
Engineering a Customizable Intermediate Representation

K. Palacz J. Baker C. Flack C. Grothoff H. Yamauchi J. Vitek
S3 lab, Department of Computer Sciences, Purdue University

ABSTRACT
The Ovm framework is a set of tools and components for
building language runtimes. We present the intermediate
representation and software design patterns used through-
out the framework. One of the main themes in this work has
been to support experimentation with new linguistic con-
structs and implementation techniques. To this end, frame-
work components were designed to be parametric with re-
spect to the instruction set on which they operate. We argue
that our approach eases the task of writing new components
without sacrificing efficiency.

1. INTRODUCTION
The goal of the Ovm project is to deliver an open source
framework for the purpose of building language runtimes.
Ovm (pronounced ovum) is a toolkit that provides the ba-
sic components of a virtual machine. These components
can be specialized and assembled into an Ovm configuration
customized for a particular problem domain. The frame-
work is designed so as to be able to support different object
models, while our first emphasis is on supporting Java, we
have plans to provide a C# personality. In Ovm, a config-
uration defines a new runtime environment, for example we
have developped Real-Time Java configuration which yields
a virtual machine compliant with the Real-time Specifica-
tion for Java. The Ovm code base is written in a combina-
tion of Java and AspectJ [12]. Even though the framework
is not complete, it already contains some 2000 classes and
interfaces, accounting for more than 150K LOC.

The framework is composed of a number of tools and sub-
systems (interpreter, verifier, compilers) which must be kept
operational whenever the instruction set on which they op-
erate is modified or extended. One of the earliest design de-
cisions in the project was to attempt to parameterize frame-
work components by their instruction set using an interme-
diate representation, OvmIR, which can be easily adapted

to a particular configuration. We consider components to
be parametric if they can be applied to different instruction
sets with minimal changes to their implementation. In Ovm
this form of parameterization is achieved by a combination
of a reflective instruction set specification and consistent use
of software design patterns. Instructions in the OvmIR are
represented by data structures that detail their semantics
and that can be inspected introspectively by the framework
components. The OvmIR specification uses a type hierar-
chy to classify instructions according to their behavior. This
classification is used by the tools to reduce the amount of
redundant code written for processing OvmIR.

In this paper we describe the design of the Ovm intermediate
representation and architecture of software components that
manipulate it. The OvmIR is an extended version of Java
bytecode. Extensions include operations to express unsafe
operations and other Ovm specific primitives. This repre-
sentation is flexible in the sense that it is easy to define new
operations or modify the semantics of existing ones. In order
to write tools that may adjust to changes in the instruction
set we use a single specification for the entire Ovm tool
chain, from static analysis tools to interpreter generation
and run-time code generation We hasten to emphasize that
the current IR is but one point in the design space. Even
with a completely different IR, many of the fundamental de-
sign choices and decisions that we present in this paper are
likely to still be valid. While the OvmIR is instrumental in
generating an interpreter and native code, it is not unique
in that respect [11]. We have not investigated optimizations
of the generated logic. Tools such as vmgen [3] are comple-
mentary, and it would be interesting to see if they could be
used in our setting.

The paper is structured as follows. Sec. 2 describes how
the OvmIR is specified. Sec. 3 introduces the design pat-
terns that are used to operate on the IR. Sec. 4 describes
components that have been build using the OvmIR. Sec. 5
describes the use of OvmIR-to-OvmIR transformations in
allowing necessary non-Java semantics to be expressed in
Java source. Sec. 6 gives a simple example of extending the
IR. We conclude with related and future work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
IVME’03, June 12, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-655-2/03/0006 ...$5.00

67

2. A REFLECTIVE IR SPECIFICATION
The intermediate representation currently in use in the Ovm
framework is a stack-based high-level intermediate language
that closely mirrors Java bytecode [13]. The choice to base
OvmIR on bytecode was made for pragmatic reasons. Java
bytecode is a compact and executable representation with
a well-specified semantics. This entails a shorter learning
curve for working with the framework components and a
natural path towards an interpreter. Of course, there are
also drawbacks. Bytecode is not fully typed; thus, it is nec-
essary to perform static analysis to recover type informa-
tion. Other drawbacks include relative addressing and the
complexity of dealing with the stack when performing code
transformations. For the set of applications and tools that
we have been targeting so far, these drawbacks have turned
out to be minor.

The OvmIR specification is expressed as a set of classes,
one class per instruction. This has the advantage of a close
correspondence between the textual form of the specifica-
tion and the internal data structures used within the VM
and tools operating on this IR. Furthermore, this permits
writing code that operates on the IR by reflection. For ex-
ample, the abstract interpreter handles many instructions
using introspection on their definition. It is possible to pro-
gramatically alter the instruction set to add new operations
or modify the semantics of existing ones. In many cases,
such changes require minimal changes on tools operating on
the IR.

2.1 Abstract machine model
The semantics of instructions are defined with respect to
an implicit abstract machine. Currently, we use a stack-
based machine similar to the one expected by Java bytecode.
Thus, every operation may read and write values from local
variables, push and pop variables from the stack, consume
values from the instruction stream, jump to a set of off-
sets, throw exceptions, have evaluation side effects or access
compile-time constant values contained in a constant pool.
The OvmIR specification consists of the definition of a num-
ber of instructions, values and so-called value sources. While
instructions are self-explanatory, it is worth discussing val-
ues and value sources. A value object is the representation of
a concrete value that will be manipulated at runtime by the
virtual machine. The Value class is used to represent run-
time values and their types. Typing constraints on the val-
ues consumed or produced by an instruction are expressed
by using subclasses of the Value class (e.g. integer values
are represented by instances of IntValue). Since it is not
always possible or practical to model all the constraints on
values using inheritance, further typing constraints can be
expressed as annotations on the value type. For example,
CPIndexValue is a subclass of IntValue used to denote con-
stant pool indices and declares a field indicating the type
of constant pool entry, such as field reference, type name
reference etc.

