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Abstract Concurrent garbage collection algorithms are a challenge for program verifica-
tion. In this paper, we address this problem by proposing a mechanized proof methodology
based on the Rely-Guarantee proof technique. We design a compiler intermediate represen-
tation with strong type guarantees, dedicated support for abstract concurrent data structures,
and high-level iterators on runtime internals. In addition, we define an Rely-Guarantee pro-
gram logic supporting an incremental proof methodology where annotations and invariants
can be progressively enriched. We formalize the intermediate representation, the proof sys-
tem, and prove the soundness of the methodology in the Coq proof assistant. Equipped with
this, we prove a fully concurrent garbage collector where mutators never have to wait for
the collector.

1 Introduction

Modern programming languages like ML, Java, and C# rely on garbage collection for the
automatic reclamation of memory no longer used by the application. A garbage collector is
one of the most subtle parts of modern runtime systems, carefully engineered to minimize
performance overheads on application throughput as well as pause times. Some garbage
collection algorithms, on-the-fly collectors, are able to detect garbage and reclaim it concur-
rently to the application’s threads [5]. These algorithms are notably difficult to implement,
test, and prove correct. Unsurprisingly, they also present challenges for mechanized veri-
fication. In this paper we focus on algorithms that allow applications threads to operate in
parallel with the collector threads, and more specifically we focus on Domani et al.’s lock-
free collector [8].

The challenges of formally verifying a garbage collector have been addressed in recent
work [10,11,14,15]. Our paper explores a different proof methodology in this space. The
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backbone of our formalization is a new intermediate representation, named RtIR, which we
use to implement the garbage collector. Our experience implementing concurrent collec-
tors [31] suggests that choosing the right abstractions is key for reasoning and optimizing
these algorithms. The right representation can make the expression and proof of invariants
tractable. Moreover, we strive for proofs that can scale to a the verification of a realistic com-
piler for concurrent, managed languages [4,17]. RtIR has the following key characteristics:
(i) strong type guarantees, (ii) abstract concurrent data structures, (iii) high-level iterators
over data structures (iv) support for threads, and (v) support for root management.

Another important characteristic of our approach is the dedicated program logic that
accompanies RtIR. While previous approaches [10,11,15] attack the proof by means of
an abstract state transition system requiring a monolithic invariant, we follow the rely-
guarantee [18] (RG) methodology. RG is a major technique for proving the correctness
of concurrent programs that provides explicit thread-modular reasoning. Interferences be-
tween threads are described using binary relations: relies and guarantees. Each thread is
proved correct under the assumption it is interleaved with other threads fulfilling a rely re-
lation. The effect of the thread maitself on the shared memory must respect its guarantee
relation. This guarantee must also be coherent with respect to the relies of other threads.
Being able to reason in a modular way is key to a tractable correctness proof, since it avoids
explicitly considering all possible interleavings. In contrast, the Owicki-Gries proof tech-
nique [28] is generally admitted as less scalable. Crucially, the parallel composition rule in
RG abstracts away from the syntax of other threads, while this rule in Owicki-Gries does
not. We prove the soundness of our logic, and develop a set of tactics that reduce the proof
effort required to discharge the invariants.

Finally, we report on an original incremental proof technique. Starting from an imple-
mentation, we progressively annotate the program in order to prove stronger and stronger
invariants. Each time we enrich the invariant and program annotations, we rely on meta-
properties of the proof system, as well as dedicated tactics to discharge proof obligations
incrementally, this allows reuse of lemmas proved in prior steps. Our incremental annotation
mechanism and its corresponding proof methodology are not specific to garbage collectors.
They can be applied more broadly for proofs of concurrent programs relying on RG-like
program logics.

Using the Coq proof assistant, we achieved the following: (i) formalizing the syntax and
semantics of RtIR and the soundness of an associated RG program logic, (ii) a number of
tactics and structural lemmas to facilitate the so-called stability proofs required by the RG
methodology, (iii) a realistic implementation of Domani et al.’s algorithm [8] in RtIR and
(iv) an RG proof ensuring that the collector never frees references accessible by the running
threads. Our formal development is available online [42].

2 The RTIR Intermediate Representation

This section gives an overview of our intermediate representation, RtIR, which can be
thought of as playing a similar role to Java’s bytecode representation as a target for compila-
tion from source code. In a complete system, RtIR would be used to compile the client code
written in the source language, as well as to compile the implementation of the source lan-
guage runtime systems. Thus both application code and the implementation of the garbage
collector would be compiled to RtIR. The reason why a dedicated language is needed is that
representations like Java bytecode do not expose operations to access all fields of an object
or operations to visit the roots of a thread. For our purposes, we focus on the subset of op-
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X,Y ∈ gvar x, y ∈ lvar t,m,C ∈ tid f ∈ fid rn ∈ list fid

expr 3 e := const ∈ Z | null | x | e1 bop e2

cmd 3 c := skip | assume e | x = e
| c1 ; c2 | c1 ⊕ c2 | loop(c) | atomic c
| x = alloc(rn) | free(x) | x = isFree(y)
| x = Y | X = e | x = y. f | x. f = e
| x = y.isEmpty() | x = y.top() | X = y.copy()
| x.push(y) | x.pop()
| foreach (x in l) do c od | foreachField ( f of x) do c od
| foreachRef r ∈ R when P(r) do c od
| foreachObject x do c od | foreachRoot (x of t) do c od

Figure 1: Simplified Syntax of RtIR.

erations that are needed to implement a garbage collector. In a complete system, additional
instructions would be provided.

In the remainder, we will write client code when referring to application logic compiled
to RtIR. This is also what is referred to as the mutator in the garbage collection literature.
On the other hand, injected code will refer to the code added by the compiler to support
garbage collection and also to the implementation of the collector algorithm. In most modern
collectors, the collection work is partly offloaded to the mutator threads.

2.1 Syntax

Figure 1 shows the syntax of RtIR. It has two kinds of variables: global (shared) variables,
in gvar, accessed by all threads, and local variable, in lvar, used for thread-local computa-
tions. Side-effect-free expressions (e ∈ expr) are built from integers literals, the special con-
stant null, local variables, and the usual binary, arithmetic and comparison operators (bop).
Booleans are encoded as integers. Commands include instructions, such as skip, assume e,
local variable update x = e, and combinators: sequencing, non-deterministic choice (c1 ⊕

c2), and non-deterministic loops. We use macros to define higher level constructs. For in-
stance, the usual conditional (if e then c1 else c2) can be defined as (assume e; c1) ⊕
(assume !e; c2), where we write !e for the boolean negation of e. While and repeat-until
loops can be encoded similarly: while b do c od , loop(assume b; c); assume !b. RtIR
also provides atomic blocks (atomic c). In the implementation of the garbage collector,
atomic blocks are only used to add ghost-code, code that does not take part in the computa-
tion, and to model linearizable data structures. These atomic constructs can be refined into
low-level, fine-grained implementations using techniques from our previous work [17,43].

RtIR does not allow pointers to be forged. No reference constant literal is available
other than null. New references are allocated by alloc(rn), and de-allocated by free.
The instruction isFree allows to test whether a reference is allocated. Instructions related
to shared-memory accesses are fine-grained, i.e. they perform exactly one global operation
(read or write). This allows considering each possible interleaving of memory operations
arising from different threads in the proofs, while keeping the semantics reasonably simple.
RtIR also provides abstract concurrent queues to implement the mark buffers needed by
Domani et al. [8]. These are accessible through operations x = y.top(), x.pop(), x.push(y),
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x = y.isEmpty(). While one could implement buffers in RtIR, we argue it is better to reason
about them at a higher level, and hence to assume they act atomically. Implementing these
data structures in a linearizable [16] fashion is an orthogonal problem that we addressed
in [43]. Buffers also provide an operation X = y.copy() to perform a deep copy. This opera-
tion is only used in ghost-code, and thus never executed at run-time.

A key ingredient of RtIR is its support for iterators, making it possible to easily express
many bookkeeping tasks of the collector. Two primitive iterators allow for the definition of
higher level ones. First, iterator foreach (x in l) do c od, where variable x can be free in
command c, iterates c through all elements of the static list l. Binder x is represented here in
the syntax for sake of clarity, but is actually a metavariable bound at the Coq level: command
c is actually a function of type A → cmd where A is the type of the elements over which
we iterate. We will come back to this technicality when describing the semantics. Second,
iterator foreachRef r ∈ R when P(r) do c od, where c is a function of type ref → cmd,
iterates over a set of references R. This set is computed at runtime by a predicate P which
filters the references over which iteration occurs. Iterators simplify the definition of more
sophisticated bookkeeping tasks. Iteration over a static set of values includes iteration over
thread identifiers and fields of a given object. Iteration over a dynamically computed set is
used to visit the local variables of a thread (i.e. roots) and the objects in the heap.

