, S)
C ⊆ K′′

then Γ,Θ ` Q :procK.

7. If Γ `K P
xav−→C Q then for some K′ we have Γ ` a :boxK′ . If moreover

Θ ≤ tc(Γ, 〈x v〉, 〈name>〉)
C ⊆ K′

then Γ,Θ ` Q :procK.

8. If Γ `K P
τ−→C Q then C = ∅ and Γ ` Q :procK.

41

Proof We give first the output part, for clauses 1–4, then the input part, for 5–
7, then the tau part, for 8. Each is by induction on pairs of transition and typing
derivations.

Output Consider the last pair of rules used:

(Out),(Out-?, ↑, ↑) Take K′ = K and consider cases of o:

1: ?, ↑ By Lemma 41 we can take Θ = tc(Γ, v, T) = ∅.
2: ↑ By Lemma 41 we can take Θ = tc(Γ, 〈x v〉, 〈chanK′T T 〉) = ∅.

(Out),(Out-a, a) Take K′ = K and consider cases of o:

3: a By Lemma 41 we can take Θ = tc(Γ, 〈x v〉, 〈name, >〉) = ∅.
4: a By Lemma 41 we can take Θ = tc(Γ, v,>) = ∅.

(Struct),(*) 1–4 follow from the same clauses of the induction hypothesis and Lemma 45.

(*),(Spec) 1–4 follow from the same clauses of the induction hypothesis and a use of
(Spec) for Q.

(Par),(Par) Consider Γ `K P | P ′ `−→C Q | P ′ with Γ `K P
`−→C Q. 1–4 follow from

the same clauses of the induction hypothesis and a use of Lemma 42.3 for P ′.

(Res-1),(Res) Consider Γ `K (ν y)P `−→C (ν y)Q with Γ, y : U `K P
`−→C Q, ` an

output xov and y 6∈ fn(`). Suppose o ∈ {?, ↑}. By clause 1 of the induction
hypothesis for some K′, T

Γ, y : U ` x : chanK′T
there exists Θ ≤ tc((Γ, y :U), v, T) such that Γ, y : U,Θ ` Q :procK

C ⊆ K′

By Lemma 42.1 Γ ` x : chanK′T . By Lemma 42.2 tc((Γ, y : U), v, T) = tc(Γ, v, T),
so taking the same Θ and using the (Res) typing rule we have Γ,Θ ` (ν y)Q :procK

as required. The other cases of o are similar.

(Res-2),(Res) Consider Γ `K (ν y)P `−→C Q with Γ, y : U `K P
`−→C Q, ` an output

xov and y ∈ fn(`).

Case ¬mv(o). We have o ∈ {?, ↑, a} and y ∈ fn(v)− fn(x, o).
Suppose o ∈ {?, ↑}. By clause 1 of the induction hypothesis for some K′, T

Γ, y : U ` x : chanK′T
there exists Θ ≤ tc((Γ, y : U), v, T) such that Γ, y : U,Θ ` Q :procK

C ⊆ K′

By Lemma 42.1 Γ ` x : chanK′T . By Lemma 44 Θ, y : U ≤ tc(Γ, v, T). The
case o = a, for clause 4, is similar.

Case mv(o). We have o ∈ {↑, a} and y ∈ fn(x, v)− fn(o).
Suppose o =↑. By clause 2 of the induction hypothesis for some K′, T

there exists Θ ≤ tc((Γ, y : U), 〈x v〉, 〈chanK′T T 〉) such that Γ, y : U,Θ ` Q :procK

C ⊆ K′

By Lemma 44 Θ, y : U ≤ tc(Γ, 〈x v〉, 〈chanK′T T 〉). The case o = a, for clause
3, is similar.

42

Input Consider the last pair of rules used:

(In)(In-?, ↑) Clause 5. Take K′ = K. By tc(Γ, v, T) defined and Lemma 34 we have
tc(Γ, v, T) atomic and Γ, tc(Γ, v, T) ` v : T . It follows that Θ atomic and by
Lemma 46 Γ,Θ ` v : T . By Lemma 36 Γ,Θ;∆ ` {v/p} good. By the definition of
labelled transitions {v/p}P is well-defined so by Lemma 39 Γ,Θ ` {v/p}P :procK.
By Lemma 40 Γ,Θ ` C ◦{v/p}P :procK.