2.1.1 Instructions
Each IR instruction corresponds to a subclass of the In-

struction class. Analyses written for the framework use
the flyweight pattern [6] to avoid the need for multiple in-

stances of the same instruction class. The semantic specifi-
cation of every instruction is provided in the parameterless
constructor of the respective class. Each instruction must
at least implement the methods size(), which returns the
size of the instruction in bytes, and getOpcode(), which re-
turns a numeric instruction identifier. Further behavior is
added only by subclasses for which the behavior is mean-
ingful. Thus, code manipulating the OvmIR can rely on
the type checker to prevent errors such as trying to use a
constant pool index as a jump target.

The semantics of instructions are characterized by the fol-
lowing arrays of abstract values that are members of In-

struction:

streamIns values consumed from instruction stream
stackIns values consumed from the stack
stackOuts values produced on the stack
evals expressions evaluated for side effects

jumpTarget
target program counter value
(subtypes of FlowChange)

controlValue
value used to control branching
(subtpyes of ConditionalJump)

Table 1: Fields that specify the input-output behavior

of each instruction.

Furthermore, instructions that implement the Throwing in-
terface define an array of exceptions that may be thrown as
a side effect of executing the instruction.

As an example of one of simple instruction specifications,
consider the definition of the SWAP instruction which ex-
changes the two topmost stack values. The code for SWAP

is shown in Fig. 2. SWAP is a concrete instruction in that it
corresponds to an actual operation in the instruction set. It
is defined as a subclass of the abstract class StackManipu-

lation which in turn extends Instruction. The hierarchy
permits us to reuse code between related instructions by in-
heritance. Extensive examples for this are given in sections 3
and 4. The instruction hierarchy can also be used to classify
instructions into various categories.

class SWAP extends StackManipulation {{
stackIns = new Value[]{ new Value(), new Value()};
stackOuts = new Value[]{ stackIns[1], stackIns[0]};

}}

Figure 2: Specification of the SWAP instruction.

The specification of SWAP describes that the instruction con-
sumes two values from the stack and pushes two values back
onto the stack. The fact that the output values are identi-
cal to the input values, with the exception of their order, is
represented by pointer equality of the Value objects.

The core of the instruction hierarchy used within Ovm is
shown in Fig. 1. The given hierarchy reflects properties of
the Java bytecode instruction set and is based on pragmatic
considerations, not on any systematic analysis of features of
all conceivable instructions of stack machines. It turns out
to be impossible to model all the features of bytecode using

68

LoadConstant

BinOp ConstantPoolLoad

ConstantPoolRead

11bbbbbbbbbb
// Resolution //

..\\\\\\\\\\\\\ FieldAccess

Conversion Invocation

ConditionalJump // If

FlowChange //______

**UUUUUUUUU

11cccccc

--\\\\\\ Gotos

Instruction

99rrrrrrrrrrrrrrrrrrrrrr

77ooooooooooooooooooooo

66llllllllllllllllllll

44iiiiiiiiiiiiiiiiiii
11cccccccccccc

--\\\\\\\\\\\\

,,YYYYYYYYYYYYYYYY

))RRRRRRRRRRRRRRRRRRRR

''OOOOOOOOOOOOOOOOOOOOO

%%L
LLLLLLLLLLLLLLLLLLLLL

$$H
HHHHHHHHHHHHHHHHHHHHHHH

""E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E
E

E

 A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

��
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

UnconditionalJump //

--\\\\\\\\
Jsrs

FlowEnd Switch

LocalAccess //

--\\\\\\\\\\\\

,,YYYYYYYYYYYYYYYY
RET

LocalWrite

ShiftOp LocalRead

StackManipulation

Synchronization

ArrayAccess //

--\\\\\\\\\\\\
ArrayRead

LinkSetAccess ArrayStore

FieldAccessQuick

Throwing //_______

11bbbbbbb

44ii
iii

ii
ii

;;v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

v
v

InvocationQuick

Figure 1: The instruction hierarchy. The OvmIR consists of 237 concrete instructions (RET is the only one shown

here) that account for 3400 lines of code.

single inheritance. For example, FlowChange is an interface
and is implemented by the concrete instruction RET (return)
that inherits from LocalAccess. Another example is the
Throwing interface which is implemented by all instructions
that can throw exceptions.

Fig. 3 gives a simple example of reflective programming.
The method initializes a lookup table, the static variable in-
structionSet, with instances of every concrete instruction.
The code assumes that all instructions are inner classes of
the Instruction class and that they have a constructor with
no arguments. Only concrete instructions are instantiated.

void makeInstructionSet() {
Class[] inner =

Instruction.class.getDeclaredClasses();
for (int i = 0; i < inner.length; i++)

if (Instruction.class.isAssignableFrom(inner[i])
&& !Modifier.isAbstract(inner[i].getModifiers())){

Instruction inst =
(Instruction) inner[i].newInstance();

instructionSet[inst.getOpcode()] = inst; } }

Figure 3: Reflective instruction set initialization.