2.2 Operational semantics

The soundness of our logic, and hence the correctness theorem of our garbage collector, is
phrased in terms of the operational semantics of RtIR. As RtIR is concurrent, a small-step
semantics is needed to express the interleaving of threads, and a big-step semantics will be
used to give meaning to atomic blocks.

2.2.1 Typing information

The semantics is enriched with typing information. Basic types in typ include TNum for nu-
meric constants, TRef for references to objects, and TRefSet for non-null references to ab-
stract mark-buffers. Local variables, global variables, and field identifiers are declared to
have exactly one of these types. Additionally, a boolean flag marks local variables to in-
dicate whether they are reserved for use by the injected code, or belong to the client code.
Variable are thus encoded in Coq as records with three fields. Types are retrieved through the
corresponding accessor, respectively lvar_typ, gvar_typ and fid_typ, while user indicates
if a variable belongs to the client.

RtIR manipulates two kinds of values: numeric values in the Coq type Z and references
in ref. Types are mapped to values with the function value of type typ → Type.

typ , { TNum, TRef, TRefSet }
lvar , varId × typ × user
gvar , varId × typ
fid , fieldId × typ

Definition value (t:typ) : Type :=
match t with
| TNum ⇒ Z
| TRef | TRefSet ⇒ ref
end.

2.2.2 Semantic domains

Local (resp. global) environments map local (resp. global) variables to values of their de-
clared type. Environments are hence dependent functions of type:
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Definition lenv := ∀ x:lvar, value (lvar_typ x).
Definition genv := ∀ X:gvar, value (gvar_typ X).

A thread-local state is defined by a local environment and a command to execute. A
global state includes a global environment ge and a heap hp – a partial map from references
to objects. We consider two distinct kinds of objects: regular objects, mapping fields to
values, and abstract mark-buffers. Global states also include two components essential to
the implementation of a garbage collector: roots and a freelist. The freelist is a shared
data structure, while roots are considered to be thread-local – mutators are responsible for
handling their own roots, under the form of reference counters. Here, we model roots as part
of the global state only to ease proof annotations – our final theorem is indeed an invariant
of the program’s global state.

Definition thread_state := (cmd * lenv).
Record gstate := { ge: genv; freelist: ref → bool;

hp: ref → option object; roots: tid → ref → nat }.

Finally, an execution state includes the states of all threads and a global state.

Definition state := ((tid → option thread_state) * gstate).

2.2.3 Semantics of atomic instructions

RtIR has two operational semantics: a big-step semantics and a small-step interleaving se-
mantics. The big-step semantics has two essential uses. First, it defines the semantic validity
of Hoare-like tuples for basic instructions in our proof system (see section 3). Secondly, it
is used by the small-step semantics to define the meaning of commands in atomic blocks.
The small-step semantics on the other hand interleaves the execution of the threads, and is
used to prove our final soundness results. Both semantics share the reduction rules for ele-
mentary, inherently atomic, instructions. Figure 2 gives these rules for the reduction relation
(c | s) {t s′ of a thread t: given execution state s, command c fully executes in a step and
produces execution state s′.

Let us introduce some notation. We use meta-variables ρ ∈ lenv for local maps and
σ = (ge, hp, f l, rt) ∈ gstate for the components of a global state. The map resulting from
the update of m with a new binding of v to x is written m[x ← v]. Updates of the roots
mapping are handled specially. Operation roots[rt, t, x, vo, vn] checks the type of variable
x: if it is TRef, then it decrements, for thread t, the counter of reference vo and increments the
one of reference vn; otherwise it leaves the roots component of the local state unchanged.
To keep rules compact, we also use set-theoretic notations to handle the freelist. Buffers
are manipulated as lists of references, where the empty list is written nil and :: denotes
the cons operator. When a map h is partial, we write h(x) � v as a shorthand to h(x) =

Some v. We write r.( f ) to access field f of record r, and r{ f [x ← v]} to denote record r
in which field f is updated by value v. The language is dynamically typed, but in order to
avoid a systematic mention of typing checks in the rules, we enforce a strict use of meta-
variables. References, buffers and integers are respectively denoted by metavariables r,
s and b, while metavariable v may refer to any value. As an example, an assumption like
ρ(x) = r or ρ[x← r] implicitly carries the side-condition that lvar_typ(x) = TRef. Finally,
we assume a straightforward semantics ~·� for expressions.

The semantics of atomic instructions is standard but for root management. Local com-
putations x = e have two different rules, depending on whether x is a client variable or not:
in the former case we need to additionally update the roots. Note that the semantics hence
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((ρ, σ) | skip) {t (ρ, σ)
~b�ρ = true

((ρ, σ) | assume b) {t (ρ, σ)
x.(user) = false ~e�ρ = ve

((ρ, σ) | x = e) {t (ρ[x← ve], σ)

x.(user) = true ~e�ρ = ve ρ(x) = vx

((ρ, (ge, hp, f l, rt)) | x = e) {t (ρ[x← ve], (ge, hp, f l, roots[rt, t, x, vx, ve]))

X.(gvar_typ) , TRefSet ~e�ρ = v
((ρ, (ge, hp, f l, rt)) | X = e) {t (ρ, (ge[X ← v], hp, f l, rt))

x.(user) = false ge(Y) = v
((ρ, σ) | x = Y) {t (ρ[x← v], σ)

x.(user) = true ge(Y) = vn ρ(x) = vo

((ρ, (ge, hp, f l, rt)) | x = Y) {t (ρ[x← vn], (ge, hp, f l, roots[rt, t, x, vo, vn]))

~e�ρ = v ρ(x) = rx hp(rx) � ob
((ρ, (ge, hp, f l, rt)) | x. f = e) {t (ρ, (ge, hp[rx ← ob[ f ← v]], f l, rt))

ρ(y) = r hp(r) � ob ob( f ) � vn ρ(x) = vo

((ρ, (ge, hp, f l, rt)) | x = y. f ) {t (ρ[x← vn], (ge, hp, f l, roots[rt, t, x, vo, vn]))

r ∈ f l hp′ = hp[r ← initob j(rn)] f l′ = f l r {r}

((ρ, (ge, hp, f l, rt)) | x = alloc(rn)) {t (ρ[x← r], (ge, hp′, f l′, rt))

((ρ, (ge, hp, f l, rt)) | free(x)) {t (ρ, (ge, hp[r ← None], f l ∪ {r}, rt))

ρ(y) = r b = (r ∈ f l)
((ρ, σ) | x = isFree(y)) {t (ρ[x← b], σ)

hp(r) � ob
((ρ, σ) | x←ref r) {t (ρ[x← r], σ)

ρ(x) = rx ρ(y) = ry hp(rx) � s

((ρ, (ge, hp, f l, rt)) | x.push(y)) {t (ρ, (ge, hp[rx ← ry :: s], f l, rt))

ρ(x) = rx hp(rx) � (r :: s)
((ρ, (ge, hp, f l, rt)) | x.pop()) {t (ρ, (ge, hp[rx ← s], f l, rt))

ρ(y) = ry hp(ry) � (r :: s)

((ρ, σ) | x = y.top()) {t (ρ[x← r], σ)

ρ(y) = ry hp(ry) � s b = (s = nil)

((ρ, σ) | x = y.isEmpty()) {t (ρ[x← b], σ)

ge(X) = rx ρ(y) = ry hp(ry) � s

((ρ, (ge, hp, f l, rt)) | X = y.copy()) {t (ρ, (ge, hp[rx ← s], f l, rt))

Figure 2: Semantics of atomic instructions.

depends on the thread’s identifier. Loads and stores to the heap are similar to their global
counterparts, except for the fact that the semantics is blocking if we try to access references
outside of the heap domain, or fields outside of the domain of the object.

Allocation x = alloc(rn) non-deterministically picks a reference r from the freelist.
A fresh object initob j(rn) is bound to r in the heap: the domain of the object is the set of
fields provided in rn, and each field is bound to either 0 or the Null reference depending on
its type. Finally, r is removed from the freelist. Freeing a reference r removes it from the
domain of the heap and returns it to the freelist.