(In)(In-a) Clause 6. Take K′′ = K. By the definition of labelled transitions {v/p}P is
well-defined so {v/p} is well-defined. As P tests all y :name ∈ ∆ and {v/p}P is de-
fined ∀y :name ∈ ∆ . {v/p}y is a name. By Lemma 37 tc(Γ, v, S) is well-defined,
ran(tc(Γ, v, S)) ⊆ {name}, and Γ, tc(Γ, v, S);∆ ` {v/p} good. By Lemma 47
Γ,Θ;∆ ` {v/p} good. By Lemma 39 Γ,Θ ` {v/p}P :procK. By Lemma 40
Γ,Θ ` C ◦{v/p}P :procK.

(Repl)(Repl-?, ↑) and (Repl)(Repl-a) Similar to the two cases above.

(Box-2)(Box) Clause 7. Take K′ = K. To check Γ,Θ ` n[C :x↑v | P] :procK observe
that Γ,Θ ` n :boxK by weakening, pn(C : x↑v | P) ⊆ C ∪ pn(P) ⊆ K, and
fn(C :x↑v | P) ⊆ fn(x, v) ∪ fn(P) ⊆ dom(Γ,Θ).

(Struct),(*) 5–7 follow from the same clauses of the induction hypothesis and Lemma 45.

(*),(Spec) 5–7 follow from the same clauses of the induction hypothesis and a use of
(Spec) for Q.

(Par),(Par) Consider Γ `K P | P ′ `−→C Q | P ′ with Γ `K P
`−→C Q. 5–7 follow from

the same clauses of the induction hypothesis and a use of Lemma 42.3 for P ′.

(Res-1)(Res) Consider Γ `K (ν y)P `−→C (ν y)Q with Γ, y : U `K P
`−→C Q, ` an

input xγv and y 6∈ fn(`). Suppose γ ∈ {?, ↑}. By clause 5 of the induction
hypothesis for some K′, T Γ, y : U ` x : chanK′T and

Θ ≤ tc((Γ, y : U), v, T)
C ⊆ K′

implies Γ, y : U,Θ ` Q :procK. By y 6∈ fn(`) we have Γ ` x : chanK′T . Now
suppose

Θ ≤ tc(Γ, v, T)
C ⊆ K′

By Lemma 42.2 tc(Γ, v, T) = tc((Γ, y : U), v, T) so by the implication in the in-
duction hypothesis Γ, y : U,Θ ` Q :procK, hence Γ,Θ ` (ν y)Q :procK. The case
of γ = a, for 7, is similar.

Now suppose γ = a. By clause 6 of the induction hypothesis for some K′ ⊆ K′′,
and S we have Γ, y : U ` a :boxK′ , Γ, y : U ` x : chanK′′S, tc((Γ, y : U), v, S) well-
defined, and ran(tc((Γ, y : U), v, S)) ⊆ {name}. Moreover

Θ ≤ tc((Γ, y : U), v, S)
C ⊆ K′′

implies Γ, y : U,Θ ` Q :procK.

As y 6∈ fn(`) the various strengthening results suffice to show clause 6.

43

Tau Consider the last pair of rules used:

(Comm)(Par) We have

Γ `K1 P1
xγv−→C P ′

1 Γ `K2 P2
xγv−→C P ′

2

Γ `K1∩K2 P1 | P2
τ−→∅ (ν fn(x, v)− dom(Γ))(P ′

1 | P ′
2)

(Comm)

Consider cases of γ and the corresponding output and input clauses:

Case ?, ↑ 1,5. By the induction hypotheses there exists Θ ≤ tc(Γ, v, T) such
that Γ,Θ ` P ′

1 :procK1
and Γ,Θ ` P ′

2 :procK2
. By the (Par) and (Res)

typing rules Γ ` (ν fn(x, v)− dom(Γ))(P ′
1 | P ′

2) :procK1∩K2
.

Case a 4,6 By clause 4 of the induction hypothesis there exists Θ ≤ tc(Γ, v,>)
such that Γ,Θ ` P ′

1 :procK1
. By Lemma 35 tc(Γ, v,>) is the type context

mapping each x ∈ fn(v)− dom(Γ) to name.
By clause 4 C ⊆ K′ and by clause 6 K′ ⊆ K′′ so C ⊆ K′′.
By clause 6 of the induction hypothesis tc(Γ, v, S) is well-defined and has
range contained in {name}, so tc(Γ, v, S) = tc(Γ, v,>), so Θ ≤ tc(Γ, v, S),
so Γ,Θ ` P ′

2 :procK2
.