2.1.2 Values and Value Sources
Another way to associate output values with input values
in the specification is to add value sources to values. Each
Value object contains a reference to an instance of the Val-

ueSource interface. A variety of value source implemen-
tations are provided, such as binary arithmetic and logical
expressions, and routine invocation expressions. Since value
sources are also represented as Java data structures, they
can be analyzed introspectively. Value sources can reference
existing values, and hence the instruction specification forms
an expression tree consisting of a sequence of expressions
represented by the evals array followed by a sequence of
expressions in the stackOuts array. The evaluation of both
sequences can introduce side effects. For example, IADD,
which has no side effects and pushes the sum of two integers

on the stack could be defined as follows:1

class IADD extends BinOp {{
super(IADD);
stackIns = new Value[] {

new IntValue(), new IntValue()};
evals = new Value[] {};
stackOuts = new Value[] {

new IntValue(new BinExp(stackIns[0],
"+",
stackIns[1])) }; }}

Individual instruction definitions are assumed to be frag-
ments of code with single input and single output modulo
exceptions.

The IR supports flow control private to an instruction defi-
nition, for example:

class FCMP extends Instruction {{
stackIns = new Value[] {new FloatValue(),

new FloatValue()};
IfExp e = new IfExp(new CondExp

(stackIns[1], ">", stackIns[0]),
ONE,
new IntValue(new IfExp

(new CondExp(stackIns[1],
"==", stackIns[0]),

ZERO, MINUSONE)));
stackOuts = new Value[] new IntValue(e) ; }}

The IR can also specify control flow instructions that affect
the program counter. In this case instructions declare their
control value and jump targets, for example:

class IFNE extends ConditionalJump {{
stackIns = new Value[] { new IntValue() };
streamIns = new IntValue[]{ new PCValue() };
jumpTarget = streamIns[0];
controlValue = new IntValue

(new CondExp(stackIns[0], "!=", stackIns[1])); }}

1In Ovm the specification of IADD is further abstracted to:
class IADD extends BinOp{IADD(){super(IADD,"+",intFactory);}}

69

Note that instead of using pointer identity to bind stack
output values to input values, one can use a separate kind
of value source to denote that a value comes from a stack
slot. However, the presented approach results in more con-
cise definitions.

The InstructionBuffer class maintains a notion of the cur-
rent program counter as well as the definitions of constants
referenced from the bytecode stream. Because of this design,
instruction objects can retrieve and interpret their immedi-
ate operands without any state of their own. For example,
the concrete instruction GETFIELD subclasses the abstract
class FieldAccess. FieldAccess provides a method getS-

elector(InstructionBuffer) to return information about
the name and type of the field being accessed. The state
required by the method is encapsulated in the instruction
buffer argument. This design follows the flyweight pat-
tern [6], allowing the InstructionSet class to hold a single
instance of each concrete instruction.

The OvmIR specification contains approximately 3400 lines
of code and 237 concrete instruction definitions which results
in about 14 lines of code per definition. The line count in-
cludes abstract classes and supporting methods. Easily rec-
ognizable syntactic conventions (class and constructor dec-
larations) account for approximately 4 lines per instruction
hence it requires about 10 lines of nontrivial code to specify
an instruction.

Example. To demonstrate the expressiveness of a reflec-
tive specification, consider the implementation of ovmp2, the
Ovm counterpart to the javap class file disassambler. Ovmp
prints the mnemonic of each opcode and, for instructions
such as branch or loads that have immediate arguments,
the value of those argument in the format specified by the
instruction semantics. The main loop is written as follows.

while (ib.remaining() > 0) {
Instruction i = ib.get();
print(i.getName());
if (isStreamReader(i))

iprinter.visitAppropriate(ib.currentOpcode()); }

A runabout dispatches to the proper print method. Be-
cause the instruction hierarchy lacks a type to characterize
all iStream readers, the implementation takes advantage of
the reflective IR specification. It filters calls to the run-
about based on the characteristics of instructions. This is
done by the method iStreamReader() which return true if
an instruction has immediate arguments. It is written as
follows.

iStreamReader(Instruction i) {
return i.istreamIns.length != 0; }

The argument printer runabout has sixteen methods and is
a total of 120 lines long. The entire ovmp has 520 lines (out
of which 60 are comments).

2This example is due to Jacques Thomas who implemented
ovmp.

3. DESIGN PATTERNS
The software architecture of the tools and components of
the Ovm framework has evolved over time. This section de-
scribes this evolution and the motivations behind the changes.
Originally, the instruction objects used dedicated methods
to perform abstract execution of bytecode. The dedicated
methods accessed the state information of the current method
via a helper object which was provided to the constructor of
every instruction object and stored in a field of the instruc-
tion. This created problems in that the instruction objects
could not be used concurrently by multiple threads operat-
ing on different methods.

The use of dedicated methods also had the disadvantage that
every additional analysis or processing required changes to
each instruction class. Thus, each of the instructions was
extended with an accept method and various analyses were
written as visitors operating on the instructions. In order to
make code-factoring easier, the instructions were arranged in
a hierarchy (see Fig. 1) that reflects commonalities between
the instructions. Convenience methods implemented by the
instructions were factored into common superclasses. An
example of such a method is getCPIndex, a method that
returns the index into the constant pool for every instruction
that accesses the constant pool.

Runabout # visit methods

CloneInstructionVisitor 202
ClassCleaner 2
LinearPassController 1
AbstractInterpreter 27
ControlFlowInterpreter 8
BasicBlockJ2CTranslator 11
TypeNameClosure 10
SimpleJitVisitor 134
JamitConstraintGenerator 8
ZeroCFA 18
ConstraintGenerator 9
MaxStackHeightInference 30

Table 2: List of the Runabouts working on the instruc-

tions.