Next we consider abstract operations over buffers. The push and pop operations update a
buffer, pop blocks if the buffer is empty. The top and isEmpty operations are straightforward.
The copy instruction performs a deep-copy of the buffer and stores it in the heap. This op-
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(s1 | c) {t s2

(s1 | c) ⇓t s2

(s1 | c1) ⇓t s2
(s2 | c2) ⇓t s3

(s1 | c1; c2) ⇓t s3

(s1 | skip ⊕ (c; loop(c))) ⇓t s2

(s1 | loop(c)) ⇓t s2

(s1 | c1) ⇓t s2

(s1 | c1 ⊕ c2) ⇓t s2

(s1 | c2) ⇓t s2

(s1 | c1 ⊕ c2) ⇓t s2

(s1 | c) ⇓t s2

(s1 | atomic c) ⇓t s2

(s | foreach (x in nil) do c od) ⇓t s
(s1 | c(a); foreach (x in S ) do c od) ⇓t s2

(s1 | foreach (x in (a :: S )) do c od) ⇓t s2

ref_fields(ob) = S (s1 | foreach ( f in S ) do c od)) ⇓t s2

(s1 | foreachField ( f of ob) do c od) ⇓t s2

(s | foreachRef x ∈ nil when P(x) do c od) ⇓t s

P(a) = false (s1 | foreachRef x ∈ S when P(x) do c od) ⇓t s2

(s1 | foreachRef x ∈ a :: S when P(x) do c od) ⇓t s2

P(a) = true (s1 | x←ref a; c(a); foreachRef x ∈ S when P(x) do c od) ⇓t s2

(s1 | foreachRef x ∈ (a :: S ) when P(x) do c od) ⇓t s2

AllObjects(O)
(s1 | foreachRef o ∈ O when in_heap(o) do c od) ⇓t s2

(s1 | foreachObject o do c od) ⇓t s2

AllRootst(R)
(s1 | foreachRef r ∈ R when True(r) do c od) ⇓t s2

(s1 | foreachRoot (r of t) do c od) ⇓t s2

Figure 3: Big-step semantics.

eration is the only that is not atomic: it only occurs in the ghost-code used for proofs, most
specifically in trace described in section 4.3.

Last, the←ref instruction can never appear in the client or the injected code, as no ref-
erence literals are available in the language. Rather, we use this pseudo-instruction to define
the semantics of the foreachRef iterator. The←ref instruction is used to bind a reference to
a variable, and the reference constant appearing in that instruction is built by semantically
unfolding the iterator.

2.2.4 Big-step semantics

Figure 3 gives the sequential big-step semantics of commands, whose judgments are of the
form (s1 | c) ⇓t s2. This big-step semantics is defined on top of the semantics of elementary
commands. The control flow is traditional, the non-deterministic loop being recursively ex-
pressed in terms of a non-deterministic choice with skip. The semantics of an atomic block
is expressed as the semantics of its contents.

Iterators are interesting. First, foreach (x in S ) do c od iterates a command c through
a list S of As. The semantics are as expected for traditional loops. However, we resort
to higher-order abstract syntax [30] to define iterators: x is not a program variable, but
rather bound at the Coq level by parameterizing c by an element of type A, thus c has type
A → cmd. This has several benefits. It avoids over-constraining the type A: using a regular
variable would restrict A to RtIR values. Our approach allows iterating over introspective
values without introducing their types into the language. We use this construct to iterate
over thread identifiers, as well as to define a dedicated iterator over the fields of an object,
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(s1 | c) {t s2

(s1 | c)→t (s2 | skip)

(s1 | c1)→t (s2 | c′1)

(s1 | c1; c2)→t (s2 | c′1; c2) (s | loop(c))→t (s | skip ⊕ (c; loop(c)))

(s | c1 ⊕ c2)→t (s | c1) (s | c1 ⊕ c2)→t (s | c2)
(s1 | c) ⇓t s2

(s1 | atomic c)→t (s2 | skip)

(s | foreach (x in nil) do c od)→t (s | skip)

(s | foreach (x in (a :: S )) do c od)→t (s | c(a); foreach (x in S ) do c od)

ref_fields(ob) = S
(s | foreachField ( f of ob) do c od)→t (s | foreach ( f in S ) do c od)

(s | foreachRef x ∈ nil when P(x) do c od)→t (s | skip)

P(a) = false
(s | foreachRef x ∈ a :: S when P(x) do c od)→t (s | foreachRef x ∈ S when P(x) do c od)

P(a) = true
(s | foreachRef x ∈ (a :: S ) when P(x) do c od)→t (s | x←ref a; c(a); foreachRef x ∈ S when P(x) do c od)

AllObjects(O)
(s | foreachObject o do c od)→t (s | foreachRef o ∈ O when in_heap(o) do c od)

AllRootst(R)
(s | foreachRoot (r of t) do c od)→t (s | foreachRef r ∈ R when True(r) do c od)

Figure 4: Small-step semantics.

foreachField ( f of ob) do c od. The iteration list for objects is computed at runtime
through predicate ref_fields(ob) which returns the list of fields of object ob holding a
value of type TRef. The iterator then executes command (c f) for all fields f of this list.

More sophisticated examples of bookkeeping tasks, such as visiting the fields of an
object or the roots of a thread, use dynamically computed lists of references. For these,
foreachRef x ∈ S when P(x) do c od iterates over references S with a predicate P to
filter unwanted references. At each iteration, the current reference is bound to a local vari-
able through the dedicated instruction ←ref . The body of the iterator, c, can refer to the
current reference through this variable. Nonetheless, c is parameterized by the reference
to ease the definition of proof annotations. The foreachRef iterator is used to define the
foreachObject iterator, where predicate AllObjects characterizes the list of all references
to objects initially allocated in the heap; at each iteration step, predicate in_heap filters
objects which would have been freed. Finally, foreachRoot (r of t) do c od iterates over
all roots of a thread t, which is determined at runtime by predicate AllRootst.

2.2.5 Small-step semantics

The small-step semantics of RtIR is denoted by→t, where t is the stepping thread’s id. The
rules, given in Figure 4, mirror the big-step semantics in a small-step style. The reduction
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step for an atomic block makes use of the big-step semantics to prohibit any interleaving
with other threads inside of the block. Finally, the interleaving semantics ↪→ can be defined
as a binary relation over execution states:

tss(t) = (c1, ρ1)
((ρ1, σ1) | c1)→t ((ρ2, σ2) | c2)

(tss | σ1) ↪→ (tss[t ← (c2, ρ2)] | σ2)

2.2.6 Well-typedness invariants

To ease proofs, we embed several well-typedness constraints in the small-step rules. These
constraints are of three forms:

Basic typing: Variables in the local or global environment contain a value that is of their
declared type. This semantic property could be proved via a simple type system.

Singleton property: Each abstract mark-buffer is accessible from a unique global variable,
indexed by a thread identifier. This mechanism enforces separation of mark-buffers. To
statically enforce this property, we could set up a dedicated static analysis to check that
(a) during buffers allocation, fresh buffer addresses are assigned to dedicated global
variables, and (b) these global variables are never modified.

No dangling references: Any reference of type TRef is either null, in the domain of the
heap, or in the freelist. This can be shown to be a semantic invariant without extra static
constraints.

3 RtIR Proof System

On top of RtIR, we design a variant of the rely-guarantee (RG) program logic. In a nutshell,
RG [18] extends Hoare-logic to handle concurrency in a thread modular fashion. In addition
to the standard Hoare-tuples, side conditions ensure that program annotations take into ac-
count the possible interferences of other threads. When thinking about a particular thread’s
code, we shall refer to the actions of the other concurrent threads as its context. This context
is formally encoded as a rely relation stating its possible execution steps. Thus, each annota-
tion in the code of a thread must be proved to be stable w.r.t. its rely condition, meaning that
its validity is not affected by possible state changes induced by any number of rely steps.

3.1 Design choices for proof rules

In our approach, we first annotate a program and then prove the annotated program using
syntax-directed proof rules. To this end, the syntax of commands is extended to include
annotations. Sequential proofs, and all proof rules, do not deal with stability. Combined with
the use of syntax-directed proof rules, this design allows for partial automation of sequential
proofs. Mechanized sequential proofs are far from easy to perform. Being able to focus on
these proofs in isolation is therefore an advantage in terms of proof engineering.

Naturally, we do not claim that an RG proof should be conducted without concern for
interference. All predicates should indeed be stated with the right rely conditions in mind.
However, the proof system aims at decoupling sequential and concurrent reasoning. Its first
layer is a Hoare-like system, without relies or guarantees. A second layer handles interfer-
ences: proof obligations about relies, guarantees and stability checks of annotations.
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Global
Invariants

Guarantees Annotated
Code

stable under

correct abstraction

stable under

sequentially correct

Figure 5: Architecture of an RG proof in our proof system. Specification of code (boxes) is
a three-tier system (i) global invariants of the whole program, (ii) guarantees, modelling the
action of threads on the shared state, and (iii) thread code annotations, similar to Hoare-logic
annotations. We indicate the associated proof obligations with arrows.