By the (Par) and (Res) typing rules Γ ` (ν fn(x, v)−dom(Γ))(P ′
1 | P ′

2) :procK1∩K2
.

Case a 3,7 Similar to case ?, ↑ above.

(Par)(Par) By the induction hypothesis.

(Box-1)(Box) We have

dom(Γ) ` P
x↑v−→C Q

dom(Γ) ` n[P] τ−→∅ (ν fn(x, v)− dom(Γ))(C :xnv | n[Q])
(Box-1)

and
Γ ` n :boxK

pn(P) ⊆ K
fn(P) ⊆ dom(Γ)

Γ ` n[P] :procK

(Box)

Note that we do not have Γ ` P :procK, so the induction hypothesis is not
applicable.

Take Θ = tc(Γ, 〈x v〉,>).

By weakening Γ,Θ ` n :boxK. By Lemma 48 pn(Q) ⊆ K. In addition we have
fn(Q) ⊆ dom(Γ,Θ), so Γ,Θ ` n[Q] :procK.

We have also Γ,Θ ` x :name, Γ,Θ ` v :> and (again by Lemma 48) C ⊆ K, so
Γ,Θ ` C :xnv :procK.

By the (Par) and (Res) typing rules Γ ` (ν fn(x, v)−dom(Γ))(C :xnv | n[Q]) :procK.

(Box-3)(Box) As a τ transitions cannot increase the principal set or free name set of
a process.

(Res-1)(Res) By the induction hypothesis.

44

(Struct)(*) Follows from the induction hypothesis and Lemma 45.

(*)(Spec) Follows from the induction hypothesis and a use of (Spec) for Q.

2

Proof (of Theorem 11) By Γ ` P :procK and for some T and K, we get x : chanKT ∈
Γ. Furthermore, we have Γ ` v : T and since γ ∈ {?, ↑} we also have Γ ` p : T .
By Lemma 36 and the facts that Γ atomic, Γ ` v : T and ` p : T B ∆, we have
Γ;∆ ` {v/p} good. By Lemma 39 and the facts that P does not contain a box,
Γ,∆ ` P ′ :proc′K and Γ;∆ ` {v/p} good, we have {v/p}P is well-defined. 2

C.2 Proving Causal Flow for F
The proof that F has the causal flow property is a straightforward induction on the
traces of F(P,Q) using the Subject Reduction theorem.
Proof (of Theorem 13) Consider an instantiation F(P,Q) and coloured trace

A ` ∅ ◦F(P,Q) `1−→C1 R1 . . .
`k−→Ck

Rk,

such that all inputs on in1 in `1..`k are coloured with p and all inputs on in2 are
coloured with q.

By the definition of transitions (if k ≥ 1) we have fn(F(P,Q)) ⊆ A.
Let Γ0 be the type environment for in1, in2, out1, out2, from and to, as in the

statement of Theorem 12.
Let Γ1 be the type environment mapping fn(P,Q) − dom(Γ0) to name and Γ =

Γ0,Γ1. Clearly Γ atomic.
By the definition of instantiation we have fn(P,Q) ⊆ dom(Γ)− {a, b}.
By Theorem 12 Γ ` ∅ ◦F(P,Q) :procp.

By F pure we know the `j have the form τ , ini
↑v, or outi

↑
v, for i ∈ {1, 2}.

Take R0 = ∅ ◦F(P,Q) and Θ0 = ∅. We now show by induction on k that for all j ∈
1..k `j = out1

↑
v =⇒ q 6∈ Cj and there exists Θj atomic such that Γ,Θj ` Rj :procp.

Consider the transition Rk−1
`k−→Ck

Rk. We have Γ,Θk−1 atomic, Γ,Θk−1 `
Rk−1 :procp, and dom(Γ,Θk−1) ` Rk−1

`k−→Ck
Rk, so

Γ,Θk−1 `p Rk−1
`k−→Ck

Rk

Consider cases of `j .

Case out1
↑
v. By Theorem 10 for some K′, T we have Ck ⊆ K′ and there exists Θ ≤

tc(Γ,Θk−1, 〈out1 v〉, 〈chanK′T T 〉) such that Γ,Θk−1,Θ ` Rk :procp.