The visitors that implement the various analyses are also
able to take advantage of the instruction hierarchy; the visit
methods can be refactored using the hierarchical visitor pat-
tern [10]. For example, our access modifier inference tool
does not need to distinguish between Java’s four field access
operations (GETFIELD, PUTFIELD, GETSTATIC, PUTSTATIC).
Using the hierarchical visitor pattern, Jamit only needs to
implement the visit method for the abstract FieldAccess

instruction class. In order to make the hierarchical visi-
tor pattern work, a helper method that indirects calls from
visit(PUTSTATIC i) to visit(FieldAccess i) is required
(see code on the left in figure 4).

Writing this indirection code, while conceptually trivial, turns
out to be cumbersome over time. Each time the instruction
hierarchy evolved, the base-classes of the visitors needed to
be rewritten. With over 200 instruction classes it became
difficult to track changes in the hierarchy. Probably worse,

70

class FieldAccess {
void accept(Visitor v) {

v.visit(this); } }

class GETFIELD extends FieldAccess {
void accept(Visitor v) {

v.visit(this); } }

class HierarchicalVisitor extends Visitor {
void visit(FieldAccess i) {

...
}
void visit(GETFIELD i) {

visit((FieldAccess)i); } }

class Main {
static void main() {

Visitor v = new HierarchicalVisitor();
Instruction i = new GETFIELD();
inst.accept(v); } }

class FieldAccess { }

class GETFIELD extends FieldAccess { }

class MyRunabout extends Runabout {
void visit(FieldAccess i) {

... } }

class Main {
static void main() {

Runabout r = new MyRunabout();
Instruction i = new GETFIELD();
r.visitAppropriate(inst); } }

Figure 4: Hierarchical Visitor vs. Runabout

the instruction set needed to be expanded to support op-
erations that are not part of the JVM standard. The use
of the visitor pattern required that every analysis supplied
visit methods for all instructions. Thus, every change in
the hierarchy of the instruction set required updates to sev-
eral visitors. Considering that one of the requirements for
OvmIR is that the instruction set is customizable, this was
not practical.

The problem was solved by replacing the use of visitors with
the Runabout pattern [7]. Runabouts declare visit methods
just like visitors, but instead of doing double-dispatch with
accept methods in the instruction objects, the appropriate
visit methods are found by reflection and invoked by dynam-
ically generated and loaded helper classes. The result of this
final refactoring was that hundreds of accept methods were
removed from the instruction objects and hundreds of visit
methods that were either abstract (visitor interface), empty
(default base class) or indirecting to other visit methods (hi-
erarchical visitor) became obsolete. The Runabout code on
the right side of figure 4 is the equivalent to the visitor code

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

tim
e

(m
s)

number of visit methods

Dedicated methods
Visit methods

Runabout

Figure 5: Runtime comparison of dedicated meth-

ods, visitors and the Runabout in Micro-benchmark for

10.000.000 iterations on SUN JDK 1.4.1, P-III 1 GHZ,

Linux 2.4.18. The time shown is for the dispatch only.

on the left side. As the example shows, using the Runabout
eliminates the need for the accept methods and the code for
the code for the hierarchical indirection. The performance
impact of the dispatch with the Runabout on the frame-
work was minor (a few percent depending on the analysis),
confirming expectations from the microbenchmarks (Fig. 5).
Table 2 shows the various classes in the Ovm framework that
are Runabouts visiting the instructions. The table also lists
the number of visit methods that each of these classes im-
plements. The total number of instruction classes in Ovm is
273 (237 of these are concrete instructions, but some tools
only support the 201 instructions of the Java VM specifica-
tion [13]).

4. COMPONENTS BUILT AROUND OVM
Various tools have been built around the OvmIR. Tools that
are used by the VM itself include a bytecode verifier, a sim-
ple JIT compiler, an interpreter generator, a bytecode-to-
C++ translator, and the OvmIR transformation infrastruc-
ture. The analysis framework has been used to implement
Kacheck/J [8], a tool to infer confined types, Jamit, an ac-
cess modifier inference tool and Hitsuji, a tool that performs
control-flow analysis (for example, 0-CFA [16] or type-safe
method inlining [15]).

4.1 Interpreter Generation
The Ovm framework includes a Java bytecode interpreter
written in C. The interpreter is automatically generated
from the instruction specification which ensures that the
part of the system written in C is synchronized with the rest
of the codebase. In particular, this ensures that the C in-
terpreter actually operates on the same IR that is produced
by tools written in Java without forcing the interpreter to
consult Instruction objects at runtime.

We chose to implement only a subset of Java bytecode in-
structions in C code. The more involved instructions that re-
quire cooperation with the JVM runtime such as, for exam-
ple, the resolution of symbolic member references or mem-
ory allocation, are reduced to invocations of methods of the
runtime. Because instruction specifications can be viewed as
an abstract syntax tree format for a subset of C expressions,

71

the interpreter generator is fairly simple. Conceptually, each
instruction is compiled to a case clause that copies imme-
diate and stack operands into local variables, computes the
result, and pushes it on the stack. For instance, IADD would
be compiled to the following code:

case INSTR IADD: {
jint stack in 0 = POP().jint;
jint stack in 1 = POP().jint;
jint stack out 0 = (stack in 1 + stack in 0);
PUSH P(stack out 0);
INCPC(1);
NEXT INSTRUCTION;

}

Currently, our interpreter loop is not using a switch state-
ment; instead, we generate a threaded interpreter [3] using
language extensions of the GCC compiler. We had to change
very few lines of code in the interpreter generator to switch
between these two techniques.