To avoid polluting programs with routine annotations, such as global invariants, the first
layer of the system assumes that such invariants hold, and the second layer requires separate
proofs of their invariance as stability checks. Once again, this separates proof concerns. We
argue that this is instrumental in designing a tractable workflow. Thanks to this separation,
complex invariants can be progressively refined as understanding of the algorithm grows.

Before covering the presentation of the system itself, we explain our design choices by
describing the general structure of a rely-guarantee proof. An RG proof in our system can be
schematically represented as three interdependent components requiring proof obligations
(see Figure 5).

First, the code of each thread is modeled through its guarantees, and global invariants
shall be proved stable under any of those guarantees. The code of each thread is annotated,
and those annotations must be proved (i) to hold sequentially and (ii) assuming the global
invariants, stable under the other threads guarantees: the rely condition is defined as the
union of the guarantees of the other threads. Finally, for each thread, we need to prove that
its guarantee is indeed an abstraction of the operational semantics of its code.

This structure of the development is different from traditional rely-guarantee systems,
where stability conditions are entangled with sequential reasoning by baking them directly
into the proof rules. In contrast, we move this concern away from the proof rules, as is
described in subsection 3.5.

3.2 Annotations

For annotations we use a shallow embedding into Coq. Annotations are of type either
pred, gstate→lenv→Prop, or gpred, gstate→Propwhen they deal with the global state only.
Typically, the global invariant of the collector is of type gpred. We also define the usual log-
ical connectives on pred and gpred with the expected meaning. Conjunction is written A∧∧B
and implication is written A−→B. Annotations of type gpred are automatically cast into pred
when needed.

The syntax presented in section 2 is extended with annotations. We use the informal
notation P@c for a command c annotated with P, and we omit the case of iterators for con-
ciseness. Elementary commands that do not utilize the global state do not need annotations.
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Commands accessing memory (e.g. field loads and updates, global loads and stores, and
mark-buffer operations) need an extra argument of type pred, representing the pre-condition.
This is also the case for loops, annotated with a loop-invariant, and atomic blocks, whose
body may affect the global state. The semantics of RtIR completely ignores annotations,
they are only relevant for proofs.

3.3 Sequential Layer

We start by defining the following predicate, I � t: 〈P〉 c 〈Q〉 which corresponds to the
validity of a sequential Hoare tuple, with respect to the big-step operational semantics of
commands. This semantic judgment asserts that, for thread t, if command c runs in a state
satisfying precondition P, and if the execution terminates, the final state must satisfy post-
condition Q under the assumption that the global predicate I is an invariant. Formally :

I � t: 〈P〉 c 〈Q〉 ,
∀ gs1 le1 gs2 le2,
P gs1 le1 ∧ I gs1 ∧ I gs2 ∧ ((gs1, le1) | c) ⇓t (gs2, le2) ⇒Q gs2 le2.

Proving that I is indeed invariant of the interleaving semantics is done separately. First-
layer logic judgments for commands are of the form I ` t: 〈P〉 c 〈Q〉. For basic com-
mands which do not require annotations and simple command compositions (sequence, non-
deterministic choice and loops). The proof rules follow the traditional weakest-precondition
style. This can be seen in the following rules:

I ` t: 〈P〉 skip 〈P〉

I ` t: 〈P〉 c1 〈R〉

I ` t: 〈R〉 c2 〈Q〉

I ` t: 〈P〉 c1; c2 〈Q〉

I ` t: 〈P1〉 c1〈Q〉

I ` t: 〈P2〉 c2〈Q〉

I ` t: 〈P1∧∧P2〉 c1 ⊕ c2 〈Q〉

On the other hand, commands that require annotations directly embed the semantic judgment
I � t: 〈P〉 c 〈Q〉 as a proof obligation. For instance:

I � t: 〈P〉 P@X = e 〈Q〉
I ` t: 〈P〉 P@X = e 〈Q〉

I � t: 〈P〉 c 〈Q〉
I ` t: 〈P〉 P@atomic c 〈Q〉

3.4 Interference Layer

This layer takes into account threads interference with a given command, handling the va-
lidity of guarantees and the stability of program annotations w.r.t. the context. This can be
seen in the definition of a valid RG tuple:

Record RGt (t:tid) (R:rg) (G:list rg) (I:gpred) (P Q:pred) (c:cmd) := {
RGt_hoare: I ` t: 〈P〉 c 〈Q〉
; RGt_stable: stable I P R ∧ stable I Q R ∧ AllStable I c R
; RGt_guarantee: AllRespectGuarantee t I c G }.

The type rg, gstate→gstate→Prop defines relies and guarantees as binary relations between
global states. In our development, we build them from annotated commands. For a command
P@c, the associated rg is defined by running the big-step operational semantics of c from
a pre-state satisfying P to a post-state. We explain in section 5 how our proof methodology
benefits from this definition. More precisely, we refer to the interference an atomic command
guarded by an annotation may cause to the environment as its action.
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Definition action (t: tid) (ann_cmd:pred*comm) : gstate → gstate → Prop :=
let ’(P,c) := ann_cmd in
fun g1 g2 ⇒ ∃ l1 l2, P g1 l1 ∧ ((g1, l1) | c) ⇓t (g2, l2).

Predicate stable defines the stability of a pred w.r.t. a rely, given some invariant:

Definition stable (I:gpred) (H:pred) (R:rg) : Prop := ∀ gs1 gs2 l,
I gs1 ∧ H gs1 l ∧ R gs1 gs2 ∧ I gs2 → H gs2 l.

Predicate AllStable then builds the conjunction of the stability conditions for all assertions
syntactically appearing therein. It is formally defined as a fixpoint constructing a Coq pred-
icate.

Fixpoint AllStable (I:gpred) (c:cmd) (R:rg) (S: Prop) : Prop :=
match c with
| P@i ⇒ stable I P R ∧ S
| P@loop(c) ⇒ stable I P R ∧ AllStable I c R S
| c1; c2 | c1 ⊕ c2 ⇒ AllStable I c1 R (AllStable I c2 R S)
[...]
end.

The validity of the guarantee of a command (predicate AllRespectGuarantee) follows the
same principle, this time accumulating proof obligations that all elementary effects of the
command are reflected by an elementary guarantee in the list G.

3.5 Program RG specification

The RG specification of a program p is defined as a record considering guarantees G and pre-
and post-conditions P and Q for all threads. Formally:

Record RGt_prog (G:tid → rg) (I:gpred) (P Q:tid → pred) (p:program) := {
RGp_t:∀ t ∈ (threads p), RGt t (Rely G t) (G t) I (P t) (Q t) (cmd t p)
; RGp_I:∀ t, stable TTrue I (G t) }.

The proof obligation RGp_t requires that each thread’s command is proved valid. It is worth
noting that only guarantees need to be considered: for each thread, we build its rely from
other threads’ guarantees (Rely G t). This significantly reduces redundancies in specifica-
tions. Second, the obligation RGp_I requires that I is invariant. We encode this as a sta-
bility condition under the union of all threads’ guarantees, assuming the trivial invariant
TTrue, (fun _ _ ⇒True). Indeed, as all threads’ code satisfy their guarantees, this is enough
to prove that the global invariant I is preserved by any number of program steps.

3.6 Reasoning about Iterators

As expected, iterators are more involved. We illustrate their treatment on foreach; other it-
erators are similar. Recall that foreach iterates on a list of data of type A, morally represent-
ing a loop. Hence, its proof involves a loop invariant, predicated over the visited elements
of the list. Predicates annotating foreach are indexed by a list of visited elements. And, as
the loop body may include annotations about visited elements, we also index it by a list of
visited elements and a current element. Summing up, the syntax of foreach, extended with
annotations is P@foreach (x in l) do c od where annotation P has type list A → pred, and
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c has type list A → A → cmd. The associated proof rule is:

∀ a seen, prefix (seen++[a]) l →

I ` t: 〈P seen〉 (c seen a) 〈P (seen++[a])〉

(P l)∧∧I −→ Q

I ` t: 〈P nil〉 P@foreach (x in l) do c od〈Q〉

The first premise amounts to proving a valid tuple whose pre- and post-conditions are
adjusted to the list of already visited elements. The second premise requires pre-condition
P applied to the whole list of elements to entail the post-condition of the iterator itself. We
define a more general rule in Coq, to get an induction principle usable to prove the soundness
of the logic.

3.7 Soundness of the logic

Soundness states that invariant I holds in every state reachable from a well-formed initial
state – which must satisfy I by construction – through the small-step semantics mentioned
in section 2. Formally:

Hypothesis init_wf : ∀ tsi gsi, init_state p (tsi,gsi) →
RGt_prog G I P p Q (* program RG spec *)

∧ (∀ t c le, tsi(t) = Some(c, le) → P t gsi le) (* pre-conds. hold *)
∧ I gsi. (* I holds initially *)

Theorem soundness : ∀ ts gs, reachable init_state p (ts,gs) → I gs.