As tc(...) is defined and out1 : chanp> ∈ Γ we have K′ = {p} and T = >, so
Ck ⊆ {p}, so q 6∈ Ck.

Take Θk = Θk−1,Θ; it is clearly atomic.

Case in1
↑
v. By Theorem 10 for some K′, T we have Γ,Θk−1 ` in1 : chanK′T . If

moreover Ck ⊆ K′ and Θ ≤ tc(Γ,Θk−1, v, T) then Γ,Θk−1,Θ ` Rk :procp.
As in1 : chanp> ∈ Γ we have K′ = {p} and T = >. By the premises Ck ⊆ {p}.
As T = > we have tc(Γ,Θk−1, v, T) defined and atomic; take Θ equal to this and
Θk = Θk−1,Θ.

45

The other cases are similar. 2

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of dependency. In
ACM, editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles
of programming languages, January 20–22, 1999, San Antonio, TX, pages 147–160, New
York, NY, USA, 1999. ACM Press.

[2] M. Abadi, C. Fournet, and G. Gonthier. Secure implementation of channel abstractions.
In LICS 98 (Indiana), pages 105–116. IEEE, Computer Society Press, July 1998.

[3] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. In U. Montanari and V. Sassone, editors, Proceedings CONCUR 96, Pisa,
Italy, volume 1119 of LNCS, pages 147–162, 1996.

[4] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java operating sys-
tems: Design and implementation. Technical Report UUCS-98-015, University of Utah,
Department of Computer Science, Aug. 6, 1998.

[5] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the pi-calculus.
In E. W. Mayr and C. Puech, editors, Proceedings of STACS’95, volume 900 of Lecture
Notes in Computer Science, pages 243–254. Springer-Verlag, 1995.

[6] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA
Sofia-Antipolis, May 1992.

[7] S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential processes.
Journal of the ACM, 31(3):560–599, 1984.

[8] L. Cardelli and A. D. Gordon. Mobile ambients. In Proc. of Foundations of Software
Science and Computation Structures (FoSSaCS), ETAPS’98, LNCS 1378, pages 140–155,
Mar. 1998.

[9] P. Degano and C. Priami. Causality for mobile processes. In Z. Fülöp and F. Gécseg,
editors, Proceedings of ICALP ’95, volume 944 of Lecture Notes in Computer Science,
pages 660–671. Springer-Verlag, 1995.

[10] B. Ford, M. Hibler, J. Lepreau, P. Tullman, G. Back, and S. Clawson. Microkernels meet
recursive virtual machines. In USENIX, editor, 2nd Symposium on Operating Systems
Design and Implementation (OSDI ’96), October 28–31, 1996. Seattle, WA, pages 137–
151, Berkeley, CA, USA, Oct. 1996. USENIX.

[11] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile
agents. In Proceedings of CONCUR ’96. LNCS 1119, pages 406–421. Springer-Verlag,
Aug. 1996.

[12] T. Fraser, L. Badger, and M. Feldman. Hardening COTS software with generic software
wrappers. In IEEE Symposium on Security and Privacy, Berkeley, California, May 1999.

[13] D. P. Ghormley, S. H. Rodrigues, D. Petrou, and T. E. Anderson. Interposition as an
operating system extension mechanism. Technical Report CSD-96-920, University of
California, Berkeley, Apr. 9, 1997.

[14] N. Glew and G. Morrisett. Type-safe linking and modular assembly language. In ACM,
editor, POPL ’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of
programming languages, January 20–22, 1999, San Antonio, TX, pages 250–261, New
York, NY, USA, 1999. ACM Press.

[15] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for un-
trusted helper applications. In Sixth USENIX Security Symposium, San Jose, California,
July 1996.

46

[16] L. Gong. Java security architecture (JDK 1.2). Technical report, JavaSoft, July 1997.
Revision 0.5.

[17] N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and integrity.
In Proceedings of the 25th POPL, Jan. 1998.

[18] M. Hennessy and J. Riely. Information flow vs resource access in the asynchronous
pi-calculus (extended abstract). In Proceedings of the 27th ICALP, LNCS 1853, pages
415–427, July 2000.

[19] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
P. America, editor, Proceedings of ECOOP ’91, LNCS 512, pages 133–147, July 1991.