4.2 Ahead of Time Compilation
We are currently using the same instruction specification to
implement a bytecode to C++ compiler, J2c. This compiler
does not use high-level C++ features such as member func-
tions and run-time type identification, but treats C++ as
a portable assembly language with exception-handling sup-
port. The compiler may be configured for either conservative
or precise garbage collection.

Although the instruction specification forms the basis of
J2c’s intermediate representation, J2c extends the specifi-
cation in a few ways. For instance, the OvmIR differenti-
ates between explicit method invocations and traps into the
runtime. J2c translates both types of method calls into a
single form so that they can be devirtualized and inlined
uniformly. J2c also defines a ValueSource type correspond-
ing to MULTIANEWARRAY’s operands. Such a type makes sense
for occurrences of the MULTIANEWARRAY instruction, but does
not fit into the singleton framework, since MULTIANEWARRAY

takes a variable number of arguments.

4.3 Just in Time Compilation
We have implemented a just-in-time compiler, SimpleJIT,
which converts the OvmIR into Intel x86 native code in one
linear pass. SimpleJIT is not intended to be an optimizing
compiler, but rather a basic fast compiler like the Jikes RVM
baseline compiler [2]. SimpleJIT emulates the operand stack
in the native stack frame. Each concrete instruction is cov-
ered by a visit method in the compiler. Fig. 6 shows the visit
method for the family of instructions pushing an integer on
the stack. The code exploits the instruction hierarchy to
cover nine concrete instructions.

public void visit(IConstantLoad instruction) {
asm.pushI32(instruction.getValue(this));

}

Figure 6: The visit method for ICONST 0, ICONST 1,

ICONST 2, ICONST 3, ICONST 4, ICONST 5, ICONST M1, BIPUSH, and

SIPUSH.

4.4 Static Analysis
Ovm includes a number of classes for performing static pro-
gram analysis. Implementing a static analysis requires the
implementation of a set of visit methods for the instructions
that are relevant for the analysis. Furthermore, the analysis
needs to select an iterator that specifies the traversal over
the code. Ovm provides two basic templates. The first one
performs a linear pass and that will visit every instruction
once. The second runs a fixpoint iteration that is coupled
with a customizable abstract interpreter. For customization,
the analysis defines the level of abstraction by providing the
set of abstract values. Defining the abstract values requires
code that provides tests for value equality and merging of
abstract values at join points. The default set of abstract
values in Ovm corresponds to the set used by a Java byte-
code verifier and distinguishes between four basic primitive
types (int, float, double, long), the null reference, jump tar-
gets (JSR), initialized objects and uninitialized objects. The
default execution model also corresponds to the abstract ex-
ecution performed by a bytecode verifier.

A typical analysis uses this basic form of abstract execution
and interposes calls to analysis specific visitors that inspect
the state of the abstract interpreter for information relevant
to the particular analysis. If the value abstractions are ex-
tended to better match the different abstract domain of a
given analysis, visit methods of the abstract interpreter must
be overriden to ensure proper handling of the new values.
Examples of existing extensions of the abstract value set in
Ovm include the addition of a special value for the this ref-
erence in Kacheck/J [8] and the use of a flow sensitive type
sets for the implementation of 0-CFA [16].

The instruction specification isolates the analysis code from
irrelevant changes in the OvmIR. Often a single visit method
covers the behavior of multiple instructions that are equiv-
alent from the point of view of the analysis. For example,
the default abstract interpreter has generic code for instruc-
tions that merely perform basic operations such as moves
or arithmetic. Thus, instructions that fall into these cate-
gories can be added trivially without changing the abstract
interpreter.

Example. Fig. 7 gives a simple example of a visit method
that overrides the default behavior of the abstract inter-
preter for the NEW instruction. In the context of 0-CFA, a
NEW instruction pushes a flow set on the stack that contains
the type of the object being constructed. The visit method
is located within the body of a runabout called within the
fixpoint iteration. The method starts by querying the NEW

instruction for the name of the class under construction.
Since the instruction is a flyweight object, the runabout
passes the current instruction buffer to the instruction so
that it can retrieve the type name.

void visit(NEW instruction) {
TypeName type = instruction.getClassName(ibuf);
getFrame().push(valueFactory.makeSet(type));

}

Figure 7: The visit method for the NEW instruction.

72

The valueFactory object is an abstract value factory that
creates the flow set which is then pushed onto the operand
stack. The implementation of getClassName in the NEW in-
struction class is shown in Fig. 8. The method is written in
terms of operation on the state of the instruction buffer and
an auxiliary getCPIndex method which returns the constant
pool index immediately following the opcode of the current
instruction.

TypeName getClassName(InstructionBuffer ibuf) {
int index = getCPIndex(ibuf));
return ibuf.getConstantPool().getTypeNameAt(index);

}

int getCPIndex(InstructionBuffer ibuf) {
return ibuf.getCode().getChar(ibuf.getPC() + 1);

}

Figure 8: The NEW flyweight instruction object ex-

tracts context dependent information from the instruc-

tion buffer.