The proof of this theorem relies on an auxiliary proof system, proved equivalent to the
one presented earlier. The auxiliary system reuses the same components, but proof rules now
require to prove everything in situ: invariant, pre- and post-conditions, stability of annota-
tions, and validity of guarantees. For instance, compare the rule for instruction X = e in the
previous system (left) with the proof rule of the auxiliary system (right):

I � t: 〈P〉 P@X = e 〈Q〉
I ` t: 〈P〉 P@X = e 〈Q〉

TTrue � t: 〈P∧∧ I〉 P@X = e 〈Q∧∧I〉
stable TTrue (P∧∧I) G stable TTrue (Q∧∧I) G

RespectGuarantee t I G (P@X = e)

R, G, I ` t: 〈P〉 P@X = e 〈Q〉

This auxiliary system is very close to classic RG systems [18,40]. Its verbosity makes it
easier to reason about during the soundness proof.

To prove the above semantic soundness theorem, we proceed as follows. We prove that,
in all reachable execution states, any running thread is in fact running a piece of code that
conforms to RGt. Hence, after each execution step, we need to update the map P of threads
pre-conditions. The invariance of the global invariant I follows from the fact that, in each
proof rule (see the above example rule on the right) of the auxiliary system, I is part of the
pre- and post-conditions, and these are stable against any step of the rely and the guarantee
of the stepping thread.

4 The Concurrent Garbage Collector

We now describe our implementation of the concurrent collector and its associated cor-
rectness theorem. The algorithm is based on [8], a variant of the well known concurrent
mark-and-sweep algorithm due to Doligez, Leroy and Gonthier [7,6].
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4.1 Main Theorem

Intuitively, we show that the collector thread never reclaims memory that could potentially
be used by mutators. To do this, we program the collector and the mutators in RtIR, and
prove that their parallel composition preserves an invariant on global execution states, using
our program logic.

The particularity of mutators is that they participate in the bookkeeping required for
the collection to be correct. In practice, bookkeeping code is injected in client code by the
compiler. Here, we consider a Most General Client (MGC) representing a collector thread
composed with an arbitrary number of mutators with identifiers in Mut, each running rele-
vant injected pieces of code.1

mutator , loop
(
update(x, f, r) ⊕ x.f = n ⊕ x = y.f
⊕ Alloc() ⊕ cooperate() ⊕ changeRoots()

)
mgc , collector ‖ mutator ‖ ... ‖ mutator

The MGC can update values in memory – directly for numerical values, through an in-
strumented operation for references –, perform loads, instrumented allocation, execute a
cooperation subroutine and simulate the tracking of roots involved by local move opera-
tions. We detail these notions through subsection 4.2. User global variables are disallowed
in the current development, but adding them would be straightforward.

Recall that the special global variable freelist holds a pool of unused references.
Hence, upon allocation, a reference is fetched from the freelist. Symmetrically, to reclaim
an unused object, the collector puts back its reference into the freelist. Our main invariant
establishes that in a given state gs, any reference r reachable from any mutator m is not in
the freelist, and hence has not been collected.

Definition I_correct: gpred :=
fun gs ⇒ ∀ m r, In m Mut ∧ Reachable_from m gs r → ¬ in_freelist gs r.

We can now formulate our main theorem. It uses the predicate reachable_mgc stating
that a global state gs can be reached, from a predefined initial state, by the code of the MGC.

Theorem gc_sound: ∀ gs, reachable_mgc gs → I_correct gs.

The initial state is obtained by a startup phase of the runtime, that carefully initializes intrin-
sic features of the runtime, and establishes key invariants.

Obviously, proving this theorem would be impossible without the aid of other interme-
diate invariants. In the sequel we explain the important aspects of the implementation, and
a few salient auxiliary invariants. Describing the algorithm and code in full details is out of
the scope of this paper. We refer the reader to [8] and to the formal proof [42] for details.

4.2 High-level Principles of the Algorithm

Our GC is of the mark and sweep family: the heap is traversed, marking objects that are pre-
sumably alive, i.e. reachable from mutators’ local variables, henceforth called roots. Once
the marking procedure finishes, the sweeping procedure reclaims objects detected as not
reachable by putting them back in the freelist.

1 We present a simplified pseudo-code of the MGC, with variable x, field f, and value v assumed non-
deterministically chosen from the thread environment. The actual definition in Coq is an operational charac-
terization of this thread system.



Verifying a Concurrent Garbage Collector with a Rely-Guarantee Methodology 15

// collector ::=
while (true) do
atomic // ghost
stage[C] = CLEAR
phantom_flipped = 0
atomic // linearizable[4]
foreachObject o do
if !(isFree(o)) then
o.color = WHITE

od
phantom_flipped = 1
handshake() // SYNCH1
handshake() // SYNCH2
stage[C] = TRACING
handshake() // ASYNCH
trace()
stage[C] = SWEEPING
sweep()
stage[C] = RESTING
od

Listing 1: Collector

// handshake() ::=
phantom_hdsk = 1
phase[C] = phase[C] + 1 mod 3
foreach (m in Mut) do
repeat skip
until phase[m]==phase[C]
od
phantom_hdsk = 0

Listing 2: Handshake

// tid m : cooperate ::=
if phase[m] != phase[C] then
if phase[C] == ASYNCH then
foreachRoot (r of m) do
markGrey(buffer[m], r)
od

phase[m] = phase[C]

Listing 3: Cooperate

// tid m : update(x,f,v) ::=
if (phase[m] != ASYNCH

|| stage[C] == TRACING) then
old = x.f
markGrey(buffer[m],old)
markGrey(buffer[m],v)
x.f = v

Listing 4: Write Barrier

// markGrey(buffer,x) ::=
if (x != NULL
&& x.color != BLACK) then
buffer.push(x)

Listing 5: MarkGrey

The marking conventions for denoting object reachability follow the tricolor conven-
tion [5]. Color WHITE is used for objects not yet seen. GREY is used for visited, hence pre-
sumably live objects, whose children (through fields accesses) have not yet been visited.
BLACK is used for visited objects whose children have all been visited. In our implementa-
tion, colors WHITE and BLACK are implemented with numerical constants. We explain the
encoding of GREY later. The heap traversal (marking) procedure is called tracing, and com-
pletes once no GREY objects remain.

Extra care is required to cope with the concurrent execution of mutators: they could
modify the object graph at any point, and thus invalidate the properties of the coloring. In
particular, mutators are responsible for publishing their own roots by marking them as GREY
before tracing begins. This is the goal of the cooperate procedure. Similarly, object field
update should not break color-related reachability invariants during tracing. This is the goal
of the write-barriers, implemented by the update procedure. Finally, the right color should
be assigned to newly allocated objects. For space reasons, we elide the details of the alloc
procedure that we have implemented, and refer to [42,8] for details.

All these subtle procedures, run by the collector and the mutators, are orchestrated using
the global variable stage[C], which encodes for the various stages of the collection cycle (in-
cluding the tracing and sweeping), and the global variables phase[m] – one for each mutator
– and phase[C] – one for the collector – to coordinate mutators with the collector. A dia-
grammatic representation of a collection cycle is shown in Figure 6, gathering all previously
mentioned ingredients. We will refer to it in more detail below.

4.3 RtIR Implementation and Main Invariants

Let us now describe the implementation. Code snippets in RtIR use a simplified syntax from
the one we presented above for space and readability reasons.

Stage and Phase Protocol. The code of the collector is presented in Listing 1. For the mo-
ment, let us concentrate only on the calls to the handshake() procedure (Listing 2), and its
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Figure 6: Timeline of a collection cycle. All mutators are coalesced into the bottom line, and
the collector is shown on the top line. Dotted lines represent the GC start of a new stage, and
dashed lines represent the end of a phase change (handshake).

counterpart cooperate() (Listing 3) executed by the mutators. A collection cycle is struc-
tured using four stages: CLEAR, TRACING, SWEEPING and RESTING. The current stage is written
by the collector to a global variable stage[C]. This global variable allows mutators to coordi-
nate with the collector at a coarse level. At a finer level, a handshake mechanism is required,
and the status of each thread, the mutators and the collector, is tracked with a phase variable,
with values ranging over ASYNCH, SYNCH1 or SYNCH2. Each phase is encoded with a dedicated
integer between 0 and 2. Instead of presenting a detailed description to justify these phases,
let us point out that the original algorithm of [7] used only two phases, which was later
discovered to be incorrect. A new phase was added to correct it in [6].