[20] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process
behaviour. In Proceedings of ESOP 2000, 2000.

[21] N. Islam, R. Anand, T. Jaeger, and J. R. Rao. A flexible security system for using
Internet content. IEEE Software, 14(5):52–59, Sept./Oct. 1997.

[22] M. B. Jones. Interposition agents: Transparently interposing user code at the system
interface. In J. Vitek and C. Jensen, editors, Secure Internet Programing: Security Issues
for Mobile and Distributed Objects. Springer Verlag, 1999.

[23] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump. IEEE Transactions on
Software Engineering, 22(5):329–338, May 1996.

[24] X. Leroy and F. Rouaix. Security properties of typed applets. In Conference Record of
POPL ’98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 391–403, San Diego, California, 19–21 Jan. 1998.

[25] J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software Engineer-
ing. Wiley & Sons, 1994.

[26] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I + II.
Information and Computation, 100(1):1–77, 1992.

[27] G. C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code. In G. Vigna,
editor, Mobile Agents and Security, volume 1419 of LNCS, pages 61–91. SV, 1998.

[28] J. Palsberg and P. Ørbæk. Trust in the lambda-calculus. Journal of Functional Program-
ming, 7(6):557–591, November 1997.

[29] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus.
In G. Plotkin, C. Stirling, and M. Tofte, editors, Proof, Language and Interaction: Essays
in Honour of Robin Milner. MIT Press, 1999.

[30] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In Pro-
ceedings of the 25th POPL, Jan. 1998.

[31] A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential pro-
grams. In Proceedings of European Symposium on Programming, Amsterdam, Nether-
lands, March 1999.

[32] P. Sewell. Global/local subtyping and capability inference for a distributed π-calculus.
In Proceedings of ICALP ’98, LNCS 1443, pages 695–706, 1998.

[33] P. Sewell. Applied π – a brief tutorial. Technical Report 498, Computer Laboratory,
University of Cambridge, Aug. 2000.

[34] P. Sewell and J. Vitek. Secure composition of insecure components. Technical Report
463, Computer Laboratory, University of Cambridge, Apr. 1999.

[35] P. Sewell and J. Vitek. Secure composition of insecure components. In Proceedings of
the 12th IEEE Computer Security Foundations Workshop (CSFW-12), Mordano, Italy,
June 1999.

[36] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers and causality
types. Technical Report 478, Computer Laboratory, University of Cambridge, Nov. 1999.

47

[37] P. Sewell and J. Vitek. Secure composition of untrusted code: Wrappers and causality
types. In Proceedings of CSFW 00: The 13th IEEE Computer Security Foundations
Workshop., pages 269–284. IEEE Computer Society, July 2000.

[38] P. Sewell, P. T. Wojciechowski, and B. C. Pierce. Location-independent communication
for mobile agents: a two-level architecture. In Internet Programming Languages, LNCS
1686. Springer-Verlag, Oct. 1999.

[39] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative lan-
guage. In Conference Record of POPL ’98: The 25th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pages 355–364, San Diego, California,
19–21 Jan. 1998.

[40] J. Vitek and G. Castagna. Towards a calculus of mobile computations. In Workshop on
Internet Programming Languages, Chicago, May 1998.

[41] J.-L. Vivas and M. Dam. From higher-order pi-calculus to pi-calculus in the presence of
static operators. In D. Sangiorgi and R. de Simone, editors, CONCUR ’98: Concurrency
Theory (9th International Conference, Nice, France), volume 1466 of lncs, pages 115–130.
sv, Sept. 1998.

[42] D. Volpano and G. Smith. Confinement properties for programming languages. SIGACT
News, 29(3):33–42, Sept. 1998.

[43] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.
Journal of Computer Security, 4(3):1–21, 1996.

[44] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible security architectures
for Java. In Proceedings of the 16th Symposium on Operating System Principles, 1997.

[45] G. Winskel and M. Nielsen. Models for concurrency. In Abramsky, Gabbay, and
Maibaum, editors, Handbook of Logic in Computer Science, volume IV, pages 1–148.
Oxford University Press, 1995.

[46] S. Zdancewic, D. Grossman, and G. Morrisett. Principals in programming languages:
A syntactic proof technique. In International Conference on Functional Programming,
Paris, France, September 1999.

48