Performance. The code needed to extract information
from the abstract execution is typically small. For instance,
the addition of the this pointer to the abstract value set for
our confinement checker Kacheck/J [8] is specified in 160
lines of code. Flow sensitive types for the 0-CFA algorithm
are implemented in 370 lines. The code for constraint gen-
eration in Kacheck/J is merely 660 lines; obtaining type set
information for the 0-CFA takes 530 lines.

The use of the flyweight pattern for instructions is key for
achieving high throughput. Kacheck/J, which can be run as
a standalone application and performs what amounts to a
slightly extended variant of bytecode verification, has com-
petitive running times. Fig. 9 shows the running time of the
analysis on a set of large benchmark programs. The graph
plots the number of MB of bytecode (size of class files inclu-
sive of constant pools) in the benchmark against the time
required for the analysis proper (we did not include the time
it takes to load the bytecode and parse the constant pools).
This amounts to roughly 10MB per second, which appears
competitive with tools written in C.

10

100

1000

10000

1 k 10 k 100 k 1 MB 10 MB 100 MB

tim
e

(m
s)

size of class files (uncompressed)

Kacheck/J analysis time without parsing

Figure 9: Performance of the analysis framework for

Kacheck/J on a PIII-800 running Sun JDK 1.4.1.

4.5 Code Manipulation
Code manipulation of OvmIR is performed by Editor ob-
jects. Editors operate on instruction buffers and provide two
abstractions, Cursors and Markers. Cursors are used for in-
serting instructions. Markers act as symbolic jump targets.
Like the analyses, editing is typically performed by a visi-
tor that iterates over the code in some application specific
order. A transformation consists of a sequence of edit op-
erations followed by a commit. The original code remains
visible until the commit is performed.

Cursors have methods to create all of the concrete instruc-
tions. These methods often provide slightly higher-level ab-
stractions than the actual instructions of the IR. For ex-
ample, the cursor will emit appropriate code for a branch
instruction, i.e. either a short branch or a sequence of in-
structions that use a combination of short branch and long
jump. Similarly, an insertion operation like load constant
will automatically choose the best instruction for the given
value (such as ICONST3 for 3, or BIPUSH(42) for 42). The
required constant pool entries are also automatically gener-
ated.

The editor uses stateful instruction objects. The reason for
this is that code generation requires context information,
such as the location of a jump target, that is not always
available before a commit. Correctness of the resulting code
is not enforced. In fact, the cursor API allows the insertion
of arbitrary sequences of bytes into the instruction stream.

Complex modifications such as code motion are possible
within the framework, but can quickly become complicated
to express since the client code is not provided with any au-
tomated mechanisms to deal with data-flow. Moving a sin-
gle instruction such as IADD will always be difficult because
the surrounding instructions that first prepare the operand
stack and later process the result must also be moved. An
SSA-based IR would make these dependencies more explicit.
We are planning to provide a higher-level abstraction of the
IR that will give client code a more SSA-like view.

5. IDIOM RECOGNITION
Because OvmIR is the input accepted by the interpreter,
ahead-of-time compiler, and just-in-time compiler, a uni-
form approach is possible to the various unsafe or “magic”
operations (e.g. memory dereferencing) that must be avail-
able to a VM implementation but cannot be expressed in
pure Java. Most such operations are very short sequences of
code, often heavily executed, so that it would not be practi-
cal to implement them with a heavyweight mechanism such
as the Java Native Interface; in any case a single native li-
brary implementing the operations would not suffice, as the
interpreter and compilers will use different techniques to re-
alize the same operations.

We include in OvmIR a small set of opcodes for non-Java
primitive operations that can, either singly or in combina-
tion, express the special operations Ovm needs. The inter-
preter and compilers simply need to support these opcodes
as well. To make the extended semantics available at the
level of Ovm’s Java source, we do idiom recognition[9]: we

73

JVM bytecode OvmIR
Transcribe

Transform

Verifier

Other
Static Analyses

Interpreter

AOT compiler

JIT compiler

Figure 10: OvmIR is the common input to later

processing and execution. Idiom recognition is per-

formed iteratively on the OvmIR.

attach special semantics to certain idiomatic uses of stan-
dard Java constructs and, in an OvmIR-to-OvmIR transfor-
mation pass, replace those idioms with appropriate IR se-
quences. The transformation pass can be iterated to a fixed
point, allowing new idioms to be defined in terms of existing
ones. A report[4] more fully describes this aspect of Ovm;
this section provides a brief overview. Fig. 10 illustrates the
architecture.

By tag idiom, we denote an idiom that can be recognized
unequivocally, such as implementing a specific marker in-
terface or including a marker exception type in a throws

clause. By heuristic idiom, we mean one that is detectable
with some finite risk of false negatives or false positives,
such as a sequence of related operations in some order (per-
haps altered by javac before the recognizer sees it). We use
guarded idiom to name the combination of those techniques,
a heuristic idiom that is associated with a tag and is only
recognized where the tag is used. Guarded idioms can be
elaborate enough to express special operations at a usefully
high level, while eliminating the risk of false positives and
mitigating false negatives: if the tag is seen and the rest of
the idiom is not recognized a warning can be given.

Ovm provides a small set of primitive tag idioms, based on
marker interfaces and exceptions, with which other tag and
guarded idioms can be defined. We define a new idiom by
subclassing an existing tag and writing its IR transforma-
tion in terms of the Editor and Cursor interfaces. No other
code—in particular, no compiler or interpreter code—needs
to be touched to implement a new idiom as long as its se-
mantics can be expressed with some sequence of existing

public static ObjectModel getObjectModel()
throws InvisibleStitcher.PragmaStitchSingleton {
return (ObjectModel)InvisibleStitcher

.singletonFor("ovm.core.domain.ObjectModel"); }

Figure 11: A stitched Abstract Factory method.