We concentrate now on the horizontal lines of Figure 6, showing the evolution of phase[C],
as well as the aggregated representation of all the phase[m] variables of mutators. Each phase
starts by the collector modifying the phase[C] variable (second line of Listing 2). Mutators
query it (first line of Listing 3), to acknowledge possible changes, in which case mutators
respond by updating their own phase[m] variable (last line of Listing 3). When the collector
acknowledges that all mutators have updated phase[m], the phase transition is completed
(dashed line in Figure 6). Importantly, phase[C] and phase[m] are subject to race conditions.
We also point out that threads never stop their execution while executing cooperate.

An important invariant relating the phases of the collector and the mutators is that any
mutator’s phase is at most one step behind the collector’s phase.

Definition I_synch : gpred := fun gs ⇒
∀ m, In m Mut → phase[C]gs = phase[m]gs ∨ phase[C]gs=(phase[m]gs+1) mod 3.

Buffers and GREY. Objects are marked GREY with the markGrey procedure (Listing 5) either
when mutators publish their roots (Listing 3) or during write barriers (Listing 4). Each mu-
tator owns a buffer[m] abstract data structure, in which it adds references to be traced.
Hence, buffer[m] serves as an interface between mutators and the collector to mark ob-
jects as GREY. In other words, an object is considered GREY if it is present in any buffer
and its color field is WHITE. In this sense, GREY is a convention rather than a true color.

Write barriers. Their code is shown in Listing 4. The barrier conditionally either directly
updates field f (fast-path) or marks two objects as GREY (slow-path).2 Notice that the slow-
path is executed only when the collector is ready to start tracing, and not after it started

2 The write barrier in [8] avoids marking old in some cases. We drop this optimization.
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1 // trace() ::=
2 all_empty = false
3 while (!all_empty) do
4 atomic // ghost code
5 foreach (m in Mut) do
6 phantom_buffer[m].copy(buffer[m])
7 od
8 all_empty = true
9 foreach (m in Mut) do

10 is_empty = buffer[m].isEmpty()
11 while (!is_empty) do
12 all_empty = false
13 x = buffer[m].top()
14 if (x.color == WHITE) then
15 buffer[C].push(x)
16 buffer[m].pop()
17 else buffer[m].pop()
18 is_empty = buffer[m].isEmpty()
19 od
20 od
21

22 while (!buffer[C].isEmpty()) do
23 all_empty = false
24 ob = buffer[C].top()
25 if (ob.color == WHITE) then
26 foreachField (f of ob) do
27 if (ob.f!=NULL
28 && ob.f.color==WHITE) then
29 buffer[C].push(ob.f)
30 od
31 ob.color = BLACK
32 buffer[C].pop()
33 od
34 od
35

36

37 // sweep() ::=
38 foreachObject o do
39 if (!isFree(o) && o.color == WHITE) then
40 free(o)
41 od

Listing 6: Trace and Sweep (Collector)

sweeping. The code of write barriers is intrinsically racy since the client code itself might
contain races at f; moreover, accesses to the buffer data structures are not protected by
synchronization between mutators and the collector. Finally, note that the order in which the
markGrey operations are performed in the write barrier is critical to the GC correctness.

Trace This is the most challenging code to verify, and its verification by means of program
logics would be remarkably hard without some of the design choices of RtIR, and our proof
methodology. The trace procedure (Listing 6) traverses the object graph starting from GREY
objects. More precisely, the collector visits each of the mutators buffer[m] in the foreach
loop at Line 9, transferring their contents into its own buffer[C]. If the collector sees empty
buffers for all mutators, tracing ends. Otherwise, it traverses the graph starting from objects
in buffer[C], and marking BLACK objects whose children have been seen.

Regarding the complexity of the code, we emphasize that it contains three nested loops,
a number of foreach constructs, and heavily uses the buffer abstract data structures. More-
over, it exhibits races in all threads (through write barriers and buffer operations) since it
traverses the object graph, while mutators concurrently modify it.

An important invariant establishes that during the tracing phase, any WHITE object that
is alive must be reachable from a GREY object, signaling that it still has to be visited. Since
another invariant, I_black_to_white, states that any path from a BLACK object to a WHITE
object goes through a GREY object, this translates to the property that all objects reachable
from the roots are either BLACK, or reachable from a GREY one.

Definition I_trace_grey_reach_white : gpred := fun gs ⇒ ∀ m r,
stage[C]gs, CLEAR ∧ In m Mut ∧ phase[m]gs=ASYNCH ∧ Reachable_from m gs r→
Black gs r ∨ (∃ r0, Grey Mut gs r0 ∧ reachable gs r0 r).

When this code terminates, we are able to prove that: (i) there are no more GREY objects,
(ii) all objects reachable from the mutators roots are BLACK, and consequently (iii) there are
no WHITE objects reachable from any of the mutators roots. Property (i), namely that all
buffers are simultaneously empty at the end of tracing (Listing 6, Line 35), is particularly
difficult to prove, given the write barriers executed concurrently by mutators. We prove
that this property is established at Line 4 of the last iteration of the outer while loop as
follows. We first prove that, at Line 4, buffer[C] is always empty. We use ghost variables



18 Zakowski et al.

phantom_buffer[m] to take the snapshot of mutators’ buffers at Line 4. Mutators can only
push on their buffers, so, in a given iteration of the outer loop, if a mutator buffer is empty,
so was its ghost counterpart during the same iteration. In the last iteration, all buffers are
witnessed empty, one at a time. But this implies that all phantom buckets are simultaneously
empty at Line 8. This, in turn, implies that all buffers are, this time simultaneously, empty at
Line 4. This property remains true until Line 35: it is both stable under mutators’ guarantees,
and preserved by the inner loop. Indeed, if all buffers are empty (there are no GREY objects),
the above invariant I_trace_grey_reach_white implies that both the old and new objects
that markGrey could push on a buffer are in fact BLACK, and thus not pushed on any buffer
(Listing 5). As a consequence, no reference is pushed on the collector’s buffer (Line 15).

Sweep The sweep phase (Listing 6) recycles all the objects that remain WHITE after TRACING.
This is the only place where instruction free is ever used. Note that this code is also non-
blocking. The key property shown above is that during sweeping, no GREY objects remains:

Definition I_sweep_no_grey : gpred := fun gs ⇒
(stage[C]gs = SWEEPING ∨ stage[C]gs = RESTING) → ∀ r, ¬ Grey Mut gs r.

This invariant, with I_trace_grey_reach_white above, implies that no WHITE object is reach-
able from any thread-local variable.

5 Proof methodology

Mechanizing such a sizable proof raises methodological concerns. While the proof system
of section 3 separates proof concerns between sequential reasoning and stability checks, we
deal here with the intrinsic complexity of the proof and its scalability.

First, stating up-front the right set of invariants, guarantees, and assertions is unrealistic
for such a proof. To tackle this issue, we group invariants related to distinct aspects, e.g.
the phase protocol or coloring invariants. To reflect this structure in our proof, and avoid
constant refactoring of proof scripts, we designed an incremental workflow.

Second, we must deal with the quantity of proof obligations. For the GC code, proof
obligation RGp_I involves 18 invariants, each of which must be proved stable under 17
guarantees, thus requiring 306 stability proof obligations. On top of this, proof obligation
RGt_stable adds more than 60 annotated lines of code, each bearing several predicates, that
must be proved stable under significant subsets of the 17 guarantees. This quickly becomes
intractable without a disciplined methodology and some automation.

5.1 Workflow

An important aspect of the proof is that the synchronization protocol between threads can be
proved correct in isolation, without any concern about graph reachability or coloring invari-
ants. By combining our incremental methodology with an RG proof that follows the archi-
tecture described in Figure 5, we are able to establish the validity of invariant synch_protocol
that describes the protocol on a partially annotated code, modeled by a set of guarantees with
weakly constrained preconditions.

However, trying to enhance this first result with additional invariants is highly imprac-
tical: for the new invariants to hold, the guarantees will have to be further refined to take
into account new subtleties about the code. Once the synch_protocol has been proved stable
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Figure 7: Main Invariants of the GC. Numbers are timestamps in the incremental proof
methodology. Dependencies are shown with boxes (inter-dependency) and arrows.

with respect to the previous definition of the guarantees, all proofs of stability can poten-
tially break. Nevertheless, all stability lemmas we established should still hold since we only
gather more information about the execution, hence further restricting the possible interfer-
ences. In practice however, mechanized proof scripts are extremely fragile, and constant
refactoring of proofs is a daunting and time consuming task. We therefore formalize this
intuition to build a methodology allowing us to actually work incrementally.

To do so, we organize the invariants in groups, as illustrated on Figure 7. These groups
establish respectively, from bottom to top and left to right: the synchronization of the threads
during the collection cycle; that cells are only colored white or black; the well-formedness
of the buffers; the possible values taken by the stage variable; relating the value of ghost
variables introduced to reason; and finally the major graph invariants and the corectness
theorem. We refer the reader to our formal development for the exact definition of the in-
variants.

In each boxed group, invariants are inter-dependent, while arrows indicate a dependency
of the target group on the source group. We then use a simple mechanism: invariants and
guarantees are indexed by a natural number – intuitively a timestamp of their introduction
into the development. When introducing a new increment to an invariant, all invariants with
a lower timestamp are therefore not modified. Neither are their proofs, resulting in an incre-
mental, non-destructive methodology. More concretely, each time we add a new timestamp
in the incremental proof: (i) we enrich the invariant, refine the guarantees and code annota-
tions; (ii) we prove the new stability proof obligations, for which we can reuse prior stability
proofs, and we use automation to discharge as many obligations as possible; (iii) we adapt
sequential Hoare proofs, and prove that enriched guarantees are still valid. This workflow
proved robust during our development, allowing for an incremental and manageable proof
effort. We detail below the first two items of this methodology.

5.2 Incremental proofs

We focus on obligation RGp_I from section 3, which requires establishing invariant stabil-
ity under all threads’ guarantees. Let us fix a thread and index both invariant I and guar-
antee G by n. The obligation is thus (stable TTrue (I n) (G n)). We want to establish
(stable TTrue (I n+1) (G n+1)) by using the already proved (stable TTrue (I n) (G n))
obligation.
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Monotonicity of I and G. We build (I n+1) as a conjunction of the prior established invari-
ant (I n), and the current level increment: (I n+1) , (I n) ∧∧(Ic n+1). Hence, we have that
∀n, (I n+1) −→ (I n). Recall that in our proof system, guarantees are expressed through the
effect of a command, under certain hypotheses on the pre-state. At each level, the com-
mand will not change – it is effectively executed by the code. The levels are used to re-
fine the hypotheses on the pre-state. Therefore, guarantees are monotonic in the sense that
∀n, (G n+1) ⊆ (G n): they are made more precise as the level index increases.

Reuse of Proof of Prior Invariants. We start by proving that the prior invariant (I n) is
stable under the refined guarantee (G n+1), i.e. (stable TTrue (I n) (G n+1)). To do so, we
reuse our previous proofs at level n and conclude with the following lemma using guarantee
monotonicity – below, we abuse notations and use _ as a valid Coq identifier.

Lemma stable_refineG: ∀ _ I G1 G2, G2 ⊆ G1 ∧ stable _ I G1 → stable _ I G2.

New Invariant Stability. It remains to prove the stability of increment (Ic n+1) under the
refined guarantee (G n+1). In simple cases, (stable TTrue (Ic n+1) (G n+1)) is provable
independently from prior invariants. In this case, we combine the stability of (Ic n+1) and
(I n) into the one of (I n+1) with lemma stable_and below.

Lemma stable_and: ∀ _ I1 I2 G, stable _ I1 G ∧ stable _ I2 G → stable _ (I1 ∧∧ I2) G.

However, the situation is often more involved, requiring prior invariants to prove the stability
of (Ic n+1). Formally, we have (stable (I n) (Ic n+1) (G n+1)). We can then combine the
stability of (I n) and (Ic n+1) under (G n+1) using the following lemma.

Lemma stable_with: ∀ _ I1 I2 G, stable _ I1 G ∧ stable I1 I2 G → stable _ (I1 ∧∧ I2) G.

Finally, for code annotations to go through a similar indexing treatment, we introduce
an indexed conjunctive operator and_at. Predicate (and_at n c A B) activates annotation B
at index c only if B was introduced at a prior index n. Formally :

Definition and_at (n c: nat) (A B: pred): pred :=
if leb n c then fun gs le ⇒ A gs le ∧ B gs le
else A.

We then define a function comm_impl computing a sufficient set of proof obligations
required to leverage a proof of stability of the code from one iteration index to the next.
The proper definition of comm_impl is quite technical, but the intuition behind it is simple.
When considering two commands c1 and c2, which are expected to be two versions of the
same piece of code, comm_impl inductively traverses both commands simultaneously. If any
operational mismatch is found, it generates an impossible proof obligation. Otherwise, it
compares the code annotations P1 and P2 and generates a proof obligation expressing both
(i) that P2 is a strengthening of P1 and (ii) that P2 is stable under the current guarantees, as-
suming the stability of P1 that we are meant to have previously established. These generated
proof obligations are proved correct in the sense that they are sufficient to lift a previous
proof of stability of a piece of code:

Lemma AllStable_strengthenC: ∀ rt I c1 c2 G S,
comm_impl rt I c1 c2 G → AllStable rt I c1 G S → AllStable rt I c2 G S.

Assisted with dedicated tactics, we recover at the level of annotated code the same ben-
efits we obtained for the stability of invariants.
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5.3 Proof Scalability

To deal with the blowup of stability checks, we built a toolkit of structural stability lemmas,
and developed some tactic-based partial automation. Structural stability lemmas are meta-
properties on the notion of stability. They rely on the logical structure of the predicates to
reduce their proof of stability to the stability of predicates which are either simpler to prove
stable, or syntactically different but logically equivalent. This allowed us to automatically
discharge 186 obligations among the 306 induced by RGp_I. The remaining obligations are
partially reduced by this automation.

Structural lemmas have two purposes. First, they enable the incremental methodology
described above, allowing to leverage stability results from lower levels. Second, they sim-
plify complex stability proof obligations: both annotations and invariants as well as interfer-
ences can be structurally split up. Thus, complex arguments are isolated from trivial ones,
that are automatically discharged. Similarly, by decomposing annotations and relaxing in-
terferences, we can factor out the stability proofs for annotations that appear several times
in the code.

Automation. We developed a set of tactics that simplify stability goals into elementary ones
before attempting to solve them. This leads to clearer goals and more tractable proof con-
texts. The tactics combine structural lemmas with two additional ideas: systematic inversion
on guarantee actions – defined operationally using commands – and aggressive rewriting in
predicates.

6 Closing the gap toward executability

The methodological approach we took to tackle the proof of the collector in a structured
way led us to introduce several non-executable abstractions. Those abstractions, some em-
bedded into RtIR, some into the algorithm itself, have to be refined in order for the GC to be
executable. We review through this section the steps required to achieve full executability.

On the language side, two kinds of refinements need to be performed. Probably the most
challenging of these is the implementation of the data-structures abstractly supported in the
language. Some of the authors already investigated this difficulty by providing a generic
Rely-Guarantee-based framework to devise observational refinements of linearizable data-
structures [43]. This result has been instantiated to prove correct a compilation pass from
RtIR to an identical language, but which manipulates a concrete fine-grained implementa-
tion of the mark-buffers as introduced by Domani et al. [8]. Two other components of RtIR
need to undergo a similar process. First, the management of roots should be implemented
as a data structure. However, although for convenience we track them in the shared state of
our development, this data-structure is purely thread-local. This refinement would therefore
raise little challenges. Second, the implementation of the freelist is significantly harder.
At its core, the data-structure is a shared list, typically implemented as a Treiber’s stack [38]
or a Michael-Scott queue [25]. On top of it, fragmentation of the memory needs to be taken
into account to achieve satisfying performance. To simplify things, it should nonetheless
be possible to handle the management of the fragmentation at a thread local level so as to
restrict the use of the shared data-structure to its simplest. Refining the freelist therefore
involves both a careful design of the algorithm, and some non-trivial fine-grained reasoning.

A second feature of the language which requires attention is the blocking aspects of the
semantics. As explained in Section 2.2.6, removing all blocking states from RtIR involves
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several orthogonal concerns. First, dynamic type checking side-conditions in the semantics
should be proved to always succeed, through the use of a sound static type system, type-
checking the input program of mutators as well as the injected code. Second, the absence
of temporal memory errors, such as the dereferencing of dangling pointers or double-free
errors, are encoded in the language through blocking states. The functional correctness of
the GC we establish in this paper precisely proves their absence in presence of the GC, and
hence is the tool needed to remove these blocking states further down in the compilation
chain. Note that this step conceals a couple of prerequisites: given the concrete compilation
pass that injects the GC into a client, one needs to transfer the invariant I_correct from
the MGC to the client. However, we believe this to raise no difficulty. Finally, blocking states
related to the handling of the NULL pointer constitute an orthogonal matter.