It returnsa singleton of an abstract implementing

class. The stitcher idiom transforms all call sites to

constant-loads of the singleton.

OvmIR operations. The idiom in the following example has
a definition that occupies 32 lines in a single source file.

Fig. 11 illustrates an idiom we use throughout to achieve
configurability using the familiar Abstract Factory design
pattern[6] without paying the indirection cost that might
otherwise weigh against heavy use of this pattern in a VM.

6. CUSTOMIZING THE INSTRUCTION SET
The Ovm framework allows us to experiment with many as-
pects of the virtual machine design space, some of which re-
quire changes to the instruction set. Consider, for instance,
a change to the VM internal data structures that merges
per-class constant pools into a global shared data structure
(as done in Jikes [2]). The current limit on constant pool
indices (65535) must be overcome by extending the OvmIR
with new instructions to load values from 32 bit constant
pool indices.

To define the new instructions LDC DW and LDC 2D, one must
define compile-time constants for the new opcodes, define
the new instructions, and add these new instructions to the
instruction set. This amounts to adding roughly 20 lines of
code. One must also teach the Cursor class used in bytecode
rewriting how to generate the new instructions.

As shown in Fig. 12, the specification for LDC DW is similar
to that of LDC W. The only difference between the two is the
size of the integer constant in streamIns. This value is used
by ConstantPoolRead.getCPIndex to decode the immediate
operand statically and by the interpreter generator to choose
the decoding macro to invoke at runtime.

Finally, one must check that the new instruction is sup-
ported by all visitors that may encounter the new opcode.
For LDC DW, the only place that requires a change is the
CloneInstructionVisitor that needs to use the new method
in the Cursor to clone the LDC DW instruction. More elab-
orate additions of new instructions, especially if they can

public static class LDC W extends ConstantPoolLoad { {
CPIndexValue val = new CPIndexValue

(CPIndexValue.CONSTANT Any, TypeCodes.USHORT);
streamIns = new IntValue[] val;
stackOuts = new Value[] {new Value

(new CPAccessExp(val)) };
exceptions = new TypeName.Scalar[] {

VIRTUALMACHINE ERROR};
}
private final TypeName.Scalar[] exceptions ;
public TypeName.Scalar[] getThrowables() {

return exceptions ;
} }

public static class LDC DW extends LDC W { {
CPIndexValue val = new CPIndexValue

(CPIndexValue.CONSTANT Any, TypeCodes.UINT);
streamIns = new IntValue[] val;
stackOuts = new Value[] {

new Value(new CPAccessExp(val)) } }

Figure 12: The specification of Java’s LDC W instruction,

which loads a constant using a 16 bit index, and LDC DW,

which loads a constant using a 32 bit index.

74

not simply be modelled as subtypes of existing instructions,
typically require slightly more extensive additions to visitors
that need to handle the new instruction.

7. RELATED WORK
Interpreter generation has been employed by many systems,
among them Java Virtual Machines (e.g. Hotspot) and
Scheme interpreters ([11]). Recent refinements in interpreter
implementation techniques [5] suggest that a sophisticated
interpreter may be a valid alternative to an unsophisticated
dynamic compiler. The Virtual Virtual Machine project
aims to build a dynamically reconfigurable virtual machine
capable of running a variety of bytecode based languages [1].
vmgen [3] is a tool capable of generating interpreters for a
variety of virtual machines. vmgen accepts instruction def-
initions in form of textual description in a special purpose
programming language. We decided to express the instruc-
tion definitions directly as Java data structures and hence
removed the necessity of a parser for the special purpose lan-
guage. In effect, we have sped up the development process
(since no parser is needed) as well as the development cycle
(since the textual definition does not have to be processed
to generate a representation the Java tools can work on).

The joeq virtual machine [17] is a compiler infrastructure
that provides an intermediate representation modeling Java
bytecode. The latest source distribution of joeq uses two
variations of the visitor pattern to access the bytecode IR.
The first variant is a nonhierarchical visitor that uses a
switch statement on the opcode to dispatch to visit methods
for the concrete instruction classes (e.g., GETFIELD). The
visit methods take opcode-specific arguments that specify
the parameterization of the instruction (for example, the
selector of a field). These arguments are retrieved from
the instruction stream by the code in the switch statement.
The other style of visitor is a hierarchical visitor that dis-
patches over an instruction hierarchy with multiple inheri-
tance, similar to the one used in Ovm. The major differ-
ence is that joeq uses accept methods that always sequen-
tially call all applicable visit methods in abstract-to-concrete
order (e.g., ExceptionThrower, StackConsumer, StackPro-
ducer, TypedInstruction, LoadClass, CPInstruction, Fiel-
dOrMethod, FieldInstruction, and GETFIELD for GET-
FIELD.accept()). For this visitor, information from the
instruction stream is passed to the visitor using state in
the instruction objects, preventing the use of singleton in-
struction objects for all parametrized opcodes. In Ovm, all
instructions are flyweight objects and the required state is
passed as an argument to the methods of the instructions
that decode the bytecode stream. Notably, joeq’s bytecode-
related analyses use the switch-based nonhierarchical visitor
almost exclusively in favor of the more object-oriented hier-
archical visitor. Joeq also has a hierarchical visitor for its
quad-based IR, which is similar to the hierarchical visitor
for the bytecode IR.