On the algorithmic side, three elements are relevant to executability. First, ghost code
should be cleaned up. Doing so is essentially administrative since ghost variables are ex-
clusively written to, but never read, and hence do not interfere with the GC’s observational
behavior. Second, the bitflip performed at the beginning of each cycle by the collector is
modeled as a loop, explicitly setting the color fields of all references to WHITE. Refining
this abstraction is not expected to raise difficulties. Last, the instrumented allocation routine
is wrapped inside an atomic block in our current development. We leave its refinement as a
further work. This choice of design, that is shared by Gammie et al. [10], is motivated by the
fact that an efficient implementation of the freelist might not be linearizable. A defini-
tive proof of the allocation subroutine would therefore only make sense once the choice of
representation for the freelist is made.

Finally, from a broader perspective, (verified) executability of the GC requires RtIR to
be injected into a suitable verified compiler. This perspective is significantly more ambitious.
On the language side, in our current RtIR design, the loop body of iterators are shallowly-
embedded Coq functions. This eases the reasoning on their algorithmic behavior but will
require extra effort to compile RtIR into a lower intermediate representation. Indeed, such
loop bodies can not be directly pattern-matched by a Gallina function. We believe that go-
ing from a shallow representation to a deep representation could be achieved manually by
requiring the RtIR programmer to provide both versions, and prove their equivalence. Ac-
cording to our preliminary experiments, such proofs could be reasonably automated. It is
also worth noticing that no out-of-the-box adequate candidate currently exists for a veri-
fied compiler. Indeed, such a verified compiler should naturally handle concurrency, a re-
striction which essentially reduces the list to a single candidate, CompCertTSO [36]. How-
ever, CompCertTSO, as an extension of CompCert, is designed to handle the C language.
The compiler hence manipulates intermediate representations carrying very little memory-
safety-related invariants. For the GC to be able to iterate over the memory, one should always
be able to interpret the structure of an object pointed to by a reference, and hence requires
a memory model maintaining higher-level information than those offered by CompCert’s
memory model. CompCertTSO stresses out another major perspective for our work. In or-
der to be able to soundly compile down to architectures, we first need to extend our result to
support weak memory models, the Total Store Order (TSO) one in particular.

7 Related Work

The literature on garbage collection is vast. We refer the reader to [19] for a comprehensive
and up-to-date presentation of garbage collection techniques. The starting point for our work
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is [8], a state-of-the-art on-the-fly concurrent GC based on the earlier DLG algorithm [7,6].
Many of the invariants we prove are inspired by those of [6].

Verified sequential garbage collectors. Garbage collectors have always been a paradigmatic
verification challenge. Many prior efforts have tackled various instances of the sequential
case. A similar copying collector algorithm has been proved correct both in the CakeML
compiler [26] and the Milawa prover [2]. Some impressive projects providing end-to-end
verified specialized operating systems include a verified garbage collector, such as Ironclad
Apps [13] and Verve [41].

Ericsson et al. [34] have recently equipped the CakeML compiler with the first verified
generational copying garbage collector. Their proof is of particular interest for two reasons.
First, they are embedded in the CakeML compiler and hence fully executable. Second, they
managed to structure the proof quite elegantly. A partial collection of the heap over a gener-
ation is proved correct by being simply interpreted as a collection over a smaller heap from
which exiting pointers are ignored.

Hawblitzel and Petrank [14] introduced an interesting different line of work in 2009.
They rely on the Boogie verification condition generator [20] in combination with the Z3
SAT/SMT solver [3] to verify down to assembly two sequential garbage collectors, an ele-
mentary mark-and-sweep algorithm and a Cheney copying algorithm. The approach consists
of implementing the algorithms in x86 assembly, and heavily annotating the code. Boogie
and Z3 then take care of generating and discharging the corresponding proof obligations.

Garbage collectors have also been a playground for separation logic in recent years,
the logic easing the reasoning about programs involving pointers by allowing for local rea-
soning. Torp-Smith et al. [37] use it to verify a copying garbage collector. McCreight et
al. [24] extend CompCert with a new intermediate language, GCminor, equipped with mem-
ory management primitives and providing a target of compilation for managed languages.
Using separation logic, they subsequently partially prove a Cheney copying collector. In
2010, McCreight et al. [23] prove a machine-level implementation of a variety of standard
garbage collector implementations.

Verified concurrent garbage collectors. The previously cited works deal with sequential
collectors. The first argument of correctness of a concurrent collector were introduced by
Dijkstra et al. [5] with the three colors abstraction. The proof is however not fully formal.
The first mechanized proof was presented by Gonthier [11], and conducted in the TLP sys-
tem. Unlike ours, Gonthier’s proof rests on an abstract encoding of the algorithm. The work
of Havelund [12] in PVS also verifies an abstract algorithm. Pavlovic et al. [29] propose
a different approach, synthesizing a more realistic concurrent collector from a simpler, ab-
stract, initial implementation. While the approach is certainly appealing, they do not manage
to reach algorithms as fine-grained as the one we consider here.

In 2015, Gammie et al. [10] verified an on-the-fly algorithm close to ours. Similarly to
Gonthier’s work, they do not perform the proof over the code itself, but over an abstract
model of the algorithm. Their proof is monolithic, following an Owicki-Gries approach.
However they take into account the Total Store Order (TSO) memory model, exhibited by
x86 processors. On the other hand, they degrade Domani et al.’s algorithm by enforcing
unnecessary synchronizations to ease reasoning. In contrast, our algorithm clearly exhibits
some TSO relaxations, and some traces will exhibit read-write re-orderings. We would have
to prove that these reorderings do not break our invariants. We believe we could prove that
most of our annotations are “stable” under such reorderings and prove a meta-theorem show-
ing that this kind of stability implies correctness under TSO semantics.
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Some extensions of separation logic [33] to concurrency [1,27] could be leveraged to
tackle the proof of concurrent garbage collectors. However, to the best of our knowledge,
the only successful attempt to date is the work by Liang et al. [21,22]. They introduce
a Rely-Guarantee-based Simulation (RGSim), embedding separation logic assertions, for
compositional verification of concurrent transformations. Their work can be thought of as
a syntactic proof system to build simulations between concurrent programs. They use this
system to prove a mostly-concurrent garbage collector in a pleasantly concise way. While
the garbage collector they handle is simpler than ours and its proof is not mechanized (only
the meta-theory of the proof system is), they offer a very promising line of research.

By sidestepping any modeling in our formal development and proving directly the im-
plementation in RtIR, we argue that our work constitutes the closest-to-executable verified
on-the-fly garbage collector to date.

Mechanized concurrent program logics. In [32] an RG logic for a simple imperative con-
current language is formalized and proved sound in Isabelle/HOL. In contrast, our program
logic is customized for runtime system implementations, and therefore supports local and
global environments, references, iterators, etc. Also, the proof rules of [32] mix sequential
reasoning with side conditions about stability and guarantee checks. We decouple these as-
pects and avoid redundancies by extracting relies from the guarantees of the context. Other
approaches to the mechanized verification of concurrent code are [9,39,22,35] to mention
but a few. These works are mostly concerned with concurrent data structure correctness,
whereas we are concerned with the implementation of a runtime system.

8 Conclusion

This paper presents the mechanized proof of an emblematic challenge in program verifica-
tion: an on-the-fly concurrent garbage collector. Overcoming this challenge requires a num-
ber of methodological milestones. We follow a programming language-based approach: a
well-chosen intermediate representation, a companion program logic, and a dedicated proof
workflow. RtIR strikes a balance between low-level features for the expression of efficient
concurrent code, and high-level features which remove the burden of dealing with low-level
details in the proofs. Our program logic is inspired by Rely-Guarantee, a milestone in con-
currency proof techniques, but one that had yet not been used for the mechanized verification
of garbage collectors. Our incremental proof workflow, combined with specific and efficient
tool support via Coq tactics, is efficient and flexible enough for such a verification challenge.

There are two major avenues for future work. The first one is pragmatic, and concerns
the embedding of our work in a verified compiler tool chain. Using our theorem about the
most-general client, we can build a refinement proof between an IR with implicit memory
management and RtIR. We then need to have a fully executable version of the GC. This
would require cleaning up ghost code, coding iterators as low-level macros, and implement-
ing abstract concurrent data structures supported by RtIR. The two first tasks are essentially
administrative. The third task is more challenging, requiring us to formally prove an atom-
icity refinement result for linearizable, fine-grained data-structures. To that end, we have
developed the meta-theory in [43].

The second direction of future work is methodological. Many of our stability proof
obligations are currently discharged using basic typing information: stability holds because
assertions or invariants talk about memory that is untouched by some program fragments.
An alternative to our basic well-typedness conditions would be to resort on techniques like
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Separation Logic [33]. In particular, Vafeiadis proposes in [40] a method combining RG and
Separation Logic. It would be interesting to see how these techniques could be leveraged in
our proof.
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