8. FUTURE WORK
The instruction hierarchy is mostly ad hoc and tied to the
Java bytecode instruction set. However, instead of static
categorization in terms of the type system, one can envision
dynamic inference of bytecode specification properties since

most of the necessary information is present in the IR def-
inition of instructions. For example, it is possible to infer
that IINC both reads and writes local variables because of
the way that LocalAccess code sources are used in its def-
inition. Instructions could be dynamically annotated with
appropriate properties in the inference phase. This would
remove the burden of manual categorization from the pro-
grammer and ensure that categorization is consistent with
the semantics given by the IR. This new approach assumes
a static set of properties according to which the inference
would proceed. As an extension, one could provide a way
to specify new properties outside of the standard set sup-
plied by the framework. Tools interested in such properties
would have a way to specify them, and the inference engine
would be able to discover these properties. For example, a
tool performing stack height inference might be interested in
identifying all the instructions that do not change the stack
height. The tool would register a predicate, for example.

boolean hasInvariantStackHeight(Instruction instr) {
return instr.stackIns.length == instr.stackOut.length;

}

The instruction property inference engine would annotate
the appropriate instructions with the InvariantStackHeight
property. The stack height inference tool would then ignore
all instructions that have this property.

Currently, expression trees are given for each individual in-
struction. Optimizing compilers, however, typically operate
on intermediate representations of entire functions. It is con-
ceivable to convert the expression trees forming instruction
definitions to standard three address code form and obtain
an intermediate representation of any function by combining
the expression trees resulting from the sequence of bytecodes
constituting the definition of this function.

9. CONCLUSION
We have presented how certain design patterns can be used
to build an extensive set of VM components around the spec-
ification of an intermediate representation. The resulting IR
is customizable and the components using the IR can be eas-
ily adapted to changes in the configuration. Static analysis
tools that use our implementation of a bytecode-based IR
show competitive performance.

Acknowledgments. This work is supported by grants
from DARPA (PCES), and NSF (CCR–9734265). The au-
thors thank Tony Hosking, Doug Lea, David Holmes and
Krista Bennett for their comments; Jacques Thomas for im-
plementing ovmp.

10. REFERENCES
[1] B. Baillarguet and I. Piumarta. A highly-configurable,

modular system for mobility, interoperability,
specialization, and reuse. In 2nd ECOOP Workshop
on Object-Orientation and Operating Systems, June
1999.

[2] M. Burke, J. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. Serrano, V. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño dynamic optimizing

75

compiler for Java. In Proceedings ACM 1999 Java
Grande Conference, pages 129–141. ACM, June 1999.

[3] M. Anton Ertl and David Gregg. Building an
interpreter with vmgen. In Compiler Construction
(CC’02), pages 5–8. Springer LNCS 2304, 2002.

[4] C. Flack, T. Hosking, and J. Vitek. Idioms in Ovm.
Technical Report CSD-TR-03-017, Department of
Computer Sciences, Purdue University, 2003.

[5] E. Gagnon and L. Hendren. Effective inline-threaded
interpretation of java bytecode using preparation
sequences. In Compiler Construction, 12th
International Conference, Jan 2003.

[6] Erich Gamma, Richard Helm, Ralph E. Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1994.

[7] Christian Grothoff. Walkabout revisited: The
runabout. In ECOOP 2003 - Object-Oriented
Programming, Berlin, Heidelberg, New York, 2003.
Springer-Verlag.

[8] Christian Grothoff, Jens Palsberg, and Jan Vitek.
Encapsulating objects with confined types. In
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 241–253.
ACM SIGPLAN, 2001.

[9] David Hovemeyer, William Pugh, and Jaime Spacco.
Atomic instructions in java. In Magnusson [14], pages
133–154.

[10] Martin E. Nordberg III. Variations of the Visitor
Pattern. 1996.

[11] Richard A. Kelsey and Jonathan A. Rees. A tractable
Scheme implementation. Lisp and Symbolic
Computation, 7(4):315–335, 1994.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersen, Jeffrey Palm, and William G. Griswold. An
overview of AspectJ. In Jørgen Lindskov Knudsen,
editor, Object-Oriented Programming: 15th European
Conference, Budapest, Hungary: proceedings, volume
2072 of Lecture Notes in Computer Science, pages
327–353, Berlin, Heidelberg, New York, June 2001.
Springer-Verlag.

[13] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, Reading,
Massachusetts, 1996.

[14] Boris Magnusson, editor. ECOOP 2002 —
Object-Oriented Programming: 16th European
Conference, Málaga, Spain: proceedings, volume 2374
of Lecture Notes in Computer Science, Berlin,
Heidelberg, New York, June 2002. Springer-Verlag.

[15] Jens Palsberg and Neal Glew. Type-safe method
inlining. In Magnusson [14], pages 525–544.

[16] Olin Shivers. Control-flow analysis of higher-order
languages. PhD thesis, Carnegie Mellon University,
1991.

[17] John Whaley. Joeq: A Virtual Machine and Compiler
Infrastructure. In ACM SIGPLAN 2003 Workshop on
Interpreters, Virtual Machines and Emulators (IVME
2003). ACM SIGPLAN, 2003.

76

	Introduction
	A Reflective IR Specification
	Abstract machine model
	Instructions
	Values and Value Sources

	Design patterns
	Components built around Ovm
	Interpreter Generation
	Ahead of Time Compilation
	Just in Time Compilation
	Static Analysis
	Code Manipulation

	Idiom Recognition
	Customizing the Instruction Set
	Related work
	Future Work
	Conclusion
	REFERENCES

